JP2023514632A - テスト回路、テスト装置及びそのテスト方法 - Google Patents

テスト回路、テスト装置及びそのテスト方法 Download PDF

Info

Publication number
JP2023514632A
JP2023514632A JP2022550121A JP2022550121A JP2023514632A JP 2023514632 A JP2023514632 A JP 2023514632A JP 2022550121 A JP2022550121 A JP 2022550121A JP 2022550121 A JP2022550121 A JP 2022550121A JP 2023514632 A JP2023514632 A JP 2023514632A
Authority
JP
Japan
Prior art keywords
signal
pulse
sampling
temporary storage
test circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022550121A
Other languages
English (en)
Other versions
JP7450050B2 (ja
Inventor
良 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changxin Memory Technologies Inc
Original Assignee
Changxin Memory Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changxin Memory Technologies Inc filed Critical Changxin Memory Technologies Inc
Publication of JP2023514632A publication Critical patent/JP2023514632A/ja
Application granted granted Critical
Publication of JP7450050B2 publication Critical patent/JP7450050B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/14Implementation of control logic, e.g. test mode decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/023Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/12015Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising clock generation or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C29/56012Timing aspects, clock generation, synchronisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C29/56016Apparatus features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

テスト回路、テスト装置及びそのテスト方法であって、テスト回路は、テスト対象のパルス信号を受信し、且つ制御信号の制御によって処理信号を出力するための信号処理モジュールと、信号処理モジュールの出力端子に接続され、処理信号を受信し、且つ処理信号に基づいてサンプリング信号を生成するためのサンプリングモジュールと、を備え、サンプリング信号は第1サンプリングパルスと第2サンプリングパルスを含み、第1サンプリングパルスと第2サンプリングパルスがパルス幅の差を有し、パルス幅の差がパルス信号のパルス幅に等しい。【選択図】図1

Description

本願は、2020年8月31日に提出した、名称「テスト回路、テスト装置及びそのテスト方法」、出願番号第202010893028.8号の中国特許出願の優先権を主張し、その全ての内容が援用により本願に取り込まれる。
本願はメモリ技術分野に関し、特にテスト回路、テスト装置及びそのテスト方法に関する。
メモリはデータを記憶するためのデバイスであり、一般的に複数のメモリアレイを備え、各メモリアレイに複数の記憶ユニットが含まれ、記憶ユニットはデータを記憶する基本ユニット構造とされ、各記憶ユニットはいずれもデータを記憶する機能を有する。
メモリに対して読み出し/書き込み操作を行うとき、パルス信号により制御を行う必要がある。例示的には、パルス信号はワード線接続によるトランジスタのオン及びオフを制御するためのものであってもよく、具体的には、パルス信号が有効である場合、記憶ユニットは読み出し又は書き込み操作を行い、パルス信号が無効である場合、記憶ユニットは元のデータを保持する。メモリの読み出し/書き込み速度に対する要求が高まるにつれて、パルス信号の送信周波数を更に増加させてパルス幅を狭くする必要がある。パルス信号の信頼性を確保するために、テスト回路によりパルス幅をテストし、それにより生成されたパルス信号が設計された信号と同じにする必要がある。しかしながら、パルス幅が狭くなるにつれて、パルス幅のテスト回路及びテスト装置に対する要求がより高くなり、現在のテスト回路では、狭くなったパルス幅を正確にテストすることができなくなってしまう。
本願の一態様は、テスト回路を提供し、
テスト対象のパルス信号を受信し、且つ制御信号の制御によって処理信号を出力するための信号処理モジュールと、
前記信号処理モジュールの出力端子に接続され、前記処理信号を受信し、且つ前記処理信号に基づいてサンプリング信号を生成するためのサンプリングモジュールと、を備え、
前記サンプリング信号は第1サンプリングパルスと第2サンプリングパルスを含み、前記第1サンプリングパルスと前記第2サンプリングパルスがパルス幅の差を有し、前記パルス幅の差が前記パルス信号のパルス幅に等しい。
本願の他の態様は、テスト装置を提供し、
上記テスト回路と、
前記サンプリングモジュールに接続され、前記第1サンプリングパルス及び前記第2サンプリングパルスに基づいて前記パルス信号における前記パルスの幅を取得するための分析モジュールと、を備える。
本願の他の態様は、上記テスト装置によるテスト方法を提供し、前記方法は、
テスト対象のパルス信号を受信することと、
制御信号の制御によって処理信号を出力することと、
前記処理信号に基づいて、第1サンプリングパルスと第2サンプリングパルスを含むサンプリング信号を生成することと、
前記第1サンプリングパルス及び前記第2サンプリングパルスに基づいて前記パルス信号における前記パルスの幅を取得することと、を含み、
前記第1サンプリングパルスと前記第2サンプリングパルスがパルス幅の差を有し、前記パルス幅の差が前記パルス信号のパルス幅に等しい。
本発明の各実施例の詳細は以下の図面及び説明に記載されている。本願の他の特徴、解決課題及び有益な効果は、明細書、図面及び特許請求の範囲の記載に基づいて、当業者が容易に理解するものである。
本願の実施例をより良く記述及び説明するために、1枚又は複数枚の図面を参照することができるが、図面を記述するための追加の細部又は例示は、本願の発明、以下の説明における実施例又は好適な方式のうちのいずれかの範囲を制限するものと見なされるべきではない。
第1実施例のテスト回路の構造模式図である。 図1における実施例に対応する例示的な信号シーケンス図である。 図1における実施例に対応する他の例示的な信号シーケンス図である。 図1における実施例に対応する別の例示的な信号シーケンス図である。 第2実施例のテスト回路の構造模式図である。 図5における実施例に対応する例示的な信号シーケンス図である。 第3実施例のテスト回路の構造模式図である。 第4実施例のテスト回路の構造模式図である。 図8における実施例に対応する例示的な信号シーケンス図である。 第5実施例のテスト回路の構造模式図である。 第6実施例のテスト回路の構造模式図である。 一実施例のテスト装置の構造模式図である。 一実施例のテスト方法のフローチャートである。
本願の実施例を理解しやすくするために、以下に関連図面を参照しながら本願の実施例をより完全に説明する。図面には本願の実施例の最優先実施例が示されている。しかしながら、本願の実施例は多くの異なる形態で実現されてもよく、本明細書に説明される実施例に限られない。むしろ、これらの実施例は、本願の実施例の開示内容をより徹底的且つ完全にすることである。
特に定義しない限り、本明細書に使用されるすべての技術及び科学用語は、当業者が一般的に理解する意味と同じである。本明細書において本願の実施例の明細書に使用される用語は、単に具体的な実施例を説明するためのものであり、本願の実施例を限定するものではない。本明細書において用いられる用語「及び/又は」は1つ又は複数の関連する列挙される項目の任意及びすべての組合せを含む。
本願の実施例の説明において、用語「上」、「下」、「垂直」、「水平」、「内」、「外」等で示される方向又は位置関係は、図面に基づいて示す方向又は位置関係であり、本願の実施例を説明しやすくし及び説明を簡素化するためのものに過ぎず、指す装置又は素子が必ず特定の方向を有し、特定の方向で構成及び操作しなければならないことを指したり暗示したりするのではなく、従って、本願の実施例を限定するものではないと理解すべきである。
図1は第1実施例のテスト回路10の構造模式図であり、図1に示すように、本実施例では、テスト回路10は、信号処理モジュール100及びサンプリングモジュール200を備える。
ここで、テスト対象のパルス信号はパルス発生器30により生成され、且つ少なくとも2パスに分割され、一方のパスのパルス信号はテストを行うようにテスト回路10に伝送され、他方のパスのパルス信号はメモリアレイのデータ読み出し/書き込みを制御するようにメモリアレイに伝送される。本願の実施例では、パルス信号に複数のパルスが含まれ、パルス幅とは、各パルスの高レベルの持続時間を指す。即ち、1つのパルスの立ち上がりエッジ時刻と立ち下がりエッジ時刻との時間間隔がパルス幅である。
信号処理モジュール100は、テスト対象のパルス信号を受信し、且つ制御信号の制御によって処理信号を出力するためのものであり、前記処理信号が前記パルス信号又は逆相の前記パルス信号に時分割される。
ここで、処理信号が前記パルス信号又は逆相の前記パルス信号に時分割されるとは、処理信号の一部の時間帯内で、処理信号の波形がパルス信号の波形に一致し、処理信号の残りの時間帯内で、処理信号の波形が逆相のパルス信号の波形に一致することを意味する。本実施例では、処理信号は、サンプリングモジュール200のクロック駆動端子に伝送されることによりクロックとしてサンプリングモジュール200から入力された信号をサンプリングするためのものである。具体的には、処理信号のエッジに基づいてサンプリングモジュール200から入力された信号をサンプリングする。
理解できるように、1つのサンプリングモジュール200は、一般的に1種類のエッジのみをサンプリングし、即ち、立ち上がりエッジのみをサンプリングし、又は立ち下がりエッジのみをサンプリングする。従って、サンプリングモジュール200が異なるエッジをサンプリングする必要がある場合、サンプリングモジュール200には構造が複雑な複数のフリップフロップ等の構造を設置する必要があり、このため、サンプリングモジュール200の内部構造及び制御回路が比較的複雑になってしまう。本実施例では、処理信号を制御してパルス信号又は逆相のパルス信号に時分割させることにより、サンプリングモジュール200が1種類のエッジのみをサンプリングする必要があるようにすることができ、即ち、パルス信号を逆相にすることにより、異なるエッジをサンプリングすることを実現する。例示的に、サンプリングモジュール200が立ち上がりエッジサンプリングを行い、且つサンプリング信号の一部のエッジがパルス信号の立ち下がりエッジに基づいて生成される場合、パルス信号の目標立ち下がりエッジを逆相にすることができ、それによってパルス信号の立ち下がりエッジを処理信号の立ち上がりエッジに変換し、即ち、サンプリングモジュール200による簡単で正確なサンプリングを実現することができ、それによりサンプリングモジュール200の内部構造を簡素化する。且つ、複数のフリップフロップ等の構造のサンプリングモジュール200に比べて、逆相機能の時分割制御を実現するために必要な制御論理及び回路がいずれもより簡単であり、従って、本実施例の信号処理モジュール100は更にテスト回路10の回路構造全体を簡素化する。
サンプリングモジュール200は、前記信号処理モジュール100の出力端子に接続され、前記処理信号を受信し、且つ前記処理信号に基づいてサンプリング信号を生成するためのものであり、前記サンプリング信号は第1サンプリングパルスと第2サンプリングパルスを含み、前記第1サンプリングパルスと前記第2サンプリングパルスがパルス幅の差を有し、前記パルス幅の差が前記パルス信号のパルス幅に等しい。ここで、パルス幅の差とは、第1サンプリングパルスのパルス幅と第2サンプリングパルスのパルス幅との差分を指す。サンプリングモジュール200は処理信号のエッジに応答してサンプリング信号を生成し、サンプリング信号における各立ち上がりエッジ及び各立ち下がりエッジはいずれも処理信号における1つのエッジに対応することとなり、即ち、サンプリング信号における各立ち上がりエッジ及び各立ち下がりエッジもいずれもパルス信号における1つのエッジに対応することとなる。
本実施例では、テスト回路10は、テスト対象のパルス信号を受信し、且つ制御信号の制御によって処理信号を出力することに用いられ、前記処理信号が前記パルス信号又は逆相の前記パルス信号に時分割される信号処理モジュール100と、前記信号処理モジュール100の出力端子に接続され、前記処理信号を受信し、且つ前記処理信号に基づいてサンプリング信号を生成することに用いられるサンプリングモジュール200と、を備え、前記サンプリング信号は第1サンプリングパルスと第2サンプリングパルスを含み、前記第1サンプリングパルスと前記第2サンプリングパルスがパルス幅の差を有し、前記パルス幅の差が前記パルス信号のパルス幅に等しい。本実施例では、信号処理モジュール100が入力されたパルス信号を処理することにより、構造が比較的簡単なサンプリングモジュール200によりパルス信号の異なるエッジをサンプリングすることができ、それによりテスト回路10のハードウェア構造が簡素化され、且つ、更にサンプリングモジュール200が処理信号をサンプリングすることにより、第1サンプリングパルス及び第2サンプリングパルスを生成し、即ち、第1サンプリングパルス及び第2サンプリングパルスによりパルス幅を取得することができ、即ちテスト精度がより高いテスト回路10を実現する。
いくつかの実施例では、前記サンプリングモジュール200は、シーケンス上の上位2つの前記パルスの同じエッジに応答して前記第1サンプリングパルスを生成し、且つシーケンス上の下位2つの前記パルスの異なるエッジに応答して前記第2サンプリングパルスを生成するためのものであってもよい。図2は図1における実施例に対応する例示的な信号シーケンス図である。図1に示すように、本実施例では、パルス信号は4つのパルスを含み、サンプリングモジュール200は、各パルスの立ち上がりエッジ及び立ち下がりエッジのうちの1つに応答して対応のエッジを生成し、具体的には、サンプリング信号の1番目の立ち上がりエッジは1番目のパルスの立ち下がりエッジに応答して生成され、サンプリング信号の1番目の立ち下がりエッジは2番目のパルスの立ち上がりエッジに応答して生成され、サンプリング信号の2番目の立ち上がりエッジは3番目のパルスの立ち上がりエッジに応答して生成され、サンプリング信号の2番目の立ち下がりエッジは4番目のパルスの立ち上がりエッジに応答して生成される。1番目の立ち上がりエッジ時刻t1と1番目の立ち下がりエッジ時刻t2との時間間隔は即ち第1サンプリングパルスの幅Aであり、2番目の立ち上がりエッジ時刻t3と2番目の立ち下がりエッジ時刻t4との時間間隔は即ち第2サンプリングパルスの幅Bである。従って、本実施例のテスト回路10に基づいて、各パルスの1つのエッジをサンプリングすれば、入力されたパルス信号のパルス幅を取得することができ、それによりサンプリングモジュール200のサンプリングの難度を低減させ、これによりテスト回路10のテスト精度を向上させる。
他の実施例では、図3に示すように、3番目のパルスの立ち下がりエッジ及び4番目のパルスの立ち下がりエッジに応答して第2サンプリングパルスを生成してもよい。図4に示すように、3つ以上のパルスに応答して第1サンプリングパルスを生成し、且つ残りの3つ以上のパルスに応答して第2サンプリングパルスを生成してもよい。更に、パルス信号に5つ以上のパルスが含まれ、1番目のパルス及び2番目のパルスに応答して第1サンプリングパルスを生成し、且つ4番目のパルス及び5番目のパルスに応答して第2サンプリングパルスを生成してもよい。なお、図2~図4における実施例のサンプリング信号の生成方式はあくまでも例示的に説明するためのものであり、本願の保護範囲を限定するためのものではなく、生成された第1サンプリングパルスのパルス幅と第2サンプリングパルスのパルス幅との差がテスト対象のパルス信号のパルス幅に等しければ、いずれも本願の保護範囲に属する。
図5は第2実施例のテスト回路10の構造模式図であり、図5に示すように、本実施例では、前記サンプリングモジュール200は第1一時記憶ユニット210を備え、前記第1一時記憶ユニット210のクロック駆動端子が前記信号処理モジュール100に接続され、前記第1一時記憶ユニット210が第1一時記憶信号を生成するように前記処理信号に応答してサンプリング対象信号をサンプリングするためのものであり、前記サンプリング信号のエッジが前記第1一時記憶信号のエッジに対応する。ここで、第1一時記憶ユニット210の入力端子がサンプリング対象信号源に接続され、サンプリング対象信号源がサンプリング対象信号を出力するためのものであり、例示的に、サンプリング対象信号が所定時間間隔で高レベルと低レベルを切り替える1つの信号であってもよい。
図6は図5における実施例に対応する例示的な信号シーケンス図であり、図5に示すように、本実施例では、前記パルス信号はシーケンス上の隣接する4つのパルスを含んでもよく、前記信号処理モジュール100は、制御信号に応答して、前記パルス信号におけるシーケンス上の1番目の前記パルスを逆相にし、且つ残りの前記パルスを逆相にしないためのものである。前記サンプリングモジュール200は、シーケンス上の上位2つの前記パルスに応答して前記第1サンプリングパルスを生成し、且つシーケンス上の下位2つの前記パルスに応答して前記第2サンプリングパルスを生成するためのものであり、具体的には、サンプリング対象信号の周期がパルス信号の周期の2倍であり、且つサンプリング対象信号のエッジがパルス信号のエッジをずらし、それにより処理信号のエッジに基づいてサンプリング対象信号をサンプリングする精度を確保する。理解できるように、処理信号のエッジ時刻に対応するサンプリング対象信号が安定状態にあれば、正確なサンプリングを行うことができる。従って、本実施例では、テスト回路10のサンプリング対象信号のシーケンス精度への要求も比較的低く、即ち、シーケンスウィンドウが比較的大きく、比較的高いシーケンス信頼性を有する。
更に、前記第1一時記憶ユニット210は、フリップフロップ、ラッチ、レジスタのうちの1つ又は複数を備える。図5に示される実施例では、第1一時記憶ユニット210は1つのDフリップフロップを備え、Dフリップフロップのクロック駆動端子が信号処理モジュール100の出力端子に接続され、Dフリップフロップの入力端子がサンプリング対象信号に接続され、Dフリップフロップの出力端子から出力された信号がサンプリング信号とされることができる。更には、Dフリップフロップのセット端子又はリセット端子は外部の回路に接続されてもよく、それによりセット又はリセットの方式でDフリップフロップの初期状態を決定し、これによりテスト回路10の信頼性を向上させる。本実施例では、第1一時記憶ユニット210は処理信号のエッジをサンプリング及びラッチングすることができ、それによりサンプリング信号を正確で安定的に出力する。
図7は第3実施例のテスト回路10の構造模式図であり、図7に示すように、本実施例では、前記サンプリングモジュール200は更に第1インバータ220を備え、前記第1インバータ220が前記第1一時記憶ユニット210とともにフィードバックループを構成し、前記フィードバックループが前記処理信号に応答してフィードバック信号を生成するためのものであり、前記フィードバック信号のエッジが前記処理信号のエッジに対応する。理解できるように、上記実施例では、サンプリング信号は、外部のサンプリング対象信号源によらないと出力することができない。本実施例では、フィードバックループを形成することにより、第1一時記憶ユニット210の入力端子の信号を第1インバータ220から出力されたフィードバック信号に追従させることができ、それによりテスト回路10を簡素化し、且つテスト回路10の柔軟性及び信頼性を向上させる。
具体的には、前記第1インバータ220の入力端子が前記第1一時記憶ユニット210の出力端子に接続され、前記第1インバータ220の出力端子が前記第1一時記憶ユニット210の入力端子に接続され、前記第1インバータ220がフィードバック信号を生成するように前記第1一時記憶信号を逆相にするためのものである。例示的に、前の処理信号周期の立ち上がりエッジが到達した後、第1一時記憶ユニット210から出力された第1一時記憶信号が0状態にあり、第1インバータ220による逆相により出力されたフィードバック信号が1状態にある場合、第1一時記憶ユニット210の入力端子の信号も1状態にあり、次の処理信号周期の立ち上がりエッジが到達した後、第1一時記憶信号が1状態に切り替えられることとなり、それにより第1一時記憶ユニット210の入力端子から入力されたフィードバック信号を自動的に更新し、即ち構造がより簡単で、自動的にサンプリングできるテスト回路10を実現する。
図7に更に示すように、その中の1つの実施例では、前記サンプリングモジュール200は更に第2インバータ230を備え、前記第2インバータ230の入力端子は前記第1インバータ220の出力端子に接続され、前記第2インバータ230は前記フィードバック信号を受信し、且つ前記フィードバック信号に基づいて前記サンプリング信号を生成するためのものである。第2インバータ230を設置することにより、サンプリングモジュール200から出力された信号を第1一時記憶ユニット210から出力された信号に一致させることができる。
図8は第4実施例のテスト回路10の構造模式図であり、図8に示すように、本実施例では、テスト回路10は更に制御モジュール300を備え、前記制御モジュール300は、それぞれ前記サンプリングモジュール200及び前記信号処理モジュール100に接続され、前記サンプリング信号に応答して前記制御信号を生成するためのものであり、前記制御信号のエッジが前記サンプリング信号のエッジに対応する。
具体的には、制御モジュール300は、サンプリングモジュール200から出力された信号に基づいて応答する制御信号を生成することができ、それにより信号処理モジュール100からの出力信号の制御を実現し、即ち制御信号のレベル状態に基づいて信号処理モジュール100から出力された処理信号を制御する。例えば、図9は図8における実施例に対応する例示的な信号シーケンス図であり、図9を参照すると、本実施例では、制御信号のレベル状態が高レベルである場合、信号処理モジュール100はパルス信号を出力し、制御信号のレベル状態が低レベルである場合、信号処理モジュール100は逆相のパルス信号を出力する。
図8に更に示すように、制御モジュール300は第2一時記憶ユニット310を備えてもよく、前記第2一時記憶ユニット310のクロック駆動端子が前記サンプリングモジュール200の出力端子に接続され、前記第2一時記憶ユニット310の入力端子が所定レベル信号を取得するように所定レベル信号発生器に接続され、前記第2一時記憶ユニット310の出力端子が前記信号処理モジュール100に接続され、前記第2一時記憶ユニット310が第2一時記憶信号を生成するように前記サンプリング信号に応答して所定レベル信号をサンプリングするためのものであり、前記制御信号のエッジが前記第2一時記憶信号のエッジに対応する。即ち、所定レベル信号発生器は一定レベル状態の信号を出力し、例えば高レベル信号であってもよく、サンプリングモジュール200が実行される前に、まず第2一時記憶ユニット310をリセットすることにより第2一時記憶ユニット310に0状態を出力させ、且つ、目標時刻でリセット端子のイネーブル信号をオフして、サンプリング信号に基づいて所定レベル信号発生器から出力された高レベル信号をサンプリングすることにより第2一時記憶ユニット310から出力された制御信号Qの状態を1状態に切り替えさせることができ、それにより一部のパルス信号を逆相にし、且つ残りのパルス信号の状態を保持して出力する目的を実現する。ここで、目標時刻は、第1一時記憶ユニット210の出力端子に接続されるインバータの数によって制御されてもよい。
図10は第5実施例のテスト回路10の構造模式図であり、図10に示すように、本実施例では、前記制御モジュール300は更に第3インバータ320を備え、前記第3インバータ320の入力端子が前記第2一時記憶ユニット310の出力端子に接続され、前記第3インバータ320が前記第2一時記憶信号を受信し、且つ前記第2一時記憶信号に基づいて前記制御信号を生成するためのものである。本実施例では、第3インバータ320により制御信号Q及び制御信号QNを生成することができ、即ち2つの制御信号に基づいて信号処理モジュール100を制御することができ、それにより信号処理モジュール100の制御信頼性を向上させる。
図11は第6実施例のテスト回路10の構造模式図であり、図11に示すように、本実施例では、信号処理モジュール100は第4インバータ110及びマルチプレクサ120を備え、前記マルチプレクサ120の第1入力端子が前記第4インバータ110の出力端子に接続され、前記マルチプレクサ120の第2入力端子が前記パルス信号に接続され、前記マルチプレクサ120の出力端子が前記第1一時記憶ユニット210に接続され、前記マルチプレクサ120が前記制御信号を受信し、且つ前記制御信号の制御によって前記第1入力端子又は前記第2入力端子と前記出力端子との間の通路を導通するように選択するためのものである。なお、マルチプレクサ120の構造は、図の実施例の構造に限らず、マルチ選択機能を実現できる他のマルチプレクサ120も本願の保護範囲に属する。
図12は一実施例のテスト装置の構造模式図であり、図12に示すように、本実施例では、テスト装置は、上記テスト回路10と、前記サンプリングモジュール200に接続され、前記第1サンプリングパルス及び前記第2サンプリングパルスに基づいて前記パルス信号における前記パルスの幅を取得するための分析モジュール20と、を備える。テスト回路10についての具体的な限定は上記説明における限定を参照してもよく、ここでは詳細な説明を省略する。本実施例では、テスト回路10及び分析モジュール20によって、パルス幅を正確にテストするテスト装置を実現する。
図13は一実施例のテスト方法のフローチャートであり、本実施例のテスト方法は上記テスト装置によるものであり、図13を参照すると、本実施例では、前記方法は、
テスト対象のパルス信号を受信するS100と、
制御信号の制御によって処理信号を出力するS200と、
前記処理信号に基づいて、第1サンプリングパルスと第2サンプリングパルスを含むサンプリング信号を生成するS300と、
前記第1サンプリングパルス及び前記第2サンプリングパルスに基づいて前記パルス信号における前記パルスの幅を取得するS400と、を含む。
なお、テスト方法についての具体的な限定は以上のテスト装置に対する限定を参照してもよく、ここでは詳細な説明を省略する。図13のフローチャートにおける各ステップは矢印の指示に従って順次表示されるが、これらのステップは必ずしも矢印で指示される順序に従って順次実行されるものではないことは理解されたい。本明細書において明確な説明がない限り、これらのステップの実行順序は特に制限せず、これらのステップは他の順序で実行されてもよい。且つ、図13における少なくとも一部のステップは複数のサブステップ又は複数の段階を含んでもよく、これらのサブステップ又は段階は必ずしも同じ時刻で実行されて完了するのではなく、異なる時刻で実行されてもよく、これらのサブステップ又は段階の実行順序についても必ずしも順次行われるのではなく、他のステップ又は他のステップのサブステップ又は段階の少なくとも一部と順番又は交互に実行されてもよい。
以上の前記実施例の各技術的特徴は任意に組み合わせることができ、説明を簡潔にするために、上記実施例の各技術的特徴のすべての可能な組み合わせを説明していないが、これらの技術的特徴の組み合わせは矛盾がない限り、いずれも本明細書に記載の範囲であると見なされるべきである。
以上の前記実施例は単に本願の実施例のいくつかの実施形態を説明し、その説明が比較的具体的かつ詳細なものであるが、発明の特許範囲を限定するものではないと理解されるべきである。なお、当業者であれば、本願の実施例の構想を逸脱せずに、更に種々の変形及び改良を行うことができ、これらはいずれも本願の実施例の保護範囲に属する。従って、本願の実施例の特許の保護範囲は添付の特許請求の範囲に準じるべきである。
図6は図5における実施例に対応する例示的な信号シーケンス図であり、図に示すように、本実施例では、前記パルス信号はシーケンス上の隣接する4つのパルスを含んでもよく、前記信号処理モジュール100は、制御信号に応答して、前記パルス信号におけるシーケンス上の1番目の前記パルスを逆相にし、且つ残りの前記パルスを逆相にしないためのものである。前記サンプリングモジュール200は、シーケンス上の上位2つの前記パルスに応答して前記第1サンプリングパルスを生成し、且つシーケンス上の下位2つの前記パルスに応答して前記第2サンプリングパルスを生成するためのものであり、具体的には、サンプリング対象信号の周期がパルス信号の周期の2倍であり、且つサンプリング対象信号のエッジがパルス信号のエッジをずらし、それにより処理信号のエッジに基づいてサンプリング対象信号をサンプリングする精度を確保する。理解できるように、処理信号のエッジ時刻に対応するサンプリング対象信号が安定状態にあれば、正確なサンプリングを行うことができる。従って、本実施例では、テスト回路10のサンプリング対象信号のシーケンス精度への要求も比較的低く、即ち、シーケンスウィンドウが比較的大きく、比較的高いシーケンス信頼性を有する。
図12は一実施例のテスト装置の構造模式図であり、図12に示すように、本実施例では、テスト装置は、上記テスト回路10と、前記サンプリングモジュール200に接続され、前記第1サンプリングパルス及び前記第2サンプリングパルスに基づいて前記パルス信号における前記パルスの幅を取得するための分析モジュール20と、を備える。テスト回路10についての具体的な限定は上記説明を参照してもよく、ここでは詳細な説明を省略する。本実施例では、テスト回路10及び分析モジュール20によって、パルス幅を正確にテストするテスト装置を実現する。

Claims (13)

  1. テスト回路であって、
    テスト対象のパルス信号を受信し、且つ制御信号の制御によって処理信号を出力するための信号処理モジュールと、
    前記信号処理モジュールの出力端子に接続され、前記処理信号を受信し、且つ前記処理信号に基づいてサンプリング信号を生成するためのサンプリングモジュールと、を備え、
    前記サンプリング信号は第1サンプリングパルスと第2サンプリングパルスを含み、前記第1サンプリングパルスと前記第2サンプリングパルスがパルス幅の差を有し、前記パルス幅の差が前記パルス信号のパルス幅に等しいことを特徴とするテスト回路。
  2. 前記サンプリングモジュールは、
    第1一時記憶ユニットを備え、前記第1一時記憶ユニットのクロック駆動端子が前記信号処理モジュールに接続され、前記第1一時記憶ユニットが第1一時記憶信号を生成するように前記処理信号に応答してサンプリング対象信号をサンプリングするためのものであり、前記サンプリング信号のエッジが前記第1一時記憶信号のエッジに対応することを特徴とする請求項1に記載のテスト回路。
  3. 前記第1一時記憶ユニットは、フリップフロップ、ラッチ、レジスタのうちの1つ又は複数を備えることを特徴とする請求項2に記載のテスト回路。
  4. 前記サンプリングモジュールは更に、
    第1インバータを備え、前記第1インバータが前記第1一時記憶ユニットとともにフィードバックループを構成し、前記フィードバックループが前記処理信号に応答してフィードバック信号を生成するためのものであり、前記フィードバック信号のエッジが前記処理信号のエッジに対応することを特徴とする請求項2に記載のテスト回路。
  5. 前記第1インバータの入力端子が前記第1一時記憶ユニットの出力端子に接続され、前記第1インバータの出力端子が前記第1一時記憶ユニットの入力端子に接続され、前記第1インバータがフィードバック信号を生成するように前記第1一時記憶信号を逆相にするためのものであることを特徴とする請求項4に記載のテスト回路。
  6. 前記サンプリングモジュールは更に、
    第2インバータを備え、前記第2インバータの入力端子が前記第1インバータの出力端子に接続され、前記第2インバータが前記フィードバック信号を受信し、且つ前記フィードバック信号に基づいて前記サンプリング信号を生成するためのものであることを特徴とする請求項5に記載のテスト回路。
  7. 前記パルス信号はシーケンス上の隣接する4つのパルスを含み、前記信号処理モジュールは、前記制御信号に応答して前記パルス信号におけるシーケンス上の1番目の前記パルスを逆相にし、且つ残りの前記パルスを逆相にしないためのものであり、
    前記サンプリングモジュールは、シーケンス上の上位2つの前記パルスに応答して前記第1サンプリングパルスを生成し、且つシーケンス上の下位2つの前記パルスに応答して前記第2サンプリングパルスを生成するためのものであることを特徴とする請求項1に記載のテスト回路。
  8. 前記サンプリングモジュールは、シーケンス上の上位2つの前記パルスの同じエッジに応答して前記第1サンプリングパルスを生成し、且つシーケンス上の下位2つの前記パルスの異なるエッジに応答して前記第2サンプリングパルスを生成するためのものであることを特徴とする請求項7に記載のテスト回路。
  9. 制御モジュールを更に備え、前記制御モジュールはそれぞれ前記サンプリングモジュール及び前記信号処理モジュールに接続され、前記サンプリング信号に応答して前記制御信号を生成するためのものであり、前記制御信号のエッジが前記サンプリング信号のエッジに対応することを特徴とする請求項1に記載のテスト回路。
  10. 前記制御モジュールは、
    第2一時記憶ユニットを備え、前記第2一時記憶ユニットのクロック駆動端子が前記サンプリングモジュールの出力端子に接続され、前記第2一時記憶ユニットの入力端子が所定レベル信号に接続され、前記第2一時記憶ユニットの出力端子が前記信号処理モジュールに接続され、前記第2一時記憶ユニットが第2一時記憶信号を生成するように前記サンプリング信号に応答して所定レベル信号をサンプリングするためのものであり、前記制御信号のエッジが前記第2一時記憶信号のエッジに対応することを特徴とする請求項9に記載のテスト回路。
  11. 前記制御モジュールは更に、
    第3インバータを備え、前記第3インバータの入力端子が前記第2一時記憶ユニットの出力端子に接続され、前記第3インバータが前記第2一時記憶信号を受信し、且つ前記第2一時記憶信号に基づいて前記制御信号を生成するためのものであることを特徴とする請求項10に記載のテスト回路。
  12. テスト装置であって、
    請求項1~11のいずれか1項に記載のテスト回路と、
    前記サンプリングモジュールに接続され、前記第1サンプリングパルス及び前記第2サンプリングパルスに基づいて前記パルス信号における前記パルスの幅を取得するための分析モジュールと、を備えることを特徴とするテスト装置。
  13. 請求項12に記載のテスト装置によるテスト方法であって、
    テスト対象のパルス信号を受信することと、
    制御信号の制御によって処理信号を出力することと、
    前記処理信号に基づいて、第1サンプリングパルスと第2サンプリングパルスを含むサンプリング信号を生成することと、
    前記第1サンプリングパルス及び前記第2サンプリングパルスに基づいて前記パルス信号における前記パルスの幅を取得することと、を含み、
    前記第1サンプリングパルスと前記第2サンプリングパルスがパルス幅の差を有し、前記パルス幅の差が前記パルス信号のパルス幅に等しいことを特徴とするテスト方法。
JP2022550121A 2020-08-31 2021-06-18 テスト回路、テスト装置及びそのテスト方法 Active JP7450050B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010893028.8 2020-08-31
CN202010893028.8A CN114121132B (zh) 2020-08-31 2020-08-31 测试电路、测试装置及其测试方法
PCT/CN2021/100759 WO2022041960A1 (zh) 2020-08-31 2021-06-18 测试电路、测试装置及其测试方法

Publications (2)

Publication Number Publication Date
JP2023514632A true JP2023514632A (ja) 2023-04-06
JP7450050B2 JP7450050B2 (ja) 2024-03-14

Family

ID=80354162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022550121A Active JP7450050B2 (ja) 2020-08-31 2021-06-18 テスト回路、テスト装置及びそのテスト方法

Country Status (5)

Country Link
EP (1) EP4089966A4 (ja)
JP (1) JP7450050B2 (ja)
KR (1) KR20220125308A (ja)
CN (1) CN114121132B (ja)
WO (1) WO2022041960A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116996071B (zh) * 2023-09-27 2023-12-22 苏州领慧立芯科技有限公司 一种saradc采样时钟产生装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312894A (en) * 1964-01-23 1967-04-04 Ibm System for measuring a characteristic of an electrical pulse
KR100259358B1 (ko) * 1998-02-09 2000-06-15 김영환 균등화 펄스폭 제어회로
US6489819B1 (en) * 1998-10-27 2002-12-03 Mitsubishi Denki Kabushiki Kaisha Clock synchronous semiconductor memory device allowing testing by low speed tester
US6710637B1 (en) * 2002-04-29 2004-03-23 National Semiconductor Corporation Non-overlap clock circuit
JP2007074132A (ja) * 2005-09-05 2007-03-22 Advantest Corp サンプリング装置および試験装置
US7286947B1 (en) * 2006-04-13 2007-10-23 International Business Machines Corporation Method and apparatus for determining jitter and pulse width from clock signal comparisons
US7957923B2 (en) * 2007-07-16 2011-06-07 Himax Technologies Limited Device for jitter measurement and method thereof
TW201039560A (en) * 2009-04-30 2010-11-01 Novatek Microelectronics Corp Device and method for signal generation
CN102136803B (zh) * 2010-01-21 2014-06-04 深圳市汇川技术股份有限公司 一种脉宽调制变频电源及其死区补偿方法
JP5631600B2 (ja) 2010-01-28 2014-11-26 ラピスセミコンダクタ株式会社 半導体装置及びパルス幅検出方法
CN103176059B (zh) * 2011-12-21 2016-12-21 北京普源精电科技有限公司 一种测量脉冲宽度的方法、装置和频率计
CN102928677A (zh) * 2012-11-09 2013-02-13 湖南航天远望测控技术有限公司 一种纳米级脉冲信号采集方法
CN103809025B (zh) * 2012-11-15 2016-06-08 上海船舶运输科学研究所 船舶发电机组并网相位差检测方法
EP3463631A1 (en) 2016-05-27 2019-04-10 Entegris, Inc. Coated porous polymeric membranes
CN108267628A (zh) * 2016-12-30 2018-07-10 北京普源精电科技有限公司 具有等效采样功能的混合信号示波器

Also Published As

Publication number Publication date
EP4089966A4 (en) 2024-02-21
CN114121132A (zh) 2022-03-01
KR20220125308A (ko) 2022-09-14
CN114121132B (zh) 2023-10-13
JP7450050B2 (ja) 2024-03-14
US20220068419A1 (en) 2022-03-03
EP4089966A1 (en) 2022-11-16
WO2022041960A1 (zh) 2022-03-03

Similar Documents

Publication Publication Date Title
JP2522140B2 (ja) 論理回路
US8332698B2 (en) Scan latch with phase-free scan enable
JP2871291B2 (ja) 論理集積回路
TW200417154A (en) Apparatus for testing semiconductor integrated circuit and method of manufacturing semiconductor integrated circuit
US8788882B2 (en) Customizing code modules of software and programmable hardware for a test instrument
CN102403042B (zh) 基于锁存器的存储器设备
US9135131B2 (en) Customizing operation of a test instrument based on information from a system under test
CN104467833B (zh) 相位检测设备和相位检测方法
JP4745782B2 (ja) 半導体記憶装置
JP7450053B2 (ja) パルス幅のテスト回路、テスト装置及びそのテスト方法
JP7450050B2 (ja) テスト回路、テスト装置及びそのテスト方法
US5457699A (en) Electronic component with a shift register test architecture (boundary scan)
CN116582111B (zh) 振荡环电路及测量时序电路读取时间的装置和方法
US20060143410A1 (en) Method And Related Apparatus For Realizing Two-Port Synchronous Memory Device
US12033709B2 (en) Test circuit and test method thereof
JPH0421883B2 (ja)
US20240097661A1 (en) Bi-directional scan flip-flop circuit and method
CN114460447B (zh) 锁存器的自测试电路及其自测试方法
KR100358143B1 (ko) 테스트 시간을 최소화하기 위한 그리드 스캔 셀 및 그를이용한 칩 테스트 장치
KR970006020B1 (ko) 바운더리 스캔 구조의 티디오(tdo) 출력 장치
JPH06148293A (ja) 論理回路テスト回路
KR0121940B1 (ko) 바운더리 스캔의 2출력 데이타 출력회로
JPS60135870A (ja) 集積回路装置
JP2001033521A (ja) 半導体集積回路装置及びその位相テスト方法
JPS58222486A (ja) 集積回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7450050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150