JPH03157838A - Magneto-optical recording device - Google Patents

Magneto-optical recording device

Info

Publication number
JPH03157838A
JPH03157838A JP1296948A JP29694889A JPH03157838A JP H03157838 A JPH03157838 A JP H03157838A JP 1296948 A JP1296948 A JP 1296948A JP 29694889 A JP29694889 A JP 29694889A JP H03157838 A JPH03157838 A JP H03157838A
Authority
JP
Japan
Prior art keywords
magnetic layer
thin film
super thin
magneto
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1296948A
Other languages
Japanese (ja)
Inventor
Hideki Akasaka
赤坂 秀機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1296948A priority Critical patent/JPH03157838A/en
Publication of JPH03157838A publication Critical patent/JPH03157838A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magneto-optical recording medium having high storage stability and recording density by depositing two kinds of super thin films to constitute a first magnetic layer, and forming a second magnetic layer of rare earth-transition metal amorphous alloy thin film in a manner that the most upper super thin film in the first magnetic layer adjacent to the second magnetic layer is the second type super thin film so as to increase the apparent coercive force of the first magnetic layer. CONSTITUTION:The first magnetic layer consists of alternately deposited super thin films. These super thin films are the first type super thin film comprising platinum group elements and the second type super thin film comprising Co. The second magnetic layer is deposited thereon to couple with the first magnetic layer by exchange force to form the magneto-optical recording medium. These layers are formed in a manner that the Cu super thin film is contacting to the second magnetic layer. The second magnetic layer consists of an amorphous thin film of rare earth-transition metal alloy. The exchange force sigmaW between the first and second magnetic layers increases the apparent coercive force Hc* of the first magnetic layer since the exchange force sigmaW increases by direct contact of the second type super thin film and the second magnetic layer. By this method, the minimum unit of data for read-out can be minimized, and thus, the recording density can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カー回転角θ8の大きい新規な光磁気記録媒
体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel magneto-optical recording medium with a large Kerr rotation angle θ8.

〔従来の技術〕[Conventional technology]

最近、高密度、大容量、高いアクセス速度、並びに高い
記録及び再生速度を含めた種々の要求を満足する光学的
記録再生方法、それに使用される記録装置、再生装置及
び記録媒体を開発しようとする努力が成されている。
Recently, efforts have been made to develop optical recording and reproducing methods, recording devices, reproducing devices, and recording media used therein that satisfy various requirements including high density, large capacity, high access speed, and high recording and reproducing speed. Efforts are being made.

広範囲な光学的記録再生方法の中で、光磁気記録再生方
法は、情報を記録再生した後、消去することができ、再
び新たな情報を記録することが繰り返し何度でも可能で
あるというユニークな利点のために、最も大きな魅力に
満ちている。
Among a wide range of optical recording and reproducing methods, the magneto-optical recording and reproducing method is unique in that it can be erased after recording and reproducing information, and new information can be recorded again and again. Because of its advantages, it is full of the greatest charm.

この光磁気記録再生方法で使用される記録媒体は、記録
層として1層又は多層の垂直磁化膜(perpendi
cular magnetic 1ayer or 1
ayers)を有する。そして、現在、この磁化膜を、
希土類−遷移金属合金の非晶質の薄膜例えばGdPeや
GdCo。
The recording medium used in this magneto-optical recording and reproducing method has one or multiple perpendicular magnetization films as a recording layer.
cular magnetic 1ayer or 1
ayers). And now, this magnetized film is
Amorphous thin films of rare earth-transition metal alloys such as GdPe and GdCo.

GdFeCo、 TbFe、 TbCo、 TbFeC
oなどで構成したものが、主流となっている。
GdFeCo, TbFe, TbCo, TbFeC
The mainstream is one composed of o and the like.

しかしながら、希土類(以下、RIEと略す)−遷移金
属(以下、TMと略す)合金の薄膜は、θ、が比較的小
さく、そのためC/N比が小さいという欠点を有する。
However, thin films of rare earth (hereinafter abbreviated as RIE)-transition metal (hereinafter abbreviated as TM) alloys have a drawback that θ is relatively small and therefore the C/N ratio is small.

そこで、最近、pt原子を1〜7原子積層した第1超薄
膜と、Co原子を0.5〜2.5原子積層した第2超薄
膜とを交互に多数積層してなる厚さ50〜500人程度
の非晶質磁性層を記録層とする光磁気記録媒体が提案さ
れた(特開平1−169757号参照)。
Therefore, recently, a film with a thickness of 50 to 500 mm is obtained by alternately stacking a first ultra-thin film in which 1 to 7 PT atoms are stacked and a second ultra-thin film in which 0.5 to 2.5 Co atoms are stacked. A magneto-optical recording medium having a human-sized amorphous magnetic layer as a recording layer has been proposed (see Japanese Patent Laid-Open No. 1-169757).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このPt/Co超薄膜積層構造の媒体は
、RE−TM合金系媒体に比べると比較的保磁力Hcが
小さく、そのため■記録された情報の保存安定性が悪い
、■最小読取単位(マーク、ピット、ビットなどと呼ば
れる)が比較的大きく、記録密度が小さいという問題点
があった。
However, this Pt/Co ultra-thin film laminated structure medium has a relatively small coercive force Hc compared to RE-TM alloy media, and as a result: ■ The storage stability of recorded information is poor; ■ The minimum reading unit (mark , pits, bits, etc.) are relatively large, and the recording density is low.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者は鋭意研究した結果、Pt/C。 Therefore, as a result of intensive research, the present inventors discovered Pt/C.

超薄膜積層構造を第1磁性層とし、これにHcの相対的
に大きなRE−TM金合金非晶質薄膜からなる第2磁性
層を交換結合により結合させると、第1磁性層の比較的
低いHeが増加しく増加したHcを以下[見掛けの保磁
力Hc” Jと呼ぶ)、そのため前記問題点が解決され
ることを見い出した。
When an ultra-thin film laminated structure is used as the first magnetic layer and a second magnetic layer made of an amorphous thin film of RE-TM gold alloy with a relatively high Hc is coupled to this by exchange coupling, the relatively low Hc of the first magnetic layer is It has been found that Hc in which He increases is hereinafter referred to as the apparent coercive force Hc''J, thereby solving the above-mentioned problems.

そして、更に研究を進めた結果、第1磁性層は、第2磁
性層と接触する超薄膜がptの場合とCoの場合と2通
りあるが、後者の方がHe”が大きくなることを見い出
した。
As a result of further research, they discovered that there are two types of first magnetic layer, one in which the ultra-thin film in contact with the second magnetic layer is made of PT and one in which Co is made, but the latter has a larger He''. Ta.

更にまた、ptに限らずPd等の白金族原子でも同様で
あることを見い出し、本発明を成すに至った。
Furthermore, they have discovered that the same effect can be applied not only to pt but also to platinum group atoms such as Pd, leading to the present invention.

よって、本発明は、 「白金族原子からなる第1超薄膜とCoからなる第2超
薄膜とが交互に積層されてなる第1磁性層と、 これに交換結合した第2磁性層と が積層されてなる光磁気記録媒体において、前記第1磁
性層の第2磁性層と接触する超薄膜を前記第2超薄膜と
し、 前記第2磁性層を希土類−遷移金属合金の非晶質薄膜で
構成したことを特徴とする媒体」を提供する。
Therefore, the present invention provides a first magnetic layer in which a first ultra-thin film made of platinum group atoms and a second ultra-thin film made of Co are alternately laminated, and a second magnetic layer exchange-coupled thereto. In the magneto-optical recording medium, the ultra-thin film in contact with the second magnetic layer of the first magnetic layer is the second ultra-thin film, and the second magnetic layer is composed of an amorphous thin film of a rare earth-transition metal alloy. media that features the following.

〔作用〕[Effect]

白金族例えばPt、 Pdの原子を1〜7原子積層した
第1超薄膜(非晶質)とCo原子を0.5〜2.5原子
積層した第2超薄膜(非晶質)が交互に多数積3 層されてなる第1磁性層(垂直磁化膜)自体は、既述の
ように公知である。本発明では、第1磁性層の膜厚は5
0〜800人が好ましい。
A first ultra-thin film (amorphous) in which 1 to 7 atoms of a platinum group such as Pt or Pd are stacked and a second ultra-thin film (amorphous) in which 0.5 to 2.5 Co atoms are stacked are alternately formed. The first magnetic layer (perpendicular magnetization film) itself, which is composed of three multi-layered layers, is well known as described above. In the present invention, the thickness of the first magnetic layer is 5
Preferably 0 to 800 people.

第1又は第2超薄膜のいずれか一方又は両方に、種々の
目的で第3元素を添加してもよい。例えば、キュリー点
を下げる等の目的でA1、Si、 Ti、 V。
A third element may be added to either or both of the first or second ultra-thin film for various purposes. For example, A1, Si, Ti, V for the purpose of lowering the Curie point, etc.

Cr、 Mn5Fe、 Ni、 Cu、 Zn、 Ga
、 Ge、 Zr、Nb、 Mo。
Cr, Mn5Fe, Ni, Cu, Zn, Ga
, Ge, Zr, Nb, Mo.

Ru、 Rh、 Ag、 Ins Sn、 Sb、 H
f、Ta、 W、 Re、 Os。
Ru, Rh, Ag, Ins Sn, Sb, H
f, Ta, W, Re, Os.

Ir、 Au、 Pb、 Biの元素のうち少なくとも
1種を適宜添加しても良い。
At least one of the elements Ir, Au, Pb, and Bi may be added as appropriate.

第1磁性膜に交換結合させる第2磁性層自体も公知であ
る。第2磁性層は、希土類例えばGd、 Tb、Ho5
Dy等と遷移金属例えばFe、 Coとの多元合金例え
ばTbFe、 TbCo、 TbPeCo5GdFe、
 GdCo、 GdPeCo。
The second magnetic layer itself, which is exchange-coupled to the first magnetic film, is also known. The second magnetic layer is made of rare earth metal such as Gd, Tb, Ho5
Multi-component alloys of Dy etc. and transition metals such as Fe, Co such as TbFe, TbCo, TbPeCo5GdFe,
GdCo, GdPeCo.

DyFe、 DyCo、 DyPeCo、 GdTbF
e、 GdTbFeCo、 DYTbPelDyTbC
o、 DyTbFeCo等の非晶質垂直磁化膜で構成さ
れる。膜厚は50〜1000人が好ましい。
DyFe, DyCo, DyPeCo, GdTbF
e, GdTbFeCo, DYTbPelDyTbC
o, consists of an amorphous perpendicularly magnetized film such as DyTbFeCo. The film thickness is preferably 50 to 1000 people.

第1、第2磁性層の間に交換結合を働かすには、両層を
できるだけ接近させればよい。実際には、一方の層を真
空中で形成した後、真空を破らすに− 他方の層を形成すれば、両層は交換結合する。
In order to induce exchange coupling between the first and second magnetic layers, both layers should be brought as close as possible. In fact, if one layer is formed in a vacuum and then the other layer is formed when the vacuum is broken, both layers will be exchange coupled.

交換結合した第1、第2磁性層間に働く交換結合力σ1
により第1磁性層の見掛けの保磁力Hc”は増加する。
Exchange coupling force σ1 acting between the exchange-coupled first and second magnetic layers
Accordingly, the apparent coercive force Hc'' of the first magnetic layer increases.

σ、は本発明に従い第2超薄膜(CO)が第2磁性層(
RE−TM)と直接接触させると大きくなる。但し、H
c”は第2磁性層の膜厚に反比例するので同一の薄膜で
Hc”を比較すべきである。
According to the present invention, σ is the second ultra-thin film (CO) formed by the second magnetic layer (
RE-TM). However, H
Since c'' is inversely proportional to the thickness of the second magnetic layer, Hc'' should be compared for the same thin film.

第11第2磁性層は、この分野で公知のガラス基板、プ
ラスチック基板上に形成されるが、どちらの層を先に形
成してもよい。基板側読み出し法を採用するときには、
基板上に先に第1磁性層を形成すべきである。
The eleventh second magnetic layer is formed on a glass substrate or a plastic substrate, which are known in this field, but either layer may be formed first. When adopting the board side readout method,
A first magnetic layer should be formed on the substrate first.

基板上には予め溝材層、保護層、カー効果増強膜等が形
成されていてもよく、また、最上層の磁性層の上にも保
護層、反射層等を形成してもよい。
A groove material layer, a protective layer, a Kerr effect enhancing film, etc. may be formed in advance on the substrate, and a protective layer, a reflective layer, etc. may also be formed on the uppermost magnetic layer.

保護層の材料としては、ZnS 、 kl gos、T
a205 、MgO、SiO2、TiO2、Fe、Os
 、ZrO,、Bit03等の酸化物系誘電体、あるい
はZrN 、 TiN 。
Materials for the protective layer include ZnS, kl gos, and T.
a205, MgO, SiO2, TiO2, Fe, Os
, ZrO, Bit03, etc., or ZrN, TiN.

5tJt 、Aj!N 、 ON、 TaN 1NbN
等の窒化物系誘電体等が使用できる。
5tJt, Aj! N, ON, TaN 1NbN
Nitride-based dielectrics such as can be used.

〔実施例〕〔Example〕

3元のマグネ1−ロン・スパッタリング装置を用意し、
ターゲットと(7てPt、 Co及びTbFeCo合金
をセットした。
Prepare a three-dimensional Magne1-ron sputtering device,
A target (7) and Pt, Co and TbFeCo alloys were set.

そして、これらのターゲットと対向させた水冷装置(=
jきの回転基台にディスク(φ“−120mm)状のガ
ラス基板を載置した。
Then, a water cooling device (=
A disk (φ"-120 mm)-shaped glass substrate was placed on a rotating base.

最初にPt、 Co各ターゲットを使用し、ガス圧5×
10−T o r rのアルゴン雰囲気中において二元
(Pt。
First, Pt and Co targets were used, and the gas pressure was 5×
Binary (Pt) in an argon atmosphere of 10-T o r r.

Co)同時マグネトロン・スパッタリングを行なった。Co) Simultaneous magnetron sputtering was performed.

Coターゲットに対しては投入電流0.40Aの直流ス
パッタリング、ptターゲットに対しては投入電力40
0Wの高周波スパッタリングとした。このときガラス基
板を載置した回転基台の回転数を適当に設定することに
より、Ptl〜7原子を積層した第1超薄膜とCo0.
5〜2.5原子を積層17た第2超薄膜とを交互に多数
積層(7た多層構造の第1磁性層(膜厚100 A)を
形成した。この第1磁性層は最上層が第2超薄膜(CO
)となるように形成した。
DC sputtering with input current of 0.40A for Co target, input power of 40A for PT target
High frequency sputtering was performed at 0W. At this time, by appropriately setting the rotation speed of the rotating base on which the glass substrate is placed, the first ultra-thin film laminated with Ptl~7 atoms and Co0.
A first magnetic layer (thickness: 100 A) with a multilayer structure was formed by alternately laminating a large number of second ultra-thin films with 17 layers of 5 to 2.5 atoms. 2 Ultra-thin film (CO
).

次に真空を破らずにターゲットをTbFeCo合金に代
えて同じArガス圧下でスパッタリングを行ない、第2
磁性層(膜厚500人)を形成した。
Next, without breaking the vacuum, the target was replaced with a TbFeCo alloy and sputtering was performed under the same Ar gas pressure.
A magnetic layer (film thickness: 500 layers) was formed.

こうして得られた本実施例の記録媒体の諸物性各層とも
単層膜での物性値を次の第1表に示す。
Various physical properties of the recording medium of this example thus obtained The physical property values of each layer as a single layer film are shown in Table 1 below.

第1表 本実施例の見掛けの保磁力HC″を測定したところ第1
磁性層(Pt/Co交互多層)のHe=1650eに比
べて10000e以上増加していた。
Table 1: The apparent coercive force HC'' of this example was measured.
Compared to He=1650e of the magnetic layer (Pt/Co alternating multilayer), the increase was more than 10000e.

それに対して、第2磁性層と接触する超薄膜を第1超薄
膜(Pi)とした記録媒体は、He”はほとんど増加し
ていなかった。
On the other hand, in the recording medium in which the first ultra-thin film (Pi) was used as the ultra-thin film in contact with the second magnetic layer, He'' hardly increased.

〔発明の効果〕 =7 以りの通り、本発明によれば、第1磁性層によりθ1が
大きく、それでいて第2超薄膜(Co)を接触面に配置
して、RE−TM合金薄膜の第2磁性層を交換結合させ
たので、第1磁性層の11c゛が大きくなり、保有安定
性が高く、記録密度の高い光磁気記録媒体が提供される
[Effect of the invention] = 7 As described above, according to the present invention, θ1 is large due to the first magnetic layer, and the second ultra-thin film (Co) is disposed on the contact surface, so that the Since the two magnetic layers are exchange-coupled, the 11c of the first magnetic layer is increased, providing a magneto-optical recording medium with high retention stability and high recording density.

本発明の媒体は、それ自体特開昭57−78652号に
開示された2層膜タイプの光磁気記録媒体に使用するこ
とができる外、特開昭62−175948号に開示され
た光変調方式のオーバーライド可能な光磁気記録媒体そ
れ自体又はそれを構成する第1層(記録層)として使用
することができる。
The medium of the present invention can be used not only in the double-layer type magneto-optical recording medium disclosed in JP-A-57-78652, but also in the optical modulation method disclosed in JP-A-62-175,948. It can be used as an overridable magneto-optical recording medium itself or a first layer (recording layer) constituting it.

=8=8

Claims (1)

【特許請求の範囲】 白金族原子からなる第1超薄膜とCoからなる第2超薄
膜とが交互に積層されてなる第1磁性層と、 これに交換結合した第2磁性層と が積層されてなる光磁気記録媒体において、前記第1磁
性層の第2磁性層と接触する超薄膜を前記第2超薄膜と
し、 前記第2磁性層を希土類−遷移金属合金の非晶質薄膜で
構成したことを特徴とする媒体。
[Claims] A first magnetic layer formed by alternately laminating a first ultra-thin film made of platinum group atoms and a second ultra-thin film made of Co, and a second magnetic layer exchange-coupled thereto are laminated. In the magneto-optical recording medium, the ultra-thin film in contact with the second magnetic layer of the first magnetic layer is the second ultra-thin film, and the second magnetic layer is composed of an amorphous thin film of a rare earth-transition metal alloy. A medium characterized by
JP1296948A 1989-11-15 1989-11-15 Magneto-optical recording device Pending JPH03157838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1296948A JPH03157838A (en) 1989-11-15 1989-11-15 Magneto-optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296948A JPH03157838A (en) 1989-11-15 1989-11-15 Magneto-optical recording device

Publications (1)

Publication Number Publication Date
JPH03157838A true JPH03157838A (en) 1991-07-05

Family

ID=17840256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296948A Pending JPH03157838A (en) 1989-11-15 1989-11-15 Magneto-optical recording device

Country Status (1)

Country Link
JP (1) JPH03157838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492584A2 (en) * 1990-12-28 1992-07-01 Sony Corporation Magneto-optical recording medium
US5370945A (en) * 1991-07-22 1994-12-06 Canon Kabushiki Kaisha Magnetooptic recording medium
US5702830A (en) * 1992-07-28 1997-12-30 Johnson Matthey Public Limited Company Magneto-optical recording materials system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492584A2 (en) * 1990-12-28 1992-07-01 Sony Corporation Magneto-optical recording medium
US5958575A (en) * 1990-12-28 1999-09-28 Sony Corporation Magneto-optical recording medium
US5370945A (en) * 1991-07-22 1994-12-06 Canon Kabushiki Kaisha Magnetooptic recording medium
US5702830A (en) * 1992-07-28 1997-12-30 Johnson Matthey Public Limited Company Magneto-optical recording materials system
US6022630A (en) * 1992-07-28 2000-02-08 Johnson Matthey Electronics, Inc. Platinum and cobalt multilayer recording materials system and process for making same

Similar Documents

Publication Publication Date Title
EP0519949B1 (en) Platinum or palladium/cobalt multilayer on a zinc oxide or indium oxide layer for magneto-optical recording
US4789606A (en) Magneto-optical recording medium
JPS61108112A (en) Vertically magnetized film
US5030512A (en) Magneto-optical recording medium
JPH03157838A (en) Magneto-optical recording device
JPS62289948A (en) Magneto-optical recording medium
JPS63273236A (en) Magneto-optical recording medium
JPH057775B2 (en)
JPH0660452A (en) Magneto-optical recording medium
JP3237977B2 (en) Magneto-optical recording medium
JPS62289946A (en) Magneto-optical recording medium
JPS61278061A (en) Photomagnetic recording medium
JP2726298B2 (en) Magneto-optical recording method
JPS6168748A (en) Photomagnetic recording medium
JP2536639B2 (en) Exchange coupled multilayer magneto-optical recording medium
JPH07107757B2 (en) Magneto-optical recording medium
JPH056584A (en) Magneto-optical recording medium
JPS639048A (en) Magneto-optical recording medium
JPH05101465A (en) Magneto-optical memory element
JPH10134434A (en) Magneto-optical recording element
JPS6289255A (en) Photomagnetic recording medium
JPH04243037A (en) Magneto-optical recording medium
JPH07254182A (en) Magneto-optical recording medium
JPH04301242A (en) Magneto-optical recording medium
JPH06325419A (en) Magneto-optical recording medium