JP2517688B2 - 3次元核磁気共鳴スペクトルの対称化処理方法 - Google Patents
3次元核磁気共鳴スペクトルの対称化処理方法Info
- Publication number
- JP2517688B2 JP2517688B2 JP1335750A JP33575089A JP2517688B2 JP 2517688 B2 JP2517688 B2 JP 2517688B2 JP 1335750 A JP1335750 A JP 1335750A JP 33575089 A JP33575089 A JP 33575089A JP 2517688 B2 JP2517688 B2 JP 2517688B2
- Authority
- JP
- Japan
- Prior art keywords
- spectrum
- peak
- slice plane
- dimensional
- peaks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4625—Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4633—Sequences for multi-dimensional NMR
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3次元核磁気共鳴(NMR)スペクトルの対称
化処理方法に関するものである。
化処理方法に関するものである。
従来、分解能を向上させるとともに、スペクトルの解
析が容易であり、特に核スピン間の相互作用の解明に優
れている2次元NMRが知られている。
析が容易であり、特に核スピン間の相互作用の解明に優
れている2次元NMRが知られている。
これは第4図に示すように、最初の90゜パルス以前の
準備期間と、展開期間(t1)と、検出期間(t2)の3つ
の時間領域から成り、準備期間で核の磁化を適当な初期
状態に保ち、準備パルス又はパルス列(最初の90゜パル
ス)によって磁化を非平衡の状態にする。この状態は展
開期間t1において展開され、t1における磁化の挙動は、
検出パルス(2番目の90゜パルス)印加後の検出期間t2
において自由誘導減衰信号(FID信号)に位相及び振幅
情報として手渡しされる。そこで、t1を変数として段階
的に例えばn段階に変化させ、FID信号を検出してデー
タS(t1,t2)を得れば、このデータ中にはt2における
磁化の挙動ばかりでなく、t1における磁化の挙動の情報
も含まれることになる。そして、t1,t2についてフーリ
エ変換することによりスペクトルデータa(ω1,ω2)
が得られる。ここでω1,ω2は夫々t1,t2のフーリエ成
分である。このようにして得られた2次元NMRスペクト
ルデータを平面上に表わすと、第5図に示すように対角
ピークと交差ピークとが対称的に現れ、どのピークとピ
ークとが関係しているかを知ることができる。
準備期間と、展開期間(t1)と、検出期間(t2)の3つ
の時間領域から成り、準備期間で核の磁化を適当な初期
状態に保ち、準備パルス又はパルス列(最初の90゜パル
ス)によって磁化を非平衡の状態にする。この状態は展
開期間t1において展開され、t1における磁化の挙動は、
検出パルス(2番目の90゜パルス)印加後の検出期間t2
において自由誘導減衰信号(FID信号)に位相及び振幅
情報として手渡しされる。そこで、t1を変数として段階
的に例えばn段階に変化させ、FID信号を検出してデー
タS(t1,t2)を得れば、このデータ中にはt2における
磁化の挙動ばかりでなく、t1における磁化の挙動の情報
も含まれることになる。そして、t1,t2についてフーリ
エ変換することによりスペクトルデータa(ω1,ω2)
が得られる。ここでω1,ω2は夫々t1,t2のフーリエ成
分である。このようにして得られた2次元NMRスペクト
ルデータを平面上に表わすと、第5図に示すように対角
ピークと交差ピークとが対称的に現れ、どのピークとピ
ークとが関係しているかを知ることができる。
しかしながら、2次元スペクトル表示においては、ピ
ークの数が多くなった場合にどのピーク同士が関係して
いるのか把握するのが困難となってしまう。そこで、重
なったピークを分離してピーク間の関係を把握すること
ができる3次元NMR法が提案されている。
ークの数が多くなった場合にどのピーク同士が関係して
いるのか把握するのが困難となってしまう。そこで、重
なったピークを分離してピーク間の関係を把握すること
ができる3次元NMR法が提案されている。
3次元NMRは、第6図に示すように、2次元NMRに対し
て検出期間の前にもう1回展開期間をおいたものであ
り、2次元NMRを連続して行い、その相関を見るもので
ある。このスペクトルはa(ω1,ω2,ω3)で表される
が、周波数軸ω3に垂直なスライスa(ω1,ω2,ω3=
constant)は2次元スペクトルになる。このスペクトル
は2次元スペクトルに対して対称性に大きな違いがあ
る。即ち、従来の2次元スペクトルは基本的に対称であ
り、a(ω1,ω2)=a(ω2,ω1)が成立する。しか
し、3次元スペクトルのスライスとして与えられる2次
元NMRスペクトルでは、基本的にはこのような関係式は
成立しない。この点についてさらに説明すると、核スピ
ン間の関係は、距離が近いことによるものか、直接化学
結合しているのかどちらかであり、例えば第7図(a)
のように1H同士が空間的に近くにあり、1Hと15Nとが化
学結合している場合、各水素核、窒素核のケミカルシフ
トをδ1、δ2、δ3、δ4としたとき、結合AとBと
は対称であるため2次元NMRスペクトルではピークは対
称に現れるが、δ3とδ4とが異なるため3次元NMRで
は周波数軸ω3方向において異なった面に現れ、各スラ
イスにおいてはスペクトルは非対称となる。そのため、
あるスライスにおけるピークの対称ピークを探す場合に
は、ω3が異なるスライスについて順次検討し、対称関
係にあるピークを探さなければならず、この作業は非常
に面倒であった。なお、第7図(b)に示すようにケミ
カルシフトδ1の1HにCが結合しているような場合に
は、結合Bに対する対称の相手が存在せず、対称ピーク
は現れない。このように単独で現れるピークは、3次元
NMRスペクトルの対称ピークに基づく解析をするために
は有用な情報を持っていない余分なシグナルとなる。
て検出期間の前にもう1回展開期間をおいたものであ
り、2次元NMRを連続して行い、その相関を見るもので
ある。このスペクトルはa(ω1,ω2,ω3)で表される
が、周波数軸ω3に垂直なスライスa(ω1,ω2,ω3=
constant)は2次元スペクトルになる。このスペクトル
は2次元スペクトルに対して対称性に大きな違いがあ
る。即ち、従来の2次元スペクトルは基本的に対称であ
り、a(ω1,ω2)=a(ω2,ω1)が成立する。しか
し、3次元スペクトルのスライスとして与えられる2次
元NMRスペクトルでは、基本的にはこのような関係式は
成立しない。この点についてさらに説明すると、核スピ
ン間の関係は、距離が近いことによるものか、直接化学
結合しているのかどちらかであり、例えば第7図(a)
のように1H同士が空間的に近くにあり、1Hと15Nとが化
学結合している場合、各水素核、窒素核のケミカルシフ
トをδ1、δ2、δ3、δ4としたとき、結合AとBと
は対称であるため2次元NMRスペクトルではピークは対
称に現れるが、δ3とδ4とが異なるため3次元NMRで
は周波数軸ω3方向において異なった面に現れ、各スラ
イスにおいてはスペクトルは非対称となる。そのため、
あるスライスにおけるピークの対称ピークを探す場合に
は、ω3が異なるスライスについて順次検討し、対称関
係にあるピークを探さなければならず、この作業は非常
に面倒であった。なお、第7図(b)に示すようにケミ
カルシフトδ1の1HにCが結合しているような場合に
は、結合Bに対する対称の相手が存在せず、対称ピーク
は現れない。このように単独で現れるピークは、3次元
NMRスペクトルの対称ピークに基づく解析をするために
は有用な情報を持っていない余分なシグナルとなる。
ところで、従来2次元NMRスペクトルにおいて対称化
加工を施しているのは、人為的に生成されたピークを消
すことと、S/N比を にするためであった。しかし、3次元NMRにおいて対称
ピークを探す場合には周波数軸ω3方向のスライスを順
次たどって対称にあるピークを探さなければならず、非
常に面倒であった。
加工を施しているのは、人為的に生成されたピークを消
すことと、S/N比を にするためであった。しかし、3次元NMRにおいて対称
ピークを探す場合には周波数軸ω3方向のスライスを順
次たどって対称にあるピークを探さなければならず、非
常に面倒であった。
本発明は上記課題を解決するためのもので、容易にシ
グナルの相関を知ることができるとともに、データ量を
減らして狭い空間にデータを持ち込むことが可能な3次
元各磁気共鳴スペクトルの対称化処理方法を提供するこ
とを目的とするものである。
グナルの相関を知ることができるとともに、データ量を
減らして狭い空間にデータを持ち込むことが可能な3次
元各磁気共鳴スペクトルの対称化処理方法を提供するこ
とを目的とするものである。
本発明は、準備パルス又はパルス列を照射し、さらに
展開期間t1後にパルス列を照射し、さらに展開期間t2後
に検出パルス又はパルス列を照射し、検出パルス又はパ
ルス列照射後検出期間t3にわたって試料からの自由誘導
減衰信号を検出するシーケンスを用い、異なった複数の
t1、t2の値について測定した複数の自由誘導減衰信号か
ら成る集合データS(t1,t2,t3)をフーリエ変換して得
た3次元核磁気共鳴スペクトルa(ω1,ω2,ω3)の処
理方法であって、前記3次元スペクトルを構成する各ス
ライス面について、スライス面に存在するピークであっ
て、そのスライス面内の対称位置あるいは他のスライス
面における該対称位置と同一位置にピークが存在しない
ピークを求めて消去する演算処理によりスペクトルa
1(ω1,ω2,ω3)を得、該スペクトルa1(ω1,ω2,ω
3)の各スライス面内に単独で存在するピークについて
各スライス面内の対称位置に補充ピークを加える演算処
理により最終スペクトルa2(ω1,ω2,ω3)を得るよう
にしたことを特徴とする。
展開期間t1後にパルス列を照射し、さらに展開期間t2後
に検出パルス又はパルス列を照射し、検出パルス又はパ
ルス列照射後検出期間t3にわたって試料からの自由誘導
減衰信号を検出するシーケンスを用い、異なった複数の
t1、t2の値について測定した複数の自由誘導減衰信号か
ら成る集合データS(t1,t2,t3)をフーリエ変換して得
た3次元核磁気共鳴スペクトルa(ω1,ω2,ω3)の処
理方法であって、前記3次元スペクトルを構成する各ス
ライス面について、スライス面に存在するピークであっ
て、そのスライス面内の対称位置あるいは他のスライス
面における該対称位置と同一位置にピークが存在しない
ピークを求めて消去する演算処理によりスペクトルa
1(ω1,ω2,ω3)を得、該スペクトルa1(ω1,ω2,ω
3)の各スライス面内に単独で存在するピークについて
各スライス面内の対称位置に補充ピークを加える演算処
理により最終スペクトルa2(ω1,ω2,ω3)を得るよう
にしたことを特徴とする。
本発明は、3次元NMRスペクトルに対してあらかじめ
対称相手のない余分なシグナルを消去した後、対称相手
となる補充ピークを加える対称化操作を行うことによ
り、各スライスのスペクトルを順次たどってシグナルの
相関を見る必要がなく、各スライスのスペクトルを重ね
るだけで容易にシグナル同士の相関を把握することが可
能となる。
対称相手のない余分なシグナルを消去した後、対称相手
となる補充ピークを加える対称化操作を行うことによ
り、各スライスのスペクトルを順次たどってシグナルの
相関を見る必要がなく、各スライスのスペクトルを重ね
るだけで容易にシグナル同士の相関を把握することが可
能となる。
以下、実施例を説明する。
第1図は本発明の3次元核磁気共鳴スペクトルの対称
化処理方法を説明するための図である。
化処理方法を説明するための図である。
いま、第6図を用いて説明した手順に基づいて得られ
た3次元スペクトルデータをa(ω1,ω2,ω3)とす
る。ここで、aは実関数、ω1,ω2,ω3は実数、δ関数
様のピークが散在しているとし、ω1,ω2は同じ定義域
を持っているものとして、まず次の処理を行う。
た3次元スペクトルデータをa(ω1,ω2,ω3)とす
る。ここで、aは実関数、ω1,ω2,ω3は実数、δ関数
様のピークが散在しているとし、ω1,ω2は同じ定義域
を持っているものとして、まず次の処理を行う。
a1(ω1,ω2,ω3) =min{a(ω1,ω2,ω3), max(a(ω2,ω1,x)|x∈Ω3)} ……(1) ここでΩ3はω3の定義域を示し、max{a(ω2,
ω1,x)|x∈Ω3)}はΩ3の集合のなかで最も大きい
対称ピークを求める処理であり、なんらかのピークが存
在すればmax関数はそのピークの強度値となる。一方、
ピークが存在しなければmax関数は0となる。これとa
(ω1,ω2,ω3)のうち最小のものをとることにより、
対称ピークがある場合にはa1(ω1,ω2,ω3)は両者の
うち小さい方の値となり、もし対称ピークがなければ、
a1(ω1,ω2,ω3)=0となる。したがって、(1)式
の処理を行うことにより、対称となる位置の相手となる
ピークないピークが消去された新たなスペクトルデータ
a1(ω1,ω2,ω3)が得られる。
ω1,x)|x∈Ω3)}はΩ3の集合のなかで最も大きい
対称ピークを求める処理であり、なんらかのピークが存
在すればmax関数はそのピークの強度値となる。一方、
ピークが存在しなければmax関数は0となる。これとa
(ω1,ω2,ω3)のうち最小のものをとることにより、
対称ピークがある場合にはa1(ω1,ω2,ω3)は両者の
うち小さい方の値となり、もし対称ピークがなければ、
a1(ω1,ω2,ω3)=0となる。したがって、(1)式
の処理を行うことにより、対称となる位置の相手となる
ピークないピークが消去された新たなスペクトルデータ
a1(ω1,ω2,ω3)が得られる。
次に以下のような処理を行う。
a2(ω1,ω2,ω3) =max{a1(ω1,ω2,ω3), a1(ω2,ω1,ω3)} ……(2) この処理は、(2)式から分かるように、ω3に垂直
な方向のスライス面として与えられる2次元NMRスライ
ス面中でa1(ω1,ω2,ω3)と、それぞれ対称な位置の
データa1(ω2,ω1,ω3)を比較し、大きい方の強度を
a2(ω1,ω2,ω3)とする処理である。したがって、仮
に、a1(ω1,ω2,ω3)=0であっても、a1(ω1,ω2,
ω3)=c(c≠0)であれば、a2(ω1,ω2,ω3)=
cとなる。従って、この処理により、各2次元スペクト
ル中で対称軸(ω1=ω2)を挟んで対称相手のないピ
ークがあった場合、対称な位置に同一強度のピークが新
たに補充設定されることになる。また、始めから、対称
なピークが存在していた場合、2つのピークの強度の内
大きいほうの強度が新たに2つのピークの強度として等
しく与えられる。なお、小さい方のピークをとる対称化
を行ってもよい。
な方向のスライス面として与えられる2次元NMRスライ
ス面中でa1(ω1,ω2,ω3)と、それぞれ対称な位置の
データa1(ω2,ω1,ω3)を比較し、大きい方の強度を
a2(ω1,ω2,ω3)とする処理である。したがって、仮
に、a1(ω1,ω2,ω3)=0であっても、a1(ω1,ω2,
ω3)=c(c≠0)であれば、a2(ω1,ω2,ω3)=
cとなる。従って、この処理により、各2次元スペクト
ル中で対称軸(ω1=ω2)を挟んで対称相手のないピ
ークがあった場合、対称な位置に同一強度のピークが新
たに補充設定されることになる。また、始めから、対称
なピークが存在していた場合、2つのピークの強度の内
大きいほうの強度が新たに2つのピークの強度として等
しく与えられる。なお、小さい方のピークをとる対称化
を行ってもよい。
その結果、得られたa2(ω1,ω2,ω3)は、(1)式
の処理により単独で出現したピークが除かれ、しかも
(2)式の処理により3次元NMRスペクトルを構成する
各2次元スペクトル中に対称ピークが補充された3次元
NMRスペクトルとなる。
の処理により単独で出現したピークが除かれ、しかも
(2)式の処理により3次元NMRスペクトルを構成する
各2次元スペクトル中に対称ピークが補充された3次元
NMRスペクトルとなる。
3次元NMRのスライス面内で対称となる複雑な実験も
考えられるが、それは感度の面で不利となるので対象と
しない。
考えられるが、それは感度の面で不利となるので対象と
しない。
次に具体例で(1)式、(2)式の処理を説明する。
いま、タンパク質を15Nでラベルしたサンプルがあ
り、これは第2図に示すように長いペプチド鎖からなっ
ている。となりの1H同士は空間的に近く、15Nと1Hは化
学的に結合している。まず、3次元NMRのパルス列の前
半の実験はとなりの1H同士の相関を見るNOESYという実
験に相当し、3次元NMRのパルス列の後半の実験は15Nと
1Hの化学結合を見るNMQCという実験に相当する。第2図
に示されているように、ペプチド鎖が3個から成ってい
るサンプルを考えた場合、第3図(a)(b)(c)に
示すようにスライスを持つ3次元NMRスペクトルが得ら
れる。第3図(a)(b)(c)は周波数軸ω3に垂直
なスライス面として与えられる2次元NMRスペクトルで
ある。従来は第3図(a)から破線に従って異なるスラ
イス面を含めて対称ピークをたどることにより、15N−1
H結合の3つのピークが関係していることを把握してい
た。この作業はすでに述べたように、ω3方向に多数の
スライスを観察して始めて判明するものであった。ま
た、第3図(a)の△ピークが単独に出現した無用なピ
ークであることを知るには、他のすべてのスライスを調
べて対称な位置にピークがないことを確認しなければな
らなかった。
り、これは第2図に示すように長いペプチド鎖からなっ
ている。となりの1H同士は空間的に近く、15Nと1Hは化
学的に結合している。まず、3次元NMRのパルス列の前
半の実験はとなりの1H同士の相関を見るNOESYという実
験に相当し、3次元NMRのパルス列の後半の実験は15Nと
1Hの化学結合を見るNMQCという実験に相当する。第2図
に示されているように、ペプチド鎖が3個から成ってい
るサンプルを考えた場合、第3図(a)(b)(c)に
示すようにスライスを持つ3次元NMRスペクトルが得ら
れる。第3図(a)(b)(c)は周波数軸ω3に垂直
なスライス面として与えられる2次元NMRスペクトルで
ある。従来は第3図(a)から破線に従って異なるスラ
イス面を含めて対称ピークをたどることにより、15N−1
H結合の3つのピークが関係していることを把握してい
た。この作業はすでに述べたように、ω3方向に多数の
スライスを観察して始めて判明するものであった。ま
た、第3図(a)の△ピークが単独に出現した無用なピ
ークであることを知るには、他のすべてのスライスを調
べて対称な位置にピークがないことを確認しなければな
らなかった。
これに対し、本発明では、(1)式に従う処理によ
り、第3図(a)(b)(c)のスペクトルは第1図
(a)(b)(c)へと変化する。第1図(a)(b)
(c)において単独に出現したピーク△が除去されてい
ることが分かる。さらに、(2)式に従う処理により、
第1図(a)(b)(c)のスペクトルは第1図(d)
(e)(f)へと変化する。第1図(d)(e)(f)
の各スライスにおいて、対称軸を挟んで対称な位置にピ
ークが補充されていることが分かる。
り、第3図(a)(b)(c)のスペクトルは第1図
(a)(b)(c)へと変化する。第1図(a)(b)
(c)において単独に出現したピーク△が除去されてい
ることが分かる。さらに、(2)式に従う処理により、
第1図(a)(b)(c)のスペクトルは第1図(d)
(e)(f)へと変化する。第1図(d)(e)(f)
の各スライスにおいて、対称軸を挟んで対称な位置にピ
ークが補充されていることが分かる。
第3図(a)(b)(c)のように補充ピークが存在
しない場合には、対称な位置を推測して別のスライスを
捜さねばならなかった。本発明では、対称な位置な補充
されたピークと重なるピークを他のスライスから探せば
よいので、簡単且つ正確に対称ピークを他のスライス面
から捜し出すことが可能である。その場合、各スライス
のスペクトルを透明なシールに描き、すべてのシートを
重ねて上あるいは斜め上から覗くことにより、補充され
たピークと本来のピークとが重なることを見つければよ
い。このようにすれば、第1図(g)に示すような相互
の関連を一目で知ることが可能となり、周波数ω1,ω3
面内に対してはデータ半分にすることができる。
しない場合には、対称な位置を推測して別のスライスを
捜さねばならなかった。本発明では、対称な位置な補充
されたピークと重なるピークを他のスライスから探せば
よいので、簡単且つ正確に対称ピークを他のスライス面
から捜し出すことが可能である。その場合、各スライス
のスペクトルを透明なシールに描き、すべてのシートを
重ねて上あるいは斜め上から覗くことにより、補充され
たピークと本来のピークとが重なることを見つければよ
い。このようにすれば、第1図(g)に示すような相互
の関連を一目で知ることが可能となり、周波数ω1,ω3
面内に対してはデータ半分にすることができる。
以上のように本発明によれば、自由変数が3つもあっ
てピークを探し出すのに手間がかかる3次元スペクトル
において、あらかじめ余分なシグナルを消去するととも
に、各スペクトルに対称な相手が存在せずにいるピーク
に対し、対称位置にピークを補充する対称化操作を行う
ようにしたので、シグナル同士の相関を容易に知ること
が可能となり、さらに余分なデータを消去すること、周
波数軸ω1,ω3面内に対してのデータを半分にして狭い
空間にデータを持ち込むことが可能となる。
てピークを探し出すのに手間がかかる3次元スペクトル
において、あらかじめ余分なシグナルを消去するととも
に、各スペクトルに対称な相手が存在せずにいるピーク
に対し、対称位置にピークを補充する対称化操作を行う
ようにしたので、シグナル同士の相関を容易に知ること
が可能となり、さらに余分なデータを消去すること、周
波数軸ω1,ω3面内に対してのデータを半分にして狭い
空間にデータを持ち込むことが可能となる。
第1図は本発明の3次元核磁気共鳴スペクトルの対称化
処理方法を説明するための図第2図はペプチド結合を示
す図、第3図は従来のシグナルの相関を検索する方法を
説明するための図、第4図は2次元NMRのパルスシーケ
ンスを示す図、第5図は2次元NMRスペクトルを示す
図、第6図は3次元NMRのパルスシーケンスを示す図、
第7図は3次元NMRの非対称性を説明するための図であ
る。
処理方法を説明するための図第2図はペプチド結合を示
す図、第3図は従来のシグナルの相関を検索する方法を
説明するための図、第4図は2次元NMRのパルスシーケ
ンスを示す図、第5図は2次元NMRスペクトルを示す
図、第6図は3次元NMRのパルスシーケンスを示す図、
第7図は3次元NMRの非対称性を説明するための図であ
る。
Claims (1)
- 【請求項1】準備パルス又はパルス列を照射し、さらに
展開期間t1後にパルス列を照射し、さらに展開期間t2後
に検出パルス又はパルス列を照射し、検出パルス又はパ
ルス列照射後検出期間t3にわたって試料からの自由誘導
減衰信号を検出するシーケンスを用い、異なった複数の
t1、t2の値について測定した複数の自由誘導減衰信号か
ら成る集合データS(t1,t2,t3)をフーリエ変換して得
た3次元核磁気共鳴スペクトルa(ω1,ω2,ω3)の処
理方法であって、前記3次元スペクトルを構成する各ス
ライス面について、スライス面に存在するピークであっ
て、そのスライス面内の対称位置あるいは他のスライス
面における該対称位置と同一位置にピークが存在しない
ピークを求めて消去する演算処理によりスペクトルa
1(ω1,ω2,ω3)を得、該スペクトルa1(ω1,ω2,ω
3)の各スライス面内に単独で存在するピークについて
各スライス面内の対称位置に補充ピークを加える演算処
理により最終スペクトルa2(ω1,ω2,ω3)を得るよう
にしたことを特徴とする3次元核磁気共鳴スペクトルの
対称化処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1335750A JP2517688B2 (ja) | 1989-12-25 | 1989-12-25 | 3次元核磁気共鳴スペクトルの対称化処理方法 |
US07/633,937 US5168225A (en) | 1989-12-25 | 1990-12-26 | Method of analyzing 3D NMR spectrum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1335750A JP2517688B2 (ja) | 1989-12-25 | 1989-12-25 | 3次元核磁気共鳴スペクトルの対称化処理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03195957A JPH03195957A (ja) | 1991-08-27 |
JP2517688B2 true JP2517688B2 (ja) | 1996-07-24 |
Family
ID=18292045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1335750A Expired - Fee Related JP2517688B2 (ja) | 1989-12-25 | 1989-12-25 | 3次元核磁気共鳴スペクトルの対称化処理方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5168225A (ja) |
JP (1) | JP2517688B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9112435D0 (en) * | 1991-06-10 | 1991-07-31 | Gec Alsthom Ltd | Distribution transformers |
US5393669A (en) * | 1993-02-05 | 1995-02-28 | Martek Biosciences Corp. | Compositions and methods for protein structural determinations |
US6111066A (en) | 1997-09-02 | 2000-08-29 | Martek Biosciences Corporation | Peptidic molecules which have been isotopically substituted with 13 C, 15 N and 2 H in the backbone but not in the sidechains |
US7200430B2 (en) * | 2001-03-29 | 2007-04-03 | The Regents Of The University Of California | Localized two-dimensional shift correlated MR spectroscopy of human brain |
JP2005528915A (ja) * | 2002-06-10 | 2005-09-29 | プロスペクト ファーマ | タンパク質およびタンパク質/リガンド複合体に関するダイナミックおよび構造データを得る方法 |
EP1678198A4 (en) * | 2003-10-07 | 2007-12-05 | Prospect Pharma | SIDE CHAIN DEUTERATED AMINO ACIDS AND METHOD OF USE |
JP5037236B2 (ja) * | 2007-06-20 | 2012-09-26 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 磁気共鳴イメージング装置および磁気共鳴画像生成方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134058A (en) * | 1977-11-28 | 1979-01-09 | Varian Associates, Inc. | Selective detection of multiple quantum transitions in nuclear magnetic resonance |
DE3143626C2 (de) * | 1981-11-04 | 1986-02-13 | Spectrospin AG, Fällanden, Zürich | Verfahren zum Aufnehmen von Kernresonanzspektren in einem dreidimensionalen Frequenzbereich und Kernresonanzspektrometer zur Durchführung des Verfahrens |
JPS63177049A (ja) * | 1987-01-19 | 1988-07-21 | Jeol Ltd | 2次元nmrスペクトルピ−クの対称処理方式 |
US4807148A (en) * | 1987-05-29 | 1989-02-21 | Hewlett-Packard Company | Deconvolving chromatographic peaks |
-
1989
- 1989-12-25 JP JP1335750A patent/JP2517688B2/ja not_active Expired - Fee Related
-
1990
- 1990-12-26 US US07/633,937 patent/US5168225A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5168225A (en) | 1992-12-01 |
JPH03195957A (ja) | 1991-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | A high-resolution technique for multidimensional NMR spectroscopy | |
JP6270668B2 (ja) | 多点ディクソン法 | |
Stamps et al. | Difftrain: a novel approach to a true spectroscopic single-scan diffusion measurement | |
JPH055502B2 (ja) | ||
US4733188A (en) | NMR imaging method | |
JP2517688B2 (ja) | 3次元核磁気共鳴スペクトルの対称化処理方法 | |
JPS635696B2 (ja) | ||
US5241271A (en) | Ultra-fast imaging method and apparatus | |
CN108107391B (zh) | 一种单体素定域一维高分辨同核去耦谱方法 | |
CN113189035A (zh) | 一种阶梯叠加式傅里叶变换微分方法 | |
JPS6046448A (ja) | Nmr映像方法および装置 | |
JPH07116143A (ja) | Mri装置における流体計測表示法 | |
JPS58100743A (ja) | 3次元核共鳴スペクトルの検出方法 | |
JP4187290B2 (ja) | 容積磁気共鳴分光方法及び装置 | |
JP2741885B2 (ja) | 磁気共鳴を用いた検査装置におけるデータ処理方法 | |
JP2517592B2 (ja) | t▲下2▼−反転による2次元核磁気共鳴測定方法 | |
JP2970704B2 (ja) | 多次元核磁気共鳴測定方法 | |
JPS61234343A (ja) | 2次元核磁気共鳴測定方法 | |
JP2001281315A (ja) | 磁気共鳴装置の運転方法 | |
JPH0788103A (ja) | 磁気共鳴イメージング方法 | |
JPH02224640A (ja) | 磁気共鳴診断装置 | |
JPS60179646A (ja) | 磁気共鳴イメージング法 | |
JPS62167549A (ja) | Mri装置 | |
JPH01190342A (ja) | 磁気共鳴映像装置 | |
JPS63101739A (ja) | 2次元核磁気共鳴測定時間短縮方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |