US20110199342A1 - Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound - Google Patents

Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound Download PDF

Info

Publication number
US20110199342A1
US20110199342A1 US12/706,205 US70620510A US2011199342A1 US 20110199342 A1 US20110199342 A1 US 20110199342A1 US 70620510 A US70620510 A US 70620510A US 2011199342 A1 US2011199342 A1 US 2011199342A1
Authority
US
United States
Prior art keywords
ultrasound
display device
user
object
plurality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/706,205
Inventor
Harry Vartanian
Jaron Jurikson-Rhodes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HJ Labs LLC
Original Assignee
HJ Labs LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HJ Labs LLC filed Critical HJ Labs LLC
Priority to US12/706,205 priority Critical patent/US20110199342A1/en
Assigned to HJ Laboratories, LLC reassignment HJ Laboratories, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JURIKSON-RHODES, JARON, VARTANIAN, HARRY
Publication of US20110199342A1 publication Critical patent/US20110199342A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangements or adaptations of signal devices not provided for in one of the preceding main groups, e.g. haptic signalling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object or an image, setting a parameter value or selecting a range
    • G06F3/04845Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object or an image, setting a parameter value or selecting a range for image manipulation, e.g. dragging, rotation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the screen or tablet into independently controllable areas, e.g. virtual keyboards, menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/014Force feedback applied to GUI
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04809Textured surface identifying touch areas, e.g. overlay structure for a virtual keyboard

Abstract

An apparatus and method for providing elevated, indented, or texturized contactless sensations to an object at a distance from a display device using ultrasound or ultrasonic waves is disclosed. Processes are also given involving elevated, indented, or texturized sensations to an object near a display device using airborne ultrasound or ultrasonic waves. By providing elevated, indented, or texturized sensations to an object near a display device enhanced input/output functions are provided.

Description

    FIELD OF INVENTION
  • This application is related to an apparatus and method for providing elevated, indented, or texturized sensations to an object near a display device using ultrasound or ultrasonic waves. Ultrasound may also be provided with or without sensations to an object for detecting input. Processes are provided and described involving elevated, indented, or texturized sensations to an object near a display device using ultrasound or ultrasonic waves. Processes are also provided for detecting input from an object using ultrasound.
  • BACKGROUND
  • Display devices for inputting information are commonplace in electronic devices such as mobile devices, cellular phones, personal digital assistants, smart phones, tablet personal computers (PCs), laptop computers, televisions, monitors, touchscreens, picture frames, or the like. Currently, display devices may be based on liquid crystal, plasma, light emitting, or organic light emitting technologies using ridged or flexible substrates. When a display device functions as an input device, such as a touchscreen, their applications are mostly limited to displaying and interacting with a user in two dimensions. Another limitation or problem of current display devices is the lack of texture to the user interface. As the world becomes more electronic, texture is needed for enhancing and enabling certain applications, computer processes, or commerce.
  • Ultrasound or ultrasonic technology has become ubiquitous in the medical imaging field. Recently, ultrasound has been proposed for virtual reality applications. However, the use of embedded or integrated ultrasound technology in display devices or computers for enhancing the user interface to multiple dimensions has been limited. Therefore, it is desirable to have display devices or computers that can provide elevated, indented, or texturized sensations to an object near a display device using embedded or integrated ultrasound technology. It is also desirable for ultrasound to be provided to an object with or without sensations for detecting input.
  • SUMMARY
  • An apparatus and method for providing elevated, indented, or texturized contactless sensations to an object at a distance from a display device using ultrasound or ultrasonic waves is disclosed. Processes are also given involving elevated, indented, or texturized sensations to an object near a display device using airborne ultrasound or ultrasonic waves. By providing elevated, indented, or texturized sensations to an object near a display device enhanced input/output functions are provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings wherein:
  • FIG. 1 is a diagram of an electronic device having a display device providing elevated, indented, or texturized sensations to an object near the display device using ultrasound in accordance with one embodiment;
  • FIGS. 2 a-2 d and 2 f are diagrams of configurations for providing elevated, indented, or texturized sensations to an object using ultrasound in accordance with another embodiment;
  • FIG. 2 e is a diagram of various ultrasound focal point patterns in accordance with another embodiment;
  • FIG. 3 is a diagram comprising of processes for an electronic device providing elevated, indented, or texturized sensations to an object near a display device using ultrasound in accordance with another embodiment;
  • FIG. 4 is a diagram for providing varying ultrasound strengths to an object for providing elevated, indented, or texturized sensations in accordance with another embodiment; and
  • FIG. 5 is a process for providing elevated, indented, or texturized sensations to an object near a display device using ultrasound in accordance with another embodiment.
  • DETAILED DESCRIPTION
  • The present invention will be described with reference to the drawing figures wherein like numerals represent like elements throughout. For the processes described below the steps recited may be performed out of sequence and sub-steps not explicitly described or shown may be performed. In addition, “coupled” or “operatively coupled” may mean that objects are linked between zero or more intermediate objects.
  • In the examples forthcoming ultrasound or ultrasonic waves are given as an example to provide elevated, indented, or texturized sensation to an object near a display device. However, one of ordinary skill would appreciate that any acoustic or radio wave that excites an afar object or sensed by the human body may be applicable for the examples and processes given in the disclosure.
  • In the examples forthcoming, the sensation felt by an object via an airborne ultrasound may be similar to vibration or gyration. The sensation may be varied by producing focal points of different sizes and intensities. For the case where the object is human skin, the vibration or gyration caused by an airborne ultrasound may depend on the targeted receptors in the skin. Adapting or controlling the ultrasound focal or control points for different receptors may cause different sensations for the user's skin.
  • Elevation or elevated sensations describe different sensations that may be caused to an object using ultrasound at a predetermined or random distance from a display or electronic device. As an example, the relative distance of the object may be by one or more millimeters to several meters, as desired.
  • Indenting may be a configuration where an object is given a sensation around its perimeter while giving little sensation to the inner area of the object. Indenting may also describe a configuration where a given location in space near a display device provides a substantially sensible ultrasound to an object but a point lower or closer to the display device the ultrasound is not substantially sensible. Indenting may also describe a configuration where a given location in space near a display device provides a substantially sensible ultrasound to an object but a point lower or closer to the display device an ultrasound is not substantially sensible until a predetermined point near the display device is reached.
  • Texturizing or texturing describes a process where an electronic device using controlled ultrasound over air may provide, simulate, or mimic friction, pulsing sensation, pulsating sensation, variable smoothness, variable thickness, coarseness, fineness, irregularity, a movement sensation, bumpiness, or rigidness that is sensed by or detectable by an object.
  • U.S. application Ser. No. 12/406,273 is herein incorporated by reference as if fully set forth and may be used in combination with the given examples to provide a display device that is elevated, indented, or texturized and ultrasound is used to provide a sensation to an object near the display device.
  • FIG. 1 is a diagram of a wireless subscriber unit, user equipment (UE), mobile station, pager, cellular telephone, personal digital assistant (PDA), computing device, surface computer, tablet computer, monitor, general display, versatile device, automobile computer system, vehicle computer system, or television device 100 for mobile or fixed applications. Device 100 comprises computer bus 140 that couples one or more processors 102, one or more interface controllers 104, memory 106 having software 108, storage device 110, power source 112, and/or one or more displays controller 120. In addition, device 100 comprises an elevation, indenting, or texturizing controller 121 to provide sensations an object located near one or more display devices 122.
  • One or more display devices 122 can be configured as a liquid crystal display (LCD), light emitting diode (LED), field emission display (FED), organic light emitting diode (OLED), or flexible OLED display device. The one or more display devices 122 may be configured, manufactured, produced, or assembled based on the descriptions provided in US Patent Publication Nos. 2007-247422, 2007-139391, 2007-085838, or 2006-096392 or U.S. Pat. No. 7,050,835 or WO Publication 2007-012899 all herein incorporated by reference as if fully set forth. In the case of a flexible display device, the one or more electronic display devices 122 may be configured and assembled using organic light emitting diodes (OLED), liquid crystal displays using flexible substrate technology, flexible transistors, or field emission displays (FED) using flexible substrate technology, as desired. One or more display devices 122 can be configured as a touch screen display using resistive, capacitive, surface-acoustic wave (SAW) capacitive, infrared, strain gauge, optical imaging, dispersive signal technology, acoustic pulse recognition, frustrated total internal reflection or magneto-strictive technology, as understood by one of ordinary skill in the art.
  • Coupled to one or more display devices 122 may be pressure sensors 123. Coupled to computer bus 140 are one or more input/output (I/O) controller 116, I/O devices 118, GPS device 114, one or more network adapters 128, and/or one or more antennas 130. Device 100 may have one or more motion, proximity, light, optical, chemical, environmental, moisture, acoustic, heat, temperature, radio frequency identification (RFID), biometric, face recognition, image, photo, or voice recognition sensors 126 and touch detectors 124 for detecting any touch inputs, including multi-touch inputs, for one or more display devices 122. One or more interface controllers 104 may communicate with touch detectors 124 and I/O controller 116 for determining user inputs to device 100.
  • Ultrasound source/detector 125 may be configured in combination with touch detectors 124, elevation, indenting, or texturizing controller 121, one or more display devices 122, pressure sensors 123, or sensors 126 to project or generate ultrasound waves, rays, or beams to an object to simulate elevated, indented, or texturized sensations, recognize inputs, or track the object as will be explained in more detail below. There may be cases for input recognition or object tracking wherein an ultrasound is provided without detected sensation to the object.
  • Still referring to device 100, storage device 110 may be any disk based or solid state memory device for storing data. Power source 112 may be a plug-in, battery, solar panels for receiving and storing solar energy, or a device for receiving and storing wireless power as described in U.S. Pat. No. 7,027,311 herein incorporated by reference as if fully set forth. One or more network adapters 128 may be configured as a Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), Orthogonal Frequency-Division Multiplexing (OFDM), Orthogonal Frequency-Division Multiple Access (OFDMA), Global System for Mobile (GSM) communications, Enhanced Data rates for GSM Evolution (EDGE), General Packet Radio Service (GPRS), cdma2000, wideband CDMA (W-CDMA), long term evolution (LTE), 802.11x, Wi-Max, mobile Wi-MAX, Bluetooth, or any other wireless or wired transceiver for modulating and demodulating information communicated via one or more antennas 130. Additionally, any of devices, controllers, displays, components, etc. in device 100 may be combined, made integral, or separated as desired. For instance, elevation, indenting, or texturizing controller 121 may be combined with ultrasound source/detector 125 in one unit.
  • FIGS. 2 a-2 d are diagrams of configurations for providing elevated, indented, or texturized sensations to an object using ultrasound. In FIG. 2 a display device layer 204 lays proximate to ultrasound layer 205. Although a single layer is shown, layers 204 and 205 can be composed of a plurality of sublayers. Although display device layer 204 is shown above that ultrasound layer 205, some or most of the components of ultrasound layer 205, such as ultrasound transducer or detectors, may be provided in substantially the same level plane as display device layer 204. Display device layer 204 can be either a flexible or rigid display device for displaying video, images, photos, graphics, text, etc.
  • Ultrasound layer 205 can be configured and composed of ultrasound transducer, source, or detector devices as described in “Two-dimensional scanning tactile display using ultrasound radiation pressure” by Shinoda et al. (2006), “A Tactile Display using Ultrasound Linear Phased Array” by Shinoda et al. (2004), or “Small and Lightweight Tactile Display (SaLT) and Its Application” by Kim et al. (2009) that are all herein incorporated by reference as if fully set forth. As indicated by the incorporated references, linear phased arrays of ultrasound can provide at least 1 mm diameter focal or control points for fine, precise tactile airborne stimuli at variable frequencies and intensities. Larger focal points may also be provided. Techniques for tracking or detecting motion of a focal or control point and object may include Time Delay of Arrival (TDOA) where the difference in arrival times and the velocity of an ultrasound at one or more detectors is used to establish and track location. Airborne refers to an ultrasound transmission that may propagate through the air for at least a predetermined distance.
  • As previously stated, stimuli can be provided to an object by transmitting one or more ultrasound focal points to cause a vibration, gyration, beat, or tap by a phased array. The ultrasound intensity may be varied to cause different feelings to the object. Varying of sensations may also be done by changing focal point sizes.
  • Ultrasound layer 205 comprises of an array of coupled ultrasound transducers and/or detectors that may emit directional ultrasound waves, rays, or beams through air to objects at location points 206, 208, and/or 210 in sensation zone 202. Layer 205 also detects reflections of the emitted waves off of the objects at location points 206, 208, and/or 210. Layer 205 is controlled in part by elevation, indenting, or texturizing controller 121. Sensation zone 202 may be the space, part of the space, or a force field above display device layer 204 that defines the range of ultrasound perception. Sensation zone 202 may be defined using approximate boundaries in order to limit the space ultrasound are emitted over display device layer 204 for safety or power conservation. Another benefit of having sensation zone 202 is that a user can have space in other areas of display device layer 204 for normal operation of device 100.
  • In addition to providing airborne ultrasound in the direction of the user, ultrasound layer 205 may be configured with transducers and detectors directed away from the user. This double-sided configuration is desirable to provide ultrasound sensations to fingers placed behind device 100 for grasping in mobile applications. Airborne ultrasound zone behind device 100 may be used to give a user the ability to virtually grasp from afar images on screen perpendicular to device 100.
  • Objects at location points 206, 208, and/or 210 may be any one of a finger, part of a finger, a hand, part of a hand, skin, any body part, a special ultrasound sensitive glove, part of a special ultrasound sensitive glove, an ultrasound sensitive finger attachment, an ultrasound sensitive thimble, an ultrasound sensitive wand, a material that reacts in response to ultrasound, or a material that is perceptive to ultrasound, as desired.
  • FIG. 2 b is a diagram showing various approximate airborne ultrasound patterns 222, 224, 226, and 228 emitted over display device surface 231. Substantially cubicle pattern 222 may be provided by emitting rays by ultrasound layer 205 to provide a substantially cubicle sensation. FIG. 2 e shows an example of a focal point pattern 2221 for providing a substantially cubicle pattern sensation on finger 2222 by ultrasound layer 205. Ultrasound control or focal points shown in FIG. 2 e or other figures are not drawn to scale and may be approximate in size. Dot or dimple pattern 224 may be provided by emitting rays by ultrasound layer 205 to provide a substantially spherical sensation. FIG. 2 e shows an example of a focal point pattern 224 1 for a dot or dimple pattern on finger 224 2 emitted by ultrasound layer 205 to provide a substantially spherical sensation.
  • Moreover, substantially cylindrical pattern 226 may be provided by emitting rays by ultrasound layer 205 to provide a substantially circular sensation. FIG. 2 e shows an example of a focal point pattern 226 1 for a cylindrical pattern sensation on finger 226 2 provided by ultrasound layer 205 to provide a substantially circular sensation.
  • Substantially rectangular pattern 228 may be provided by emitting rays by ultrasound layer 205 to provide a substantially rectangular sensation. FIG. 2 e shows an example of focal point edge patterns 2281 and 2282 for a rectangular pattern sensation on finger 228 3 provided by ultrasound layer 205. Although two edges are shown on finger 228 3, a single or multiple edges may be projected. Edge projections are desirable for virtual keyboard applications where the projected edges help to define the boundaries of a key.
  • In the examples given in FIG. 2 b ultrasound layer 205 may be controlled in part by ultrasound source/detector 125 in combination with elevation, indenting, or texturizing controller 121. In FIG. 2 e, the ultrasound may be swept or stroked over each focal or control point in a pattern at high frequency or variable pulsating frequencies using various intensities levels dependent upon the desired sensation or virtual effect. Although well-defined shapes are shown in the FIGS. 2 b and 2 e, actual sensations will vary from person to person and by the accuracy of the phased array ultrasound source.
  • FIG. 2 c is a diagram providing an example configuration of display device layer 204 and ultrasound layer 205. Display pixels 232 1 to 232 n may lay partially adjacent, on the same level, or on the same layer to elevation, indenting, or texturizing cells 234 1 to 234 n each having an ultrasound transducer, source, and/or detector. Alternatively, display pixels 232 1 to 232 n may lay partially above elevation, indenting, or texturizing cells 234 1 to 234 n. Display and ultrasound array or matrix 233 also comprises of display pixels 236 1 to 236 n adjacent to elevation, indenting, or texturizing cells 2381 to 238 n that are adjacent to display pixels 240 1 to 240 n. The elevation, indenting, or texturizing cells may be controlled by elevation, indenting, or texturizing controller 121 to adjust the intensity, orientation, or direction of the ultrasound emitted to location points 206, 208, or 210.
  • FIG. 2 d shows an embodiment of a display device array or matrix 235 from a top view where ultrasound transducer, source, or detector cells 239 and 241 are placed selectively within two predetermined areas without display pixels so that the surface of display device array or matrix 235 is mostly comprised of display pixels 237. In an alternative embodiment, cells 239 and 241 may line the perimeter of display device array or matrix 235. When around the perimeter, integration with existing display device layout may be more easily enabled.
  • FIG. 3 is a diagram comprising of processes for an electronic device providing elevated, indented, or texturized sensations to an object near display device 302 using ultrasound. For the examples given in FIG. 3, the object provided elevated, indented, or texturized sensations near display device 302 using ultrasound may be any one of a finger, part of a finger, multiple fingers, a hand, part of a hand, or two hands as desired. Display device 302 may be assembled with at least some of the components described in device 100.
  • For inputting or triggering a request action, a “click here” displayed universal resource locater (URL) or hyperlink is provided to an object that may be at location points 206, 208, and/or 210 with an elevated substantially circular ultrasound pattern 304. Clicking may be performed by tracking the motion, momentum, or velocity of the object as provided in the example in FIG. 5 below. Motion of the object relative to display device 302 that can be recognized as an input, gesture, or command may be a push towards display device 302, a pull away from display device 302, sideway or lateral motion relative to display device 302, a circle gesture, a square gesture, a rectangular gesture, a spiral gesture, a swirl gesture, a swipe gesture, a pinch gesture, a flick gesture, a customized gesture, a user defined gesture, a multiple finger coordinated motion, or a single finger gesture, as desired. In particular, single finger gesture control is desirable since the user may use for example the thumb finger for gestures to signal an input or command while holding device 100 at the same time for mobile applications allowing the other hand to be free. Gestures may be stored in a gesture library or database in storage device 110.
  • In addition to gestures, tracking an object relative to display device 302, as provided in an example in FIG. 5, may be used for drawing purposes. A user may use a finger to draw in air a character or shape that is detected by ultrasound source/detector 125 and rendered into an image by one or processors 102. This feature may be useful, for instance, in computer games, toys, or graphics applications.
  • In FIG. 3, part of an on screen virtual or simulated keyboard displayed on display device 302 provides the letter “E” key having an elevated substantially square ultrasound 308 provided to an object at location points 206, 208, and/or 210. Although part of a virtual or simulated keyboard is shown, display device 302 can be configured to show a whole QWERTY keyboard, a numeric keypad, or a combination of a whole QWERTY keyboard and a numeric keypad, as desired. The letter “S” key is provided by a partially displayed portion and an elevated substantially circular ultrasound 310. The virtual or simulated keyboard may also be programmed to replicate Braille lettering, as desired.
  • As an example, for letters “Q” and “A” ultrasound 3061 and 3062 are projected around the perimeter or edges of the keys to define boundaries so that a user may type the correct key and can find or feel the correct position of the keys. For displayed letters “Q” and “A” a user may type the key by physically touching display device 302. The touch input is detected by touch detectors 124.
  • In one embodiment a pull away motion of an object from display device 302 may be detectable as a capital or superscripting letter input while a push motion in the direction towards the display device may indicate subscripting of the letter. In response to a detected motion, haptic feedback, force feedback, or tactile feedback in the form of a played sound, gyration, or vibration may be provided via I/O controller 116.
  • Referring to FIG. 4, chart 400 shows an example of how ultrasound focal or control point strength or intensity units may be varied over time to provide different sensations to a user's finger, hand, or any other object. For instance, as a user pulls a finger away from display device 302, which is detected by ultrasound source/detector 125, strength or intensity units may be reduced by elevation, indenting, or texturizing controller 121. Conversely, when the finger is pushed towards display device 302 strength or intensity units may be increased for a predetermined period creating a virtual feeling of resistance.
  • In addition to inputting information via on screen virtual or simulated keyboard shown in FIG. 3, display device 242 may project ultrasound as shown in FIG. 2 f. Ultrasound transducer, source, or detector cells 244 may project onto zone 246 so that the user's view of display device 242 is unobstructed. Zone 246 may be projected onto a table or desk giving the user the ability to use the space as an input area similar to that of a keyboard or mouse. A special pad 248 may be used to reflect or vibrate in response to ultrasound from transducer, source, or detector cells 244.
  • Referring again to the virtual or simulated keyboard on display device 302, instructions in software 108 can be used to predict or anticipate keystrokes. Prediction or anticipation may be based on a word or sentence entered. In response to the anticipation, a different key may emit ultrasound to a user's finger, hand, or any other object to encourage or invoke input and provide context awareness.
  • An embodiment of the present invention may provide enhanced electronic advertising processes. Advertisement 316, such as an adword by Google, can be sold to an advertiser for a certain price for having elevated substantially circular ultrasound 317 on at least one part or the entire advertisement image or photo. Advertisement 318 can be sold to an advertiser for a different price, higher or lower, for having elevated substantially circular ultrasound 318 1 and 318 2 each projected at a different intensity in comparison to substantially circular ultrasound 317. In addition, the strength or intensity of substantially circular ultrasound 317, 318 1, and 318 2 may be dependent on location determined by GPS device 114 and varied over time as shown in FIG. 4.
  • Advertisement 316 or 318 may be provided in a separate pop up window with the emitted ultrasound to an object at location points 206, 208, and/or 210. The emitted ultrasound may be provided only for a predetermined time period after the pop up window is displayed thereby providing a nudge or feeling sensation to the object. As the pop up window emerges the intensity of ultrasound to the object may be increased over time prior to turning off thereby simulating the effect of the pop up window virtually emerging from display device 302.
  • With advertisement 316 or 318 in a separate pop up window, or for any another application in a window, a user may interact with an operating system by moving windows, grabbing windows, dragging windows, or dropping windows. Substantially circular ultrasound 317, for instance, may provide to a user's fingers a sensation by projecting multiple focal or control points when the user virtually tries to grab a window shown on display device 302. As the user moves a window, a slight vibration is provided by substantially circular ultrasound 317. A strong vibration may be provided by substantially circular ultrasound 317 when running into obstacles or boundaries on the screen. The vibration may stop when the user releases the window, as desired.
  • An embodiment of the present invention may provide electronic commerce processes. A “Buy Now” button is provided with an elevated substantially circular ultrasound 322 1 and an elevated substantially square ultrasound 322 2 to an object at location points 206, 208, and/or 210. The “Buy Now” button is associated with triggering the purchasing of displayed shirt 324 by sending a request to a server (not shown) over one or more network adapters 128. For shirt 324, ultrasound texturizing pattern 326 is provided to virtually replicate or simulate the surface or composition of shirt 324. Ultrasound texturizing pattern 326 can be a combination of different ultrasound focal or control points. Although a shirt 324 is shown, ultrasound texturizing pattern 326 can be used to provide surface information for any product being sold or displayed on display device 302.
  • Using touch detectors 124 in combination with elevation, indenting, or texturizing controller 121, displayed shirt 324 can be highlighted and then rotated in response to a multitouch input while ultrasound texturizing pattern 326 is dynamically changed to virtually reflect the different surfaces or materials used to make the shirt. Shirt 324 can be zoomed in and out using mulitouch inputs detected by touch detectors 124 with each zoom level reflecting texture differences on ultrasound texturizing pattern 326. For instance, a zoomed in view may be more grainy or rough compared to a zoomed out view. The zoom levels can also be configured with a fading in or out effect by one or more processors 102 and can involve retrieving additional information from a server (not shown) over one or more network adapters 128. Beyond the examples of fabrics, any material may be replicated or simulated by ultrasound texturizing pattern 326. Airborne ultrasound feedback, similar to multitouch inputs, may also be used to change views, angles, or size of displayed shirt 324.
  • Still referring to displayed shirt 324, display device 302 may be elevated, indented, or texturized in accordance with examples given in U.S. application Ser. No. 12/406,273. With shirt 324 texturized on display device 302 and at a distance to an object using ultrasound, the user is given an improved realization of the composition of the shirt by combining the two enhancements.
  • Referring again to FIG. 3, an embodiment of the present invention provides an electronic game, such as tic-tac-toe, by projecting ultrasound pattern 328 to an object at location points 206, 208, and/or 210. As an example given in gaming applications, ultrasound pattern 328 may be projected to multiple fingers and tracked as the user tries to pinch, grab, or push an object in a game or any other simulated environment displayed on display device 302. Ultrasound pattern 328 emitted onto an object can also control scrolling or drag and drop functions of items in a game in combination with multitouch inputs detected by touch detectors 124.
  • In another example, ultrasound pattern 328 can be controlled by elevation, indenting, or texturizing controller 121 such that an object being tracked at location point 206, such as user's hand, can be handed off or switched to location point 208, such as a user's other hand, to be tracked. Using this process, for instance, a user may dribble a ball from one hand to another in front of display device 302. Moreover, passing of location points in space and time from 206 to 208, results in passing a location point of an object between different horizontal planes relative to display device layer 204. Alternatively, the location point may be passed on the same plane.
  • In another example, ultrasound pattern 328 can be used to emulate a spring like sensation to an object and simulate elasticity to a user's hand in a game or any other application. Ultrasound layer 205 can also simulate whole screen explosions, blasts, or bullets being fired at the user by turning on several ultrasound transducers for a predetermined period of time in a game or movie. Ultrasound pattern 328 may also provide a gaming feature where tilting or rotation detected by an accelerometer in sensors 126 controls ultrasound output for four dimensional motion gaming. Ultrasound pattern 328 may also define the boundaries of a virtual space or layer between location points 206, 208, and 210 and display device layer 204.
  • In another embodiment, ultrasound pattern 328 projected onto multiple fingers can be used to simulate a virtual joystick or pointing stick for 360 degrees rotational input by tracking the movement of the fingers by ultrasound source/detector 125. A three dimensional accelerometer can be included in sensors 126 to be used in combination with elevation, indenting, or texturizing controller 121 to project ultrasound pattern 328 in response to a programmed action in the game. Similarly, a visual haptic ultrasound mouse or track pad may be configured by projecting and controlling ultrasound pattern 328 to replicate the functionality of a mouse or track pad and provide a 4-D free space tactile user interface device.
  • In another embodiment, ultrasound pattern 328 can provide enhanced features for online collaboration, distance learning, online conferencing, social networking, or online dating. For instance, in response to push command on a networked computing device (not shown), which may or may not have an ultrasound enhanced display device, ultrasound pattern 328 may provide feedback to an object at location points 206, 208, and/or 210. Examples of feedback are a poke sensation similar to that on Facebook, a push sensation, a virtual handshake sensation, etc. In online conferencing, tactile inputs or gestures via ultrasound pattern 328 may be used during a video conference application for additional interaction between conversing parties. Social networking or adult entertainment applications can be enhanced by ultrasound pattern 328 providing stimulation in connection with a video, image, photo, or audio media on display device 302.
  • For digital imagery, ultrasound rays 327 1 and 327 2 may be used to augment, enhance, or characterize different objects in photo or image 327 3. Ultrasound rays 327 1 and 327 2 may be preprogrammed into photo or image 327 3 by the owner for watermarking, artistic design, or the like. Ultrasound 327 1 and 327 2 may also be used to augment photo editing applications. If display device 302 is configured as a digital sign, ultrasound 327 1 and 327 2 may be used to get the attention of people walking near or viewing the photo or image 327 3 on the sign.
  • In addition, ultrasound pattern 328 may also project sensations to simulate maps, topography, geography, imagery, or location service processes in combination with GPS device 114. Ultrasound pattern 328 can simulate mountainous regions on a map by projecting an ultrasound of various heights and intensities to an object at location points 206, 208, and/or 210.
  • Ultrasound pattern 328 may also be used to simulate the action of picking up (i.e. cut) or drop text (i.e. paste) in an email, 3rd Generation Partnership Project (3GPP) or 3GPP2 short message service (SMS) text message, or 3GPP/3GPP2 multimedia message service (MMS) message. Ultrasound pattern 328 may also be used in connection with a PDF document, word document, excel, four dimensional (4-D) screensaver, 4-D art, 4-D drawings, 3-D imagery, a 3-D sculpture, a 4-D “etch-a-sketch”, or architecture designs using scalable or vector graphics. Any of the actions given above for ultrasound pattern 328 may be used in combination with transmitting or receiving information over one or more network adapters 128.
  • In e-book applications, ultrasound pattern 328 can be used to replicate or simulate the edge of a page and allow a user to virtually lift or pick-up a page. Moreover, a user may be able to feel text of varying sensations provided by ultrasound pattern 328 that is hyperlinked or highlighted on an e-book page as the user moves a finger across the page.
  • For multitouch applications, airborne ultrasound pattern 328 may be used to simulate friction or resistance as a user moves an image by touching the screen, zooms into an image, or zooms out of an image. When zooming beyond a threshold, ultrasound pattern 328 can be used to provide resistance thereby defining boundaries and providing a warning or alarm. While scrolling, panning, or gliding, hitting a threshold level or endpoint causes an ultrasound tactile feedback or response. For scrolling momentum, the ultrasound pattern 328 may provide high intensity initially to simulate inertia and then less intensity as momentum builds. For navigating through a list of items on display device 302, items may be highlighted on the screen as the user scrolls through the list from afar.
  • Moreover, display device 302 may have ultrasound source/detectors 330 1-330 4 in a slightly beveled position or in the level with the frame of display device 302. Display device 302 may also have digital image or infrared cameras 334 1-334 4 for tracking motion of objects at location points 206, 208, and/or 210 using algorithms such as that described in U.S. Pat. No. 7,317,872, herein incorporated by reference as if fully set forth, that can be used to perform additional sensor measurements. Other sensor measurements for additional metrics and refinement include infrared or optical detection to detect depth of objects at location points 206, 208, and/or 210. These sensors can be embedded next to or within each display cell in display device 302.
  • In another embodiment, display device 302 replicates, mimics, or simulates a customizable or programmable interface or control panel for a remote control, instrument panel on a vehicle, an automobile dashboard configuration, audio equalizers, multitouch equalizers, radio button list, or a consumer electronics button surface with ultrasound patterns 332 1-332 3. For demoing consumer electronics online, ultrasound patterns 332 1-332 3 provide a user the ability to simulate buttons on a device prior to purchase or use as a tutorial. Moreover, 332 1-332 3 can be programmed for controlling volume control, replicating smart home switches or controllers, or replicating a dial or knob, as desired.
  • Still referring to FIG. 3, ultrasound may be used to feel, sense, or move text, images, photos, windows or icons. For instance, web searching is performed by dragging and dropping text “TEST SEARCH” 337 into search box 336. A user may be provided substantially circular ultrasound 338 when grabbing the text “TEST SEARCH” from a distance to display device 302. The user then moves or drags the text “TEST SEARCH” from afar via path 339 over to search box 336 and releases or drops it. The user's finger movements are tracked by ultrasound source/detector 125 in combination with elevation, indenting, or texturizing controller 121. The text may be shown as moving on display device 302 as the user's fingers are tracked. Similarly a visual, photo, or image search may be performed by grabbing image of shirt 324 and dropping it in search box 336.
  • In another example, ultrasound pattern 328 can be used to replicate or simulate a virtual stylus, pen, or pencil allowing a user to mimic writing or drawing on display device 302 similar to a notepad. The virtual stylus, pen, or pencil may be configured without the user physically holding anything. Unlike a notepad, the writing or drawing may be done at a predetermined distance from display device 302 in sensation zone 202.
  • Ultrasound pattern 328 can also be used for medical applications. For instance, with laparoscopic surgery a physician located in the surgery room or remote to the surgery room may be able to feel or sense images or photos of organs of a patient provided by an internal surgical camera and displayed on display device 302. Ultrasound pattern 328 may also be used to simulate pain of a patient to a doctor over the Internet.
  • In another example, ultrasound pattern 328 can be responsive to voice or visual commands or recognition detected by sensors 126. Alternatively, ultrasound pattern 328 can be a preprogrammed texturized pattern to notify the user of an incoming call, similar to a customized ringtone. Alternatively, ultrasound pattern 328 may be used for providing a warning to a driver in relation to safety feature on an automobile. Alternatively, ultrasound pattern 328 may be used for enhancing icons on a system tray with each icon having a different characteristic vibration sensation. Alternatively, device 100 may be controlled remotely, either wired or wirelessly, via a server or cloud computing platform (not shown) via one or more network adapters 128.
  • Moreover, ultrasound pattern 328 can be used to replicate, simulate, enhance features for biometrics, musical instruments, video clips, editing audio tracks, editing video, computer aided designs (CAD), semiconductor layouts, e-books, a children's educational product, children's productivity or educational game, a general education product, a 3-D drawing tool, distance learning, or a pop-up children's books, as desired.
  • FIG. 5 is a process 500 for providing elevated, indented, or texturized sensations to an object near a display device using ultrasound. In the example given here, the object may be one or more fingers or hands at location points 206, 208, and/or 210. Ultrasound source/detector 125 determines the initial object location and calculates a distance and angle relative to display device 302 (step 502) to calculate focal or control point vectors. For initialization, a user's fingers, hand, or a predetermined object may be place over a predetermined zone over display device 302. Alternatively, a user's fingers, hand, or a predetermined object may be detected by digital or infrared cameras 334 1-334 4 using image or photo recognition technology. Once the location of the object is determined, device 100 may display a preprogrammed image, such as a virtual keyboard or icon, on display device 302 at the detected location.
  • Ultrasound source/detector 125 in combination with elevation, indenting, or texturizing controller 121 projects or emits one or more ultrasound patterns, such as the ones shown in FIG. 2 e, having one or more focal or control points (step 504). In order to project a predetermined sensation, the intensity of ultrasound at one or more focal or control points may be varied. Also, in the case of multiple objects ultrasound source/detector 125 may be time multiplexed to project different ultrasound patterns to each object. Elevation, indenting or texturizing controller 121 focuses or adjusts focal or control point vectors (step 506). Ultrasound source/detector 125 in combination with elevation, indenting or texturizing controller 121 detects, tracks, or senses movement of focal or control points to determine momentum and/or velocity of an object (step 508). While the object moves and is tracked, the ultrasound patterns provided to the object may vary based on images, text, video, or the like displayed on display device 302.
  • In order to enhance accuracy or user experience, device 100 may detect and track multitouch inputs by other fingers and/or input detected by other sensors (step 510). An animation or video of a generated surface may be displayed on display device 302 for feedback and showing the tracking of the object (step 512). If an input, gesture, or command is recognized by ultrasound source/detector 125 in combination with elevation, indenting or texturizing controller 121 (step 514), the input, gesture, or command is processed by one or more processors 102 (step 516) and information is retrieved based on the input, gesture, or command (step 518).
  • Although features and elements are described above in particular combinations, each feature or element can be used alone without the other features and elements or in various combinations with or without other features and elements. The methods, processes, or flow charts provided herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable storage medium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, digital versatile disks (DVDs), and BluRay discs.
  • Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.
  • A processor in association with software may be used to implement hardware functions for use in a computer, wireless transmit receive unit (WTRU) or any host computer. The programmed hardware functions may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) or Ultra Wide Band (UWB) module.

Claims (2)

1. An apparatus for providing ultrasound sensations to a user at a predetermined distance from the apparatus, the apparatus comprising:
a display device having a plurality of display pixels, a plurality of ultrasound transducers, and a plurality of ultrasound detectors;
a controller coupled to the plurality of ultrasound transducers and the plurality of ultrasound detectors, where the controller controls transmit of ultrasound over air to the user by the plurality of ultrasound transducers and receives feedback information from the plurality of ultrasound detectors of reflections off of the user; and
wherein the controller controls transmit of ultrasound over air to provide an ultrasound pattern having a plurality of ultrasound focal points to the user and tracks the motion of the user from received feedback from the plurality of ultrasound detectors to determine user input commands, where the user input commands are related to selection of a hyperlink displayed on the display device.
2. A method for providing ultrasound sensations to a user at a predetermined distance from an apparatus, the method comprising:
controlling a plurality of ultrasound transducers to transmit ultrasound over air to the user;
controlling a plurality of ultrasound detectors to receives feedback information of reflections off of the user;
transmitting ultrasound over air to provide an ultrasound pattern having a plurality of ultrasound focal points to the user; and
tracking the motion of the user from received feedback from the plurality of ultrasound detectors to determine user input commands, where user input commands are related to selecting a hyperlink displayed on a display device.
US12/706,205 2010-02-16 2010-02-16 Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound Abandoned US20110199342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/706,205 US20110199342A1 (en) 2010-02-16 2010-02-16 Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/706,205 US20110199342A1 (en) 2010-02-16 2010-02-16 Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
US15/498,122 US20170228023A1 (en) 2010-02-16 2017-04-26 Vehicle computing system to provide a vehicle safety warning

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/498,122 Continuation US20170228023A1 (en) 2010-02-16 2017-04-26 Vehicle computing system to provide a vehicle safety warning

Publications (1)

Publication Number Publication Date
US20110199342A1 true US20110199342A1 (en) 2011-08-18

Family

ID=44369327

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/706,205 Abandoned US20110199342A1 (en) 2010-02-16 2010-02-16 Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
US15/498,122 Pending US20170228023A1 (en) 2010-02-16 2017-04-26 Vehicle computing system to provide a vehicle safety warning

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/498,122 Pending US20170228023A1 (en) 2010-02-16 2017-04-26 Vehicle computing system to provide a vehicle safety warning

Country Status (1)

Country Link
US (2) US20110199342A1 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120038652A1 (en) * 2010-08-12 2012-02-16 Palm, Inc. Accepting motion-based character input on mobile computing devices
US20120096354A1 (en) * 2010-10-14 2012-04-19 Park Seungyong Mobile terminal and control method thereof
US20120274609A1 (en) * 2011-04-26 2012-11-01 Sentons Inc. Method and apparatus for active ultrasonic touch devices
US20130061176A1 (en) * 2011-09-07 2013-03-07 Konami Digital Entertainment Co., Ltd. Item selection device, item selection method and non-transitory information recording medium
US20130215038A1 (en) * 2012-02-17 2013-08-22 Rukman Senanayake Adaptable actuated input device with integrated proximity detection
US20130227409A1 (en) * 2011-12-07 2013-08-29 Qualcomm Incorporated Integrating sensation functionalities into social networking services and applications
WO2013171025A1 (en) * 2012-05-18 2013-11-21 Robert Bosch Gmbh Arrangement and method for stimulating the tactile sense of a user
US20140078112A1 (en) * 2011-04-26 2014-03-20 Sentons Inc. Using multiple signals to detect touch input
US8686951B2 (en) 2009-03-18 2014-04-01 HJ Laboratories, LLC Providing an elevated and texturized display in an electronic device
WO2014081508A1 (en) * 2012-11-20 2014-05-30 Immersion Corporation Systems and methods for providing mode or state awareness with programmable surface texture
US8743244B2 (en) 2011-03-21 2014-06-03 HJ Laboratories, LLC Providing augmented reality based on third party information
CN103838421A (en) * 2012-11-20 2014-06-04 英默森公司 Method and apparatus for providing haptic cues for guidance and alignment with electrostatic friction
US8766953B1 (en) 2013-06-27 2014-07-01 Elwha Llc Tactile display driven by surface acoustic waves
US8884927B1 (en) 2013-06-27 2014-11-11 Elwha Llc Tactile feedback generated by phase conjugation of ultrasound surface acoustic waves
US20140380214A1 (en) * 2013-06-21 2014-12-25 Barnesandnoble.Com Llc Drag and drop techniques for discovering related content
US20150003204A1 (en) * 2013-06-27 2015-01-01 Elwha Llc Tactile feedback in a two or three dimensional airspace
US8928582B2 (en) 2012-02-17 2015-01-06 Sri International Method for adaptive interaction with a legacy software application
GB2516820A (en) * 2013-07-01 2015-02-11 Nokia Corp An apparatus
US20150169059A1 (en) * 2012-04-18 2015-06-18 Nokia Corporation Display apparatus with haptic feedback
US9099971B2 (en) 2011-11-18 2015-08-04 Sentons Inc. Virtual keyboard interaction using touch input force
US20150286380A1 (en) * 2012-08-10 2015-10-08 Blackberry Limited Method of momentum based zoom of content on an electronic device
US9218526B2 (en) 2012-05-24 2015-12-22 HJ Laboratories, LLC Apparatus and method to detect a paper document using one or more sensors
WO2016007920A1 (en) * 2014-07-11 2016-01-14 New York University Three dimensional tactile feedback system
US20160054826A1 (en) * 2012-07-26 2016-02-25 Apple Inc. Ultrasound-Based Force Sensing
US20160062497A1 (en) * 2012-07-26 2016-03-03 Apple Inc. Ultrasound-Based Force Sensing and Touch Sensing
GB2530036A (en) * 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
US9335845B2 (en) 2012-01-31 2016-05-10 MCube Inc. Selective accelerometer data processing methods and apparatus
US20160180644A1 (en) * 2014-12-17 2016-06-23 Fayez Idris Gaming system with movable ultrasonic transducer
US20160180636A1 (en) * 2014-12-17 2016-06-23 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3d display
US20160175709A1 (en) * 2014-12-17 2016-06-23 Fayez Idris Contactless tactile feedback on gaming terminal with 3d display
US20160175701A1 (en) * 2014-12-17 2016-06-23 Gtech Canada Ulc Contactless tactile feedback on gaming terminal with 3d display
US9449476B2 (en) 2011-11-18 2016-09-20 Sentons Inc. Localized haptic feedback
WO2016192266A1 (en) * 2015-05-29 2016-12-08 京东方科技集团股份有限公司 Sound wave touch control device and electronic device
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
US9679547B1 (en) * 2016-04-04 2017-06-13 Disney Enterprises, Inc. Augmented reality music composition
US9804675B2 (en) 2013-06-27 2017-10-31 Elwha Llc Tactile feedback generated by non-linear interaction of surface acoustic waves
US9836150B2 (en) 2012-11-20 2017-12-05 Immersion Corporation System and method for feedforward and feedback with haptic effects
US9841819B2 (en) 2015-02-20 2017-12-12 Ultrahaptics Ip Ltd Perceptions in a haptic system
US9891738B2 (en) 2012-07-26 2018-02-13 Apple Inc. Ultrasound-based force sensing of inputs
US9977120B2 (en) 2013-05-08 2018-05-22 Ultrahaptics Ip Ltd Method and apparatus for producing an acoustic field
US9983718B2 (en) 2012-07-18 2018-05-29 Sentons Inc. Detection of type of object used to provide a touch contact input
WO2018109466A1 (en) * 2016-12-13 2018-06-21 Ultrahaptics Ip Limited Driving techniques for phased-array systems
US10048811B2 (en) 2015-09-18 2018-08-14 Sentons Inc. Detecting touch input provided by signal transmitting stylus
US10061453B2 (en) 2013-06-07 2018-08-28 Sentons Inc. Detecting multi-touch inputs
US10075630B2 (en) 2013-07-03 2018-09-11 HJ Laboratories, LLC Providing real-time, personal services by accessing components on a mobile device
US10101811B2 (en) 2015-02-20 2018-10-16 Ultrahaptics Ip Ltd. Algorithm improvements in a haptic system
US10108286B2 (en) 2012-08-30 2018-10-23 Apple Inc. Auto-baseline determination for force sensing
US10126877B1 (en) 2017-02-01 2018-11-13 Sentons Inc. Update of reference data for touch input detection
US10147243B2 (en) 2016-12-05 2018-12-04 Google Llc Generating virtual notation surfaces with gestures in an augmented and/or virtual reality environment
WO2019015882A1 (en) * 2017-07-17 2019-01-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Display apparatuses and pixels for a display apparatus
US10198097B2 (en) 2011-04-26 2019-02-05 Sentons Inc. Detecting touch input force
US10235004B1 (en) 2011-11-18 2019-03-19 Sentons Inc. Touch input detector with an integrated antenna
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10296144B2 (en) 2016-12-12 2019-05-21 Sentons Inc. Touch input detection with shared receivers

Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717434A (en) * 1992-07-24 1998-02-10 Toda; Kohji Ultrasonic touch system
US6313825B1 (en) * 1998-12-28 2001-11-06 Gateway, Inc. Virtual input device
US20020030699A1 (en) * 1998-04-17 2002-03-14 Van Ee Jan Hand-held with auto-zoom for graphical display of Web page
US20020050983A1 (en) * 2000-09-26 2002-05-02 Qianjun Liu Method and apparatus for a touch sensitive system employing spread spectrum technology for the operation of one or more input devices
US6441828B1 (en) * 1998-09-08 2002-08-27 Sony Corporation Image display apparatus
US20030048260A1 (en) * 2001-08-17 2003-03-13 Alec Matusis System and method for selecting actions based on the identification of user's fingers
US6744178B2 (en) * 1999-12-27 2004-06-01 Seiko Instruments Inc. Pulse detection device and method of manufacturing the same
US20050012723A1 (en) * 2003-07-14 2005-01-20 Move Mobile Systems, Inc. System and method for a portable multimedia client
US6859572B2 (en) * 2000-03-31 2005-02-22 Sony Corporation Photon operating device and photon operating method
US6859569B2 (en) * 2000-03-31 2005-02-22 Sony Corporation Information receiving/display apparatus and information receiving/display method
US6984208B2 (en) * 2002-08-01 2006-01-10 The Hong Kong Polytechnic University Method and apparatus for sensing body gesture, posture and movement
US7027311B2 (en) * 2003-10-17 2006-04-11 Firefly Power Technologies, Inc. Method and apparatus for a wireless power supply
US20060096392A1 (en) * 2001-07-24 2006-05-11 Tactex Controls Inc. Touch sensitive membrane
US7050835B2 (en) * 2001-12-12 2006-05-23 Universal Display Corporation Intelligent multi-media display communication system
US7077015B2 (en) * 2003-05-29 2006-07-18 Vincent Hayward Apparatus to reproduce tactile sensations
US7190416B2 (en) * 2002-10-18 2007-03-13 Nitto Denko Corporation Liquid crystal display with touch panel having internal front polarizer
US20070078345A1 (en) * 2005-09-30 2007-04-05 Siemens Medical Solutions Usa, Inc. Flexible ultrasound transducer array
US20070085828A1 (en) * 2005-10-13 2007-04-19 Schroeder Dale W Ultrasonic virtual mouse
US20070085838A1 (en) * 2005-10-17 2007-04-19 Ricks Theodore K Method for making a display with integrated touchscreen
US20070109276A1 (en) * 2005-11-17 2007-05-17 Lg Electronics Inc. Method for Allocating/Arranging Keys on Touch-Screen, and Mobile Terminal for Use of the Same
US20070139391A1 (en) * 2005-11-18 2007-06-21 Siemens Aktiengesellschaft Input device
US20070247422A1 (en) * 2006-03-30 2007-10-25 Xuuk, Inc. Interaction techniques for flexible displays
US20080005703A1 (en) * 2006-06-28 2008-01-03 Nokia Corporation Apparatus, Methods and computer program products providing finger-based and hand-based gesture commands for portable electronic device applications
US7317872B1 (en) * 1997-10-10 2008-01-08 Posa John G Remote microphone and range-finding configuration
US20080042981A1 (en) * 2004-03-22 2008-02-21 Itay Katz System and Method for Inputing User Commands to a Processor
US20080062148A1 (en) * 2006-06-09 2008-03-13 Hotelling Steve P Touch screen liquid crystal display
US20080100907A1 (en) * 2006-10-10 2008-05-01 Cbrite Inc. Electro-optic display
US20080150911A1 (en) * 2008-01-21 2008-06-26 Sony Computer Entertainment America Inc. Hand-held device with touchscreen and digital tactile pixels
US20080216001A1 (en) * 2006-01-05 2008-09-04 Bas Ording Portable electronic device with content-dependent touch sensitivity
US20090043205A1 (en) * 2007-08-10 2009-02-12 Laurent Pelissier Hand-held ultrasound system having sterile enclosure
US20090043195A1 (en) * 2004-10-12 2009-02-12 Koninklijke Philips Electronics, N.V. Ultrasound Touchscreen User Interface and Display
US20090051662A1 (en) * 2005-03-14 2009-02-26 Martin Klein Touch-Sensitive Screen With Haptic Acknowledgement
US7500952B1 (en) * 1995-06-29 2009-03-10 Teratech Corporation Portable ultrasound imaging system
US20090181724A1 (en) * 2008-01-14 2009-07-16 Sony Ericsson Mobile Communications Ab Touch sensitive display with ultrasonic vibrations for tactile feedback
US20090184936A1 (en) * 2008-01-22 2009-07-23 Mathematical Inventing - Slicon Valley 3D touchpad
US20090198132A1 (en) * 2007-08-10 2009-08-06 Laurent Pelissier Hand-held ultrasound imaging device having reconfigurable user interface
US20090199392A1 (en) * 2008-02-11 2009-08-13 General Electric Company Ultrasound transducer probes and system and method of manufacture
US20090262078A1 (en) * 2008-04-21 2009-10-22 David Pizzi Cellular phone with special sensor functions
US20090284480A1 (en) * 2008-05-16 2009-11-19 International Business Machines Corporation System and apparatus for a multi-point touch-sensitive sensor user interface using distinct digit identification
US20090295760A1 (en) * 2008-06-02 2009-12-03 Sony Ericsson Mobile Communications Ab Touch screen display
US20090315851A1 (en) * 2006-05-02 2009-12-24 Hotelling Steven P Multipoint Touch Surface Controller
US20090322687A1 (en) * 2008-06-27 2009-12-31 Microsoft Corporation Virtual touchpad
US20100007511A1 (en) * 2008-07-14 2010-01-14 Sony Ericsson Mobile Communications Ab Touchless control of a control device
US20100013777A1 (en) * 2008-07-18 2010-01-21 Microsoft Corporation Tracking input in a screen-reflective interface environment
US20100026656A1 (en) * 2008-07-31 2010-02-04 Apple Inc. Capacitive sensor behind black mask
US20100160786A1 (en) * 2007-06-01 2010-06-24 Koninklijke Philips Electronics N.V. Wireless Ultrasound Probe User Interface
US7756297B2 (en) * 1999-07-08 2010-07-13 Pryor Timothy R Camera based sensing in handheld, mobile, gaming, or other devices
US20100177050A1 (en) * 2009-01-14 2010-07-15 Immersion Corporation Method and Apparatus for Generating Haptic Feedback from Plasma Actuation
US20100225734A1 (en) * 2009-03-03 2010-09-09 Horizon Semiconductors Ltd. Stereoscopic three-dimensional interactive system and method
US20100234077A1 (en) * 2009-03-12 2010-09-16 Yoo Jae-Suk Mobile terminal and method for providing user interface thereof
US20100231540A1 (en) * 2009-03-12 2010-09-16 Immersion Corporation Systems and Methods For A Texture Engine
US20100238114A1 (en) * 2009-03-18 2010-09-23 Harry Vartanian Apparatus and method for providing an elevated, indented, or texturized display device
US20100257491A1 (en) * 2007-11-29 2010-10-07 Koninklijke Philips Electronics N.V. Method of providing a user interface
US20100259633A1 (en) * 2009-04-14 2010-10-14 Sony Corporation Information processing apparatus, information processing method, and program
US7828733B2 (en) * 2000-11-24 2010-11-09 U-Systems Inc. Coronal and axial thick-slice ultrasound images derived from ultrasonic scans of a chestwardly-compressed breast
US20100298713A1 (en) * 2007-10-29 2010-11-25 Koninklijke Philips Electronics N.V. Systems and methods for ultrasound assembly including multiple imaging transducer arrays
US7841944B2 (en) * 2002-08-06 2010-11-30 Igt Gaming device having a three dimensional display device
US7843449B2 (en) * 2006-09-20 2010-11-30 Apple Inc. Three-dimensional display system
US20110109588A1 (en) * 2009-11-12 2011-05-12 Senseg Ltd. Tactile stimulation apparatus having a composite section comprising a semiconducting material
US20110107958A1 (en) * 2009-11-12 2011-05-12 Apple Inc. Input devices and methods of operation
US20110175813A1 (en) * 2010-01-20 2011-07-21 Apple Inc. Piezo-based acoustic and capacitive detection
US8232973B2 (en) * 2008-01-09 2012-07-31 Apple Inc. Method, device, and graphical user interface providing word recommendations for text input

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020202A1 (en) * 1999-09-21 2001-09-06 American Calcar Inc. Multimedia information and control system for automobiles
US7081888B2 (en) * 2003-04-24 2006-07-25 Eastman Kodak Company Flexible resistive touch screen
KR101456001B1 (en) * 2008-05-23 2014-11-03 엘지전자 주식회사 Terminal and method for controlling the same
KR101498623B1 (en) * 2008-06-25 2015-03-04 엘지전자 주식회사 A wireless terminal and a control method
US8738219B2 (en) * 2009-08-24 2014-05-27 Robert Bosch Gmbh Good checking for vehicle longitudinal acceleration sensor
US8485941B2 (en) * 2011-03-08 2013-07-16 Chrysler Group Llc Driver selectable low speed mode for disabling stop/start technology
US20140195926A1 (en) * 2013-01-08 2014-07-10 Emo2 Inc. Systems and methods for enabling access to one or more applications on a device
KR20160090524A (en) * 2015-01-22 2016-08-01 엘지전자 주식회사 Electric Vehicle and Control Method Thereof

Patent Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717434A (en) * 1992-07-24 1998-02-10 Toda; Kohji Ultrasonic touch system
US7500952B1 (en) * 1995-06-29 2009-03-10 Teratech Corporation Portable ultrasound imaging system
US7317872B1 (en) * 1997-10-10 2008-01-08 Posa John G Remote microphone and range-finding configuration
US20020030699A1 (en) * 1998-04-17 2002-03-14 Van Ee Jan Hand-held with auto-zoom for graphical display of Web page
US6441828B1 (en) * 1998-09-08 2002-08-27 Sony Corporation Image display apparatus
US6313825B1 (en) * 1998-12-28 2001-11-06 Gateway, Inc. Virtual input device
US7756297B2 (en) * 1999-07-08 2010-07-13 Pryor Timothy R Camera based sensing in handheld, mobile, gaming, or other devices
US6744178B2 (en) * 1999-12-27 2004-06-01 Seiko Instruments Inc. Pulse detection device and method of manufacturing the same
US6859572B2 (en) * 2000-03-31 2005-02-22 Sony Corporation Photon operating device and photon operating method
US6859569B2 (en) * 2000-03-31 2005-02-22 Sony Corporation Information receiving/display apparatus and information receiving/display method
US20020050983A1 (en) * 2000-09-26 2002-05-02 Qianjun Liu Method and apparatus for a touch sensitive system employing spread spectrum technology for the operation of one or more input devices
US7828733B2 (en) * 2000-11-24 2010-11-09 U-Systems Inc. Coronal and axial thick-slice ultrasound images derived from ultrasonic scans of a chestwardly-compressed breast
US20060096392A1 (en) * 2001-07-24 2006-05-11 Tactex Controls Inc. Touch sensitive membrane
US20030048260A1 (en) * 2001-08-17 2003-03-13 Alec Matusis System and method for selecting actions based on the identification of user's fingers
US7050835B2 (en) * 2001-12-12 2006-05-23 Universal Display Corporation Intelligent multi-media display communication system
US6984208B2 (en) * 2002-08-01 2006-01-10 The Hong Kong Polytechnic University Method and apparatus for sensing body gesture, posture and movement
US7841944B2 (en) * 2002-08-06 2010-11-30 Igt Gaming device having a three dimensional display device
US7190416B2 (en) * 2002-10-18 2007-03-13 Nitto Denko Corporation Liquid crystal display with touch panel having internal front polarizer
US7077015B2 (en) * 2003-05-29 2006-07-18 Vincent Hayward Apparatus to reproduce tactile sensations
US20050012723A1 (en) * 2003-07-14 2005-01-20 Move Mobile Systems, Inc. System and method for a portable multimedia client
US7027311B2 (en) * 2003-10-17 2006-04-11 Firefly Power Technologies, Inc. Method and apparatus for a wireless power supply
US20080042981A1 (en) * 2004-03-22 2008-02-21 Itay Katz System and Method for Inputing User Commands to a Processor
US20090043195A1 (en) * 2004-10-12 2009-02-12 Koninklijke Philips Electronics, N.V. Ultrasound Touchscreen User Interface and Display
US20090051662A1 (en) * 2005-03-14 2009-02-26 Martin Klein Touch-Sensitive Screen With Haptic Acknowledgement
US20070078345A1 (en) * 2005-09-30 2007-04-05 Siemens Medical Solutions Usa, Inc. Flexible ultrasound transducer array
US20070085828A1 (en) * 2005-10-13 2007-04-19 Schroeder Dale W Ultrasonic virtual mouse
US20070085838A1 (en) * 2005-10-17 2007-04-19 Ricks Theodore K Method for making a display with integrated touchscreen
US20070109276A1 (en) * 2005-11-17 2007-05-17 Lg Electronics Inc. Method for Allocating/Arranging Keys on Touch-Screen, and Mobile Terminal for Use of the Same
US20070139391A1 (en) * 2005-11-18 2007-06-21 Siemens Aktiengesellschaft Input device
US20080216001A1 (en) * 2006-01-05 2008-09-04 Bas Ording Portable electronic device with content-dependent touch sensitivity
US20070247422A1 (en) * 2006-03-30 2007-10-25 Xuuk, Inc. Interaction techniques for flexible displays
US20090315851A1 (en) * 2006-05-02 2009-12-24 Hotelling Steven P Multipoint Touch Surface Controller
US20080062148A1 (en) * 2006-06-09 2008-03-13 Hotelling Steve P Touch screen liquid crystal display
US20080005703A1 (en) * 2006-06-28 2008-01-03 Nokia Corporation Apparatus, Methods and computer program products providing finger-based and hand-based gesture commands for portable electronic device applications
US7843449B2 (en) * 2006-09-20 2010-11-30 Apple Inc. Three-dimensional display system
US20080100907A1 (en) * 2006-10-10 2008-05-01 Cbrite Inc. Electro-optic display
US20100160786A1 (en) * 2007-06-01 2010-06-24 Koninklijke Philips Electronics N.V. Wireless Ultrasound Probe User Interface
US20090198132A1 (en) * 2007-08-10 2009-08-06 Laurent Pelissier Hand-held ultrasound imaging device having reconfigurable user interface
US20090043205A1 (en) * 2007-08-10 2009-02-12 Laurent Pelissier Hand-held ultrasound system having sterile enclosure
US20100298713A1 (en) * 2007-10-29 2010-11-25 Koninklijke Philips Electronics N.V. Systems and methods for ultrasound assembly including multiple imaging transducer arrays
US20100257491A1 (en) * 2007-11-29 2010-10-07 Koninklijke Philips Electronics N.V. Method of providing a user interface
US8232973B2 (en) * 2008-01-09 2012-07-31 Apple Inc. Method, device, and graphical user interface providing word recommendations for text input
US20090181724A1 (en) * 2008-01-14 2009-07-16 Sony Ericsson Mobile Communications Ab Touch sensitive display with ultrasonic vibrations for tactile feedback
US20080150911A1 (en) * 2008-01-21 2008-06-26 Sony Computer Entertainment America Inc. Hand-held device with touchscreen and digital tactile pixels
US20090184936A1 (en) * 2008-01-22 2009-07-23 Mathematical Inventing - Slicon Valley 3D touchpad
US20090199392A1 (en) * 2008-02-11 2009-08-13 General Electric Company Ultrasound transducer probes and system and method of manufacture
US20090262078A1 (en) * 2008-04-21 2009-10-22 David Pizzi Cellular phone with special sensor functions
US20090284480A1 (en) * 2008-05-16 2009-11-19 International Business Machines Corporation System and apparatus for a multi-point touch-sensitive sensor user interface using distinct digit identification
US20090295760A1 (en) * 2008-06-02 2009-12-03 Sony Ericsson Mobile Communications Ab Touch screen display
US20090322687A1 (en) * 2008-06-27 2009-12-31 Microsoft Corporation Virtual touchpad
US20100007511A1 (en) * 2008-07-14 2010-01-14 Sony Ericsson Mobile Communications Ab Touchless control of a control device
US20100013777A1 (en) * 2008-07-18 2010-01-21 Microsoft Corporation Tracking input in a screen-reflective interface environment
US20100026656A1 (en) * 2008-07-31 2010-02-04 Apple Inc. Capacitive sensor behind black mask
US20100177050A1 (en) * 2009-01-14 2010-07-15 Immersion Corporation Method and Apparatus for Generating Haptic Feedback from Plasma Actuation
US20100225734A1 (en) * 2009-03-03 2010-09-09 Horizon Semiconductors Ltd. Stereoscopic three-dimensional interactive system and method
US20100231540A1 (en) * 2009-03-12 2010-09-16 Immersion Corporation Systems and Methods For A Texture Engine
US20100234077A1 (en) * 2009-03-12 2010-09-16 Yoo Jae-Suk Mobile terminal and method for providing user interface thereof
US20100238114A1 (en) * 2009-03-18 2010-09-23 Harry Vartanian Apparatus and method for providing an elevated, indented, or texturized display device
US20100259633A1 (en) * 2009-04-14 2010-10-14 Sony Corporation Information processing apparatus, information processing method, and program
US20110109588A1 (en) * 2009-11-12 2011-05-12 Senseg Ltd. Tactile stimulation apparatus having a composite section comprising a semiconducting material
US20110107958A1 (en) * 2009-11-12 2011-05-12 Apple Inc. Input devices and methods of operation
US20110175813A1 (en) * 2010-01-20 2011-07-21 Apple Inc. Piezo-based acoustic and capacitive detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Takayuki Iwamoto, Mari Tatezono, Takayuki Hoshi, Hiroyuki Shinoda, "Airborne Ultrasound Tactile Display," SIGGRAPH 2008 New Tech Demos, Aug. 2008. *

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9448632B2 (en) 2009-03-18 2016-09-20 Hj Laboratories Licensing, Llc Mobile device with a pressure and indentation sensitive multi-touch display
US9335824B2 (en) 2009-03-18 2016-05-10 HJ Laboratories, LLC Mobile device with a pressure and indentation sensitive multi-touch display
US9547368B2 (en) 2009-03-18 2017-01-17 Hj Laboratories Licensing, Llc Electronic device with a pressure sensitive multi-touch display
US9400558B2 (en) 2009-03-18 2016-07-26 HJ Laboratories, LLC Providing an elevated and texturized display in an electronic device
US9405371B1 (en) 2009-03-18 2016-08-02 HJ Laboratories, LLC Controllable tactile sensations in a consumer device
US9423905B2 (en) 2009-03-18 2016-08-23 Hj Laboratories Licensing, Llc Providing an elevated and texturized display in a mobile electronic device
US9459728B2 (en) 2009-03-18 2016-10-04 HJ Laboratories, LLC Mobile device with individually controllable tactile sensations
US10191652B2 (en) 2009-03-18 2019-01-29 Hj Laboratories Licensing, Llc Electronic device with an interactive pressure sensitive multi-touch display
US8686951B2 (en) 2009-03-18 2014-04-01 HJ Laboratories, LLC Providing an elevated and texturized display in an electronic device
US8866766B2 (en) 2009-03-18 2014-10-21 HJ Laboratories, LLC Individually controlling a tactile area of an image displayed on a multi-touch display
US9778840B2 (en) 2009-03-18 2017-10-03 Hj Laboratories Licensing, Llc Electronic device with an interactive pressure sensitive multi-touch display
US9772772B2 (en) 2009-03-18 2017-09-26 Hj Laboratories Licensing, Llc Electronic device with an interactive pressure sensitive multi-touch display
US20120038652A1 (en) * 2010-08-12 2012-02-16 Palm, Inc. Accepting motion-based character input on mobile computing devices
US20120096354A1 (en) * 2010-10-14 2012-04-19 Park Seungyong Mobile terminal and control method thereof
US9721489B2 (en) 2011-03-21 2017-08-01 HJ Laboratories, LLC Providing augmented reality based on third party information
US8743244B2 (en) 2011-03-21 2014-06-03 HJ Laboratories, LLC Providing augmented reality based on third party information
US20120274609A1 (en) * 2011-04-26 2012-11-01 Sentons Inc. Method and apparatus for active ultrasonic touch devices
US10198097B2 (en) 2011-04-26 2019-02-05 Sentons Inc. Detecting touch input force
US20140078112A1 (en) * 2011-04-26 2014-03-20 Sentons Inc. Using multiple signals to detect touch input
US9639213B2 (en) * 2011-04-26 2017-05-02 Sentons Inc. Using multiple signals to detect touch input
US9477350B2 (en) * 2011-04-26 2016-10-25 Sentons Inc. Method and apparatus for active ultrasonic touch devices
US20130061176A1 (en) * 2011-09-07 2013-03-07 Konami Digital Entertainment Co., Ltd. Item selection device, item selection method and non-transitory information recording medium
US9099971B2 (en) 2011-11-18 2015-08-04 Sentons Inc. Virtual keyboard interaction using touch input force
US9594450B2 (en) 2011-11-18 2017-03-14 Sentons Inc. Controlling audio volume using touch input force
US10235004B1 (en) 2011-11-18 2019-03-19 Sentons Inc. Touch input detector with an integrated antenna
US10055066B2 (en) 2011-11-18 2018-08-21 Sentons Inc. Controlling audio volume using touch input force
US10248262B2 (en) 2011-11-18 2019-04-02 Sentons Inc. User interface interaction using touch input force
US9449476B2 (en) 2011-11-18 2016-09-20 Sentons Inc. Localized haptic feedback
US20130227409A1 (en) * 2011-12-07 2013-08-29 Qualcomm Incorporated Integrating sensation functionalities into social networking services and applications
US9335845B2 (en) 2012-01-31 2016-05-10 MCube Inc. Selective accelerometer data processing methods and apparatus
US20130215038A1 (en) * 2012-02-17 2013-08-22 Rukman Senanayake Adaptable actuated input device with integrated proximity detection
US8928582B2 (en) 2012-02-17 2015-01-06 Sri International Method for adaptive interaction with a legacy software application
US20150169059A1 (en) * 2012-04-18 2015-06-18 Nokia Corporation Display apparatus with haptic feedback
WO2013171025A1 (en) * 2012-05-18 2013-11-21 Robert Bosch Gmbh Arrangement and method for stimulating the tactile sense of a user
US9218526B2 (en) 2012-05-24 2015-12-22 HJ Laboratories, LLC Apparatus and method to detect a paper document using one or more sensors
US9578200B2 (en) 2012-05-24 2017-02-21 HJ Laboratories, LLC Detecting a document using one or more sensors
US9959464B2 (en) 2012-05-24 2018-05-01 HJ Laboratories, LLC Mobile device utilizing multiple cameras for environmental detection
US10209825B2 (en) 2012-07-18 2019-02-19 Sentons Inc. Detection of type of object used to provide a touch contact input
US9983718B2 (en) 2012-07-18 2018-05-29 Sentons Inc. Detection of type of object used to provide a touch contact input
US10013118B2 (en) * 2012-07-26 2018-07-03 Apple Inc. Ultrasound-based force sensing and touch sensing
US9891738B2 (en) 2012-07-26 2018-02-13 Apple Inc. Ultrasound-based force sensing of inputs
US9772721B2 (en) * 2012-07-26 2017-09-26 Apple Inc. Ultrasound-based force sensing and touch sensing
US20160054826A1 (en) * 2012-07-26 2016-02-25 Apple Inc. Ultrasound-Based Force Sensing
US20170344143A1 (en) * 2012-07-26 2017-11-30 Apple Inc. Ultrasound-Based Force Sensing and Touch Sensing
US20160062497A1 (en) * 2012-07-26 2016-03-03 Apple Inc. Ultrasound-Based Force Sensing and Touch Sensing
US20150286380A1 (en) * 2012-08-10 2015-10-08 Blackberry Limited Method of momentum based zoom of content on an electronic device
US10108286B2 (en) 2012-08-30 2018-10-23 Apple Inc. Auto-baseline determination for force sensing
EP3252567A1 (en) * 2012-11-20 2017-12-06 Immersion Corporation A method of producing a haptic effect and haptic effect enabled device
EP2733577A3 (en) * 2012-11-20 2014-07-23 Immersion Corporation A method of producing a haptic effect and haptic effect enabled device
US9836150B2 (en) 2012-11-20 2017-12-05 Immersion Corporation System and method for feedforward and feedback with haptic effects
WO2014081508A1 (en) * 2012-11-20 2014-05-30 Immersion Corporation Systems and methods for providing mode or state awareness with programmable surface texture
US10078384B2 (en) 2012-11-20 2018-09-18 Immersion Corporation Method and apparatus for providing haptic cues for guidance and alignment with electrostatic friction
CN103838421A (en) * 2012-11-20 2014-06-04 英默森公司 Method and apparatus for providing haptic cues for guidance and alignment with electrostatic friction
US9977120B2 (en) 2013-05-08 2018-05-22 Ultrahaptics Ip Ltd Method and apparatus for producing an acoustic field
US10281567B2 (en) 2013-05-08 2019-05-07 Ultrahaptics Ip Ltd Method and apparatus for producing an acoustic field
US10061453B2 (en) 2013-06-07 2018-08-28 Sentons Inc. Detecting multi-touch inputs
US9244603B2 (en) * 2013-06-21 2016-01-26 Nook Digital, Llc Drag and drop techniques for discovering related content
US20140380214A1 (en) * 2013-06-21 2014-12-25 Barnesandnoble.Com Llc Drag and drop techniques for discovering related content
US9804675B2 (en) 2013-06-27 2017-10-31 Elwha Llc Tactile feedback generated by non-linear interaction of surface acoustic waves
US8766953B1 (en) 2013-06-27 2014-07-01 Elwha Llc Tactile display driven by surface acoustic waves
US8884927B1 (en) 2013-06-27 2014-11-11 Elwha Llc Tactile feedback generated by phase conjugation of ultrasound surface acoustic waves
US20150003204A1 (en) * 2013-06-27 2015-01-01 Elwha Llc Tactile feedback in a two or three dimensional airspace
GB2516820A (en) * 2013-07-01 2015-02-11 Nokia Corp An apparatus
US10075630B2 (en) 2013-07-03 2018-09-11 HJ Laboratories, LLC Providing real-time, personal services by accessing components on a mobile device
US9898089B2 (en) 2014-01-07 2018-02-20 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
US10133353B2 (en) 2014-07-11 2018-11-20 New York University Three dimensional tactile feedback system
WO2016007920A1 (en) * 2014-07-11 2016-01-14 New York University Three dimensional tactile feedback system
GB2530036A (en) * 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
CN106575161A (en) * 2014-09-09 2017-04-19 超级触觉资讯处理有限公司 Method and apparatus for modulating haptic feedback
US9958943B2 (en) 2014-09-09 2018-05-01 Ultrahaptics Ip Ltd Method and apparatus for modulating haptic feedback
WO2016038347A1 (en) * 2014-09-09 2016-03-17 Ultrahaptics Limited Method and apparatus for modulating haptic feedback
US20160180644A1 (en) * 2014-12-17 2016-06-23 Fayez Idris Gaming system with movable ultrasonic transducer
US20160175701A1 (en) * 2014-12-17 2016-06-23 Gtech Canada Ulc Contactless tactile feedback on gaming terminal with 3d display
US20160175709A1 (en) * 2014-12-17 2016-06-23 Fayez Idris Contactless tactile feedback on gaming terminal with 3d display
US9672689B2 (en) * 2014-12-17 2017-06-06 Igt Canada Solutions Ulc Gaming system with movable ultrasonic transducer
US20160180636A1 (en) * 2014-12-17 2016-06-23 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3d display
US10195525B2 (en) * 2014-12-17 2019-02-05 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3D display
US10101814B2 (en) 2015-02-20 2018-10-16 Ultrahaptics Ip Ltd. Perceptions in a haptic system
US9841819B2 (en) 2015-02-20 2017-12-12 Ultrahaptics Ip Ltd Perceptions in a haptic system
US10101811B2 (en) 2015-02-20 2018-10-16 Ultrahaptics Ip Ltd. Algorithm improvements in a haptic system
WO2016192266A1 (en) * 2015-05-29 2016-12-08 京东方科技集团股份有限公司 Sound wave touch control device and electronic device
US10248263B2 (en) 2015-05-29 2019-04-02 Boe Technology Group Co., Ltd. Acoustic wave touch device and electronic apparatus
US10048811B2 (en) 2015-09-18 2018-08-14 Sentons Inc. Detecting touch input provided by signal transmitting stylus
US9679547B1 (en) * 2016-04-04 2017-06-13 Disney Enterprises, Inc. Augmented reality music composition
US10262642B2 (en) 2016-04-04 2019-04-16 Disney Enterprises, Inc. Augmented reality music composition
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10147243B2 (en) 2016-12-05 2018-12-04 Google Llc Generating virtual notation surfaces with gestures in an augmented and/or virtual reality environment
US10296144B2 (en) 2016-12-12 2019-05-21 Sentons Inc. Touch input detection with shared receivers
WO2018109466A1 (en) * 2016-12-13 2018-06-21 Ultrahaptics Ip Limited Driving techniques for phased-array systems
US10126877B1 (en) 2017-02-01 2018-11-13 Sentons Inc. Update of reference data for touch input detection
WO2019015882A1 (en) * 2017-07-17 2019-01-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Display apparatuses and pixels for a display apparatus

Also Published As

Publication number Publication date
US20170228023A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
Hinckley et al. Input technologies and techniques
Rekimoto SmartSkin: an infrastructure for freehand manipulation on interactive surfaces
Hinckley et al. Touch-sensing input devices
Hinckley et al. Interaction and modeling techniques for desktop two-handed input
Kane et al. Bonfire: a nomadic system for hybrid laptop-tabletop interaction
US6822635B2 (en) Haptic interface for laptop computers and other portable devices
US9170649B2 (en) Audio and tactile feedback based on visual environment
Kray et al. User-defined gestures for connecting mobile phones, public displays, and tabletops
Boring et al. Scroll, tilt or move it: using mobile phones to continuously control pointers on large public displays
US8935627B2 (en) Mobile terminal and method of controlling operation of the mobile terminal
JP6499392B2 (en) System and method for simulated physical interactions with haptic effects
EP2796983B1 (en) Systems and Methods for Haptically-Enabled Conformed and Multifaceted Displays
US9411423B2 (en) Method and apparatus for haptic flex gesturing
US9448713B2 (en) Electro-vibrotactile display
JP6141474B2 (en) Bidirectional model for shared feedback on the mobile device
JP6329723B2 (en) System and method for multi-pressure interaction on the touch-sensitive surface
Burdea Haptics issues in virtual environments
US10048758B2 (en) Haptic feedback for interactions with foldable-bendable displays
US7337410B2 (en) Virtual workstation
US20090102805A1 (en) Three-dimensional object simulation using audio, visual, and tactile feedback
Harrison et al. Abracadabra: wireless, high-precision, and unpowered finger input for very small mobile devices
US9134797B2 (en) Systems and methods for providing haptic feedback to touch-sensitive input devices
US20140201666A1 (en) Dynamic, free-space user interactions for machine control
US20150067559A1 (en) Device, Method, and Graphical User Interface for Selecting Object within a Group of Objects
Hinckley et al. Sensor synaesthesia: touch in motion, and motion in touch

Legal Events

Date Code Title Description
AS Assignment

Owner name: HJ LABORATORIES, LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VARTANIAN, HARRY;JURIKSON-RHODES, JARON;REEL/FRAME:026674/0709

Effective date: 20110725

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION