JP2023508431A - 音響トランスデューサ構造 - Google Patents

音響トランスデューサ構造 Download PDF

Info

Publication number
JP2023508431A
JP2023508431A JP2022539123A JP2022539123A JP2023508431A JP 2023508431 A JP2023508431 A JP 2023508431A JP 2022539123 A JP2022539123 A JP 2022539123A JP 2022539123 A JP2022539123 A JP 2022539123A JP 2023508431 A JP2023508431 A JP 2023508431A
Authority
JP
Japan
Prior art keywords
array
transducer
acoustic
transducers
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022539123A
Other languages
English (en)
Other versions
JPWO2021130505A5 (ja
Inventor
ジョン オリバー ロング,ベンジャミン
カップス,ブライアン
プライス,アダム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultraleap Ltd
Original Assignee
Ultraleap Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultraleap Ltd filed Critical Ultraleap Ltd
Publication of JP2023508431A publication Critical patent/JP2023508431A/ja
Publication of JPWO2021130505A5 publication Critical patent/JPWO2021130505A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • G10K11/025Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators horns for impedance matching
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/22Methods or devices for transmitting, conducting or directing sound for conducting sound through hollow pipes, e.g. speaking tubes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/02Synthesis of acoustic waves
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
    • H04R2217/03Parametric transducers where sound is generated or captured by the acoustic demodulation of amplitude modulated ultrasonic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

パラメトリックオーディオのステアリングには、臨界間隔を定義する必要がある。導波路がある場合とない場合の両方でステアリング測定値を比較すると、拡散した葉序型のグレーティングローブがオーディオに寄与し、ステアリング不良の原因であるという結論に至る。さらに、導波路は、パフォーマンスに必要なステアリングを実現するために、正しい位相オフセットで機能する必要がある。アレイ構成が直線から別の分布に変化するようにチューブを配置することは、導波路が臨界間隔に達していない場合やスペースに制約がある場合に役立つ。アレイ設計は、グレーティングローブエネルギーの拡散を促進する不合理な間隔を持つトランスデューサタイリングの利点を持ちながら、直線的なトランスデューサ設計を利用することもできる。【選択図】 図1C

Description

先願
本出願は、(1)令和1年12月25日に出願された米国仮特許出願第62/953,577号および(2)令和1年12月27日に出願された米国仮特許出願第62/954,171号の利益を主張し、その全体が参照により本明細書に組み込まれる。
本開示は、一般に、空中ハプティクスシステムで使用される音響トランスデューサ構造の改善された技術に関する。
本明細書で説明するように、「フェーズドアレイ」という用語は、同じ空間に突出し、個別にアドレス指定することができる送信機のグループを指す。特定の信号を選択するか、モノクロアレイの場合は位相と振幅を選択することにより、送信機のグループが放射フィールドを形成することができる。空気中の超音波フェーズドアレイの場合、音場を集束させ、発散させ、ビームに成形し、一般に他の多くの形に再配置することができる。成形および操作された超音波場の用途には、空中ハプティクス、指向性オーディオ、および物理的な素材やシーンのイメージング(画像化)が含まれる。
フェーズドアレイを介したステアリング(操作)では、要素の間隔が臨界間隔を超えている場合、グレーティングローブが発生する可能性がある。これにより、音のエネルギーが意図しない方向に放出されることになる。アレイを臨界間隔に近づけるために、音響導波路構造を使用することができる。Jager等(2017 IEEE)は、導波路構造を使用したビームステアリングを実証した。Jagerは、グレーティングローブの減少を示しているが、ハプティクスやパラメトリックオーディオに関してその結果を認識または実証していない。
さらに、本明細書では、直線的なトランスデューサ設計を利用することを意図したアレイ設計について説明するが、かかるアレイ設計は、グレーティングローブエネルギーの拡散を促進する不合理な間隔を有するトランスデューサタイリングの利点を有する。
放射フェーズドアレイシステムのトランスデューサを配置すると、波長、素子サイズ、素子間の分離距離、および間隔の幾何学的均一性などのパラメータに応じて、望ましくない余分な特徴が生じる。
波長が短くなるにつれて、ある波長で測定したときの素子サイズおよび分離距離が増加する。これらが、一定のサイズを超えると、グレーティングローブが現れて出力を歪め、極端に大きくなると、望ましくない余分な出力焦点が作成される。
商業上の理由から、要素のサイズおよび間隔とは無関係に周波数を設定することが必要な場合があり、幾何学的な間隔の均一性を備えた構造では、焦点を生成するために作動したときに、望ましくない余分な出力焦点が現れる。この場合、唯一の変更可能なパラメータはジオメトリの均一性である。しかしながら、商業的には、材料を無駄にせず、高い充填密度を持ち、製造に必要なステップの数と複雑さを最小限に抑えるトランスデューサを作成することが有益である。
本明細書で開示される1つの重要な革新は、パラメトリックオーディオのステアリングには臨界間隔に近づくことが必要であることを認識することである。超音波シミュレーションまたは測定データを見ると、拡散した葉序型のグレーティングローブがそれほど多くのオーディオに寄与していることは明らかではない。また、オーディオの測定だけでは、グレーティングローブがステアリング不良の原因であるという結論には至らない。その結論に達するには、導波路がある場合とない場合のステアリング測定値を比較する必要がある。さらに、導波路は、パフォーマンスに必要なステアリングを実現するために、正しい位相オフセットで機能している必要がある。
さらに、Jager等は、等しい長さのチューブを使用した操作のみを示しており、他の可能性については説明していない。本明細書では、異なる長さのチューブが同等に機能し、はるかに多様な形状を可能にする。また、アレイ構成が直線から別の分布に変化するようにチューブを配置することは、自明ではない用途であり、導波路が臨界間隔に達していないか、スペースに制約がある場合に利点がある。
さらに、本明細書は、グレーティングローブエネルギーの拡散を促進するために不合理な間隔を有するトランスデューサタイリングの利点を有しながら、直線トランスデューサ設計を利用することを意図したアレイ設計について説明する。
以下の詳細な説明とともに、同様の参照番号が同一または機能的に類似の要素を個別の図全体にわたって指す添付の図面は、明細書に組み込まれ、その一部を形成し、特許請求される発明を含む概念の実施形態をさらに示し、それらの実施形態の様々な原理および利点を説明するのに役立つ。
図1A、1Bおよび1Cは、導波路の構成を示す図である。
図2は、グレーティングローブ抑制シミュレーションを示す図である。
図3は、グレーティングローブ抑制シミュレーションを示す図である。
図4は、レーザードップラー振動計のスキャン画像を示す図である。
図5は、トランスデューサの配置を葉序らせんとして示す図である。
図6は、シミュレーションにおける図5の効果を示す図である。
図7Aおよび7Bは、直線アレイの超音波音響シミュレーションを示す図である。
図8Aおよび8Bは、葉序らせん状に配置されたアレイを使用した超音波音響シミュレーションを示す図である。
図9は、葉序らせん状に配置されたアレイのトーン生成のオーディオステアリング性能を示す図である。
図10は、葉序らせん状に配置されたアレイのトーン生成のオーディオステアリング性能を示す図である。
図11は、直線アレイを使用したパラメトリックオーディオビームのステアリングを示す図である。
図12は、直線アレイを使用したパラメトリックオーディオビームのステアリングを示す図である。
図13は、直線アレイを使用したパラメトリックオーディオビームのステアリングを示す図である。
図14は、トランスデューサアレイからのパラメトリックオーディオの周波数応答を示す図である。
図15は、葉序らせんにおける点集合のボロノイ図である。
図16は、葉序らせん状に配置された円形変換器を有するプロットを示す図である。
図17は、葉序らせん状に配置された正方形の変換器を有するプロットを示す図である。
図18は、トランスデューサの直線的に整列された配置を示す図である。
図19は、トランスデューサ要素の正方格子のブラッグ回折を示す図である。
図20は、トランスデューサのバイナリタイリングを示す図である。
図21Aおよび21Bは、バイナリタイリングのブラッグ回折を示す図である。
図22Aおよび22Bは、風車タイリングおよびそのブラッグ回折を示す。
図23は、風車フラクタル構造に存在する直角三角形のモチーフを示す図である。
図24は、1:2の縦横比(アスペクト比)を有する左手および右手の「ドミノ」アレイのための矩形アレイ設計を示す。
図25は、「正方形」アレイの4つの変形の設計を示す図である。
図26は、ヘルムホルツ方程式を用いた固有モードのシミュレーションを示す図である。
図27は、圧電アクチュエータの曲げモードの最大z偏向のシミュレーションを示す図である。
図28は、圧電アクチュエータの曲げモードに対する最大z偏向のシミュレーションを示す図である。
図29は、正方形のユニットセルを新しい配置に配置するための基本的なステップを詳述するシミュレーションを示す図である。
図30は、図29を再帰的に拡張して要素のより大きなアレイを構築する方法を示すシミュレーションを示す図である。
図31は、回転またはミラーリングまたはその両方によって提供される変動の可能性を示すシミュレーションを示す図である。
図32A、32B、32Cおよび32Dは、回転を使用して構成された正方形トランスデューサの要素アレイの例を示す図である。
図33A、33B、33Cおよび33Dは、ミラーリングを使用して構成された正方形トランスデューサの要素アレイの例を示す図である。
図34A、34B、34Cおよび34Dは、回転およびミラーリングを使用して構成された正方形トランスデューサの要素アレイの例を示す図である。
図35は、正方形トランスデューサを使用してシミュレートされた再帰的オフセットアレイを示すグラフである。
当業者は、図中の要素が単純化および明確化のために示されており、必ずしも一定の縮尺で描かれていないことを理解するであろう。例えば、図中のいくつかの要素の寸法は、本発明の実施形態の理解を深めるのを助けるために、他の要素に対して誇張されている場合がある。
装置および方法の構成要素は、必要に応じて、図面内の従来の記号によって表され、本発明の実施形態を理解するのに関連する特定の詳細のみを示して、本明細書の説明の恩恵を受ける当業者に容易に明らかとなる開示を不明瞭にしないようにしている。
発明の詳細な説明
I.音響導波路構造を用いた超音波フェーズドアレイのステアリング
A.序論
超音波フェーズドアレイを使用する際に発生する制限は、グレーティングローブの現象である。これは、トランスデューサの特定の配置が、出力の誤ったローブの形をとる意図しない方向へのエネルギーの漏れを生成する効果を生じる。この効果を説明するために、中心間の間隔がaのトランスデューサの線形アレイを考えてみる。それらがすべて同相で超音波を生成している場合、それらは線源に似たフィールド(場)を生成し、トランスデューサのアレイに対して垂直に取られた断面は、円形の発散波面を明らかにするが、トランスデューサの面には、トランスデューサから直接離れて突き出た実質的に線形の波面が存在する。ここで、その平面の垂線から角度θの別の方向を考える。あるトランスデューサから放射された球状に発散する波面が別のトランスデューサに接続する前のその方向に沿った距離は、d=a×sinθで与えられる。この距離が1波長に等しい場合、その方向に沿ってすべての波が建設的に加算される。その角度での建設的な干渉の結果が、グレーティングローブである。この角度は、θ=sin-1(λ/a’)で与えられ、λは超音波の波長である。これは、この場合のグレーティングローブが間隔aに依存し、それが波長λとどのように比較されるかを示している。例えば、aがλより小さい場合、解は存在せず、したがって、グレーティングローブは、この配置および放出シナリオには存在しない。
フェーズドアレイのグレーティングローブは広範囲に研究されており、注意深く分析した結果、トランスデューサの間隔が波長の半分(λ/2)以下の場合、配置に関係なくすべてのグレーティングローブが除去されることが示されている(Wooh&Shi,1999)。これは「臨界間隔」と呼ばれる。臨界間隔で配置されたトランスデューサを備えた線形または平面アレイは、グレーティングローブアーティファクトなしで目的のフィールドを達成することができる。上述したように、アレイから直角に生成されたビームのグレーティングローブは、システムが波長間隔(λ)、または臨界間隔の2倍に近づくと消失する。ただし、ビームを直接垂直以外の方向に移動またはステアリングする場合には、その配置では、システムがステアリングを開始するとすぐにグレーティングローブが現れる。波長間隔(λ)と臨界間隔(λ/2)との間には、グレーティングローブなしで、ますます大きな角度にステアリングできるアレイのクラスが存在する。これは、より大きなトランスデューサがより強い音場を提供する傾向があるため、大きなステアリング角度が必要ない場合に有益である。そのため、必要な数が少なくなり、システムの設計が簡素化されます。
超音波トランスデューサのジオメトリは、使用される材料、作動要素、整合層、共振空洞、およびトランスデューサ要素設計の他の多くの側面を含む多くの要因によって決定される。臨界間隔を達成できる変換要素を設計することは困難な場合がある。さらに、奇妙な形状の要素は、葉序らせんなどのグレーティングローブからの二次集束を軽減する配置を妨げる可能性がある。ここで提示される発明は、音響出力を導波路の反対側の端にある第2の開口に向けるトランスデューサまたはトランスデューサのアレイの上に直接取り付けることができる一連のチューブまたは導波路経路である。生成された音場の観点からは、トランスデューサの開口が、フェーズドアレイの幾何学的配置に関して、この第2の開口に実質的に置き換えられたように見える。このような幾何学的配置の1つでは、導波路を使用して、トランスデューサの空間的配置を、例えば、直線から葉序らせんに調整することができる。別の構成では、臨界間隔を達成できるように開口を縮小することができる。
図1A、1Bおよび1Cは、このイノベーションの例示的な構成100を様々な図で示している。図1AのA-A140によって断面が示される、上側および下側に先細りの開口部120、130を有する直線アレイが示されている。これらの開口部120、130は、図1A、1B、および1Cに示されるように、部材110a、110b、110c、110dによって取り囲まれている。
具体的には、この導波路は、40「kHz」で動作する1.03「cm」の間隔で配置された直径1「cm」の円形トランスデューサの16×16直線アレイ120に結合する。導波路は、5「mm」間隔の円形開口部への直線テーパー経路を形成する。海面および標準状態では、40「kHz」の波長は8.6「mm」である。したがって、導波路は、アレイの見かけのジオメトリを1.2λ間隔から0.58λ間隔に変換し、0.5λ臨界間隔にかなり近づく。言い換えれば、これは、10mm 40kHzトランスデューサの16×16直線アレイを臨界間隔(5mm)近くの間隔に変換する導波路の例を示している。
図2および図3は、この新しいより狭い間隔の有効性を示している。図2は、[x,y,z]=[40mm,0,150mm]に焦点を合わせたグレーティングローブ抑制のグラフ200を示す。x軸210はmm単位の位置である。y軸220はdbである。通常のプロット230は、導波路プロット240と比較される。
図2では、焦点が[x,y,z]=[40「mm」,0,150「mm」]に投影され、マイクロホンがz=150「mm」でx次元を横切ってスイープされる。通常の配置と導波路配置の両方で、x=40「mm」に明確な焦点が観察される。しかしながら、広く間隔を空けた規則的な配置では、グレーティングローブによって引き起こされる2次焦点がx=-110「mm」ですぐに表れる。導波路によって可能になる、より狭い間隔は、二次焦点の作成を防ぐ。
図3は、焦点がx=80「mm」に投影された同様の実験的測定のグラフ300によるグレーティングローブ抑制の別の例を示している。x軸310はmm単位の位置である。y軸320はdbである。通常のプロット330は、導波路プロット340と比較される。
図3は、より大きな角度にステアリングする場合に臨界間隔に接近する必要性を示している。この場合、二次焦点は、意図された焦点とほぼ同じ大きさである。繰り返しになるが、導波路によって可能になる狭い間隔により、グレーティングローブがなくなる。
更なる実験的検証が図4に示され、これは音場の一連の走査レーザードップラー振動計走査画像410、430である。この方法では、ソリッドマイクロホンを使用して音場を乱すことなく、音場を直接的に画像化することができる。マイクロホンのデータと同様に、ステアリング420を使用しない場合や、45°の角度(符号440)にステアリングした場合でも、グレーティングローブは観察されない。
B.集束超音波用導波路
空中ハプティクスは、特殊な高圧音場、典型的には変調された焦点を使用して、人体に振動触覚を生成する。グレーティングローブは、変調される2次フィールドを発生させる可能性があり、それによって意図しない場所にハプティクスが作成される。
グレーティングローブが二次焦点を形成するのを防止する1つの方法は、放射アレイを疑似ランダム配置に配置することである。図5は、7mmトランスデューサ530の1つのそのような配列500を葉序らせんとして示す。x軸510およびy軸520はメートル単位である。挿入された四角形540は、直線配置に詰め込まれた同じトランスデューサのアレイの範囲を示す。この構成には規則的な空間周波数が含まれていないため、グレーティングローブが二次焦点を形成するのを防ぐ。
図6は、シミュレーション600における図5の効果を示す。x軸610およびy軸620はmm単位である。グレースケールは圧力(任意)単位である。ここで、z=20「cm」でアレイに平行なx-y平面640のフィールドは、焦点630がx=10「cm」およびz=20「cm」に配置されたときにシミュレートされる。同様の密度の直線アレイのグレーティングローブの焦点は、約x=5「cm」に現れる。葉序配置は、この二次焦点を負のxドメインの大きな弧に分配する。しっかりと焦点を合わせないと、グレーティングローブは触覚的な感覚を生成しない。
葉序配置の明確な欠点の1つは、大きな間隔が必要とされる点である。図5の挿入された正方形540は、同じトランスデューサが直線的に詰め込まれた場合のアレイの範囲を示している。葉序らせん配列のサイズが大きくなると、スペースが限られているそのような配列を使用できなくなり、製造コストが増加する可能性がある。
導波路構造を使用して、直線トランスデューサアレイを、葉序らせん配列、またはグレーティングローブエネルギーを分配する類似の疑似ランダム出口パターンに接続することが可能である。1つの構成では、設計は、各トランスデューサから最も近い出口開口までの直線チューブからなる。出口配置のサイズと形状によっては、チューブの交差を防ぐために反復設計が必要になる場合がある。これにより、測定またはシミュレートされた位相オフセットをステアリング計算に含める必要がある異なる長さのチューブも作成される可能性がある(以下で説明する)。
しかしながら、出口アパーチャが臨界間隔に近い場合、疑似ランダム配置は必要ない。ただし、ハプティクスの場合、これはいくつかの欠点につながる可能性がある。例えば、出口開口部を小さくすると、有効な焦点深度は同様の距離で増加する。焦点を絞らないと、ピーク圧力が低くなり、ハプティック効果が低下する可能性がある。同時に、臨界間隔によってステアリング能力が向上するため、アレイに近い大きなステアリング角度でもフォーカス形状が維持される。アプリケーションに応じて、低減されたグレーティングローブ、焦点深度、および出口開口サイズ間の相互作用を最適化する導波路を設計することができる。
C.パラメトリックオーディオ用導波路
パラメトリックオーディオは、可変周波数の超音波が存在するときに空気中の非線形歪みによって可聴音が生成される効果である。超音波の短波長域をコントロールすることで、従来のスピーカーでは不可能だった音のコントロールが可能となる。
パラメトリックオーディオ効果の最も一般的な用途は、超音波のビームに続くオーディオのビームを生成することである。ビーム内では、存在する大きさと相対周波数に比例して、すべてのボリューム要素でオーディオが生成される。可聴音が生成された後、超音波に比べて波長が大きいため、音はさらに広がる。ただし、可聴音の最大の大きさは超音波ビーム内に存在するため、さらなるパラメトリックオーディオ生成によって強化される方向にのみ存在する。
図7Aおよび7Bは、ステアリング角30°でビームを生成する1.2λ間隔の直線アレイの超音波音響シミュレーション700を示す。グレーティングローブビームが明確に見え、ステアリング方向とは逆方向に向けられている。図7Aでは、シミュレーション730は、2つの音声ビームを示し、それぞれが独自の超音波ビームに沿って向けられている。最終的な結果は、システムの認識される方向性と特定のユーザーをターゲットにする能力を制限する、2つの発散するオーディオビームになる。図7Bでは、シミュレーション730は、負のyステアリング角度で現れるグレーティングローブ770を示している。
図8Aおよび8Bは、1.2λ直線アレイに匹敵する充填密度を有する葉序らせん配置のアレイを使用する超音波音響シミュレーション800を示す。30°の正のy方向にビームを投影する臨界間隔より上の葉序らせん配置された超音波アレイのシミュレーションである。図8Aでは、シミュレーション830は、トランスデューサの疑似ランダム配置がグレーティングローブで見出されたエネルギーを大きな弧に分配することを示している。一見すると、この拡散した低強度の超音波アークが重要なパラメトリックオーディオを生成できるかどうかは明らかではない。図8Bでは、シミュレーション860は、グレーティングローブ870が分布し、負のy方向に向けられているが、直線配置と比較すると、はるかに拡散していることを示している。
図9および図10は、それぞれ10°および30°で約1.2λのパッキング密度を持つ葉序らせん状に配置された61「kHz」アレイの1「kHz」トーン生成のオーディオステアリング性能を示している。図9のグラフ900は、x軸910が角度(°)であり、y軸920がSPL(db)であるプロット930を有する。図10のグラフ1000は、x軸1010が角度(°)であり、y軸1020がSPL(db)であるプロット1030を有する。
この測定値は、広い部屋でアレイの法線に対して特定の角度で測定されたオーディオ サウンド レベルを示す。比較的小さな10°のステアリング角度でも(図9)、放出されたオーディオの測定値はアレイに対して対称ではない。30°などの極端な角度(図10)にステアリングすると、ポーラープロファイルは、約-20°前後の意図しない角度で、意図した+30°のステアリングよりも大きな振幅でサウンドが出ていることを示している。これは、図8でシミュレートされたグレーティングビーム/アークの角度にほぼ対応する。この予期しない結果が生じるのは、グレーティングビームが空間的に低いピーク圧力を有するが、そのサイズと空間範囲とがこの強度の不足を補うためである。前述のように、パラメトリックオーディオが生成されると、波長が長いため、超音波よりも容易に回折および拡散する。したがって、任意の断面で、グレーティングビーム内の低強度ソースのアーク全体が、その一般的な方向のパラメトリックオーディオに寄与する。その結果、葉序スパイラル配置アレイは役に立たないだけでなく、直線または六角形パックアレイと比較してパッキング密度が低いため、超音波フェーズドアレイからのパラメトリックオーディオステアリングパフォーマンスを積極的に損なうことになる。
幸いなことに、臨界間隔に近づいているアレイは、グレーティングローブエネルギーが完全に欠如しているため、パラメトリックオーディオのステアリングに役立つ。
図11は、角度(°)のx軸1110およびdB単位のy軸1120を有するグラフ1100を示し、通常のプロット1130および導波路のプロット1140を有する。具体的には、図11は、図1に示されている1.2λ(通常)の直線アレイと0.58λ導波路を使用して、パラメトリックオーディオビームを+10°にステアリングする様子を示している。
図12は、角度(°)のx軸1210およびdB単位のy軸1220を有するグラフ1200を示し、通常のプロット1230および導波路のプロット1240を有する。具体的には、図12は、図1に示した1.2λ(通常)の直線アレイと0.58λの導波路を使用して、パラメトリックオーディオビームを+20°にステアリングする様子を示している。
図13は、角度(°)のx軸1310およびdB単位のy軸1320を有するグラフ1300を示し、通常のプロット1330および導波路のプロット1340を有する。具体的には、図13は、図1に示した1.2λ(通常)の直線アレイと0.58λの導波路を使用して、パラメトリックオーディオビームを+40°にステアリングする様子を示している。
図13は、周波数(Hz)のx軸1410およびSPL(dB)のy軸1420を有するグラフ1400を示し、通常のプロット1430および導波路プロット1440を有する。具体的には、図14は、導波路の有無にかかわらず、16×16 40kHzトランスデューサアレイからのパラメトリックオーディオの周波数応答を示している。
したがって、図11、図12および図13は、1.2λ間隔の40「kHz」アレイそのものと比較した、図1に示す導波路のパラメトリックオーディオステアリング性能を示している。直ぐに分かるように、導波路のほぼ臨界間隔の出口開口部は、グレーティングローブビームとその結果のオーディオを排除する。これは、ここで提示される発明が、臨界間隔を可能にすることによって、任意のサイズのトランスデューサから任意の角度へのパラメトリックオーディオの積極的なステアリングを可能にすることを示している。さらに、図14に示すように、周波数応答はほとんど影響を受けない。
D.導波路の設計および動作
導波路を使用してフェーズドアレイを適切に動作させるには、出力を調整して導波路自体を補償する必要がある。言い換えれば、各トランスデューサの位相と振幅を正確に調整して駆動する必要があるのと同様に、導波路経路によって引き起こされる相対的な変化も補償する必要がある。例えば、ある導波路パスがπ/4の位相オフセットを引き起こし、同じアレイの別の導波路パスがπ/2シフトを引き起こす場合には、このオフセットは、与えられたフィールドの活性化係数を計算するときに、各トランスデューサの目的の位相からそれぞれ減算する必要がある。各トランスデューサの振幅と位相の両方を複素数と見なし、導波路の減衰と位相遅延をさらに複素数と見なすと、導波路の補正係数の適用は、第1を第2で除算することで実現できる。この補償がなければ、フィールドは導波路によって変形され、歪められる。さらに、活性化係数が飛行時間を説明するモデルを使用して生成される場合、係数が計算されるときに導波路によって引き起こされる時間遅延を補償する必要がある。
位相オフセットと時間遅延は、経験的またはシミュレートされた方法を使用して導出できる。時間はかかるが、最も簡単な方法は、各導波路パスに関連する位相オフセットと時間遅延を直接測定することである。1つの構成では、位相は、制御信号を参照して連続単色駆動で測定することができ、時間遅延は、インパルス、チャープ、または制御経路との比較で測定することができる。もう1つの方法は、シミュレーションで位相と時間遅延を計算することである。これは、有限要素モデル(FEA)やパイプや適切な構造の解析モデルのような洗練されたもので行うことができる。前のセクションで示したデータでは、各導波路パスの長さを使用して位相オフセットを計算した。これを自由空気中の超音波励起の波長で割ると、適切な位相オフセットを表す剰余が得られる。これは、15「cm」でアレイの真上に生成された焦点の強度と位置を測定し、モデルと比較することによって高精度化された。各チューブの有効長を8%増やすと、シミュレーションにうまく適合した。前述のように、この補償がなければ、導波路構造は予想されるフィールドを生成しない。
ここでの議論のほとんどは、送信用の導波路に関するものであったが、それらは受信用にも機能する。導波路の一方の端に配置された受信機は、超音波が導波管の反対側の端にある開口部に向けられた場合にのみ、信号を受信して生成する。重要な間隔での受信システムは、グレーティングローブアーティファクトによって作成されるエイリアシングされたゴーストイメージから解放される。さらに、導波路の開放開口をホーンまたは同様の構造に成形すると、開放空気中の受信素子と比較して感度が向上する可能性がある。
図1に示される導波路は、本発明から可能な1つの配置のみを表す。導波路経路、この場合は半径が減少する直線管は、直線である必要はなく、半径が減少し、断面が円形である必要はなく、材料の空隙であってもよい。超音波が導波路経路を伝播でき、その位相オフセットと時間遅延が十分に特徴付けられ、一貫している限り、アレイの操作に使用することができる。例えば、直線的なアレイを葉序的な疑似ランダム配置に変換する導波路は、確かに直線的なチューブを含まず、非円形の断面を組み込む可能性がある。別の構成では、導波路を使用して角の周りで音場を曲げ、各導波路経路を曲げて元の導波路に対して90°の出口開口を有することができる。別の構成では、導波路経路の断面は、出口開口付近で再び広がる前に狭めることができる。この狭小化により、トランスデューサの音響インピーダンスが増加し、その音響出力が向上するだけでなく、ホーンのような出口開口部が提供されて外気への結合が増加します。別の構成では、様々なトランスデューサ、例えば、混合周波数または放射電力を同じアレイ内で利用することができ、導波路はそれらすべてを統一された放射領域にもたらすことができる。
導波路は、様々な材料で構成することができる。これには、金属、プラスチック、さらには柔軟なポリマーが含まれる。構成材料の音響インピーダンスは、超音波が1つの導波路パスから別の導波路パス(アレイ内のクロストーク)を通過するのを防ぐために、空気の音響インピーダンスよりも十分に高くする必要がある。ほとんどの固体は、空気に比べて音響インピーダンスが少なくとも2桁高いため、これは難しくない。これにより、プラスチック管などの柔軟な材料を導波路の一部として使用することが可能になる。例えば、金属または硬質プラスチックで構成された出口アパーチャアレイを、プラスチックまたはポリマーチューブを使用してトランスデューサの入力アレイに結合することができる。次に、それぞれを個別に取り付けることができ、フレキシブルチューブが接続を橋渡しすることができる。ポリマーチューブは、使用期間中に柔軟性を維持するか、取り付け後に何らかの方法(例えば、UV)で硬化することができる。長さと形状が組み立て中に固定されることを考えると、位相オフセットと時間遅延は、配置の正確な詳細に関係なく、理由の範囲内でほとんど変更されないままにする必要がある。極端な角度またはピンチ/ブロックされたチューブは、明らかに歪みを引き起こす。より高い精度が必要な場合は、測定またはシミュレーションにより、必要な2次補正を行うことができる。
プラスチックまたはポリマーに加えて、導波路の一部または全部に金属を使用することができる。金属には、導波路が空気を容易に閉じ込めて過度の蓄熱を引き起こす可能性があるため、ヒートシンクとして機能するという利点がある。
導波路の断面は、半径が減少する曲線である必要はなく、単純なチューブとして機能する必要もない。導波路経路に沿って半径を比較的急激に減少させて、ヘルムホルツ共鳴器のような設計を作成することが可能である。この手段を使用すると、大容量のチャンバーはトランスデューサの出力効率を向上させ、出口開口部をまとめて臨界間隔に近づけることができる。
導波路経路内の容積は、完全に空である必要はない。必要に応じて、エアロゲルなどの充填材を導波路に充填して、異なる音響インピーダンスを提供することができる。音響インピーダンスのマッチングに加えて、さまざまな素材が耐水性などの環境保護を提供する。
導波路の製造は、さまざまな技術で行うことができる。図1に示され、実験的に証明されたアレイ設計は、付加製造技術(FDM 3D印刷)を使用して作成された。例えば、図1に示す導波路は、4回折り曲げられて対称であり、4つの同一の部品を接続して最終製品を形成することができる。別の製造方法では、適切な長さの直線状のポリマーチューブを多数接続して成形し、ガラス転移温度近くまで加熱する。次に、フォームを外部から適用して、チューブの塊を最終的な導波路フォームに押し込むことができる。この外力は、真空バッグや、金属チューブの場合は水圧に似ている。一度に1つの導波路チューブを製造し、それらを接着/融合して最終製品にすることも可能である。
ここで提示される開示は、超音波フェーズドアレイの変換が、出力またはフィールド合成能力を大幅に失うことなく、ある構成から別の構成に変換することを可能にする。これにより、任意のサイズの変換要素から、臨界的に間隔をあけた、または疑似ランダムな配置が可能になる。
本開示の目的は、同様の位置にある静止またはゆっくり動くマイクロホンの測定値と合理的に一致する超音波フェーズドアレイから音圧の推定値を生成することである。
フィールドでの瞬間的な圧力または強度または他の測定基準を計算する方法を詳述する方法がある。ここでは、一連のアルゴリズムが計算リソースを効率的に使用して、時間平均メトリックを計算する。これらは、ホットスポットや必要以上の圧力を特定して調整するのに役立つ。
超音波フェーズドアレイからの電界強度の推定は、関心のあるポイントへの各トランスデューサの寄与を合計することによって行うことができる。この寄与は、収束する球面波を作成するときにすでに計算されている。この計算を再利用して、仮想マイクロホンをシステムに追加うることができる。このマイクロホンを監視し、新しいフォーカスポイントに合わせて移動することで、フィールド推定と調整の堅牢なシステムを確立することができる。
E.追加の開示
1.超音波アレイは、
A)複数の超音波トランスデューサと、
B)動作音響波長と、
C)複数の音響キャビティとからなり、
D)各キャビティは、入口開口部および出口開口部を有し、
E)各入力開口部は、単一のトランスデューサから超音波を受け入れ、
F)キャビティの出口開口部の幾何学的中心の少なくとも2つは、互いに1波長未満離れて位置しており、
G)出口開口部から現れる超音波は、入力開口部に入ったときに対して位相オフセットを有し、
H)少なくとも2つのキャビティが異なる位相オフセットを有する。
2.少なくとも1つのキャビティの位相オフセットが反転され、放出前に少なくとも1つのトランスデューサ駆動の位相に適用される、前記項目1に記載の装置。
3.超音波は、可聴音を生成するように変調される、前記項目2に記載の装置。
4.超音波は、空中ハプティクス効果を生成するように変調される、前記項目2に記載の装置。
5.超音波を使用して物体を浮揚させる、前記項目2に記載の装置。
6.出口開口部から現れる超音波は、入力開口部に入ったときとは異なる振幅を有する、前記項目2に記載の装置。
7.振幅オフセットは、放出前に少なくとも1つのトランスデューサの振幅を修正するために使用される、前記項目6に記載の装置。
8.出口開口部が実質的に同一平面上にある、前記項目3に記載の装置。
9.音声は、平面に対する法線から15°を超える角度で向けられる、前記項目8に記載の装置。
10.音声は、平面に対する法線から30°を超える角度で向けられる、前記項目8に記載の装置。
11.音声は、平面に対する法線から45°を超える角度で向けられる、塩基項目8に記載の装置。
12.音声は、平面に対する法線から60°を超える角度で向けられる、塩基項目8に記載の装置。
13.振幅オフセットが2dB以内である、前記項目6に記載の装置。
14.キャビティが、入口開口部から出口開口部まで減少する半径を有する真っ直ぐな円筒からなる、前記項目1に記載の装置。
15.波長が9mm未満である、前記項目14に記載の装置。
16.出口キャビティのピッチが6mm未満である、前記項目14に記載の装置。
17.位相オフセットは、装置のメモリに格納される、前記項目2に記載の装置。
18.振幅オフセットは、装置のメモリに格納される、塩基項目6に記載の装置。
II.異なるキラリティーのトランスデューササブタイル
上記の開示では、グレーティングローブ構造を多くの断片に分割する不均一な構造の例として、葉序らせんを説明した。ただし、図15に示すように、点焦点1500のボロノイ図を見ると分かるように、製造を容易にするために使用するのは困難である。
葉序らせんの点焦点のこのボロノイ図から分かるように、「種子形状(seed shape)」は、厚さがフィボナッチ数列にほぼ従うように見えるバンドでダイヤモンド状の形状と六角形のような形状の間を移動する。制限内に単一の形状は存在しないため、このアプローチに基づく設計に最適なトランスデューサの形状が1つもないことは明らかである。
ボロノイセルの連続的に変化する形状は、出力の関数がこの小さな形状の変化でほとんど変化しないため、広帯域応答で非共振の変換要素のアレイの合理的な設計をもたらすが、狭帯域共振構造を考慮する場合、これには、現在商業的に実行不可能な各構造の慎重な調整が必要になる。共振デバイスは、圧電効果に基づくデバイスを含む既存の技術の大部分をカバーしており、結晶構造に電気を通し、機械的な曲げを作成する。
図16に示されているのは、葉序らせん状に配置された円形トランスデューサ1640が中央の正方形1630に比較的密に詰め込まれていることを示すプロット1600であるが、円形トランスデューサは製造コストが高くなる可能性がある。x軸1610はメートル単位である。y軸1620はメートル単位である。上記の開示では、円形の変換器を図16のように葉序らせん状に配置する方法も示されているが、コストを削減するために、変換器の設計またはレイアウトには直線的な要素が含まれる可能性が高くなる。
正方形の変換器は、回転を必要としない単純な配置が図17に示される配置をもたらすので、位置決めがより困難である。
図17に示されているのは、中央の正方形1730に比較的密に詰め込まれた葉序らせん状に配置された正方形の変換器1740を示すプロット1700である。x軸1710はメートル単位である。y軸1720はメートル単位である。葉序らせんの構成で正方形のトランスデューサを直線的に配置した結果、隙間のない均一なパッキングは、より大きな正方形1730として重ねられる。
単一化された単位トランスデューサを葉序配置で使用し、正方形トランスデューサのセットの直線的配置のみを可能にすることで、無駄なスペースを持たない同等の均一な正方形パッキングの面積の2倍を超える構成が得られる。アレイの電力出力は単位面積あたりこの因子によつて減少するため、これは問題となる。パッキング密度が高いほど、占有されていない領域に失われる単位面積あたりのエネルギーは少なくなる。
これは、図18に示すように、単体化されたユニットを回転させて、直線的に整列された配置を壊すことができる場合に改善することができる。ここで、シミュレーション1800は、四角形1810内のらせんの中心に向かって角が向いているトランスデューサを配置した結果を示している。密度をさらに高めるために、葉序パターンは内側に構築されており、正方形の要素が重なっている場合は、重なりが解消されるまで角度位置が増分される。また、べき乗は、中心からの距離を表す従来の0.5ではなく、0.4392の指数にわずかに下方修正される。ただし、この構成でも、密集した代替品よりも約40%余分な領域が使用されているため、領域が制限されたアレイからの焦点での出力が約3dB低下する。これは望ましくないため、トランスデューサの完全に高密度のパッキングを見つけることが推奨される。これは、シートまたはロールとして製造するように設計できるため、製造の観点から有益である。ただし、不均一配置の要件も満たす高密度充填を見つけることは困難である。
表面に取り付けられたトランスデューサの高密度パッキングは、平面のタイリングに相当する。低減または除去する必要があるグレーティング効果は、事実上、波動現象がトランスデューサの放射位置の「格子」と相互作用した結果であるため、配置のフーリエ変換を行うことで効果を事前に決定でき、モデル化されたブラッグ回折パターンに相当する結果が得られる。次に、効果的なパターンを見つけるには、弱く分散したブラッグ回折パターンを持つトランスデューサの放射位置の「格子」を見つける必要がある。
直線系のブラッグ回折は、図19に示されるように、直線グリッドによって再び分離された余分な偽像によって囲まれた中心焦点を有する、対応するグレーティングローブ構成をもたらす。図19は、トランスデューサ素子の正方格子のブラッグ回折1900を示し、この幾何学的レイアウトによって生成されたグレーティングローブ構成を示している。
結晶系の分子モデルとして、特に準結晶および金属の混合物のモデルとしての特性のために、平面の多くの興味深い平面非周期的なタイリングが研究されており、タイリングのブラッグ回折をX線結晶構造解析の問題の類似物として説明している文献がある。このために、Senechal,M.の論文「Tilings,Diffraction and Quasi-crystals」を考慮すると、ブラッグ回折と並んで研究されている最も興味深い2つのタイリングシステムは、平面をタイリングするためのバイナリシステムと風車システムである。
考慮される最初のシステムは、図20に示すように、変換要素がタイリングに存在する太いひし形と薄いひし形の2つの形状をとる「バイナリ」タイリングのシステムである。図20は、「バイナリ」タイリング2000を示している。ペンローズ菱形タイリングに関連する、五角形の対称性を持つ非周期的なタイリングであり、もともと化学混合物をモデル化するために使用されたもので、2つの異なるタイプの菱形で構成されている。
図21Aおよび21Bに示されるのは、「バイナリ」タイリングのブラッグ回折である。図21Aは、可能性のあるトランスデューサアレイのための要素2100のバイナリタイリングおよび選択を示す。図21Bは、回折2150における5回折り曲げられて五角形対称を示し、ここではより十角形対称であるように見える。図21に示すシステムのブラッグ回折を考慮すると、ほとんどの場合、十分に広がっている。ただし、異なる音響特性の観点から、2つの異なる太いひし形と薄いひし形のトランスデューサ設計を製造し、周波数応答を調整するには、時間がかかり、曲げ構造の厚さなどの異なるプロセスが必要になる場合がある。さらに、より大きな要素セットを構築するために簡単に並べて表示できるパターンは存在しない。
図22Aおよび22Bに示されているのは、風車タイリングおよびそのブラッグ回折である。図22Aは、風車タイリング2200および代表的なトランスデューサタイルとして選択された要素を示す。図22Bは、この構成のブラッグ回折2250を示す。この2番目のシステムは、図22に示すように、各トランスデューサ要素が1、2および√5の比(比率)の辺を持つ直角三角形で構成される風車タイリングである。ブラッグ回折から分かるように、風車タイリングの要素の周波数分布は、周波数領域で実質的に乱れている。前述の2つの最終的なタイルのうち、本構成は製造にとってより魅力的である。これは、第一に、この設計で生成される形状が1種類しかないためであり、第二に、直角三角形は、斜めに切断されたアスペクト比1:2の長方形として斜めに切断されたものとして実現できるためであり、これにより、アスペクト比1:2の長方形とカットでの製造が可能になり、ほとんどの部分で使用される直線要素のプロセスが可能になる。
風車のタイリングもフラクタルであり、同じ形状の1つの三角形の面積に完全に収まるが、これらの適合した三角形の5倍の面積があり、辺の比が1、2および√5の5つの直角三角形のセットが存在する。
図23に示されているのは、三角形2300であり、これらの内部に再度設定することもでき、風車フラクタル構造に存在する直角三角形モチーフの形でより大きな配列を生成するために、5の任意の整数乗は、この方法で直角三角形に構築できる(5、25、125等)。これらは、左手および右手の三角アレイ用の設計である。最上部2310および中間底部2330の列は可能な圧電材料の配置を示し、中間上部2320および最下部2340の列は潜在的なトッププレート構造を示す。
また、フラクタル風車タイリングの左右のキラル構造も示されている。また、単一のシートから完全な構造を潜在的に製造したり、示されている点で一緒に取り付けたりすることを可能にする形式も示されている。さらに、波を生成するために振動板を取り付けることができる場所、または通気口の場所を選択する潜在的な方法をトポロジー的に示すことができる、薄い陰影を付けた場所が示されている。それらが単独で製造された場合、これらの直角三角形フラクタルタイルには、左手と右手の直角単一要素を同数使用しないという欠点があり、考慮しないと物流上の問題が発生する可能性がある。
図24に示すように、元々1、2および√5の比の辺を持つ大きなフラクタルタイルは、1:2のアスペクト比の長方形配列に再構築することができる。図24は、左利きおよび右利きの「ドミノ」アレイの設計2400を示している。「ドミノ」という名前は、構成が「カイト&ドミノ」と呼ばれる関連するタイリングパターンに関係しているため、適切である(また、同じ数の要素を持つ配列を生成するために、2つの直角三角形配列要素の1つの方向をそれらの共有斜辺に沿って反転させることによって、代わりに凧型の配列を作成することもできる)。最上部の2410列と最下部の2430列は可能な圧電材料の配置を示しており、上部の中央部2420列と最下部の2440列とは可能な上部プレート構造を示している。
これらの配列は、示されるように、5の整数乗に2つの要素(10、50、250等)を乗じたものを含むことができ、それらは純粋に非対称であるため、等しい数の左手および右手の三角形を必要としなければならない。これは、処理中に考慮すべき特別なケースが少なくなるため、単一要素の製造の場合に適している。
図25は、「正方形」アレイの4つのバリアントすべての設計2500を示している。アキラル反対称設計では、単一要素間の陰影の違いによって強調される左手と右手の要素の数が非常に異なる必要があることに注意する必要がある。
図25に示される異なるキラリティー2510、2520、2530、2540、2550、2560、2570、2580のこれらの長方形のサブタイルから、左手および右手構成の対称および非対称変形の4つの異なる正方形アレイ構成が存在し得る。ただし、非対称バリアントでは、左のサブタイルのみで、対称バリアントは左と右のサブタイルを使用し、左と右の要素の数が同じであるが、異なる数の個別の左右の元素キラリティートランスデューサを使用するというトレードオフがある。これらの効果は、必要な処理の各ステップの相対的なコストに応じて、最適化された製造手順を実現するためにトレードオフされる場合がある。これらの正方配列の要素数は、4に5要素の整数乗を乗じたものになる(20、100、500等)。この結果、左右のサブタイルを製造する必要があるか、異なるキラリティーで消費される圧電結晶片の量が異なるが、自然の風車タイリング圧電結晶切断アプローチでは、これは問題にならない。
これらの前述のアレイタイリング設計は、その優れた回折特性を使用するために風車タイリングのサブセクションを取得することによって生成される部分テッセレーションを排除するべきではない。
この設計に対する残りの障壁の1つは、変換要素のエッジがクランプされ、境界条件が存在する場合、圧電結晶に結合された構造が、効率的な出力を生成するのに十分な変位で曲がらない可能性があることである。
図26に示すように、ヘルムホルツ方程式を使用して固有モードをシミュレートすることにより、単位インパルスによって生成される変位を考慮することができる。圧電プレートの変位をシミュレートすると、図27に示すように、目的の形状に適合する圧電トランスデューサを作成できることが明らかになる。図28に示すように、スロットをカットすると変位が増加するが、共振周波数が減少する。
具体的には、図26は、振動の調和モードをもたらす三角形2810a、2810b、2810c、2180d、2180e、2180f、2180g、2180hおよび2180i上のヘルムホルツ方程式の解の固有モード2800を示す。モードごとに、ヘルムホルツ解の形状を外挿して、モードによって作動する音響遠方界を説明することができる。これは、同様の周波数での受信素子の指向性のパターンとして、逆に使用することもできる。各モードが複雑なフィールドを生成し、異なる周波数にまたがる複数の高調波を組み合わせることで、遠距離場への受信または送信により、遠距離場への空間オフセットを、特に角度で識別することができ、方位角と仰角にパラメータ化される。個々のトランスデューサ要素の非対称性の性質により、これは可能であるが、これをタイリングの不合理で非反復的な周波数動作と組み合わせることで、効果をさらに強化することができる。これらの形状、タイリング、ハーモニクスを使用して作動および/または受信することにより、潜在的に複数の要素にまたがる、そのような要素または要素のグループによって生成される音響の遠方場と交差するオブジェクトの正確な位置は、これらの要素またはマイクロホンによって受信された信号をアルゴリズムまたはその他の方法で調査することによって推定される可能性がある。同様に、信号は単純なトランスデューサによって放出され、前述のようなアレイによって受信されてもよい。この結果、すべての高調波と受信機を使用することで、潜在的に個々のトランスデューサに対してさえ角度位置を追跡することができる。
図27に示されているのは、風車タイルへの挿入のための直角三角形形状2640の圧電アクチュエータの曲げモードの最大z偏向のシミュレーション2600である。x軸2610はミリメートル単位である。y軸2630はミリメートル単位である。z軸2620はマイクロメートル単位である。スケーリングは右側のバー2650に表示される。
図28に示されているのは、風車タイルへの挿入のための直角三角形形状2740の圧電アクチュエータの曲げモードの最大z偏向のシミュレーションである。これには、曲げモードを強調するスロットカットがあるが、タイルの共振周波数は低下する。x軸2710はミリメートル単位である。y軸2730はミリメートル単位である。z軸2720はマイクロメートル単位である。スケーリングは右側のバー2750に表示される。
正しい重心で動作するすべてのデバイスがこのタイリング手順を利用する可能性があるため、この場合、この物理的フットプリントを使用して波を生成するテクノロジーを作成するだけで済む。正確な技術は、圧電トランスデューサ素子である必要はなく、静電、MEM、CMUT、PMUT、またはその他の一般的な技術またはプロセスであってもよい。本発明は、要素間ギャップを大幅に削減または排除した二次元平面の完全または部分空間パッキングを生成する任意のトランスデューサプロセスに適用することができる。
追加の開示は以下を含む。:
1.1:2:√5の比を形成する辺を有する三角形に適用される重心座標によって物理的特徴の位置を記述することができる三角形トランスデューサのアレイ。
2.トランスデューサが音響トランスデューサを含む、前記項目1に記載のアレイ。
3.トランスデューサが、電磁信号をビーム形成するためのアンテナのアレイを備える、前記項目1に記載のアレイ。
4.1:2:√5の比を形成する辺の三角形は、特徴位置を生成するために重心座標が適用され、それ自体は、辺が1:2:√5の比を形成する他の三角形の再区分である、前記項目1に記載のアレイ。
5.トランスデューサの1つまたは複数のタイルを含み、それぞれが部分的な葉序螺旋パターンの多くの正方形のトランスデューサで構成され、トランスデューサの2つの対向する角と、タイル上の音響トランスデューサ要素に共通の空間内の点とが同一線上にあるアレイ。
6.トランスデューサが音響トランスデューサを含む、上記項目5に記載のアレイ。
7.トランスデューサが、電磁信号をビーム形成するためのアンテナのアレイを備える、上記項目5に記載のアレイ。
8.各トランスデューサの反対側の角と同一線上にある空間内の共通点は、トランスデューサ要素のタイル上にない、前記項目5に記載のアレイ。
9.1つまたは複数の非対称トランスデューサを含み、複数の安定した非対称共振モードから複数の周波数で生成された場を使用して、複数の周波数で場を検出するトランスデューサの位置を特定する装置。
10.トランスデューサが音響トランスデューサを含む、上記項目9に記載の装置。
11.トランスデューサが、電磁信号をビーム形成するためのアンテナのアレイを備える、上記項目9に記載の装置。
12.トランスデューサが三角形の形状であり、物理的特徴の位置が、比率1:2:√5を形成する辺を有する三角形に適用される重心座標によって記述できる、上記項目9に記載の装置。
13.フィールドを検出するトランスデューサが、複数の周波数でフィールドを検出できる複数の安定した非対称共振モードを有する非対称変換器でもある、上記項目9に記載の装置。
14.検出器の複数の共振周波数で複数の安定した非対称共振モードを使用して検出された音場が、任意の音場であり得る、上記項目9に記載の装置。
III.再帰的手法を使用したトランスデューサの配置
正方形のトランスデューサは、直線的な配置に最適で、無駄な領域がない。ただし、放出される波長と同程度のサイズである場合、グレーティングローブが発生する可能性がある。正方形のトランスデューサを葉序らせん状に配置すると、二次焦点を壊すことができるが、少なくとも40%の充填密度の減少が必要となる。40%のパラメータを達成するには、個々のトランスデューサを個別化する必要があり、製造コストが増加する。
ここで提示される発明は、パッキング密度とグレーティングローブの大きさを減少させる効果との間の調整可能なバランスを達成するために、正方形のトランスデューサの配置を調整するための再帰的手法を詳述する。
図29に示されているのは、正方形の単位セルを新しい配置に配置するための基本的なステップを詳述するシミュレーション2900である。直線配置2910から始めて、ユニットセル1およびユニットセル2は量「a」だけ右に移動する(2920)。次に、ユニットセル2およびユニットセル3は量「b」だけ下に調整される(2930)。これに続いて、ユニットセル3およびユニットセル4が量「c」で左に移動し(2940)、ユニットセル1およびユニットセル4が量「d」で上に移動する(2950)。2rで与えられる正方形のユニットセルの1つのエッジのサイズを使用すると、ユニットセルの中心の位置が次のように変わる。
ユニット1=[-r+a,r+d]
ユニット2=[r+a,r-b]
ユニット3=[r-c,-r-b]
ユニット4=[-r-c,-r+d]
ここで、表記は[x位置,y位置]で与えられる。調整パラメータ(a、b、c、d)を慎重に選択すると、対称性を破るすべての要素を配置することができる。
図30に示されているのは、要素のより大きなアレイを構築するためにこの方法がどのように再帰的に拡張されるかを示すシミュレーション3000である。具体的には、これは、16×16要素配列3010に再帰的に列挙された4×4タイルの図である。オフセット値(a’3020、b’3030、c’3040、d’3050)は、再帰の前のラウンドから繰り返すか、新しく生成することができる。
図31に示されているのは、回転3110またはミラーリング3120または両方3130によって提供されるいくつかのバリエーションの可能性を示すシミュレーション3100である。これにより、配置のランダム性が高まり、特定のパッキング密度でのパフォーマンスが向上する。これは、単純なオフセットタイリングのバリエーションを示している。各タイルが複製されると、鏡像化または回転することができる。オフセット値と同様に、これらの手法を再帰的に繰り返して、ますます大きな配列にすることができる。
最も効果的な配置を決定するには、シミュレーションを使用する必要がある。これは、完全な非線形有限要素アプローチのように高度な計算を行うことも、線形ホイヘンスモデルのように単純にすることもできる。例として、アレイ活性化係数は、焦点が[x,y,z]=[40mm,0,200mm]に向けられるように計算することができ、ホイヘンスモデルはその平面内でフィールドをある程度大きく計算する。アレイが臨界間隔よりも密度が低い場合、グレーティングローブの二次焦点がその平面のどこかに現れる。アレイ配置が効果的である場合、この焦点は空間に分散され、ピーク二次圧力(焦点ではない)は焦点と比較して低くなる。焦点圧力とピーク二次圧力との対比は、異なる配置を比較するための指標を形成する。回転またはミラーリングの有無にかかわらず、多数のスキュー値を検索して、特定のパッキング密度に最適なパフォーマンスを選択することができる。
図32-34は、61kHzで動作する7mm角のトランスデューサを使用して、グレーティングローブエネルギーを効果的に分配し、二次焦点を防止する疑似ランダム配置のいくつかの例を示している。
図32A、32B、32Cおよび32Dは、回転3200、3210、3220、3230を使用して構築された7mm角のトランスデューサの256素子アレイの例を示している。この例では、再帰の各ラウンドで[a,b,c,d]=[1.6mm,1.3mm,1.1mm,0.7mm]である。
図33A、33B、33Cおよび33Dは、回転およびミラーリング3300、3310、3320、3330を使用して構築された7mm角のトランスデューサの256素子アレイの例を示している。この例では、[a,b,c,d]=[1.6mm,1.3mm,1.1mm,0.7mm]であり、図17と同様であるが、結果は改善されている。
図34A、34B、34Cおよび34Dは、回転およびミラーリング3400、3410、3420、3430を使用して構成された7mm平方トランスデューサの256要素アレイの例を示す。この例では、[a,b,c,d]=[0,1.9mm,0,0]を再帰の最初の2ラウンドに使用すると、オフセットは追加されず、最後の2ラウンドは回転のみになる。
葉序らせん配置と比較したこの手法の利点の1つは、アレイをタイルに組み込むことができることである。配列サイズを4倍にする各再帰的配置ステップは、前の単位セルをその基礎として使用し、配置を新しい正方形に配置するときに、配置を回転、ミラーリング、および傾斜させるだけである。その結果、このユニットセル(および使用されている場合はそのミラー)をユニットとして製造し、より大きなアレイに組み立てることができる。
この手法は正方形の配列を生成するが、満足のいく正方形の配置が見つかった場合は、元の正方形の配置とほぼ同じくらい効果的にグレーティングローブの焦点を広げる非正方形のサブアレイに分割することができる。これらの非正方形の配置を一緒に使用して、より大きな非正方形の形状を作成することができる。サブユニットの開始数が各サブユニット内のトランスデューサの数に匹敵する場合にのみ、グレーティングローブの問題が再浮上する可能性がある。
ここで提示される本発明の重要な利点は、有効な解の探索空間が、ランダムな任意の配置に比べて大幅に削減されることである。このシステムで変化する可能性のあるパラメータは、再帰の各ラウンドのオフセットと、ミラー、回転、またはその両方の決定である。これにより、厳密に制限された検索スペースが可能になり、必要な計算が管理可能なサブセットに削減される。
図35は、61kHzで256個の7mm四方のトランスデューサを使用してシミュレートされた最良の再帰的オフセットアレイを示すグラフ3500である。y軸3520は、焦点圧力とピークグレーティングローブ圧力との間の差である。x軸3510は、各アレイの総面積を示す。「最良の1タイルの結果」ライン3530は、密度が低いにもかかわらず、密集した直線から葉序的らせんパフォーマンスの範囲のパフォーマンスを持つ回転ソリューションのみ(ミラーリングには「2番目のタイル」を製造する必要があるため)を見つけることができることを示している。「最良の2タイルの結果」ライン3540は、ミラーリングを追加することにより、単一化や個々の要素の回転を必要とせずに、同様のパッキング密度で1.5dB以内の葉序的らせんパフォーマンスのソリューションを実現できることを示している。さらに、アレイのスペースが限られている場合、所与の領域に対して、グレーティングローブエネルギーを分散させる効果的なソリューションが生成される。
プロットに含まれる他の点は、密集した直線(正方形アレイ3550)、回転した正方形要素を持つ葉序らせん(正方形回転ヒマワリ3580)であり、3つの三角形要素アレイ3560(他の場所で説明)を推定し、-3dB(3570)および-4dB(3590)での放射の減少と同様に正方形への放射が等しくなる。
追加の開示は以下を含む。:
1.複数のトランスデューサからなる多数のタイルを有するアレイであって、変換が適用される前に各要素の新しいフットプリントがフットプリントと交差するように、物理的なトランスデューサの位置が剛体変換によって摂動され、それぞれの元のフットプリントが音響トランスデューサの均一なレイアウトを含むアレイ。
2.トランスデューサが音響トランスデューサを含む、上記項目1に記載のアレイ。
3.トランスデューサが、電磁信号をビーム形成するためのアンテナのアレイを備える、上記項目5に記載のアレイ。
4.物理的なタイル位置が剛体変換によって摂動され、変換が適用される前に各タイルの新しいフットプリントがフットプリントと交差する、上記項目1に記載のアレイ。
5.変換は、より大きなタイル配置を構成するより小さなタイル配置に再帰的に適用される、上記項目1に記載のアレイ。
6.単一のタイルが複製されて複数のタイルが生成され、次に剛体変換を使用して配置されて配列が生成される、上記項目1に記載のアレイ。
7.変換された配列がグレーティングローブ強度を減少させる、上記項目1に記載のアレイ。
IV.結論
前述の明細書では、特定の実施形態を説明した。しかしながら、当業者は、特許請求の範囲に記載された本発明の範囲から逸脱することなく、様々な修正および変更を行うことができることを理解する。したがって、明細書および図面は、限定的な意味ではなく例示的な意味で見なされるべきであり、そのような修正はすべて、本教示の範囲内に含まれることが意図されている。
さらに、本明細書では、1番目と2番目、トップとボトムなどの関係用語は、そのような物または動作間の実際のそのような関係または順序を必ずしも要求または示唆することなく、ある物または動作を別の物または動作と区別するためにのみ使用される場合がある。「含む」、「有する」という用語、またはそれらの他のバリエーションは、非排他的な包含をカバーすることを意図している。プロセス、方法、物品、または装置が要素のリストを含む、有することは、それらの要素のみを含むのではなく、明示的に記載されていない、またはそのようなプロセス、方法、物品、または装置に固有の他の要素を含む場合があることを意味する。「…を含む」、「…を有する」で始まる要素は、さらなる制約なしに、プロセス、方法、物品、または、要素を含む、有する、収容する装置における追加の同一要素の存在を排除するものではない。「a」および「an」という用語は、本明細書で特に断りのない限り、1つまたは複数として定義される。「実質的に」、「本質的に」、「およそ」、「約」という用語、またはその任意の他のバージョンは、当業者によって理解されるものに近いと定義される。本明細書で使用される用語「結合された」は、必ずしも直接ではなく、必ずしも機械的にではないが、接続されていると定義される。特定の方法で「構成」されている装置または構造は、少なくともその方法で構成されているが、記載されていない方法で構成されている場合もある。
開示の要約は、読者が技術的開示の性質を迅速に確認できるようにするために提供されているが、クレームの範囲または意味を解釈または制限するために使用されないことを理解して提出される。さらに、前述の詳細な説明では、開示を簡素化する目的で、様々な特徴が様々な実施形態にまとめられている。この開示方法は、特許請求の範囲に記載された実施形態が、各特許請求の範囲に明示的に記載されているよりも多くの特徴を必要とするという意図を反映していると解釈されるべきではない。むしろ、以下の特許請求の範囲が反映するように、本発明の主題は、開示された単一の実施形態のすべての特徴よりも少ない特徴にある。したがって、以下の特許請求の範囲は詳細な説明に組み込まれ、各請求項は個別に請求される主題として独立している。

Claims (20)

  1. 複数の超音波トランスデューサと、
    動作音響波長と、
    複数の音響キャビティと、を有し、
    前記複数の音響キャビティのそれぞれは、入口開口部および出口開口部を有し、前記入口開口部が進入超音波を有し、前記出口開口部が幾何学的中心を有するとともに、出射超音波を有し、
    各前記入力開口部は、前記複数の超音波トランスデューサの1つから超音波を受け入れ、
    前記出口開口部の幾何学的中心の少なくとも2つは、互いに前記動作音響波長よりも短い間隔で離間しており、
    前記複数の音響キャビティのうちの第1の音響キャビティについて、第1の出射超音波が、第1の進入超音波に対して第1の位相オフセットを有し、
    前記複数の音響キャビティのうちの第2の音響キャビティについて、第2の出射超音波が、第2の進入超音波に対して第2の位相オフセットを有し、
    前記第1の位相オフセットが前記第2の位相オフセットと異なることを特徴とする装置。
  2. 前記第1の位相オフセットは反転され、放出前に少なくとも1つのトランスデューサ駆動の位相に適用される、請求項1に記載の装置。
  3. 前記第1の出射超音波は、可聴音を生成するように変調される、請求項2に記載の装置。
  4. 前記第1の出射超音波は、空中ハプティック効果を生成するように変調される、請求項2に記載の装置。
  5. 前記第1の出射超音波は、物体を浮揚させるために使用される、請求項2に記載の装置。
  6. 前記第1の出射超音波は、前記第1の進入超音波に対して振幅オフセットを有する、請求項2に記載の装置。
  7. 前記振幅オフセットは、放出前に少なくとも1つのトランスデューサの振幅を変更するために使用される、請求項6に記載の装置。
  8. 前記出口開口部が実質的に同一平面上にある、請求項3に記載の装置。
  9. 前記可聴音は、平面に対する法線から15°より大きい角度で向けられる、請求項8に記載の装置。
  10. 前記可聴音は、平面に対する法線から30°より大きい角度で向けられる、請求項8に記載の装置。
  11. 前記可聴音は、平面に対する法線から45°より大きい角度で向けられる、請求項8に記載の装置。
  12. 前記可聴音は、平面に対する法線から60°より大きい角度で向けられる、請求項8に記載の装置。
  13. 前記振幅オフセットが2dB以内である、請求項6に記載の装置。
  14. 前記複数の音響キャビティが、前記入口開口部から前記出口開口部まで半径が減少する直線状の円筒を備える、請求項1に記載の装置。
  15. 前記動作音響波長が9mm未満である、請求項14に記載の装置。
  16. 前記出口開口部のピッチが6mm未満である、請求項14に記載の装置。
  17. 前記第1の位相オフセットおよび前記第2の位相オフセットがメモリに格納される、請求項2に記載の装置。
  18. 前記振幅オフセットがメモリに格納される、請求項6に記載の装置。
  19. 前記出口開口部は、グレーティングローブ強度を生成するように配置される、請求項2に記載の装置。
  20. 前記出口開口部は、外気への結合を増加させるホーン状の出口アパーチャを有する、請求項19に記載の装置。

JP2022539123A 2019-12-25 2020-12-29 音響トランスデューサ構造 Pending JP2023508431A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962953577P 2019-12-25 2019-12-25
US62/953,577 2019-12-25
US201962954171P 2019-12-27 2019-12-27
US62/954,171 2019-12-27
PCT/GB2020/053373 WO2021130505A1 (en) 2019-12-25 2020-12-29 Acoustic transducer structures

Publications (2)

Publication Number Publication Date
JP2023508431A true JP2023508431A (ja) 2023-03-02
JPWO2021130505A5 JPWO2021130505A5 (ja) 2024-01-23

Family

ID=74130281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022539123A Pending JP2023508431A (ja) 2019-12-25 2020-12-29 音響トランスデューサ構造

Country Status (5)

Country Link
US (1) US11715453B2 (ja)
EP (1) EP4081352A1 (ja)
JP (1) JP2023508431A (ja)
CN (1) CN115151350A (ja)
WO (1) WO2021130505A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513884B (en) 2013-05-08 2015-06-17 Univ Bristol Method and apparatus for producing an acoustic field
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
ES2908299T3 (es) 2015-02-20 2022-04-28 Ultrahaptics Ip Ltd Mejoras del algoritmo en un sistema háptico
MX2017010254A (es) 2015-02-20 2018-03-07 Ultrahaptics Ip Ltd Percepciones en un sistema haptico.
US10818162B2 (en) 2015-07-16 2020-10-27 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10943578B2 (en) 2016-12-13 2021-03-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US11531395B2 (en) 2017-11-26 2022-12-20 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
WO2019122916A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Minimizing unwanted responses in haptic systems
US10911861B2 (en) 2018-05-02 2021-02-02 Ultrahaptics Ip Ltd Blocking plate structure for improved acoustic transmission efficiency
US11098951B2 (en) 2018-09-09 2021-08-24 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
WO2020141330A2 (en) 2019-01-04 2020-07-09 Ultrahaptics Ip Ltd Mid-air haptic textures
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
WO2021074604A1 (en) 2019-10-13 2021-04-22 Ultraleap Limited Dynamic capping with virtual microphones
US11374586B2 (en) 2019-10-13 2022-06-28 Ultraleap Limited Reducing harmonic distortion by dithering
US11715453B2 (en) * 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
US11886639B2 (en) 2020-09-17 2024-01-30 Ultraleap Limited Ultrahapticons

Family Cites Families (299)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218921A (en) 1979-07-13 1980-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for shaping and enhancing acoustical levitation forces
CA1175359A (en) 1981-01-30 1984-10-02 John G. Martner Arrayed ink jet apparatus
FR2551611B1 (fr) 1983-08-31 1986-10-24 Labo Electronique Physique Nouvelle structure de transducteur ultrasonore et appareil d'examen de milieux par echographie ultrasonore comprenant une telle structure
EP0309003B1 (en) 1984-02-15 1994-12-07 Trw Inc. Surface acoustic wave spectrum analyzer
JPS62258597A (ja) 1986-04-25 1987-11-11 Yokogawa Medical Syst Ltd 超音波トランスデユ−サ
US5226000A (en) 1988-11-08 1993-07-06 Wadia Digital Corporation Method and system for time domain interpolation of digital audio signals
US5235986A (en) 1990-02-12 1993-08-17 Acuson Corporation Variable origin-variable angle acoustic scanning method and apparatus for a curved linear array
WO1991018486A1 (en) 1990-05-14 1991-11-28 Commonwealth Scientific And Industrial Research Organisation A coupling device
DE59100463D1 (de) 1991-02-07 1993-11-11 Siemens Ag Verfahren zur Herstellung von Ultraschallwandlern.
US5243344A (en) 1991-05-30 1993-09-07 Koulopoulos Michael A Digital-to-analog converter--preamplifier apparatus
JP3243821B2 (ja) 1992-02-27 2002-01-07 ヤマハ株式会社 電子楽器
US5371834A (en) 1992-08-28 1994-12-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Adaptive neuron model--an architecture for the rapid learning of nonlinear topological transformations
US6216538B1 (en) 1992-12-02 2001-04-17 Hitachi, Ltd. Particle handling apparatus for handling particles in fluid by acoustic radiation pressure
US5426388A (en) 1994-02-15 1995-06-20 The Babcock & Wilcox Company Remote tone burst electromagnetic acoustic transducer pulser
US5477736A (en) 1994-03-14 1995-12-26 General Electric Company Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy
US5511296A (en) 1994-04-08 1996-04-30 Hewlett Packard Company Method for making integrated matching layer for ultrasonic transducers
US5583405A (en) 1994-08-11 1996-12-10 Nabco Limited Automatic door opening and closing system
WO1996039754A1 (en) 1995-06-05 1996-12-12 Christian Constantinov Ultrasonic sound system and method for producing virtual sound
US5729694A (en) 1996-02-06 1998-03-17 The Regents Of The University Of California Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
US7225404B1 (en) 1996-04-04 2007-05-29 Massachusetts Institute Of Technology Method and apparatus for determining forces to be applied to a user through a haptic interface
US5859915A (en) 1997-04-30 1999-01-12 American Technology Corporation Lighted enhanced bullhorn
US6193936B1 (en) 1998-11-09 2001-02-27 Nanogram Corporation Reactant delivery apparatuses
EP0898175A1 (en) * 1997-08-21 1999-02-24 Imra Europe S.A. Multilobe ultrasonic scanning method
US6029518A (en) 1997-09-17 2000-02-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Manipulation of liquids using phased array generation of acoustic radiation pressure
US7391872B2 (en) 1999-04-27 2008-06-24 Frank Joseph Pompei Parametric audio system
US6647359B1 (en) 1999-07-16 2003-11-11 Interval Research Corporation System and method for synthesizing music by scanning real or simulated vibrating object
US6307302B1 (en) 1999-07-23 2001-10-23 Measurement Specialities, Inc. Ultrasonic transducer having impedance matching layer
AU7538000A (en) 1999-09-29 2001-04-30 1... Limited Method and apparatus to direct sound
US6771294B1 (en) 1999-12-29 2004-08-03 Petri Pulli User interface
US6925187B2 (en) 2000-03-28 2005-08-02 American Technology Corporation Horn array emitter
US6503204B1 (en) 2000-03-31 2003-01-07 Acuson Corporation Two-dimensional ultrasonic transducer array having transducer elements in a non-rectangular or hexagonal grid for medical diagnostic ultrasonic imaging and ultrasound imaging system using same
US7284027B2 (en) 2000-05-15 2007-10-16 Qsigma, Inc. Method and apparatus for high speed calculation of non-linear functions and networks using non-linear function calculations for digital signal processing
DE10026077B4 (de) 2000-05-25 2007-03-22 Siemens Ag Strahlformungsverfahren
DE10051133A1 (de) 2000-10-16 2002-05-02 Siemens Ag Strahlformungsverfahren
US6768921B2 (en) 2000-12-28 2004-07-27 Z-Tech (Canada) Inc. Electrical impedance method and apparatus for detecting and diagnosing diseases
US7463249B2 (en) 2001-01-18 2008-12-09 Illinois Tool Works Inc. Acoustic wave touch actuated switch with feedback
US7058147B2 (en) 2001-02-28 2006-06-06 At&T Corp. Efficient reduced complexity windowed optimal time domain equalizer for discrete multitone-based DSL modems
WO2002100480A2 (en) 2001-06-13 2002-12-19 Apple Marc G Brachytherapy device and method
US6436051B1 (en) 2001-07-20 2002-08-20 Ge Medical Systems Global Technology Company, Llc Electrical connection system for ultrasonic receiver array
US6758094B2 (en) 2001-07-31 2004-07-06 Koninklijke Philips Electronics, N.V. Ultrasonic transducer wafer having variable acoustic impedance
WO2003019125A1 (en) 2001-08-31 2003-03-06 Nanyang Techonological University Steering of directional sound beams
US7623114B2 (en) 2001-10-09 2009-11-24 Immersion Corporation Haptic feedback sensations based on audio output from computer devices
CA2470115C (en) 2001-12-13 2013-10-01 The University Of Wyoming Research Corporation Doing Business As Western Research Institute Volatile organic compound sensor system
KR20040081461A (ko) 2002-01-18 2004-09-21 어메리컨 테크놀로지 코포레이션 변조기-증폭기
US6800987B2 (en) 2002-01-22 2004-10-05 Measurement Specialties, Inc. Protective housing for ultrasonic transducer apparatus
US20030182647A1 (en) 2002-03-19 2003-09-25 Radeskog Mattias Dan Automatic interactive component placement for electronics-CAD software through the use of force simulations
EP1520447B1 (de) 2002-05-27 2009-03-25 Sonicemotion Ag Verfahren und vorrichtung zur erzeugung von daten über die gegenseitige lage von mindestens drei schallwandlern
US20040052387A1 (en) 2002-07-02 2004-03-18 American Technology Corporation. Piezoelectric film emitter configuration
US7720229B2 (en) 2002-11-08 2010-05-18 University Of Maryland Method for measurement of head related transfer functions
GB0301093D0 (en) 2003-01-17 2003-02-19 1 Ltd Set-up method for array-type sound systems
JP4192672B2 (ja) 2003-05-16 2008-12-10 株式会社日本自動車部品総合研究所 超音波センサ
US7190496B2 (en) 2003-07-24 2007-03-13 Zebra Imaging, Inc. Enhanced environment visualization using holographic stereograms
WO2005017965A2 (en) 2003-08-06 2005-02-24 Measurement Specialities, Inc. Ultrasonic air transducer arrays using polymer piezoelectric films and impedance matching structures for ultrasonic polymer transducer arrays
DE10342263A1 (de) 2003-09-11 2005-04-28 Infineon Technologies Ag Optoelektronisches Bauelement und optoelektronische Anordnung mit einem optoelektronischen Bauelement
EP1698086A2 (en) 2003-12-27 2006-09-06 Electronics and Telecommunications Research Institute A mimo-ofdm system using eigenbeamforming method
US20050212760A1 (en) 2004-03-23 2005-09-29 Marvit David L Gesture based user interface supporting preexisting symbols
WO2005098731A2 (en) 2004-03-29 2005-10-20 German Peter T Systems and methods to determine elastic properties of materials
KR101161005B1 (ko) 2004-05-17 2012-07-09 에포스 디벨롭먼트 리미티드 위치 검출 시스템 및 방법
US7689639B2 (en) 2004-06-04 2010-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Complex logarithmic ALU
WO2006044868A1 (en) 2004-10-20 2006-04-27 Nervonix, Inc. An active electrode, bio-impedance based, tissue discrimination system and methods and use
US7138620B2 (en) 2004-10-29 2006-11-21 Silicon Light Machines Corporation Two-dimensional motion sensor
US20060090955A1 (en) 2004-11-04 2006-05-04 George Cardas Microphone diaphragms defined by logarithmic curves and microphones for use therewith
US7692661B2 (en) 2005-01-26 2010-04-06 Pixar Method of creating and evaluating bandlimited noise for computer graphics
US20090116660A1 (en) 2005-02-09 2009-05-07 American Technology Corporation In-Band Parametric Sound Generation System
US7345600B1 (en) 2005-03-09 2008-03-18 Texas Instruments Incorporated Asynchronous sampling rate converter
GB0508194D0 (en) 2005-04-22 2005-06-01 The Technology Partnership Plc Pump
WO2015006467A1 (en) 2013-07-09 2015-01-15 Coactive Drive Corporation Synchronized array of vibration actuators in an integrated module
US9459632B2 (en) 2005-06-27 2016-10-04 Coactive Drive Corporation Synchronized array of vibration actuators in a network topology
US7233722B2 (en) 2005-08-15 2007-06-19 General Display, Ltd. System and method for fiber optics based direct view giant screen flat panel display
EP1929836A2 (en) 2005-09-20 2008-06-11 Koninklijke Philips Electronics N.V. Audio transducer system
EP1775989B1 (en) 2005-10-12 2008-12-10 Yamaha Corporation Speaker array and microphone array
US20070094317A1 (en) 2005-10-25 2007-04-26 Broadcom Corporation Method and system for B-spline interpolation of a one-dimensional signal using a fractional interpolation ratio
US8312479B2 (en) 2006-03-08 2012-11-13 Navisense Application programming interface (API) for sensory events
DE102007020593A1 (de) 2006-05-01 2007-11-08 Ident Technology Ag Eingabeeinrichtung
CN101466432A (zh) 2006-06-14 2009-06-24 皇家飞利浦电子股份有限公司 用于经皮给药的设备和操作这种设备的方法
US7425874B2 (en) 2006-06-30 2008-09-16 Texas Instruments Incorporated All-digital phase-locked loop for a digital pulse-width modulator
US7497662B2 (en) 2006-07-31 2009-03-03 General Electric Company Methods and systems for assembling rotatable machines
US20100030076A1 (en) 2006-08-01 2010-02-04 Kobi Vortman Systems and Methods for Simultaneously Treating Multiple Target Sites
JP2008074075A (ja) 2006-09-25 2008-04-03 Canon Inc 画像形成装置及びその制御方法
DE502007001104D1 (de) 2006-10-09 2009-09-03 Baumer Electric Ag Ultraschallwandler mit akustischer Impedanzanpassung
WO2008064230A2 (en) 2006-11-20 2008-05-29 Personics Holdings Inc. Methods and devices for hearing damage notification and intervention ii
US8351646B2 (en) 2006-12-21 2013-01-08 Honda Motor Co., Ltd. Human pose estimation and tracking using label assignment
KR100889726B1 (ko) 2007-02-02 2009-03-24 한국전자통신연구원 촉각 자극 장치 및 이를 응용한 장치
FR2912817B1 (fr) 2007-02-21 2009-05-22 Super Sonic Imagine Sa Procede d'optimisation de la focalisation d'ondes au travers d'un element introducteur d'aberations.
DE102007018266A1 (de) 2007-04-10 2008-10-16 Seereal Technologies S.A. Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion
US8269168B1 (en) 2007-04-30 2012-09-18 Physical Logic Ag Meta materials integration, detection and spectral analysis
US9100748B2 (en) 2007-05-04 2015-08-04 Bose Corporation System and method for directionally radiating sound
US9317110B2 (en) 2007-05-29 2016-04-19 Cfph, Llc Game with hand motion control
JP5012889B2 (ja) 2007-10-16 2012-08-29 株式会社村田製作所 圧電マイクロブロア
FR2923612B1 (fr) 2007-11-12 2011-05-06 Super Sonic Imagine Dispositif d'insonification comprenant un reseau tridimensionnel d'emetteurs disposes en spirale apte a generer un faisceau d'ondes focalisees de grande intensite
FI20075879A0 (fi) 2007-12-05 2007-12-05 Valtion Teknillinen Laite paineen, äänenpaineen vaihtelun, magneettikentän, kiihtyvyyden, tärinän ja kaasun koostumuksen mittaamiseksi
BRPI0822076A8 (pt) 2007-12-13 2016-03-22 Koninklijke Philips Electonics N V Sistema de formação de imagem, e, método para ajustar a posição de um transdutor com respeito a uma estrutura anatômica
GB0804739D0 (en) 2008-03-14 2008-04-16 The Technology Partnership Plc Pump
US20090251421A1 (en) 2008-04-08 2009-10-08 Sony Ericsson Mobile Communications Ab Method and apparatus for tactile perception of digital images
US8369973B2 (en) 2008-06-19 2013-02-05 Texas Instruments Incorporated Efficient asynchronous sample rate conversion
US20100013613A1 (en) 2008-07-08 2010-01-21 Jonathan Samuel Weston Haptic feedback projection system
JP5496192B2 (ja) 2008-07-08 2014-05-21 ブリュエル アンド ケアー サウンド アンド ヴァイブレーション メジャーメント エー/エス 音響場を再構成するための方法
US8162840B2 (en) 2008-07-16 2012-04-24 Syneron Medical Ltd High power ultrasound transducer
GB2464117B (en) 2008-10-03 2015-01-28 Hiwave Technologies Uk Ltd Touch sensitive device
JP2010109579A (ja) 2008-10-29 2010-05-13 Nippon Telegr & Teleph Corp <Ntt> 音響出力素子アレイ及び音響出力方法
US8199953B2 (en) 2008-10-30 2012-06-12 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Multi-aperture acoustic horn
US9569001B2 (en) 2009-02-03 2017-02-14 Massachusetts Institute Of Technology Wearable gestural interface
US10564721B2 (en) 2009-03-12 2020-02-18 Immersion Corporation Systems and methods for using multiple actuators to realize textures
JP5477736B2 (ja) 2009-03-25 2014-04-23 独立行政法人放射線医学総合研究所 粒子線照射装置
WO2010125797A1 (ja) 2009-04-28 2010-11-04 パナソニック株式会社 補聴装置、及び補聴方法
US8009022B2 (en) 2009-05-29 2011-08-30 Microsoft Corporation Systems and methods for immersive interaction with virtual objects
MX2011012975A (es) 2009-06-03 2012-04-02 The Technology Partnership Plc Bomba de disco de fluido.
US7920078B2 (en) 2009-06-19 2011-04-05 Conexant Systems, Inc. Systems and methods for variable rate conversion
EP2271129A1 (en) 2009-07-02 2011-01-05 Nxp B.V. Transducer with resonant cavity
KR20110005587A (ko) 2009-07-10 2011-01-18 삼성전자주식회사 휴대 단말의 진동 발생 방법 및 장치
US20110010958A1 (en) 2009-07-16 2011-01-20 Wayne Clark Quiet hair dryer
WO2011024074A2 (en) 2009-08-26 2011-03-03 Insightec Ltd. Asymmetric phased-array ultrasound transducer
GB0916707D0 (en) 2009-09-23 2009-11-04 Elliptic Laboratories As Acoustic motion determination
US8027224B2 (en) 2009-11-11 2011-09-27 Brown David A Broadband underwater acoustic transducer
WO2011069964A1 (en) 2009-12-11 2011-06-16 Sorama Holding B.V. Acoustic transducer assembly
RU2563061C2 (ru) 2009-12-28 2015-09-20 Конинклейке Филипс Электроникс Н.В. Оптимизация преобразователя сфокусированного ультразвука высокой интенсивности
CA2789129C (en) * 2010-02-08 2017-08-22 Dalhousie University Ultrasound imaging system using beamforming techniques for phase coherence grating lobe suppression
KR20110093379A (ko) 2010-02-12 2011-08-18 주식회사 팬택 채널상태정보 피드백 장치와 그 방법, 기지국, 그 기지국의 전송방법
US20110199342A1 (en) 2010-02-16 2011-08-18 Harry Vartanian Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
JP5457874B2 (ja) 2010-02-19 2014-04-02 日本電信電話株式会社 局所再生装置とその方法と、プログラム
WO2011132012A1 (en) 2010-04-20 2011-10-27 Nokia Corporation An apparatus and associated methods
US20130079621A1 (en) 2010-05-05 2013-03-28 Technion Research & Development Foundation Ltd. Method and system of operating a multi focused acoustic wave source
US8519982B2 (en) 2010-06-21 2013-08-27 Sony Corporation Active acoustic touch location for electronic devices
NZ587483A (en) 2010-08-20 2012-12-21 Ind Res Ltd Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions
JP5343946B2 (ja) 2010-08-25 2013-11-13 株式会社デンソー 触覚提示装置
US8607922B1 (en) 2010-09-10 2013-12-17 Harman International Industries, Inc. High frequency horn having a tuned resonant cavity
US8782109B2 (en) 2010-09-10 2014-07-15 Texas Instruments Incorporated Asynchronous sample rate conversion using a polynomial interpolator with minimax stopband attenuation
US8422721B2 (en) 2010-09-14 2013-04-16 Frank Rizzello Sound reproduction systems and method for arranging transducers therein
KR101221513B1 (ko) 2010-12-13 2013-01-21 가천대학교 산학협력단 시각 장애인에게 시각 정보를 촉각 정보로 전달하는 그래픽 햅틱전자보드 및 방법
DE102011017250B4 (de) 2011-01-07 2022-12-01 Maxim Integrated Products, Inc. Berührungs-Feedbacksystem, haptisches Feedbacksystem und Verfahren zum Bereitstellen eines haptischen Feedbacks
US9076429B2 (en) 2011-01-31 2015-07-07 Wayne State University Acoustic metamaterials
GB201101870D0 (en) 2011-02-03 2011-03-23 The Technology Partnership Plc Pump
EP2688686B1 (en) 2011-03-22 2022-08-17 Koninklijke Philips N.V. Ultrasonic cmut with suppressed acoustic coupling to the substrate
JP5367001B2 (ja) 2011-03-24 2013-12-11 ツインバード工業株式会社 ドライヤー
US10061387B2 (en) 2011-03-31 2018-08-28 Nokia Technologies Oy Method and apparatus for providing user interfaces
WO2012135378A1 (en) 2011-04-01 2012-10-04 Analog Devices, Inc. Method and apparatus for haptic vibration response profiling and feedback
CN103608749B (zh) 2011-04-26 2016-12-07 加利福尼亚大学董事会 用于记录和重现感觉的系统和装置
US8833510B2 (en) 2011-05-05 2014-09-16 Massachusetts Institute Of Technology Phononic metamaterials for vibration isolation and focusing of elastic waves
US9421291B2 (en) 2011-05-12 2016-08-23 Fifth Third Bank Hand dryer with sanitizing ionization assembly
US20120299853A1 (en) 2011-05-26 2012-11-29 Sumit Dagar Haptic interface
KR101290763B1 (ko) 2011-06-08 2013-07-29 가천대학교 산학협력단 햅틱전자보드 기반의 시각 장애인용 학습정보 제공 시스템 및 방법
CN103703794B (zh) 2011-08-03 2017-03-22 株式会社村田制作所 超声波换能器
US9417754B2 (en) 2011-08-05 2016-08-16 P4tents1, LLC User interface system, method, and computer program product
JP2014531589A (ja) 2011-09-22 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ 多方向測定のための超音波測定アセンブリ
US9143879B2 (en) 2011-10-19 2015-09-22 James Keith McElveen Directional audio array apparatus and system
US20130100008A1 (en) 2011-10-19 2013-04-25 Stefan J. Marti Haptic Response Module
EP2818478B1 (en) 2011-10-28 2017-02-01 Regeneron Pharmaceuticals, Inc. Humanized IL-6 and IL-6 receptor
KR101355532B1 (ko) 2011-11-21 2014-01-24 알피니언메디칼시스템 주식회사 고강도 집속 초음파용 트랜스듀서
CN104205958A (zh) 2011-12-29 2014-12-10 米格蒂卡斯特有限公司 能够与计算装置通讯的互动基部和标记
US8711118B2 (en) 2012-02-15 2014-04-29 Immersion Corporation Interactivity model for shared feedback on mobile devices
US20120223880A1 (en) 2012-02-15 2012-09-06 Immersion Corporation Method and apparatus for producing a dynamic haptic effect
KR102046102B1 (ko) 2012-03-16 2019-12-02 삼성전자주식회사 메타물질의 코일 기반 인공원자, 이를 포함하는 메타물질 및 소자
US8570296B2 (en) 2012-05-16 2013-10-29 Immersion Corporation System and method for display of multiple data channels on a single haptic display
GB201208853D0 (en) 2012-05-18 2012-07-04 Hiwave Technologies Uk Ltd Panel for use in vibratory panel device
JP6251735B2 (ja) 2012-05-31 2017-12-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 超音波トランスデューサアセンブリ、及び超音波トランスデューサヘッドの駆動方法
WO2013184746A1 (en) 2012-06-08 2013-12-12 A.L.M Holding Company Biodiesel emulsion for cleaning bituminous coated equipment
EP2702935A1 (de) 2012-08-29 2014-03-05 Agfa HealthCare N.V. System und Verfahren zur optischen Kohärenztomographie sowie Positionierelement
US9552673B2 (en) 2012-10-17 2017-01-24 Microsoft Technology Licensing, Llc Grasping virtual objects in augmented reality
IL223086A (en) 2012-11-18 2017-09-28 Noveto Systems Ltd System and method for creating sonic fields
US8947387B2 (en) 2012-12-13 2015-02-03 Immersion Corporation System and method for identifying users and selecting a haptic response
US9459697B2 (en) 2013-01-15 2016-10-04 Leap Motion, Inc. Dynamic, free-space user interactions for machine control
US9202313B2 (en) 2013-01-21 2015-12-01 Microsoft Technology Licensing, Llc Virtual interaction with image projection
US9323397B2 (en) 2013-03-11 2016-04-26 The Regents Of The University Of California In-air ultrasonic rangefinding and angle estimation
US9208664B1 (en) 2013-03-11 2015-12-08 Amazon Technologies, Inc. Adjusting structural characteristics of a device
US9418646B2 (en) 2013-03-13 2016-08-16 Bae Systems Plc Metamaterial
WO2014153007A1 (en) 2013-03-14 2014-09-25 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US20140269207A1 (en) 2013-03-15 2014-09-18 Elwha Llc Portable Electronic Device Directed Audio Targeted User System and Method
US10181314B2 (en) 2013-03-15 2019-01-15 Elwha Llc Portable electronic device directed audio targeted multiple user system and method
US9647464B2 (en) 2013-03-15 2017-05-09 Fujifilm Sonosite, Inc. Low noise power sources for portable electronic systems
US20170238807A9 (en) 2013-03-15 2017-08-24 LX Medical, Inc. Tissue imaging and image guidance in luminal anatomic structures and body cavities
US9886941B2 (en) 2013-03-15 2018-02-06 Elwha Llc Portable electronic device directed audio targeted user system and method
US10531190B2 (en) 2013-03-15 2020-01-07 Elwha Llc Portable electronic device directed audio system and method
US10291983B2 (en) 2013-03-15 2019-05-14 Elwha Llc Portable electronic device directed audio system and method
GB2513884B (en) 2013-05-08 2015-06-17 Univ Bristol Method and apparatus for producing an acoustic field
EP3008439B1 (en) 2013-06-12 2017-08-09 Atlas Copco Industrial Technique AB A method of measuring elongation of a fastener with ultrasound, performed by a power tool, and a power tool
US9804675B2 (en) 2013-06-27 2017-10-31 Elwha Llc Tactile feedback generated by non-linear interaction of surface acoustic waves
US8884927B1 (en) 2013-06-27 2014-11-11 Elwha Llc Tactile feedback generated by phase conjugation of ultrasound surface acoustic waves
US20150006645A1 (en) 2013-06-28 2015-01-01 Jerry Oh Social sharing of video clips
US20150005039A1 (en) 2013-06-29 2015-01-01 Min Liu System and method for adaptive haptic effects
GB2516820A (en) 2013-07-01 2015-02-11 Nokia Corp An apparatus
US10408613B2 (en) 2013-07-12 2019-09-10 Magic Leap, Inc. Method and system for rendering virtual content
KR101484230B1 (ko) 2013-07-24 2015-01-16 현대자동차 주식회사 차량용 터치 디스플레이 장치 및 그 구동 방법
JP2015035657A (ja) 2013-08-07 2015-02-19 株式会社豊田中央研究所 報知装置及び入力装置
US9576084B2 (en) 2013-08-27 2017-02-21 Halliburton Energy Services, Inc. Generating a smooth grid for simulating fluid flow in a well system environment
US9576445B2 (en) 2013-09-06 2017-02-21 Immersion Corp. Systems and methods for generating haptic effects associated with an envelope in audio signals
US20150078136A1 (en) 2013-09-13 2015-03-19 Mitsubishi Heavy Industries, Ltd. Conformable Transducer With Self Position Sensing
WO2015039622A1 (en) 2013-09-19 2015-03-26 The Hong Kong University Of Science And Technology Active control of membrane-type acoustic metamaterial
KR101550601B1 (ko) 2013-09-25 2015-09-07 현대자동차 주식회사 촉감 피드백을 제공하는 곡면 터치 디스플레이 장치 및 그 방법
EP2863654B1 (en) 2013-10-17 2018-08-01 Oticon A/s A method for reproducing an acoustical sound field
EP3175791B1 (en) 2013-11-04 2021-09-08 Ecential Robotics Method for reconstructing a 3d image from 2d x-ray images
GB201322103D0 (en) 2013-12-13 2014-01-29 The Technology Partnership Plc Fluid pump
US9366588B2 (en) 2013-12-16 2016-06-14 Lifescan, Inc. Devices, systems and methods to determine area sensor
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
JP6311197B2 (ja) 2014-02-13 2018-04-18 本田技研工業株式会社 音響処理装置、及び音響処理方法
US9945818B2 (en) 2014-02-23 2018-04-17 Qualcomm Incorporated Ultrasonic authenticating button
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US9679197B1 (en) 2014-03-13 2017-06-13 Leap Motion, Inc. Biometric aware object detection and tracking
US9649558B2 (en) 2014-03-14 2017-05-16 Sony Interactive Entertainment Inc. Gaming device with rotatably placed cameras
KR101464327B1 (ko) 2014-03-27 2014-11-25 연세대학교 산학협력단 3차원 에어터치 피드백 장치, 시스템 및 방법
KR20150118813A (ko) 2014-04-15 2015-10-23 삼성전자주식회사 햅틱 정보 운용 방법 및 이를 지원하는 전자 장치
WO2016022187A2 (en) 2014-05-12 2016-02-11 Chirp Microsystems Time of flight range finding with an adaptive transmit pulse and adaptive receiver processing
US10579207B2 (en) 2014-05-14 2020-03-03 Purdue Research Foundation Manipulating virtual environment using non-instrumented physical object
CN106687885B (zh) 2014-05-15 2020-03-03 联邦快递公司 用于信使处理的可穿戴设备及其使用方法
CN103984414B (zh) 2014-05-16 2018-12-25 北京智谷睿拓技术服务有限公司 产生触感反馈的方法和设备
JP6659591B2 (ja) 2014-06-09 2020-03-04 テルモ ビーシーティー、インコーポレーテッド 凍結乾燥
US10569300B2 (en) 2014-06-17 2020-02-25 Pixie Dust Technologies, Inc. Low-noise ultrasonic wave focusing apparatus
KR101687017B1 (ko) 2014-06-25 2016-12-16 한국과학기술원 머리 착용형 컬러 깊이 카메라를 활용한 손 위치 추정 장치 및 방법, 이를 이용한 맨 손 상호작용 시스템
FR3023036A1 (fr) 2014-06-27 2016-01-01 Orange Re-echantillonnage par interpolation d'un signal audio pour un codage / decodage a bas retard
WO2016007920A1 (en) 2014-07-11 2016-01-14 New York University Three dimensional tactile feedback system
KR101659050B1 (ko) 2014-07-14 2016-09-23 한국기계연구원 메타물질을 이용한 공기접합 초음파 탐촉자
US9600083B2 (en) 2014-07-15 2017-03-21 Immersion Corporation Systems and methods to generate haptic feedback for skin-mediated interactions
JP2016035646A (ja) 2014-08-01 2016-03-17 株式会社デンソー 触覚装置、および、それを有する触覚ディスプレイ
US9525944B2 (en) 2014-08-05 2016-12-20 The Boeing Company Apparatus and method for an active and programmable acoustic metamaterial
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
EP3216231B1 (en) 2014-11-07 2019-08-21 Chirp Microsystems, Inc. Package waveguide for acoustic sensor with electronic delay compensation
US10195525B2 (en) 2014-12-17 2019-02-05 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3D display
US10427034B2 (en) 2014-12-17 2019-10-01 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3D display
NL2014025B1 (en) 2014-12-19 2016-10-12 Umc Utrecht Holding Bv High intensity focused ultrasound apparatus.
US9779713B2 (en) 2014-12-24 2017-10-03 United Technologies Corporation Acoustic metamaterial gate
GB2539368A (en) 2015-02-09 2016-12-21 Univ Erasmus Med Ct Rotterdam Intravascular photoacoustic imaging
ES2908299T3 (es) 2015-02-20 2022-04-28 Ultrahaptics Ip Ltd Mejoras del algoritmo en un sistema háptico
MX2017010254A (es) 2015-02-20 2018-03-07 Ultrahaptics Ip Ltd Percepciones en un sistema haptico.
US9911232B2 (en) 2015-02-27 2018-03-06 Microsoft Technology Licensing, Llc Molding and anchoring physically constrained virtual environments to real-world environments
EP3266224B1 (en) 2015-04-08 2021-05-19 Huawei Technologies Co., Ltd. Apparatus and method for driving an array of loudspeakers
CN108883335A (zh) 2015-04-14 2018-11-23 约翰·詹姆斯·丹尼尔斯 用于人与机器或人与人的可穿戴式的电子多感官接口
AU2016100399B4 (en) 2015-04-17 2017-02-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
WO2016182832A1 (en) 2015-05-08 2016-11-17 Ut-Battelle, Llc Dryer using high frequency vibration
WO2016191375A1 (en) 2015-05-24 2016-12-01 LivOnyx Inc. Systems and methods for sanitizing surfaces
US10210858B2 (en) 2015-06-30 2019-02-19 Pixie Dust Technologies, Inc. System and method for manipulating objects in a computational acoustic-potential field
US10818162B2 (en) 2015-07-16 2020-10-27 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US9865072B2 (en) 2015-07-23 2018-01-09 Disney Enterprises, Inc. Real-time high-quality facial performance capture
US10313012B2 (en) 2015-08-03 2019-06-04 Phase Sensitive Innovations, Inc. Distributed array for direction and frequency finding
US10416306B2 (en) 2015-08-17 2019-09-17 Texas Instruments Incorporated Methods and apparatus to measure and analyze vibration signatures
US11106273B2 (en) 2015-10-30 2021-08-31 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US10318008B2 (en) 2015-12-15 2019-06-11 Purdue Research Foundation Method and system for hand pose detection
US20170181725A1 (en) 2015-12-25 2017-06-29 General Electric Company Joint ultrasound imaging system and method
US11189140B2 (en) 2016-01-05 2021-11-30 Ultrahaptics Ip Ltd Calibration and detection techniques in haptic systems
US9818294B2 (en) 2016-01-06 2017-11-14 Honda Motor Co., Ltd. System for indicating vehicle presence and method thereof
EP3207817A1 (en) 2016-02-17 2017-08-23 Koninklijke Philips N.V. Ultrasound hair drying and styling
US10091344B2 (en) 2016-03-28 2018-10-02 International Business Machines Corporation Displaying virtual target window on mobile device based on user intent
US10877559B2 (en) 2016-03-29 2020-12-29 Intel Corporation System to provide tactile feedback during non-contact interaction
US9936324B2 (en) 2016-04-04 2018-04-03 Pixie Dust Technologies, Inc. System and method for generating spatial sound using ultrasound
US9667173B1 (en) * 2016-04-26 2017-05-30 Turtle Beach Corporation Electrostatic parametric transducer and related methods
US10228758B2 (en) 2016-05-20 2019-03-12 Disney Enterprises, Inc. System for providing multi-directional and multi-person walking in virtual reality environments
US10140776B2 (en) 2016-06-13 2018-11-27 Microsoft Technology Licensing, Llc Altering properties of rendered objects via control points
US10531212B2 (en) 2016-06-17 2020-01-07 Ultrahaptics Ip Ltd. Acoustic transducers in haptic systems
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10755538B2 (en) 2016-08-09 2020-08-25 Ultrahaptics ilP LTD Metamaterials and acoustic lenses in haptic systems
CN109715065A (zh) 2016-08-15 2019-05-03 乔治亚技术研究公司 电子设备及其控制方法
US10394317B2 (en) 2016-09-15 2019-08-27 International Business Machines Corporation Interaction with holographic image notification
US10945080B2 (en) 2016-11-18 2021-03-09 Stages Llc Audio analysis and processing system
US10373452B2 (en) 2016-11-29 2019-08-06 Immersion Corporation Targeted haptic projection
US10943578B2 (en) 2016-12-13 2021-03-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US10497358B2 (en) 2016-12-23 2019-12-03 Ultrahaptics Ip Ltd Transducer driver
WO2018129197A1 (en) 2017-01-04 2018-07-12 Nvidia Corporation Cloud generation of content to be streamed to vr/ar platforms using a virtual view broadcaster
US10289909B2 (en) 2017-03-06 2019-05-14 Xerox Corporation Conditional adaptation network for image classification
US20190197840A1 (en) 2017-04-24 2019-06-27 Ultrahaptics Ip Ltd Grouping and Optimization of Phased Ultrasonic Transducers for Multi-Field Solutions
EP3616033B1 (en) 2017-04-24 2024-05-29 Ultrahaptics IP Ltd Algorithm enhancements for haptic-based phased-array systems
US20180304310A1 (en) 2017-04-24 2018-10-25 Ultrahaptics Ip Ltd Interference Reduction Techniques in Haptic Systems
US10469973B2 (en) 2017-04-28 2019-11-05 Bose Corporation Speaker array systems
EP3409380A1 (en) 2017-05-31 2018-12-05 Nxp B.V. Acoustic processor
US10168782B1 (en) 2017-06-05 2019-01-01 Rockwell Collins, Inc. Ultrasonic haptic feedback control system and method
CN107340871A (zh) 2017-07-25 2017-11-10 深识全球创新科技(北京)有限公司 集成手势识别与超声波触觉反馈的装置及其方法和用途
US11048329B1 (en) 2017-07-27 2021-06-29 Emerge Now Inc. Mid-air ultrasonic haptic interface for immersive computing environments
US10327974B2 (en) 2017-08-02 2019-06-25 Immersion Corporation Haptic implants
US10535174B1 (en) 2017-09-14 2020-01-14 Electronic Arts Inc. Particle-based inverse kinematic rendering system
US10512839B2 (en) 2017-09-28 2019-12-24 Igt Interacting with three-dimensional game elements using gaze detection
US10593101B1 (en) 2017-11-01 2020-03-17 Facebook Technologies, Llc Marker based tracking
US11531395B2 (en) 2017-11-26 2022-12-20 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
WO2019113380A1 (en) 2017-12-06 2019-06-13 Invensense, Inc. Three dimensional object-localization and tracking using ultrasonic pulses with synchronized inertial position determination
WO2019122912A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Tracking in haptic systems
WO2019122916A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Minimizing unwanted responses in haptic systems
CN111602101A (zh) 2017-12-22 2020-08-28 超级触觉资讯处理有限公司 利用空中触觉系统的人类交互
US11175739B2 (en) 2018-01-26 2021-11-16 Immersion Corporation Method and device for performing actuator control based on an actuator model
US20190310710A1 (en) 2018-04-04 2019-10-10 Ultrahaptics Limited Dynamic Haptic Feedback Systems
US10911861B2 (en) 2018-05-02 2021-02-02 Ultrahaptics Ip Ltd Blocking plate structure for improved acoustic transmission efficiency
JP2021523629A (ja) 2018-05-11 2021-09-02 ナノセミ, インク.Nanosemi, Inc. 非線形システム用デジタル補償器
CN109101111B (zh) 2018-08-24 2021-01-29 吉林大学 融合静电力、空气压膜和机械振动的触觉再现方法与装置
JP7014100B2 (ja) 2018-08-27 2022-02-01 日本電信電話株式会社 拡張装置、拡張方法及び拡張プログラム
US20200082804A1 (en) 2018-09-09 2020-03-12 Ultrahaptics Ip Ltd Event Triggering in Phased-Array Systems
US11098951B2 (en) 2018-09-09 2021-08-24 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
US11378997B2 (en) 2018-10-12 2022-07-05 Ultrahaptics Ip Ltd Variable phase and frequency pulse-width modulation technique
KR20200075344A (ko) 2018-12-18 2020-06-26 삼성전자주식회사 검출기, 객체 검출 방법, 학습기 및 도메인 변환을 위한 학습 방법
KR102230421B1 (ko) 2018-12-28 2021-03-22 한국과학기술원 가상 모델 제어 방법 및 장치
WO2020141330A2 (en) 2019-01-04 2020-07-09 Ultrahaptics Ip Ltd Mid-air haptic textures
US11475246B2 (en) 2019-04-02 2022-10-18 Synthesis Ai, Inc. System and method for generating training data for computer vision systems based on image segmentation
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
WO2021074604A1 (en) 2019-10-13 2021-04-22 Ultraleap Limited Dynamic capping with virtual microphones
EP4042270A1 (en) 2019-10-13 2022-08-17 Ultraleap Limited Hardware algorithm for complex-valued exponentiation and logarithm using simplified sub-steps
US11374586B2 (en) 2019-10-13 2022-06-28 Ultraleap Limited Reducing harmonic distortion by dithering
US11169610B2 (en) 2019-11-08 2021-11-09 Ultraleap Limited Tracking techniques in haptic systems
US11715453B2 (en) * 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
US20210303758A1 (en) 2020-03-31 2021-09-30 Ultraleap Limited Accelerated Hardware Using Dual Quaternions
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
US11301090B2 (en) 2020-07-30 2022-04-12 Ncr Corporation Methods, system, and apparatus for touchless terminal interface interaction
US11886639B2 (en) 2020-09-17 2024-01-30 Ultraleap Limited Ultrahapticons
US20220155949A1 (en) 2020-11-16 2022-05-19 Ultraleap Limited Intent Driven Dynamic Gesture Recognition System
US20220252550A1 (en) 2021-01-26 2022-08-11 Ultraleap Limited Ultrasound Acoustic Field Manipulation Techniques
US20220393095A1 (en) 2021-06-02 2022-12-08 Ultraleap Limited Electromechanical Transducer Mount

Also Published As

Publication number Publication date
WO2021130505A1 (en) 2021-07-01
CN115151350A (zh) 2022-10-04
US11715453B2 (en) 2023-08-01
WO2021130505A8 (en) 2022-10-13
EP4081352A1 (en) 2022-11-02
US20210201884A1 (en) 2021-07-01
US20230368771A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP2023508431A (ja) 音響トランスデューサ構造
Fan et al. Reconfigurable curved metasurface for acoustic cloaking and illusion
Zhao et al. Broadband coding metasurfaces with 2-bit manipulations
US11551661B2 (en) Directional sound device
Pompei et al. Phased array element shapes for suppressing grating lobes
Esfahlani et al. Exploiting the leaky-wave properties of transmission-line metamaterials for single-microphone direction finding
Chiang et al. Scalable metagrating for efficient ultrasonic focusing
Havelock et al. Directional loudspeakers using sound beams
Naify et al. Evaluation of the resolution of a metamaterial acoustic leaky wave antenna
Srinivas et al. Directing acoustic energy by flasher-based origami inspired arrays
Zou et al. Tailoring reflected and diffracted wave fields from tessellated acoustic arrays by origami folding
Je et al. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array
Fan et al. Converting a monopole emission into a dipole using a subwavelength structure
Zhong et al. A cylindrical expansion of the audio sound for a steerable parametric array loudspeaker
CN109040913A (zh) 窗函数加权电声换能器发射阵列的波束成形方法
Unger et al. Versatile air-coupled phased array transducer for sensor applications
WO2018121174A1 (zh) 基于变换光学构建超材料的本构参数的方法
US12002448B2 (en) Acoustic transducer structures
Yang et al. Beamwidth control in parametric acoustic array
Huang Theory and numerical simulation for a cylindrical array by broadband constant beam pattern approach
CN112199899B (zh) 一种二维波动体系内轨道角动量的单源产生方法及产生装置
Akram et al. Forward and backward multibeam scanning controlled by a holographic acoustic metasurface
US20030223310A1 (en) Filigree electrode pattern apparatus for steering parametric mode acoustic beams
CN109992821B (zh) 一种四波束反射型轨道角动量天线设计方法
Zhong et al. A spherical wave expansion for a steerable parametric array loudspeaker using Zernike polynomials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240115