JP2707561B2 - Artificial lattice magneto-optical recording medium - Google Patents

Artificial lattice magneto-optical recording medium

Info

Publication number
JP2707561B2
JP2707561B2 JP28572787A JP28572787A JP2707561B2 JP 2707561 B2 JP2707561 B2 JP 2707561B2 JP 28572787 A JP28572787 A JP 28572787A JP 28572787 A JP28572787 A JP 28572787A JP 2707561 B2 JP2707561 B2 JP 2707561B2
Authority
JP
Japan
Prior art keywords
thin film
magneto
optical recording
recording medium
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28572787A
Other languages
Japanese (ja)
Other versions
JPH01128244A (en
Inventor
和隆 羽生
一志 山内
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28572787A priority Critical patent/JP2707561B2/en
Publication of JPH01128244A publication Critical patent/JPH01128244A/en
Application granted granted Critical
Publication of JP2707561B2 publication Critical patent/JP2707561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば書き換え可能な光磁気ディスク等に
適用する垂直磁化膜を有する人工格子光磁気記録媒体に
関わる。 〔発明の概要〕 本発明は、希土類−遷移金属を主体とする薄膜層A
と、希土類金属を主体とする薄膜層Bとの2層以上の周
期的積層構造を採り、その各薄膜層の組成と膜厚関係の
特定によってカー(Kerr)回転角θ−磁界Hのヒステ
リシスループの角型の良い垂直磁化膜による人工格子光
磁気記録媒体を構成する。 〔従来の技術〕 近年、光磁気記録媒体の開発が急激に活発化してい
る。この光磁気記録媒体の実用的な特性が得られる媒体
としては、例えば特開昭58−73746号公報に開示されて
いるように、希土類−遷移金属合金薄膜によるものが注
目されている。この種の光磁気記録媒体は、一般には、
希土類−遷移金属合金による垂直磁化膜を形成するとい
う構成がとられる。ところが、このような構成による光
磁気記録媒体は、磁束−磁界ヒステリシスループ、カー
ヒステリシスループ等の角型が悪く、大きなカー回転角
θや、高い保磁力Hcが得難い。また、実用に供し得る
程度の保磁力Hcを得るには、その膜組成を、例えば室温
程度を補償温度とするように選定する組成の極く近傍に
選定することが必要であり、実用組成範囲が極めて狭隘
であった。 〔発明が解決しようとする問題点〕 本発明は、カーヒステリシスループの角型にすぐれ磁
気光学特性にすぐれた垂直磁化膜による人工格子光磁気
記録媒体を提供することができ、更にまた、垂直磁化膜
全体としての組成、つまり見掛上の組成の実用範囲の狭
隘の問題点の解決をはかる。 〔問題点を解決するための手段〕 本発明は、基体上に、薄膜層Aと薄膜層Bとが少くと
も1層以上に交互に積層された周期構造を有し、膜面と
垂直方向に磁化容易軸を有する垂直磁化膜を形成する。 薄膜層A及びBの各組成は、各元素群をRI,RII,SI,S
II,Mで表わすとき、 なる一般式を有し、 xI+yI=100, 50xI100, 0yI50, 0i40, xII+yII=100, 50xII100, 0yII50, であって、元素群RI及びRIIは、Gd,Tb,Dy,Hoのうちの少
なくとも1種以上の元素であり、元素群SI及びSIIは、
元素群RI及びRII以外のSc,Yを含む希土類元素のうちの
少なくとも1種以上の元素であり、元素群Mは、Fe,Co,
Niのうちの少なくとも1種以上の元素であり、薄膜層A
及びBの各膜厚を、それぞれa(Å)及びb(Å)と
し、各膜厚の関係をa−b直交座標系において(a,b)
で表わすとき、第1図に示すように、両膜厚の関係が、
点(イ)(10,4),点(ロ)(50,40),点(ハ)(13
0,13)更に点(イ)(10,4)の各座標点を結ぶ範囲内と
された垂直磁化膜を構成する。 〔作用〕 上述した薄膜層Aと、薄膜層Bとの点(イ)(ロ)
(ハ)(イ)によって囲まれた範囲の周期積層構造の人
工格子構造による垂直磁化膜を有する光磁気記録媒体に
よれば、その光磁気記録層、すなわち垂直磁化膜におけ
る磁気補償温度Tcompを室温程度に選定することのでき
る全体としての平均組成すなわち見掛け上の組成範囲が
広がることが確認され、また磁気光学的諸特性例えばカ
ーヒステリシスカーブの角型の向上、保磁力Hcの向上等
がはかられる。 すなわち、本発明構成では、薄膜層BのRII磁性原子
と薄膜層AのM磁性原子との磁気的結合が弱くなるため
薄膜層BのRII磁性原子が積層の位置によりスペリマグ
ネティズムのようにRII原子スピンが傾いてきて、この
ため、磁性膜中にRII原子が多く含まれ、希土類−遷移
金属薄膜層A間に結晶の層Bが出現していても全体とし
ては、膜面に垂直な磁気異方性を有するすぐれた光磁気
特性を示すことになる。 〔実施例〕 本発明による薄膜層Aと薄膜層Bとが交互に積層され
た周期構造の人工格子光磁気記録膜の作製は、マグネト
ロンスパッタリング装置を用い得る。 このスパッタリング装置は、例えば第2図に示すよう
に、ベルジャ(図示せず)内に、軸心0−0′を中心と
して回転する基台(1)を設け、これの例えば下面に目
的とする光磁気記録媒体を構成する平滑ガラス基板より
成る基体(2)が配置される。そして、この基体(2)
に対向して軸心0−0′を中心に等角間隔、すなわち18
0゜の角間隔を保持して2個のスパッタ源(3)及び
(4)を配置する。これらスパッタ源(3)及び(4)
と基台(1)、すなわち基体(2)との間には、スパッ
タ源(3)及び(4)より夫々スパッタされる金属のス
パッタ位置を規制するマスク(5)を配置する。スパッ
タ源(3)及び(4)は、それぞれ前述した薄膜A及び
Bの各組成金属ターゲット(6)及び(7)を有して成
る。これらターゲット(6)または(及び)(7)は、
対応する薄膜Aまたは(及び)Bが、複合(合金)であ
る場合は、この組成に応じた合金ターゲットとすること
もできるし、例えば単一金属体若しくは合金体上に他の
単一または合金ペレットを載せて全体として所要の組成
を有するようになし得る。(8)及び(9)はマグネッ
トを示す。 そして基台(1)を回転させながらターゲット(6)
及び(7)を負極側としてマスク(5)の窓(5a)及び
(5b)を通して基体(2)上に、これらの直流スパッタ
リングを行う。 このようにして基台(1)を回転させながら全体とし
て200〜10,000Åの厚さ、例えば5000Åの厚さの垂直磁
化膜を基体(2)上に形成して目的とする光磁気記録媒
体を作製する。このスパッタリングは、残留ガス圧1.0
×10-6torr,Arガス圧5×10-3torrとして行う。 実施例1 上述したスパッタリング方法によって、平滑ガラス板
より成る基体(2)上に垂直磁化膜、すなわち光磁気記
録膜を形成した。この場合、ターゲット(6)として薄
膜層Aを構成するTb19.3 Fe72.6 Co8.1を用い、ターゲ
ット(7)として薄膜層Bを構成するTbを用いた。また
基体(2)上における各薄膜層Aの厚さtAは130Å、各
薄膜層Bの厚さtBは13Åとし、全体の厚さが約5000Åと
なるように両薄膜層A及びBを繰返し積層した。このよ
うにして得た垂直磁化膜全体としての平均組成は、Tb
20.6(Fe90Co1079.4である。 比較例1 実施例1と同様の方法によるものの、ターゲットとし
て、実施例1の磁性膜の平均組成とほぼ同組成のTbFeCo
合金の単一ターゲットを用いてガラス基板(2)上に光
磁気記録膜をスパッタリングによって形成した。 上述した実施例1及び比較例1によって得た各記録膜
の磁界Hに対するカー回転角θのヒステリシスループ
曲線の測定結果を第3図A及びBに示す。両曲線を比較
して明らかなように、実施例1のものは、比較例1のも
のに比してカーヒステリシスループの角型にすぐれてい
る。また、実施例1の場合、カー回転角θ=0.42゜で
あり、同組成の比較例1の均一合金膜のθ=0.36゜に
比し大きな改善がみられた。 実施例2 実施例1と同様の方法によるものの、第2図で説明し
たスパッタリング装置を用いて、そのTbFeCoより成る薄
膜層Aと、Tbより成る薄膜層Bの繰返し積層による光磁
気記録膜を、ガラス基体(2)上に形成した。この場合
において各薄膜層A及びBの各厚さを変更して各試料を
作製した。これら各試料の各薄膜層A及びBの各厚さの
関係を第4図に○印でプロットして示した。これら各試
料において第4図実線aで囲んだ範囲内で垂直磁化膜が
構成されて光磁気記録媒体を構成し得ることが確認され
た。 実施例3 実施例1と同様の方法によるものの、Tb19Fe73Co8
膜層Aの厚さtAとTb薄膜層Bの厚さtBとの比tA/tBをそ
れぞれ3/1,1/1としたときの、tAに対する保磁力Hcの測
定結果を第5図に示す。これによれば、広い積層構造領
域すなわち全体的な見掛上広い組成に亘って高い保磁力
Hcが得られることが分る。 実施例4 実施例1と同様の方法によるものの薄膜層A及びBと
その厚さの関係をそれぞれ変更した試料1〜5におい
て、垂直磁化膜が得られた。 上述した各実施例によれば、前述した第1図の座標点
(イ)(ロ)(ハ)(イ)によって囲まれた範囲内にお
いて、目的とする光磁気記録媒体が得られることが分か
った。 尚、上述した各例においては、積層構造の磁性膜中の
薄膜層A同士,B同士が、それぞれ同一組成のものを用い
た場合について説明したが、各薄膜層A及びBが、交互
に配された構成を採るものの、各薄膜層A及びBの双方
または一方が前述した各薄膜層A及びBの条件を満す組
成の2種以上の複数種の組成の薄膜より成り、この複数
種の薄膜の単一層又は積層によって各薄膜層A及びBと
することができる。すなわち、基本的には薄膜層A及び
Bの繰返し構成とするが、例えば薄膜層Aを2種の薄膜
A1及びA2とし、A1−A2−B−A1−A2−B・・・とすると
かA1−B−A2−B−A1・・・とするなどの構成を採り得
る。 〔発明の効果〕 上述したように本発明によれば、高いカー回転角
θ、高保磁力Hc、カーヒステリシスループの角型にす
ぐれた光磁気記録媒体を見掛上の組成を広範な組成から
選定することができることから、例えば使用態様、使用
条件に適合した最適な機械的、磁気的等の各種特性を有
する光磁気記録媒体の作製が可能となり、実用上大きな
利益をもたらす。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an artificial lattice magneto-optical recording medium having a perpendicular magnetization film applied to, for example, a rewritable magneto-optical disk. [Summary of the Invention] The present invention relates to a thin film layer A mainly composed of a rare earth-transition metal.
And a thin film layer B mainly composed of a rare earth metal, and a periodic lamination structure of two or more layers is adopted. By specifying the composition and film thickness relationship of each thin film layer, the Kerr rotation angle θ K -the hysteresis of the magnetic field H is determined. An artificial lattice magneto-optical recording medium comprising a perpendicular magnetization film having a good loop square shape is constructed. [Related Art] In recent years, the development of magneto-optical recording media has been rapidly active. As a medium capable of obtaining practical characteristics of this magneto-optical recording medium, for example, as disclosed in Japanese Patent Application Laid-Open No. 58-73746, a rare-earth-transition metal alloy thin film has attracted attention. This type of magneto-optical recording medium is generally
A configuration is adopted in which a perpendicular magnetization film made of a rare earth-transition metal alloy is formed. However, the magneto-optical recording medium according to such a configuration, the magnetic flux - magnetic hysteresis loop, poor squareness, such Kerr hysteresis loop, large Kerr and rotation angle theta K, it is difficult to obtain a high coercive force Hc. Further, in order to obtain a coercive force Hc that can be practically used, it is necessary to select the film composition very close to the composition selected so that, for example, room temperature is set as the compensation temperature. Was very narrow. [Problems to be Solved by the Invention] The present invention can provide an artificial lattice magneto-optical recording medium using a perpendicular magnetization film having a square shape of a Kerr hysteresis loop and excellent magneto-optical characteristics. The problem of narrowing the practical range of the composition as a whole film, that is, the apparent composition is solved. [Means for Solving the Problems] The present invention has a periodic structure in which a thin film layer A and a thin film layer B are alternately laminated on at least one or more layers on a substrate, and is arranged in a direction perpendicular to the film surface. A perpendicular magnetization film having an easy axis of magnetization is formed. Each composition of the thin film layers A and B is represented by R I , R II , S I , S
When represented by II and M, Has become general formula, x I + y I = 100 , 50x I 100, 0y I 50, 0i40, x II + y II = 100, 50x II 100, 0y II 50 A, the element group R I and R II Is at least one or more elements of Gd, Tb, Dy, Ho, and the element groups S I and S II are
It is at least one or more of the rare earth elements including Sc and Y other than the element groups R I and R II , and the element group M is Fe, Co,
At least one element of Ni, and the thin film layer A
, And B are a (a) and b (Å), respectively, and the relationship between the film thicknesses is (a, b) in an ab orthogonal coordinate system.
As shown in FIG. 1, the relationship between the two film thicknesses is
Point (a) (10,4), point (b) (50,40), point (c) (13
0,13) Further, a perpendicular magnetization film is formed within a range connecting the coordinate points of points (a) and (10,4). [Operation] Points (a) and (b) between the above-mentioned thin film layer A and thin film layer B
(C) According to the magneto-optical recording medium having the perpendicular magnetic film having the artificial lattice structure of the periodic laminated structure in the range surrounded by (a), the magnetic compensation temperature Tcomp of the magneto-optical recording layer, that is, the perpendicular magnetic film, is set to room temperature. It has been confirmed that the average composition as a whole, that is, the apparent composition range, which can be selected to a certain extent, is widened, and that magneto-optical properties such as an improvement in the square shape of the car hysteresis curve, an improvement in the coercive force Hc, etc. It is. That is, in the configuration of the present invention, the magnetic coupling between the R II magnetic atoms of the thin film layer B and the M magnetic atoms of the thin film layer A is weakened, so that the R II magnetic atoms of the thin film layer B have a supermagnetic effect depending on the position of the stack. The spin of the R II atom is inclined, and therefore, even if the magnetic film contains a large amount of R II atoms and the crystal layer B appears between the rare earth-transition metal thin film layer A, the film surface as a whole is It exhibits excellent magneto-optical characteristics having a magnetic anisotropy perpendicular to. [Embodiment] A magnetron sputtering apparatus may be used for producing an artificial lattice magneto-optical recording film having a periodic structure in which thin film layers A and thin film layers B according to the present invention are alternately stacked. In this sputtering apparatus, for example, as shown in FIG. 2, a base (1) that rotates about an axis 0-0 'is provided in a bell jar (not shown), and the base (1, for example) is provided on the lower surface thereof. A substrate (2) composed of a smooth glass substrate constituting a magneto-optical recording medium is arranged. And this base (2)
At equal angular intervals about the axis 0-0 ', ie, 18
Two sputter sources (3) and (4) are arranged while maintaining an angular interval of 0 °. These sputtering sources (3) and (4)
A mask (5) for regulating the sputter position of the metal sputtered by the sputter sources (3) and (4) is arranged between the substrate and the base (1), that is, the base (2). The sputtering sources (3) and (4) have the respective metal targets (6) and (7) of the thin films A and B described above, respectively. These targets (6) or (and) (7)
When the corresponding thin film A or (and) B is a composite (alloy), it can be an alloy target according to this composition, for example, a single metal body or an alloy body on another single or alloy body. The pellets can be loaded to have the required composition as a whole. (8) and (9) show magnets. And the target (6) while rotating the base (1)
DC sputtering is performed on the substrate (2) through the windows (5a) and (5b) of the mask (5) with (7) as the negative electrode side. In this way, while rotating the base (1), a perpendicular magnetization film having a thickness of 200 to 10,000 、, for example, 5000 と し て is formed on the base (2) as a whole to obtain a target magneto-optical recording medium. Make it. This sputtering has a residual gas pressure of 1.0
The operation is performed at × 10 −6 torr and Ar gas pressure of 5 × 10 −3 torr. Example 1 A perpendicular magnetization film, that is, a magneto-optical recording film was formed on a substrate (2) made of a smooth glass plate by the above-described sputtering method. In this case, Tb 19.3 Fe 72.6 Co 8.1 constituting the thin film layer A was used as the target (6), and Tb constituting the thin film layer B was used as the target (7). The thickness tA of each thin film layer A on the substrate (2) is 130 °, the thickness tB of each thin film layer B is 13 °, and both thin film layers A and B are repeatedly laminated so that the total thickness is about 5000 °. did. The average composition of the entire perpendicular magnetization film obtained in this way is Tb
20.6 (Fe 90 Co 10 ) 79.4 . Comparative Example 1 The same method as in Example 1 was used, but the target was TbFeCo having almost the same composition as the average composition of the magnetic film of Example 1.
Using a single alloy target, a magneto-optical recording film was formed on the glass substrate (2) by sputtering. FIGS. 3A and 3B show the measurement results of the hysteresis loop curves of the Kerr rotation angle θ K with respect to the magnetic field H of each recording film obtained in Example 1 and Comparative Example 1 described above. As is clear from the comparison between the two curves, the curve of Example 1 is superior to the curve of Comparative Example 1 in the square shape of the Kerr hysteresis loop. In the case of Example 1, the Kerr rotation angle θ K was 0.42 °, which was a great improvement as compared with θ K = 0.36 ° of the uniform alloy film of Comparative Example 1 having the same composition. Example 2 A magneto-optical recording film formed by repeatedly laminating a thin film layer A made of TbFeCo and a thin film layer B made of Tb using the sputtering apparatus described in FIG. Formed on a glass substrate (2). In this case, each sample was manufactured by changing each thickness of each of the thin film layers A and B. The relationship between the thickness of each of the thin film layers A and B of each of these samples is plotted with a circle in FIG. In each of these samples, it was confirmed that a perpendicular magnetization film was formed within the range surrounded by the solid line a in FIG. 4 to form a magneto-optical recording medium. Although according to the same method as in Example 3 Example 1, the ratio t A / t B of the thickness t B of the thickness t A of Tb 19 Fe 73 Co 8 film layers A and Tb thin layer B, respectively 3/1 indicates when set to 1/1, the measurement result of the coercive force Hc for t a in Figure 5. According to this, a high coercive force is obtained over a wide laminated structure region, that is, an overall apparently wide composition.
It can be seen that Hc is obtained. Example 4 In samples 1 to 5 obtained by the same method as in Example 1 except that the relationship between the thin film layers A and B and the thickness thereof was changed, a perpendicular magnetization film was obtained. According to each of the embodiments described above, it is understood that a target magneto-optical recording medium can be obtained within the range surrounded by the coordinate points (a), (b), (c), and (a) in FIG. Was. In each of the above-described examples, a case has been described in which the thin film layers A and B in the magnetic film having the laminated structure have the same composition, but the thin film layers A and B are alternately arranged. However, both or one of each of the thin film layers A and B is composed of two or more thin films having a composition satisfying the conditions of each of the thin film layers A and B described above. Each of the thin film layers A and B can be formed by a single layer or a stack of thin films. That is, basically, the thin film layers A and B are repeatedly formed.
And A 1 and A 2, take a configuration such as the Toka A 1 -B-A 2 -B- A 1 ··· and A 1 -A 2 -B-A 1 -A 2 -B ··· obtain. [Effects of the Invention] As described above, according to the present invention, a high Kerr rotation angle θ K , a high coercive force Hc, and an apparent composition of a magneto-optical recording medium excellent in a square shape of a Kerr hysteresis loop can be changed from a wide range of compositions. Since it can be selected, it is possible to produce a magneto-optical recording medium having various characteristics such as optimal mechanical and magnetic properties suitable for the use mode and use conditions, for example, which brings a great advantage in practical use.

【図面の簡単な説明】 第1図は本発明による光磁気記録媒体の薄膜層A及びB
の各厚さ範囲を示す図、第2図は本発明による光磁気記
録媒体を作製するに用いられるスパッタリング装置の一
例の構成図、第3図A及びBはそれぞれカー回転角−磁
界曲線図、第4図は垂直磁化膜を構成し得る薄膜層A及
びBの膜厚関係を示す図、第5図は保磁力Hcと薄膜層A
の厚さとの関係を示す図である。 (2)は基体、(6)及び(7)はターゲットである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows thin film layers A and B of a magneto-optical recording medium according to the present invention.
FIG. 2 is a configuration diagram of an example of a sputtering apparatus used for producing a magneto-optical recording medium according to the present invention. FIGS. 3A and 3B are Kerr rotation angle-magnetic field curve diagrams, respectively. FIG. 4 is a diagram showing the film thickness relationship between the thin film layers A and B which can constitute the perpendicular magnetization film. FIG. 5 is a diagram showing the coercive force Hc and the thin film layer A.
FIG. 5 is a diagram showing a relationship with the thickness of the hologram. (2) is a substrate, and (6) and (7) are targets.

Claims (1)

(57)【特許請求の範囲】 1.薄膜Aと薄膜Bとが少なくとも2層以上に交互に積
層され、 上記薄膜層A及びBの各組成は、各元素群をRI,RII,SI,
SII,Mで表わすとき、 薄膜層Aは、 薄膜層Bは、 なる一般式を有し、 xI+yI=100, 50xI100, 0yI50, 0i40, xII+yII=100, 50xII100, 0yII50, であって、 上記元素群RI及びRIIは、Gd,Tb,Dy,Hoのうちの少なくと
も1種以上の元素であり、 上記元素群SI及びSIIは、上記元素群RI及びRII以外のS
c,Yを含む希土類元素のうちの少なくとも1種以上の元
素であり、 上記元素群Mは、Fe,Co,Niのうちの少なくとも1種以上
の元素であり、 上記薄膜層A及びBの各膜厚を、それぞれa(Å)及び
b(Å)とし、各膜厚の関係をa−b直交座標系におい
て(a,b)で表わすとき、両膜厚の関係が(10,4),(5
0,40),(130,13),(10,4)の各座標点を結ぶ範囲内
とされた垂直磁化膜を有して成ることを特徴とする人工
格子光磁気記録媒体。
(57) [Claims] The thin film A and the thin film B are alternately laminated in at least two layers, and each composition of the thin film layers A and B is represented by R I , R II , S I ,
When represented by S II and M, the thin film layer A is The thin film layer B is Has become general formula, x I + y I = 100 , 50x I 100, 0y I 50, 0i40, x II + y II = 100, 50x II 100, 0y II 50 A, the element group R I and R II is at least one or more of Gd, Tb, Dy, and Ho, and the element groups S I and S II are S elements other than the element groups R I and R II.
at least one or more of the rare earth elements containing c and Y; the element group M is at least one or more of Fe, Co, and Ni; and each of the thin film layers A and B When the film thicknesses are a (Å) and b (Å), respectively, and the relationship between the film thicknesses is represented by (a, b) in the ab orthogonal coordinate system, the relationship between the two film thicknesses is (10,4), (Five
An artificial lattice magneto-optical recording medium comprising a perpendicular magnetization film within a range connecting the coordinate points (0, 40), (130, 13), and (10, 4).
JP28572787A 1987-11-12 1987-11-12 Artificial lattice magneto-optical recording medium Expired - Fee Related JP2707561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28572787A JP2707561B2 (en) 1987-11-12 1987-11-12 Artificial lattice magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28572787A JP2707561B2 (en) 1987-11-12 1987-11-12 Artificial lattice magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH01128244A JPH01128244A (en) 1989-05-19
JP2707561B2 true JP2707561B2 (en) 1998-01-28

Family

ID=17695254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28572787A Expired - Fee Related JP2707561B2 (en) 1987-11-12 1987-11-12 Artificial lattice magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2707561B2 (en)

Also Published As

Publication number Publication date
JPH01128244A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
JPS59217247A (en) Photomagnetic recording medium and its manufacture
GB2173964A (en) Magneto optical recording medium
JPH063768B2 (en) Perpendicular magnetic film
EP0304927B1 (en) Perpendicular magnetic recording medium
JP2707561B2 (en) Artificial lattice magneto-optical recording medium
JPH0831372B2 (en) Method for manufacturing Fe—Co magnetic film
JP2707560B2 (en) Artificial lattice magneto-optical recording medium
JPH0454367B2 (en)
JP2710441B2 (en) Soft magnetic laminated film
JP2526906B2 (en) Magneto-optical recording medium
JP2638076B2 (en) Magneto-optical recording medium
JPS6154059A (en) Magneto-optical recording film
JPS63106916A (en) Magnetic recording medium
JPH01128243A (en) Artificial lattice magneto-optical recording medium
JP2643227B2 (en) Magnetic thin film
JPS63273236A (en) Magneto-optical recording medium
JPH04111302A (en) Artificial lattice film
JPH0432209A (en) Magnetic film
JP2763913B2 (en) Magnetic film and method of manufacturing the same
JP2824998B2 (en) Magnetic film
JPS62164205A (en) Magnetic recording medium
JPH0612713A (en) Magnetic recording film, magnetic recording medium and magneto-optical recording medium
JPH06325419A (en) Magneto-optical recording medium
JPS5975428A (en) Vertically magnetized magnetic recording medium
JPH0279210A (en) Magnetic recording thin film and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees