US11550432B2 - Perceptions in a haptic system - Google Patents

Perceptions in a haptic system Download PDF

Info

Publication number
US11550432B2
US11550432B2 US17/176,899 US202117176899A US11550432B2 US 11550432 B2 US11550432 B2 US 11550432B2 US 202117176899 A US202117176899 A US 202117176899A US 11550432 B2 US11550432 B2 US 11550432B2
Authority
US
United States
Prior art keywords
audible sound
control points
haptic feedback
point
desired audible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/176,899
Other versions
US20210183215A1 (en
Inventor
Thomas Andrew Carter
Sue Ann Seah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultrahaptics IP Ltd
Original Assignee
Ultrahaptics IP Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultrahaptics IP Ltd filed Critical Ultrahaptics IP Ltd
Priority to US17/176,899 priority Critical patent/US11550432B2/en
Assigned to ULTRAHAPTICS IP LTD reassignment ULTRAHAPTICS IP LTD NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: ULTRAHAPTICS LIMITED
Assigned to ULTRAHAPTICS LIMITED reassignment ULTRAHAPTICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLENKINSOPP, Robert Charles, CARTER, Thomas Andrew, FRIER, William Thierry Alain, LONG, Benjamin John Oliver, SEAH, Sue Ann, SUBRAMANIAN, SRIRAM
Publication of US20210183215A1 publication Critical patent/US20210183215A1/en
Application granted granted Critical
Publication of US11550432B2 publication Critical patent/US11550432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/75Information technology; Communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
    • H04R2217/03Parametric transducers where sound is generated or captured by the acoustic demodulation of amplitude modulated ultrasonic waves

Definitions

  • the present disclosure relates generally to improved perception techniques in haptic-based systems.
  • Multi-touch surfaces have become common in public settings, with large displays appearing in hotel lobbies, shopping malls and other high foot traffic areas. These systems are able to dynamically change their interface allowing multiple users to interact at the same time and with very little instruction.
  • a mid-air haptic feedback system creates tactile sensations in the air.
  • One way to create mid-air haptic feedback is using ultrasound.
  • a phased array of ultrasonic transducers is used to exert an acoustic radiation force on a target. This continuous distribution of sound energy, which will be referred to herein as an “acoustic field”, is useful for a range of applications, including haptic feedback.
  • FIG. 1 is a representation of shapes made in a haptic system.
  • FIG. 2 is an illustration of an example series of five haptic control points simultaneously produced in the plane of interaction.
  • FIG. 3 is a selection of acoustic field simulations where in the control point is moved through the plane of interaction.
  • FIG. 4 is an illustrative view of unconstrained and constrained transducers.
  • acoustic field It is known to control an acoustic field by defining one or more control points in a space within which the acoustic field may exist. Each control point is assigned an amplitude value equating to a desired amplitude of the acoustic field at the control point. Transducers are then controlled to create an acoustic field exhibiting the desired amplitude at each of the control points.
  • Vibration is detected by mechanoreceptors within the skin.
  • the mechanoreceptors within the skin are responsive to vibrations in the range 0.4 Hz to 500 Hz.
  • the emitted ultrasound may be modulated in order to create vibrations within the optimum frequency range detectable by the human hand. By changing the modulation frequency, it may also change the frequency of the vibration on the hand and this can be used to create different tactile properties. Modulating different focal points at different frequencies can give each point of feedback its own independent “feel”. In this way it is possible to correlate haptic and visual feedback and also attach meaning to noticeably different textures so that information can be transferred to the user via the haptic feedback.
  • vibrations of the skin are interpreted by mechanoreceptors being excited and sending signals to the brain via the nervous system.
  • the palmar surface of the hand has 4 different types of mechanoreceptors, each of which responds to a different range of frequencies.
  • the force required to trigger each of these receptors varies with the frequency of the vibration.
  • the Pacinian corpuscle has its lowest activation threshold at around 200 Hz, while the Meissner corpuscle is most sensitive between 10-50 Hz.
  • Ultrasound haptic feedback systems create a vibro-tactile sensation upon the skin of a user of the system.
  • the focused ultrasound creates enough force at the point of intersection to slightly displace the skin of a user.
  • ultrasound haptic feedback systems use ultrasound with a frequency at or above 40 kHz, which is above the threshold for receptors in the skin to feel. Therefore, a user can only detect the onset and cessation of such focused ultrasound.
  • the focused ultrasound is modulated at a lower frequency, within the detectable range of the receptors. This range is typically from 1 Hz to 500 Hz.
  • Tactile sensations on human skin can be created by using a phased array of ultrasound transducers to exert an acoustic radiation force on a target in mid-air.
  • Ultrasound waves are transmitted by the transducers, with the phase emitted by each transducer adjusted such that the waves arrive concurrently at the target point in order to maximize the acoustic radiation force exerted.
  • the acoustic field can be controlled.
  • Each point can be assigned a value equating to a desired amplitude at the control point.
  • a physical set of transducers can then be controlled to create an acoustic field exhibiting the desired amplitude at the control points.
  • a side effect of this technique is that the ultrasound breaks down and creates a sound at the modulation frequency. Therefore, when creating tactile feedback with a 200 Hz modulation frequency, a 200 Hz sound is also produced. This audible sound may be annoying to users and can be a barrier to ultrasound haptic technology being adopted.
  • the optimal conditions for producing an acoustic field of a single frequency can be realized by assigning activation coefficients to represent the initial state of each transducer.
  • the field can be modulated with a signal of a potentially lower frequency.
  • an acoustic field of 40 kHz may be modulated with a 200 Hz frequency in order to achieve a 200 Hz vibro-tactile effect.
  • Methods to generate this vibro-tactile effect may reduce audible content by smoothly interpolating the transducer activation coefficients between discrete and disjoint sets of control points, resulting in smooth sinusoidal amplitude variations at the control point locations. These sinusoidal amplitude variations cause a pure tone to be generated.
  • a pure tone although much lower in perceptual loudness than the disparate frequency content caused by abruptly changing the state of the transducers, remains audible.
  • the modulation waveform can be shaped to reduce the volume of the audible noise that is created (as described for example in UK Patent Application No. 1415923.0).
  • reducing and avoiding sharp changes in pressure level at the focus will reduce the loudness of the audible sound.
  • modulation with a pure square wave will produce a louder audible sound than modulation with a pure sine wave.
  • control points can be defined. These control points can be amplitude modulated with a signal and as a result produce vibro-tactile feedback in mid-air.
  • An alternative method to produce feedback is to create control points that may not be modulated in amplitude and instead move them around spatially to create spatio-temporal modulation that can be felt. Both methods may be then used separately or together in order to produce sound and different textures.
  • the steps to create optimized haptic feedback using multiplexed frequencies include the following:
  • the vibration frequency can be adjusted in real time to optimize for the area of the hand currently being vibrated.
  • the fingers receive a 100 Hz vibration while the center of the palm receives a 200 Hz vibration.
  • buttons could be represented by one localized point of vibration in the air for each button.
  • the vibration frequency of each button could adjust in real time to match the optimum frequency for the part of the hand it is targeted at.
  • the tracking system may not be sophisticated to determine discrete parts of the hand or the required processing power may be too high.
  • a point of feedback could be multiplexed with both 100 Hz and 200 Hz.
  • the palm would respond strongly to the 200 Hz component while the finger tips would respond strongest to the 100 Hz component. In so doing, a point of feedback that can be uniformly felt across the hand is established.
  • Haptic edge detection has been shown to require highly localized skin displacement (stretching) and at the ultrasonic frequencies currently used this is not possible. Edges can be reliably detected, but corners are not large enough features to be easily recognizable.
  • control points The use of points of high pressure in the ultrasonic field convey vibrations and are called “control points.” They provide local feedback in an area around a wavelength in a small diameter (such as 8.6 mm @ 40 kHz).
  • the control points may be arranged in 3D space programmatically to create the feeling of a shape in space.
  • FIG. 1 shown in the left box 10 is a shape without corner-enhancing warping. Shown in the center box 20 of FIG. 1 is a corner-enhancing warp function applied to highlight the corners haptically. Shown in the right box 30 of FIG. 1 is a function where further warping has been applied, showing that the effect is tunable depending on the circumstances and the effect desired.
  • shape warping may be applied to sections of 3D geometry to create haptic 3D geometry with distinct corners to increase haptic fidelity. This may also be applied as a process to highlight salient features in shapes for attracting attention.
  • control point definition and density Due to awareness of the de facto limit of control point definition and density, it is possible to create pulsing points that are haptically pleasing. By forcing control points close together, they merge and become a smaller, weaker vibration. By rotating them and bringing them closer and further apart, a localized pulsing sensation can be generated that can haptically give a standby or ready prompt.
  • FIG. 2 shown is an illustration of an example series of five control points simultaneously produced in the plane of interaction.
  • the points in the figure have a diameter of a wavelength.
  • the five points spin quickly so they are not distinguishable.
  • the five points spin and are far enough apart for them to be perceived as a single large haptic point.
  • the central panel 50 shows that as the points orbit closer together the haptic point shrinks and becomes weaker.
  • the five control points have merged to become a single control point. The process is then reversed to increase the size and strength of the haptic point and this system is then cycled to generate a pulsing sensation.
  • FIG. 2 shows a set of points, spinning in a circle with the diameter of the circle growing smaller/bigger over time. (An alternative method to the spinning circle is to move the focus between two locations.)
  • FIG. 3 shown is a selection of acoustic field simulations where in the control point is moved through the plane of interaction (shown approximately by the inset black bordered box).
  • the small filled black circles along the bottom edge of each figure represent transducer elements that have been configured to reproduce a control point.
  • the control point In the left panel 70 the control point is created below the plane of interaction, resulting in no focusing in the interaction space. As the focus moves up, the interaction space contains the control point as shown in the central panel 80 . Finally, in the right panel 90 the focus has moved up through and out of the interaction space. This process is then reversed and cycled to produce the pulsing sensation.
  • a pulsing sensation can be produced throughout the central region.
  • User detection in this scenario can be much more crude, e.g. a light sensor in the central area.
  • Pulsating is defined to be a sensation that grows both stronger/weaker and bigger/smaller over time. (By comparison, a simple modulation only grows stronger/weaker over time.)
  • FIG. 3 shows one possible example, where the focus is linearly interpolated between two positions, one vertically below the interaction zone and the other vertically above.
  • the sensation experienced in the interaction zone grows smaller/larger as the ultrasound focus is cone shaped. (in the figure, larger on the left image 70 and right image 90 , smaller in the middle image 80 ). This also has the effect of making the sensation stronger/weaker as the strength drops off moving away from the optimal focus (shown in the middle image 80 ).
  • Moving the focus up and down through the interaction zone also has a benefit with the tracking system. Less accuracy is required in the vertical direction. As shown in FIG. 3 , if interaction zone is moved up or down, it still experiences a sensation that grew bigger/smaller and stronger/weaker over time. This means that less accuracy in the vertical axis from the tracking system is needed, allowing for the use of a cheaper tracking system.
  • varying the focusing location can create a pulsing sensation. This has the effect of alternately focusing and defocusing the control point, which generates a lower fidelity pulsing. Although this is less effective, it may be potentially useful for situations in which a pre-baked, offline response that does not need active sensing is required.
  • the modulation waveform As the audible sound is created by the modulation waveform, it is possible to design the sound that is produced. For example, rather than modulating the focused ultrasound with a pure waveform, modulating it with the waveform of a “click” sound will result in an audible “click” sound being produced. Thus, the modulation waveform can be designed and dynamically changed to produce any audible sound.
  • the audible sound is produced most intensely at the focus and is directional. To the user, this means the sound appears to originate from the focus.
  • This may be of great use in a haptic system.
  • a mid-air button may be created by focusing the ultrasound onto the user's fingertip. The ultrasound can then be modulated with the waveform of a “click” sound. The user would perceive both a haptic click sensation and an audible “click” sound originating from their finger tip. Thus, both the haptic and audio feedback are created at the same location in mid-air.
  • the modulation waveform that provides the optimum haptic feedback will often differ from that which provides the optimum audible sound. For example, a modulation waveform that creates a pleasing “click” sound may provide a very weak tactile sensation or a modulation waveform that provides a strong tactile sensation may provide an annoying sound. When designing for a combination of haptic and audio feedback, it is therefore necessary to make trade-offs between the two.
  • a solution to this is to create multiple points of focus within the acoustic field.
  • Each of the points can be purposed with either creating a haptic effect or creating audible feedback.
  • one point can be positioned on the fingertip to create the haptic effect, while another can be positioned elsewhere in the acoustic field to create the audible sound.
  • the audible point would be positioned to avoid contact with the user, and thus would not be able to be felt.
  • Auditory masking of a sound occurs when the perception of one sound is affected or covered up by another sound.
  • the audible point can be positioned anywhere along the path between the transducers and the user's head or ear where it would then maximize the perceived volume of that sound.
  • the audible sound created by the haptic point would be reflected off the finger and away from the user. It would therefore be perceived as quieter.
  • the audible sound from the haptic point will be masked by the audible sound from the audible point and the user would only be able to hear the audible point.
  • Haptic and audible points can each have their own separate modulation waveforms. This allows each type of point to be modulated with the optimum waveform for their individually desired effect. Indeed, systems are not limited to having only two simultaneous points. It is possible to have many independent and simultaneous points of both haptic feedback and audible feedback.
  • transducer activation coefficients In order to create smooth transitions between any two complex spaces of transducer activation coefficients they should differ as little as possible. All sets of transducer activation coefficients have one spare degree of freedom: their absolute phase relative to some other activation coefficient pattern. By tying both to some arbitrary gauge point—such as making both as zero phase offset as possible—this reduces to a minimum the frequency shifts in the transducers required to move between the two patterns.
  • FIG. 4 shows an illustrative array of two transducers.
  • the focusing of this array is due to the relative phase offsets in the wave between both transducers, which is described by the angle between them.
  • Summing the complex-valued transducer activation coefficients of any particular pattern can be used to produce an average. Once computed, the complex conjugate of this average can be taken and made into a unit amplitude complex value. Then by multiplying each transducer activation coefficient with this value, the average phase offset becomes zero. This uses the spare degree of freedom to linearly minimize the changes experienced by each transducer, pushing the differences between the complex phase spaces of the transducer activation coefficients for infinitesimally different patterns towards zero, a key necessity for reducing abrupt changes in the acoustic field and transducer power consumption generally.
  • Non-modulated control points creating and destroying control points (increasing amplitude from or decreasing amplitude to zero) is associated with noise as the amplitude varies.
  • non-modulated control points may be created and move around on sets of curve pieces defined parametrically. While non-modulated control points will maximally reduce noise, “less modulated” control points may also reduce noise to a lesser extent (that is modulating the amplitude between 0.5-1 rather than 0-1).
  • the defined curves will either be closed, where the points will circulate continuously on the curve, or open, where the points will reverse direction. Alternatively, the points may “disappear” upon reaching the end of the curve. When multiple points highlight a single open curve it may be useful for them to swap positions when they become close enough to be perceived as a single point to prevent any perceptual or physical drop in output.
  • This open or closed path curve which may be implemented as a three-dimensional spline curve, is the fundamental building block of a system for creating spatio-temporally modulated feedback. Many of these curves running through three-dimensional space may function as contours and be used to create the impression of a shape or surface. A circular path with very small radius may be used to create the impression of a point.
  • feedback may be removed from places to create an impression of the negative space. For instance, a circle with a piece missing may be created to represent a haptic fiducial or generate an area of feeling with a conspicuously missing region.
  • haptics By emitting haptics around a space, an area may be highlighted without having to require it to be felt directly, for instance when the area in question must be kept clear of hands or limbs for visibility reasons.
  • the haptic sensation from the control point is generated through the action of the spatio-temporal strobe effect. Since the source of the haptic effect is distinct and different from amplitude modulation, amplitude modulation may be used with non-haptic audible content while also creating high-quality haptic sensation at the same time in the same point, line or shape.
  • Audible output is correlated with temporal changes in the acoustic field, which must therefore be as smooth and reduced as possible.
  • high speed updates preferably greater than 2 kHz
  • Modulating in this manner may use much lower strobing frequencies than would be expected by simply considering mechanoreceptors or the density of focused power in time. Therefore, combining both spatio-temporal and amplitude modulation of control points at once can also be used produce stronger haptic feedback. Different rhythms of control point motion may also be used to provide different textures, and thus the amplitude modulation can provide texture to the spatio-temporally modulated control points or vice versa.
  • Creating a point and moving it without modulating in amplitude may haptically actuate a path in the air.
  • a haptic effect may be generated on the path in the air.
  • Making the path longer increases the path distance and thus the speed needed for the point to achieve a given frequency. Consequently, this reduces the power density available for creating feedback.
  • Multiple points may haptically actuate a path to create a more even distribution around the path at a given frequency. But this reduces the power that can be brought to bear at these points.
  • a further significant limitation is that the path must be closed or audible sound will result due to the discontinuities involved in open paths, such as for instance, a distinct point or line segment.
  • an increase in the amount of power at given points on the path can be realized through the construction of a self-intersecting curve that crosses over itself one or more times in space.
  • harmonics of the base path frequency can be expressed.
  • This change in the frequency behavior also increases the power at the crossing point, enabling a rich palette of behaviors to be realized in the crossing region that are in contrast to other locations along the path.
  • This intersection may also be engineered to make only the intersection within the detectable frequency range of human touch, or only the intersection outside the frequency range and thus haptically undetectable. It also enables both the specific and broad targeting of different mechanoreceptors in the skin. In many scenarios, the absence of haptic feedback in an area surrounded by haptic feedback may be felt more strongly than the feedback itself.
  • the points moving along the curves defined at a precise location have a real physical size.
  • the abstract notion of “curves” does not reflect the size of the points, so in many cases the abstract curves do not have to intersect, but instead the area of effect of the point merely has to be overlapping to realize an increase in average power and frequency. Due to this, a set of paths or self-intersecting curves can potentially lead to unanticipated haptic results. Therefore, the produced haptic patterns may be best visualized using a frequency/occupancy graph and such a frequency/occupancy graph can be transformed to and from a representative haptic curve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Otolaryngology (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Computing Systems (AREA)
  • User Interface Of Digital Computer (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

A system providing various improved perceptions techniques for haptic feedback above interactive surfaces that require no contact with either tools, attachments or the surface itself is described. A range of receptors in a perceiving member which is part of the human body is identified to create substantially uniformly perceivable feedback. A vibration frequency that is in the range of the receptors in the perceiving member is chosen and dynamically altered to create substantially uniformly perceivable feedback throughout the receiving member.

Description

RELATED APPLICATION
This application claims the benefit of the following four U.S. Provisional Patent Applications, all of which are incorporated by reference in their entirety:
1. Ser. No. 62/118,560, filed on Feb. 20, 2015.
2. Ser. No. 62/193,234, filed on Jul. 16, 2015.
3. Ser. No. 62/206,393, filed on Aug. 18, 2015.
4. Ser. No. 62/275,216, filed on Jan. 5, 2016.
FIELD OF THE DISCLOSURE
The present disclosure relates generally to improved perception techniques in haptic-based systems.
BACKGROUND
Multi-touch surfaces have become common in public settings, with large displays appearing in hotel lobbies, shopping malls and other high foot traffic areas. These systems are able to dynamically change their interface allowing multiple users to interact at the same time and with very little instruction.
There are situations when receiving haptic feedback before touching the surface would be beneficial. These include when vision of the display is restricted, such as while driving, and when the user doesn't want to touch the device, such as when their hands are dirty. Providing feedback above the surface would also allow for an additional information channel alongside the visual.
A mid-air haptic feedback system creates tactile sensations in the air. One way to create mid-air haptic feedback is using ultrasound. A phased array of ultrasonic transducers is used to exert an acoustic radiation force on a target. This continuous distribution of sound energy, which will be referred to herein as an “acoustic field”, is useful for a range of applications, including haptic feedback.
Accordingly, a system that provides various improved perceptions techniques for haptic feedback above interactive surfaces and requires no contact with either tools, attachments or the surface itself is desirable.
BRIEF DESCRIPTION OF THE FIGURES
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
FIG. 1 is a representation of shapes made in a haptic system.
FIG. 2 is an illustration of an example series of five haptic control points simultaneously produced in the plane of interaction.
FIG. 3 is a selection of acoustic field simulations where in the control point is moved through the plane of interaction.
FIG. 4 is an illustrative view of unconstrained and constrained transducers.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
DETAILED DESCRIPTION I. Challenges of Creating Acoustic Fields in Haptic Systems
It is known to control an acoustic field by defining one or more control points in a space within which the acoustic field may exist. Each control point is assigned an amplitude value equating to a desired amplitude of the acoustic field at the control point. Transducers are then controlled to create an acoustic field exhibiting the desired amplitude at each of the control points.
A. Human Hand Properties
Vibration is detected by mechanoreceptors within the skin. The mechanoreceptors within the skin are responsive to vibrations in the range 0.4 Hz to 500 Hz. The emitted ultrasound may be modulated in order to create vibrations within the optimum frequency range detectable by the human hand. By changing the modulation frequency, it may also change the frequency of the vibration on the hand and this can be used to create different tactile properties. Modulating different focal points at different frequencies can give each point of feedback its own independent “feel”. In this way it is possible to correlate haptic and visual feedback and also attach meaning to noticeably different textures so that information can be transferred to the user via the haptic feedback.
Specifically, when human skin interacts with the acoustic field, vibrations of the skin are interpreted by mechanoreceptors being excited and sending signals to the brain via the nervous system. For example, the palmar surface of the hand has 4 different types of mechanoreceptors, each of which responds to a different range of frequencies. The force required to trigger each of these receptors varies with the frequency of the vibration. For example, the Pacinian corpuscle has its lowest activation threshold at around 200 Hz, while the Meissner corpuscle is most sensitive between 10-50 Hz.
These receptors are distributed in differing densities throughout the skin. For example, a 200 Hz vibration will not feel as strong on the finger tips as on the palm of the hand, due to there being a larger concentration of the Pacinian corpuscle in the hand.
Ultrasound haptic feedback systems create a vibro-tactile sensation upon the skin of a user of the system. The focused ultrasound creates enough force at the point of intersection to slightly displace the skin of a user. Typically, ultrasound haptic feedback systems use ultrasound with a frequency at or above 40 kHz, which is above the threshold for receptors in the skin to feel. Therefore, a user can only detect the onset and cessation of such focused ultrasound. In order to provide a sensation that is detectable by the receptors in skin, the focused ultrasound is modulated at a lower frequency, within the detectable range of the receptors. This range is typically from 1 Hz to 500 Hz.
When creating a system with mid-air tactile feedback, it is important to select the correct frequency of vibration for the part of skin that is being targeted. For example, if the hand is targeted, a vibration frequency of 110 Hz is a good choice as it can be felt across all parts of the hand, albeit to varying degrees of strength.
B. Transmitting Ultrasound Signals for Haptic Feedback
Tactile sensations on human skin can be created by using a phased array of ultrasound transducers to exert an acoustic radiation force on a target in mid-air. Ultrasound waves are transmitted by the transducers, with the phase emitted by each transducer adjusted such that the waves arrive concurrently at the target point in order to maximize the acoustic radiation force exerted.
By defining one or more control points in space, the acoustic field can be controlled. Each point can be assigned a value equating to a desired amplitude at the control point. A physical set of transducers can then be controlled to create an acoustic field exhibiting the desired amplitude at the control points.
A side effect of this technique is that the ultrasound breaks down and creates a sound at the modulation frequency. Therefore, when creating tactile feedback with a 200 Hz modulation frequency, a 200 Hz sound is also produced. This audible sound may be annoying to users and can be a barrier to ultrasound haptic technology being adopted.
The optimal conditions for producing an acoustic field of a single frequency can be realized by assigning activation coefficients to represent the initial state of each transducer. However, in order to create haptic feedback, the field can be modulated with a signal of a potentially lower frequency. For example, an acoustic field of 40 kHz may be modulated with a 200 Hz frequency in order to achieve a 200 Hz vibro-tactile effect. Methods to generate this vibro-tactile effect may reduce audible content by smoothly interpolating the transducer activation coefficients between discrete and disjoint sets of control points, resulting in smooth sinusoidal amplitude variations at the control point locations. These sinusoidal amplitude variations cause a pure tone to be generated. A pure tone, although much lower in perceptual loudness than the disparate frequency content caused by abruptly changing the state of the transducers, remains audible.
It is known that the modulation waveform can be shaped to reduce the volume of the audible noise that is created (as described for example in UK Patent Application No. 1415923.0). In general, reducing and avoiding sharp changes in pressure level at the focus will reduce the loudness of the audible sound. For example, modulation with a pure square wave will produce a louder audible sound than modulation with a pure sine wave.
Further, in this acoustic field, one or more control points can be defined. These control points can be amplitude modulated with a signal and as a result produce vibro-tactile feedback in mid-air. An alternative method to produce feedback is to create control points that may not be modulated in amplitude and instead move them around spatially to create spatio-temporal modulation that can be felt. Both methods may be then used separately or together in order to produce sound and different textures.
II. Creating Uniform Feeling in a Haptic System
A. Steps to Create Optimized Haptic Feedback
The steps to create optimized haptic feedback using multiplexed frequencies include the following:
1. Knowing the distribution and frequency response range of receptors in the skin, create uniformly perceivable feedback.
2. Selecting a frequency that is in the range of all receptors.
3. Optimizing the vibration frequencies to not just be perceivable, but the best possible vibration frequency for a strong or high quality feeling.
4. Dynamically adjusting the vibration frequency to always be at the optimal frequency.
5. Multiplexing multiple frequencies to create a vibration that provides an optimum level of strength and quality across the whole target area.
B. Optimization of Haptic Feedback
In order to optimize the quality and perceived strength of the feedback, it is possible to dynamically vary the vibration frequency as the interaction is carried out. For example, in the situation of a tactile threshold, where a hand passes through some fixed plane and has a line of vibration created at the intersection of the hand and that plane, the frequency of the vibration can be adjusted in real time to optimize for the area of the hand currently being vibrated. One possibility is that the fingers receive a 100 Hz vibration while the center of the palm receives a 200 Hz vibration.
This dynamic adjustment is also possible with multiple points of feedback. For example a mid-air array of buttons could be represented by one localized point of vibration in the air for each button. As a hand moves over the array of buttons to explore their position and orientation, the vibration frequency of each button could adjust in real time to match the optimum frequency for the part of the hand it is targeted at.
There are also many situations where dynamic adjustment is not possible or not desirable. For example, the tracking system may not be sophisticated to determine discrete parts of the hand or the required processing power may be too high.
In these situations, it may be possible to multiplex frequencies to provide some uniform coverage across the area of skin being targeted. For example, when targeting a hand, a point of feedback could be multiplexed with both 100 Hz and 200 Hz. The palm would respond strongly to the 200 Hz component while the finger tips would respond strongest to the 100 Hz component. In so doing, a point of feedback that can be uniformly felt across the hand is established.
III. Creating Distinct Shapes and Corners
Using vibrations to generate mid-air haptic shapes leads to difficulties with corners. Haptic edge detection has been shown to require highly localized skin displacement (stretching) and at the ultrasonic frequencies currently used this is not possible. Edges can be reliably detected, but corners are not large enough features to be easily recognizable.
The use of points of high pressure in the ultrasonic field convey vibrations and are called “control points.” They provide local feedback in an area around a wavelength in a small diameter (such as 8.6 mm @ 40 kHz). The control points may be arranged in 3D space programmatically to create the feeling of a shape in space.
There is a de facto maximum density for control points of about two wavelengths (˜2 cm @ 40 kHz) apart, as diminishing returns in fidelity are exchanged for increased noise. This means that when using the curvature-dependent control point density, edge fidelity must be sacrificed in order for corner points to be noticeable. In many situations, even this is not enough to render corners in haptic shapes distinguishable.
To enhance corners, it is possible to warps the edges of the shape inwards to emphasize corners in space, creating a haptic representation accentuated in a fashion that enables the perception of corners from spatial cues.
Turning to FIG. 1 , shown in the left box 10 is a shape without corner-enhancing warping. Shown in the center box 20 of FIG. 1 is a corner-enhancing warp function applied to highlight the corners haptically. Shown in the right box 30 of FIG. 1 is a function where further warping has been applied, showing that the effect is tunable depending on the circumstances and the effect desired.
Once the shape warping has been achieved, other techniques for enhancing corners can also be used. Specifically, the curvature dependent control point density and the rotation of the points in time may be altered to produce a desired effect. This shape warping may be applied to sections of 3D geometry to create haptic 3D geometry with distinct corners to increase haptic fidelity. This may also be applied as a process to highlight salient features in shapes for attracting attention.
IV. Creating Pulsing Points
Due to awareness of the de facto limit of control point definition and density, it is possible to create pulsing points that are haptically pleasing. By forcing control points close together, they merge and become a smaller, weaker vibration. By rotating them and bringing them closer and further apart, a localized pulsing sensation can be generated that can haptically give a standby or ready prompt.
Turning to FIG. 2 , shown is an illustration of an example series of five control points simultaneously produced in the plane of interaction. The points in the figure have a diameter of a wavelength. The five points spin quickly so they are not distinguishable. In the left panel 40 of FIG. 2 , the five points spin and are far enough apart for them to be perceived as a single large haptic point. The central panel 50 shows that as the points orbit closer together the haptic point shrinks and becomes weaker. In the right panel 60, the five control points have merged to become a single control point. The process is then reversed to increase the size and strength of the haptic point and this system is then cycled to generate a pulsing sensation. This results in a point which feels larger and smaller with time to produce a haptically pleasing pulsing effect. As such, FIG. 2 shows a set of points, spinning in a circle with the diameter of the circle growing smaller/bigger over time. (An alternative method to the spinning circle is to move the focus between two locations.)
Turning to FIG. 3 , shown is a selection of acoustic field simulations where in the control point is moved through the plane of interaction (shown approximately by the inset black bordered box). The small filled black circles along the bottom edge of each figure represent transducer elements that have been configured to reproduce a control point. In the left panel 70 the control point is created below the plane of interaction, resulting in no focusing in the interaction space. As the focus moves up, the interaction space contains the control point as shown in the central panel 80. Finally, in the right panel 90 the focus has moved up through and out of the interaction space. This process is then reversed and cycled to produce the pulsing sensation. Thus, by moving the control point backwards and forwards through the inset box, a pulsing sensation can be produced throughout the central region. User detection in this scenario can be much more crude, e.g. a light sensor in the central area.
The objective as shown in these figures is to create a “pulsating” sensation. “Pulsating” is defined to be a sensation that grows both stronger/weaker and bigger/smaller over time. (By comparison, a simple modulation only grows stronger/weaker over time.)
Further, FIG. 3 shows one possible example, where the focus is linearly interpolated between two positions, one vertically below the interaction zone and the other vertically above. As the focus moves up and down, the sensation experienced in the interaction zone grows smaller/larger as the ultrasound focus is cone shaped. (in the figure, larger on the left image 70 and right image 90, smaller in the middle image 80). This also has the effect of making the sensation stronger/weaker as the strength drops off moving away from the optimal focus (shown in the middle image 80).
Moving the focus up and down through the interaction zone also has a benefit with the tracking system. Less accuracy is required in the vertical direction. As shown in FIG. 3 , if interaction zone is moved up or down, it still experiences a sensation that grew bigger/smaller and stronger/weaker over time. This means that less accuracy in the vertical axis from the tracking system is needed, allowing for the use of a cheaper tracking system.
Alternatively, varying the focusing location can create a pulsing sensation. This has the effect of alternately focusing and defocusing the control point, which generates a lower fidelity pulsing. Although this is less effective, it may be potentially useful for situations in which a pre-baked, offline response that does not need active sensing is required.
V. Combining and Designing Audible and Haptic Feedback
A. Designing the Audible Feedback
As the audible sound is created by the modulation waveform, it is possible to design the sound that is produced. For example, rather than modulating the focused ultrasound with a pure waveform, modulating it with the waveform of a “click” sound will result in an audible “click” sound being produced. Thus, the modulation waveform can be designed and dynamically changed to produce any audible sound.
When using focused ultrasonic carrier waves, the audible sound is produced most intensely at the focus and is directional. To the user, this means the sound appears to originate from the focus. This may be of great use in a haptic system. For example, a mid-air button may be created by focusing the ultrasound onto the user's fingertip. The ultrasound can then be modulated with the waveform of a “click” sound. The user would perceive both a haptic click sensation and an audible “click” sound originating from their finger tip. Thus, both the haptic and audio feedback are created at the same location in mid-air.
B. Separating Audio and Haptic Feedback
The modulation waveform that provides the optimum haptic feedback will often differ from that which provides the optimum audible sound. For example, a modulation waveform that creates a pleasing “click” sound may provide a very weak tactile sensation or a modulation waveform that provides a strong tactile sensation may provide an annoying sound. When designing for a combination of haptic and audio feedback, it is therefore necessary to make trade-offs between the two.
A solution to this is to create multiple points of focus within the acoustic field. Each of the points can be purposed with either creating a haptic effect or creating audible feedback. In the simple button click example, one point can be positioned on the fingertip to create the haptic effect, while another can be positioned elsewhere in the acoustic field to create the audible sound. In this scenario, the audible point would be positioned to avoid contact with the user, and thus would not be able to be felt.
C. Auditory Masking of the Haptic Effect by the Auditory Sound
Auditory masking of a sound occurs when the perception of one sound is affected or covered up by another sound. As the sound from the focused ultrasound is directional, the audible point can be positioned anywhere along the path between the transducers and the user's head or ear where it would then maximize the perceived volume of that sound. By contrast, the audible sound created by the haptic point would be reflected off the finger and away from the user. It would therefore be perceived as quieter. Thus, the audible sound from the haptic point will be masked by the audible sound from the audible point and the user would only be able to hear the audible point.
Haptic and audible points can each have their own separate modulation waveforms. This allows each type of point to be modulated with the optimum waveform for their individually desired effect. Indeed, systems are not limited to having only two simultaneous points. It is possible to have many independent and simultaneous points of both haptic feedback and audible feedback.
VI. Spatio-Temporal Modulation in Haptic Systems
A. Absolute Phase Offset
In order to create smooth transitions between any two complex spaces of transducer activation coefficients they should differ as little as possible. All sets of transducer activation coefficients have one spare degree of freedom: their absolute phase relative to some other activation coefficient pattern. By tying both to some arbitrary gauge point—such as making both as zero phase offset as possible—this reduces to a minimum the frequency shifts in the transducers required to move between the two patterns.
This is illustrated in FIG. 4 , which shows an illustrative array of two transducers. The focusing of this array is due to the relative phase offsets in the wave between both transducers, which is described by the angle between them. In the unconstrained example, on the left, the phase at time t=0 100 has to change considerably in order to reach the complex activation coefficients defined for time t=1 110. This induces transient behavior, frequency shifting and power inefficiency when scaled across many transducers. In the constrained example on the right however, the sum of the transducer coefficients has been constrained to the real line at t=0 120 and t=1 130, facilitating a small change in angle to obtain the appropriate relative phase.
Summing the complex-valued transducer activation coefficients of any particular pattern can be used to produce an average. Once computed, the complex conjugate of this average can be taken and made into a unit amplitude complex value. Then by multiplying each transducer activation coefficient with this value, the average phase offset becomes zero. This uses the spare degree of freedom to linearly minimize the changes experienced by each transducer, pushing the differences between the complex phase spaces of the transducer activation coefficients for infinitesimally different patterns towards zero, a key necessity for reducing abrupt changes in the acoustic field and transducer power consumption generally.
B. Spatio-Temporal Modulation of Points, Lines and Shapes
Creating and destroying control points (increasing amplitude from or decreasing amplitude to zero) is associated with noise as the amplitude varies. To maximally reduce noise, non-modulated control points may be created and move around on sets of curve pieces defined parametrically. While non-modulated control points will maximally reduce noise, “less modulated” control points may also reduce noise to a lesser extent (that is modulating the amplitude between 0.5-1 rather than 0-1).
The defined curves will either be closed, where the points will circulate continuously on the curve, or open, where the points will reverse direction. Alternatively, the points may “disappear” upon reaching the end of the curve. When multiple points highlight a single open curve it may be useful for them to swap positions when they become close enough to be perceived as a single point to prevent any perceptual or physical drop in output.
This open or closed path curve, which may be implemented as a three-dimensional spline curve, is the fundamental building block of a system for creating spatio-temporally modulated feedback. Many of these curves running through three-dimensional space may function as contours and be used to create the impression of a shape or surface. A circular path with very small radius may be used to create the impression of a point.
Since this technique requires less focusing time to produce the same response, larger areas may be haptically actuated. For instance, ‘painting’ an area using a control point may be used to create a wider region in space that can be felt to stimulate more receptors in the skin.
Due to the wide area that can be actuated, feedback may be removed from places to create an impression of the negative space. For instance, a circle with a piece missing may be created to represent a haptic fiducial or generate an area of feeling with a conspicuously missing region. By emitting haptics around a space, an area may be highlighted without having to require it to be felt directly, for instance when the area in question must be kept clear of hands or limbs for visibility reasons.
C. Parametric Sound from a Control Point
The haptic sensation from the control point is generated through the action of the spatio-temporal strobe effect. Since the source of the haptic effect is distinct and different from amplitude modulation, amplitude modulation may be used with non-haptic audible content while also creating high-quality haptic sensation at the same time in the same point, line or shape.
The ultimate goal of the technology is to produce a silent operation. Audible output is correlated with temporal changes in the acoustic field, which must therefore be as smooth and reduced as possible. To create this effect, it is possible to move the control points of the ultrasonic focused patterns around smoothly using high speed updates (preferably greater than 2 kHz) to produce sensations at target points, lines and shapes rather than creating them unchanging in time with much higher intensity ultrasonic devices or manipulating their amplitude in time.
Modulating in this manner may use much lower strobing frequencies than would be expected by simply considering mechanoreceptors or the density of focused power in time. Therefore, combining both spatio-temporal and amplitude modulation of control points at once can also be used produce stronger haptic feedback. Different rhythms of control point motion may also be used to provide different textures, and thus the amplitude modulation can provide texture to the spatio-temporally modulated control points or vice versa.
VII. Frequency Control Using Self-Intersecting Curves
Creating a point and moving it without modulating in amplitude may haptically actuate a path in the air. By making the point follow a path repeatedly at a given speed and a constant frequency, a haptic effect may be generated on the path in the air. Making the path longer increases the path distance and thus the speed needed for the point to achieve a given frequency. Consequently, this reduces the power density available for creating feedback. Multiple points may haptically actuate a path to create a more even distribution around the path at a given frequency. But this reduces the power that can be brought to bear at these points. A further significant limitation is that the path must be closed or audible sound will result due to the discontinuities involved in open paths, such as for instance, a distinct point or line segment.
One way to overcome these issues is to slow or accelerate the points as they move along a curve. However, when used with spatio-temporal modulation this has limitations both in that the frequency cannot be different for different points along the path, and that if the point slows too greatly it becomes less perceptible as it moves out of the range of frequencies perceptible haptically. Conversely, if the point moves too quickly along its path, it can create further air disturbances and thus audible noise.
Instead of simply changing the speed of the points, an increase in the amount of power at given points on the path can be realized through the construction of a self-intersecting curve that crosses over itself one or more times in space. In the local neighborhood of the intersection points, harmonics of the base path frequency can be expressed. This change in the frequency behavior also increases the power at the crossing point, enabling a rich palette of behaviors to be realized in the crossing region that are in contrast to other locations along the path. This intersection may also be engineered to make only the intersection within the detectable frequency range of human touch, or only the intersection outside the frequency range and thus haptically undetectable. It also enables both the specific and broad targeting of different mechanoreceptors in the skin. In many scenarios, the absence of haptic feedback in an area surrounded by haptic feedback may be felt more strongly than the feedback itself.
Multiple paths that intersect one or more times may also be created; this will produce a pattern of haptic cadence that embodies a particular rhythm or texture. This does not necessarily mean that the path or paths should be repeatable or the crossing point of the curve at the same position each time. In some cases, due to the movement of the individually-considered points being too fast or weak to feel, it can be engineered such that the crossing point or points are haptically highlighted due to the self-intersection. In each case, these multiple crossing or self-intersecting curves may contain either or both point regions and path segments wherein the curves occupy the same space.
The points moving along the curves defined at a precise location have a real physical size. The abstract notion of “curves” does not reflect the size of the points, so in many cases the abstract curves do not have to intersect, but instead the area of effect of the point merely has to be overlapping to realize an increase in average power and frequency. Due to this, a set of paths or self-intersecting curves can potentially lead to unanticipated haptic results. Therefore, the produced haptic patterns may be best visualized using a frequency/occupancy graph and such a frequency/occupancy graph can be transformed to and from a representative haptic curve.
VIII. Conclusion
The various features of the foregoing embodiments may be selected and combined to produce numerous variations of improved haptic-based systems.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”. “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims (15)

We claim:
1. A method comprising: i) producing an acoustic field from a transducer array having known relative positions and orientations; ii) defining a plurality of control points wherein each of the plurality of control points has a known spatial relationship relative to the transducer array; iii) engaging in rhythms of motion of at least one of the control points that correlated with temporal changes in the acoustic field to produce a desired audible sound.
2. The method as in claim 1, wherein the acoustic field is produced by a mid-air haptic feedback system.
3. The method as in claim 1, wherein the desired audible sound is perceived to be originating from the at least one of the plurality of control points.
4. The method as in claim 1, further comprising modulating the acoustic field associated with at least one of the plurality of control points to produce localized haptic feedback in the same general location as the desired audible sound.
5. The method as in claim 4, wherein the localized haptic feedback is separated from the desired audible sound wave so that the desired audible sound produces perceivable haptic feedback below a preset threshold.
6. The method as in claim 4, wherein the desired audible sound is perceived by a user to be louder than the audible sound produced by the localized haptic feedback.
7. A method comprising: i) producing an acoustic field from a transducer array having known relative positions and orientations; ii) defining a plurality of control points wherein each of the plurality of control points has a known spatial relationship relative to the transducer array; iii) modulating a position of at least one of the plurality of control points to produce a desired audible sound; and v) creating a plurality of points of focus within the acoustic field, wherein a haptic effect is at a first point of focus and a desired audible sound is at the second point of focus; vi) creating a pulsing sensation by manipulating location of the plurality of control points so that the pulsation sensation grows both stronger/weaker and bigger/smaller over time.
8. The method as in claim 7, wherein the acoustic field is produced by a mid-air haptic feedback system.
9. The method as in claim 7, wherein the first point of focus is in a different location than the second point of focus.
10. The method as in claim 7, wherein the desired audible sound is perceived to be originating from the at least one of the plurality of control points.
11. The method as in claim 7, further comprising modulating the acoustic field associated with at least one of the plurality of control points to produce localized haptic feedback in the same general location as the desired audible sound.
12. The method as in claim 11, wherein the localized haptic feedback is separated from the desired audible sound wave so that the desired audible sound produces perceivable haptic feedback below a preset threshold.
13. The method as in claim 11, wherein the desired audible sound is perceived by a user to be louder than the audible sound produced by the localized haptic feedback.
14. The method as in claim 11, wherein the desired audible sound is perceived by a user primarily from the first point of focus.
15. The method as in claim 11, wherein the desired audible sound is perceived by a user primarily from the second point of focus.
US17/176,899 2015-02-20 2021-02-16 Perceptions in a haptic system Active US11550432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/176,899 US11550432B2 (en) 2015-02-20 2021-02-16 Perceptions in a haptic system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562118560P 2015-02-20 2015-02-20
US201562193234P 2015-07-16 2015-07-16
US201562206393P 2015-08-18 2015-08-18
US201662275216P 2016-01-05 2016-01-05
US15/047,757 US9841819B2 (en) 2015-02-20 2016-02-19 Perceptions in a haptic system
US15/821,292 US10101814B2 (en) 2015-02-20 2017-11-22 Perceptions in a haptic system
US16/159,695 US10930123B2 (en) 2015-02-20 2018-10-14 Perceptions in a haptic system
US17/176,899 US11550432B2 (en) 2015-02-20 2021-02-16 Perceptions in a haptic system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/159,695 Continuation US10930123B2 (en) 2015-02-20 2018-10-14 Perceptions in a haptic system

Publications (2)

Publication Number Publication Date
US20210183215A1 US20210183215A1 (en) 2021-06-17
US11550432B2 true US11550432B2 (en) 2023-01-10

Family

ID=55456835

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/047,757 Active 2036-06-12 US9841819B2 (en) 2015-02-20 2016-02-19 Perceptions in a haptic system
US15/821,292 Active US10101814B2 (en) 2015-02-20 2017-11-22 Perceptions in a haptic system
US16/159,695 Active US10930123B2 (en) 2015-02-20 2018-10-14 Perceptions in a haptic system
US17/176,899 Active US11550432B2 (en) 2015-02-20 2021-02-16 Perceptions in a haptic system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US15/047,757 Active 2036-06-12 US9841819B2 (en) 2015-02-20 2016-02-19 Perceptions in a haptic system
US15/821,292 Active US10101814B2 (en) 2015-02-20 2017-11-22 Perceptions in a haptic system
US16/159,695 Active US10930123B2 (en) 2015-02-20 2018-10-14 Perceptions in a haptic system

Country Status (13)

Country Link
US (4) US9841819B2 (en)
EP (3) EP3916525B1 (en)
JP (3) JP2018507485A (en)
KR (1) KR102515997B1 (en)
CN (1) CN107407969B (en)
AU (1) AU2016221500B2 (en)
CA (1) CA2976312C (en)
ES (2) ES2731673T3 (en)
HK (1) HK1245937B (en)
IL (1) IL254036B (en)
MX (1) MX2017010254A (en)
SG (1) SG11201706557SA (en)
WO (1) WO2016132144A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624815B1 (en) 2013-05-08 2023-04-11 Ultrahaptics Ip Ltd Method and apparatus for producing an acoustic field
US11656686B2 (en) 2014-09-09 2023-05-23 Ultrahaptics Ip Ltd Method and apparatus for modulating haptic feedback
US11715453B2 (en) 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
US11714492B2 (en) 2016-08-03 2023-08-01 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US11727790B2 (en) 2015-07-16 2023-08-15 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US11742870B2 (en) 2019-10-13 2023-08-29 Ultraleap Limited Reducing harmonic distortion by dithering
US11740018B2 (en) 2018-09-09 2023-08-29 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
US11830351B2 (en) 2015-02-20 2023-11-28 Ultrahaptics Ip Ltd Algorithm improvements in a haptic system
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
US11886639B2 (en) 2020-09-17 2024-01-30 Ultraleap Limited Ultrahapticons
US11883847B2 (en) 2018-05-02 2024-01-30 Ultraleap Limited Blocking plate structure for improved acoustic transmission efficiency
US11921928B2 (en) 2017-11-26 2024-03-05 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
US11955109B2 (en) 2016-12-13 2024-04-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010012B2 (en) * 2013-12-03 2016-10-19 富士フイルム株式会社 Conductive sheet, capacitive touch panel and display device
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
JPWO2015121955A1 (en) * 2014-02-14 2017-03-30 富士通株式会社 Electronic device, input device, and drive control method
US9841819B2 (en) * 2015-02-20 2017-12-12 Ultrahaptics Ip Ltd Perceptions in a haptic system
US11189140B2 (en) 2016-01-05 2021-11-30 Ultrahaptics Ip Ltd Calibration and detection techniques in haptic systems
US10531212B2 (en) 2016-06-17 2020-01-07 Ultrahaptics Ip Ltd. Acoustic transducers in haptic systems
US10755538B2 (en) 2016-08-09 2020-08-25 Ultrahaptics ilP LTD Metamaterials and acoustic lenses in haptic systems
US10497358B2 (en) 2016-12-23 2019-12-03 Ultrahaptics Ip Ltd Transducer driver
CN107066096A (en) * 2017-04-10 2017-08-18 苏春 A kind of tactile sensor and method based on ultrasonic phase array
US20180304310A1 (en) * 2017-04-24 2018-10-25 Ultrahaptics Ip Ltd Interference Reduction Techniques in Haptic Systems
FR3065548B1 (en) 2017-04-24 2022-02-04 Commissariat Energie Atomique TACTILE STIMULATION INTERFACE BY TIME REVERSAL OFFERING ENRICHED SENSATIONS
US20190197840A1 (en) * 2017-04-24 2019-06-27 Ultrahaptics Ip Ltd Grouping and Optimization of Phased Ultrasonic Transducers for Multi-Field Solutions
DE102017116012A1 (en) * 2017-07-17 2019-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. DISPLAY DEVICES AND PIXEL FOR ONE DISPLAY DEVICE
AU2018306524A1 (en) * 2017-07-27 2019-12-05 Alcon Inc. Controlling a laser surgical device with a sensation generator and a gesture detector
US11048329B1 (en) 2017-07-27 2021-06-29 Emerge Now Inc. Mid-air ultrasonic haptic interface for immersive computing environments
AU2018307696A1 (en) 2017-07-27 2019-12-05 Alcon Inc. Controlling a laser surgical device with a sensation generator
CN110998489B (en) * 2017-08-07 2022-04-29 索尼公司 Phase calculation device, phase calculation method, haptic display system, and program
JP7094088B2 (en) * 2017-10-19 2022-07-01 株式会社デンソーテン Operation input device
KR102409934B1 (en) * 2017-11-21 2022-06-16 한국전자통신연구원 Multiple focuses generating apparatus and method using multi-ultrasonic transducer array in non-contact ultrasonic tactile display system
KR102419106B1 (en) * 2017-12-04 2022-07-08 한국전자통신연구원 Tactile display apparatus and method using non-contact ultrasonic tactile display
JP7483610B2 (en) * 2017-12-22 2024-05-15 ウルトラハプティクス アイピー リミテッド Minimizing unwanted responses in haptic systems
WO2019122912A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Tracking in haptic systems
US20190310710A1 (en) * 2018-04-04 2019-10-10 Ultrahaptics Limited Dynamic Haptic Feedback Systems
US11709550B2 (en) * 2018-06-19 2023-07-25 Sony Corporation Information processing apparatus, method for processing information, and program
US11378997B2 (en) 2018-10-12 2022-07-05 Ultrahaptics Ip Ltd Variable phase and frequency pulse-width modulation technique
US11132060B2 (en) 2018-12-04 2021-09-28 International Business Machines Corporation Collaborative interactions and feedback with midair interfaces
US11550395B2 (en) 2019-01-04 2023-01-10 Ultrahaptics Ip Ltd Mid-air haptic textures
US11067687B2 (en) 2019-04-25 2021-07-20 Elwha, Llc Multipath acoustic holography and virtual haptics
FR3095542B1 (en) * 2019-04-26 2023-12-01 Hap2U Haptic feedback device provided with stiffeners
US10916107B1 (en) * 2019-07-29 2021-02-09 Elwha Llc Time-domain and frequency-domain enhancements for acoustic haptography
JP7406328B2 (en) * 2019-09-10 2023-12-27 株式会社東海理化電機製作所 Control device, control method, and program
JP7282639B2 (en) 2019-09-10 2023-05-29 株式会社東海理化電機製作所 Control device, control method and program
US11553295B2 (en) 2019-10-13 2023-01-10 Ultraleap Limited Dynamic capping with virtual microphones
WO2021090028A1 (en) 2019-11-08 2021-05-14 Ultraleap Limited Tracking techniques in haptics systems
US11054910B1 (en) 2020-03-02 2021-07-06 Emerge Now Inc. System and method for producing mid-air tactile stimulation
CN111459324B (en) * 2020-03-30 2023-06-30 北京工业大学 Ultrasonic lamb wave touch screen
JP2023113979A (en) * 2020-07-08 2023-08-17 株式会社ニコン Sound field generation device, sound field generation method, and sound field generation program
US12032770B2 (en) 2020-11-23 2024-07-09 Toyota Motor Engineering & Manufacturing North America, Inc. Haptic array device and control of focus point height and focus point direction
US20230215248A1 (en) * 2022-01-02 2023-07-06 Ultraleap Limited Mid-Air Haptic Generation Analytic Techniques
US12037008B2 (en) 2022-04-07 2024-07-16 Toyota Research Institute, Inc. Systems and methods for communicating a blending parameter

Citations (279)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218921A (en) 1979-07-13 1980-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for shaping and enhancing acoustical levitation forces
EP0057594A2 (en) 1981-01-30 1982-08-11 Exxon Research And Engineering Company Ink jet apparatus
US4771205A (en) 1983-08-31 1988-09-13 U.S. Philips Corporation Ultrasound transducer
EP0309003A2 (en) 1984-02-15 1989-03-29 Trw Inc. Surface acoustic wave spectrum analyzer
US4881212A (en) 1986-04-25 1989-11-14 Yokogawa Medical Systems, Limited Ultrasonic transducer
WO1991018486A1 (en) 1990-05-14 1991-11-28 Commonwealth Scientific And Industrial Research Organisation A coupling device
US5226000A (en) 1988-11-08 1993-07-06 Wadia Digital Corporation Method and system for time domain interpolation of digital audio signals
US5243344A (en) 1991-05-30 1993-09-07 Koulopoulos Michael A Digital-to-analog converter--preamplifier apparatus
US5329682A (en) 1991-02-07 1994-07-19 Siemens Aktiengesellschaft Method for the production of ultrasound transformers
US5422431A (en) 1992-02-27 1995-06-06 Yamaha Corporation Electronic musical tone synthesizing apparatus generating tones with variable decay rates
US5426388A (en) 1994-02-15 1995-06-20 The Babcock & Wilcox Company Remote tone burst electromagnetic acoustic transducer pulser
US5477736A (en) 1994-03-14 1995-12-26 General Electric Company Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy
EP0696670A1 (en) 1994-08-11 1996-02-14 Nabco Limited Automatic door opening and closing system
US5511296A (en) 1994-04-08 1996-04-30 Hewlett Packard Company Method for making integrated matching layer for ultrasonic transducers
WO1996039754A1 (en) 1995-06-05 1996-12-12 Christian Constantinov Ultrasonic sound system and method for producing virtual sound
US5859915A (en) 1997-04-30 1999-01-12 American Technology Corporation Lighted enhanced bullhorn
US6029518A (en) 1997-09-17 2000-02-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Manipulation of liquids using phased array generation of acoustic radiation pressure
US6193936B1 (en) 1998-11-09 2001-02-27 Nanogram Corporation Reactant delivery apparatuses
US20010033124A1 (en) 2000-03-28 2001-10-25 Norris Elwood G. Horn array emitter
US6436051B1 (en) 2001-07-20 2002-08-20 Ge Medical Systems Global Technology Company, Llc Electrical connection system for ultrasonic receiver array
US20020149570A1 (en) 2001-01-18 2002-10-17 Knowles Terence J. Acoustic wave touch actuated switch with feedback
US6503204B1 (en) 2000-03-31 2003-01-07 Acuson Corporation Two-dimensional ultrasonic transducer array having transducer elements in a non-rectangular or hexagonal grid for medical diagnostic ultrasonic imaging and ultrasound imaging system using same
US20030024317A1 (en) 2001-07-31 2003-02-06 Miller David G. Ultrasonic transducer wafer having variable acoustic impedance
WO2003050511A1 (en) 2001-12-13 2003-06-19 The University Of Wyoming Research Corporation Doing Business As Western Research Institute Volatile organic compound sensor system
US20030144032A1 (en) 2000-05-25 2003-07-31 Christopher Brunner Beam forming method
US20030182647A1 (en) 2002-03-19 2003-09-25 Radeskog Mattias Dan Automatic interactive component placement for electronics-CAD software through the use of force simulations
US6647359B1 (en) 1999-07-16 2003-11-11 Interval Research Corporation System and method for synthesizing music by scanning real or simulated vibrating object
US20040014434A1 (en) 2000-10-16 2004-01-22 Martin Haardt Beam-shaping method
US20040052387A1 (en) 2002-07-02 2004-03-18 American Technology Corporation. Piezoelectric film emitter configuration
US20040091119A1 (en) 2002-11-08 2004-05-13 Ramani Duraiswami Method for measurement of head related transfer functions
US6771294B1 (en) 1999-12-29 2004-08-03 Petri Pulli User interface
US6772490B2 (en) 1999-07-23 2004-08-10 Measurement Specialties, Inc. Method of forming a resonance transducer
US6800987B2 (en) 2002-01-22 2004-10-05 Measurement Specialties, Inc. Protective housing for ultrasonic transducer apparatus
US20040210158A1 (en) 2000-12-28 2004-10-21 Z-Tech (Canada) Inc. Electrical impedance method and apparatus for detecting and diagnosing diseases
US20040226378A1 (en) 2003-05-16 2004-11-18 Denso Corporation Ultrasonic sensor
US20040264707A1 (en) 2001-08-31 2004-12-30 Jun Yang Steering of directional sound beams
WO2005017965A2 (en) 2003-08-06 2005-02-24 Measurement Specialities, Inc. Ultrasonic air transducer arrays using polymer piezoelectric films and impedance matching structures for ultrasonic polymer transducer arrays
US20050052714A1 (en) 2003-07-24 2005-03-10 Zebra Imaging, Inc. Enhanced environment visualization using holographic stereograms
US20050056851A1 (en) 2003-09-11 2005-03-17 Infineon Technologies Ag Optoelectronic component and optoelectronic arrangement with an optoelectronic component
US20050212760A1 (en) 2004-03-23 2005-09-29 Marvit David L Gesture based user interface supporting preexisting symbols
US20050267695A1 (en) 2004-03-29 2005-12-01 Peter German Systems and methods to determine elastic properties of materials
US20050273483A1 (en) 2004-06-04 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Complex logarithmic ALU
US20060085049A1 (en) 2004-10-20 2006-04-20 Nervonix, Inc. Active electrode, bio-impedance based, tissue discrimination system and methods of use
US20060090955A1 (en) 2004-11-04 2006-05-04 George Cardas Microphone diaphragms defined by logarithmic curves and microphones for use therewith
US20060091301A1 (en) 2004-10-29 2006-05-04 Silicon Light Machines Corporation Two-dimensional motion sensor
US20060164428A1 (en) 2005-01-26 2006-07-27 Pixar Method of creating and evaluating bandlimited noise for computer graphics
US7109789B2 (en) 2002-01-18 2006-09-19 American Technology Corporation Modulator—amplifier
US20070036492A1 (en) 2005-08-15 2007-02-15 Lee Yee C System and method for fiber optics based direct view giant screen flat panel display
US7182726B2 (en) 2001-06-13 2007-02-27 Williams John I Brachytherapy device and method
US20070094317A1 (en) 2005-10-25 2007-04-26 Broadcom Corporation Method and system for B-spline interpolation of a one-dimensional signal using a fractional interpolation ratio
US7225404B1 (en) 1996-04-04 2007-05-29 Massachusetts Institute Of Technology Method and apparatus for determining forces to be applied to a user through a haptic interface
US20070177681A1 (en) 2003-12-27 2007-08-02 In-Kyeong Choi Mimo-ofdm system using eigenbeamforming method
US7284027B2 (en) 2000-05-15 2007-10-16 Qsigma, Inc. Method and apparatus for high speed calculation of non-linear functions and networks using non-linear function calculations for digital signal processing
US20070263741A1 (en) 2001-02-28 2007-11-15 Erving Richard H Efficient reduced complexity windowed optimal time domain equalizer for discrete multitone-based DSL modems
WO2007144801A2 (en) 2006-06-14 2007-12-21 Koninklijke Philips Electronics N. V. Device for transdermal drug delivery and method of operating such a device
EP1875081A1 (en) 2005-04-22 2008-01-09 The Technology Partnership Public Limited Company Pump
US20080012647A1 (en) 2006-06-30 2008-01-17 Texas Instruments Incorporated All-Digital Phase-Locked Loop for a Digital Pulse-Width Modulator
US7345600B1 (en) 2005-03-09 2008-03-18 Texas Instruments Incorporated Asynchronous sampling rate converter
JP2008074075A (en) 2006-09-25 2008-04-03 Canon Inc Image formation device and its control method
US20080084789A1 (en) 2004-05-17 2008-04-10 Epos Technologies Limited Acoustic Robust Synchronization Signaling for Acoustic Positioning System
EP1911530A1 (en) 2006-10-09 2008-04-16 Baumer Electric AG Ultrasound converter with acoustic impedance adjustment
US20080130906A1 (en) 2006-11-20 2008-06-05 Personics Holdings Inc. Methods and Devices for Hearing Damage Notification and Intervention II
US20080226088A1 (en) 2005-09-20 2008-09-18 Koninklijke Philips Electronics, N.V. Audio Transducer System
US20080273723A1 (en) 2007-05-04 2008-11-06 Klaus Hartung System and method for directionally radiating sound
US20080300055A1 (en) 2007-05-29 2008-12-04 Lutnick Howard W Game with hand motion control
US20090093724A1 (en) 2007-02-21 2009-04-09 Super Sonic Imagine Method for optimising the focussing of waves through an aberration-inducing element
US20090116660A1 (en) 2005-02-09 2009-05-07 American Technology Corporation In-Band Parametric Sound Generation System
WO2009071746A1 (en) 2007-12-05 2009-06-11 Valtion Teknillinen Tutkimuskeskus Device for measuring pressure, variation in acoustic pressure, a magnetic field, acceleration, vibration, or the composition of a gas
US7577260B1 (en) 1999-09-29 2009-08-18 Cambridge Mechatronics Limited Method and apparatus to direct sound
US20090232684A1 (en) 2007-10-16 2009-09-17 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
WO2009112866A1 (en) 2008-03-14 2009-09-17 The Technology Partnership Plc Pump
US20090251421A1 (en) 2008-04-08 2009-10-08 Sony Ericsson Mobile Communications Ab Method and apparatus for tactile perception of digital images
US20090319065A1 (en) 2008-06-19 2009-12-24 Texas Instruments Incorporated Efficient Asynchronous Sample Rate Conversion
WO2010003836A1 (en) 2008-07-08 2010-01-14 Brüel & Kjær Sound & Vibration Measurement A/S Method for reconstructing an acoustic field
US20100013613A1 (en) 2008-07-08 2010-01-21 Jonathan Samuel Weston Haptic feedback projection system
US20100016727A1 (en) 2008-07-16 2010-01-21 Avner Rosenberg High power ultrasound transducer
US20100030076A1 (en) 2006-08-01 2010-02-04 Kobi Vortman Systems and Methods for Simultaneously Treating Multiple Target Sites
US20100044120A1 (en) 2006-05-01 2010-02-25 Ident Technology Ag Input device
US20100066512A1 (en) 2001-10-09 2010-03-18 Immersion Corporation Haptic Feedback Sensations Based on Audio Output From Computer Devices
GB2464117A (en) 2008-10-03 2010-04-07 New Transducers Ltd A touch sensitive device
US20100085168A1 (en) 2007-02-02 2010-04-08 Kyung Ki-Uk Tactile stimulation device and apparatus using the same
US20100103246A1 (en) 2007-04-10 2010-04-29 Seereal Technologies S.A. Holographic Projection System with Optical Wave Tracking and with Means for Correcting the Holographic Reconstruction
US20100109481A1 (en) 2008-10-30 2010-05-06 Avago Technologies, Ltd. Multi-aperture acoustic horn
JP2010109579A (en) 2008-10-29 2010-05-13 Nippon Telegr & Teleph Corp <Ntt> Sound output element array and sound output method
US20100199232A1 (en) 2009-02-03 2010-08-05 Massachusetts Institute Of Technology Wearable Gestural Interface
US20100231508A1 (en) 2009-03-12 2010-09-16 Immersion Corporation Systems and Methods for Using Multiple Actuators to Realize Textures
US20100262008A1 (en) 2007-12-13 2010-10-14 Koninklijke Philips Electronics N.V. Robotic ultrasound system with microadjustment and positioning control using feedback responsive to acquired image data
US20100302015A1 (en) 2009-05-29 2010-12-02 Microsoft Corporation Systems and methods for immersive interaction with virtual objects
WO2010139916A1 (en) 2009-06-03 2010-12-09 The Technology Partnership Plc Fluid disc pump
US20100321216A1 (en) 2009-06-19 2010-12-23 Conexant Systems, Inc. Systems and Methods for Variable Rate Conversion
EP2271129A1 (en) 2009-07-02 2011-01-05 Nxp B.V. Transducer with resonant cavity
US20110006888A1 (en) 2009-07-10 2011-01-13 Samsung Electronics Co., Ltd. Method and apparatus for generating vibrations in portable terminals
US20110010958A1 (en) 2009-07-16 2011-01-20 Wayne Clark Quiet hair dryer
US20110051554A1 (en) 2007-11-12 2011-03-03 Super Sonic Imagine Insonification device that includes a three-dimensional network of emitters arranged in at least two concentric spirals, which are designed to generate a beam of high-intensity focussed waves
US20110066032A1 (en) 2009-08-26 2011-03-17 Shuki Vitek Asymmetric ultrasound phased-array transducer
US8000481B2 (en) 2005-10-12 2011-08-16 Yamaha Corporation Speaker array and microphone array
US20110199342A1 (en) 2010-02-16 2011-08-18 Harry Vartanian Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
JP2011172074A (en) 2010-02-19 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> Local reproduction apparatus and method, and program
WO2011132012A1 (en) 2010-04-20 2011-10-27 Nokia Corporation An apparatus and associated methods
US20110310028A1 (en) 2010-06-21 2011-12-22 Sony Ericsson Mobile Communications Ab Active Acoustic Touch Location for Electronic Devices
WO2012023864A1 (en) 2010-08-20 2012-02-23 Industrial Research Limited Surround sound system
US20120057733A1 (en) 2009-04-28 2012-03-08 Keiko Morii Hearing aid device and hearing aid method
JP2012048378A (en) 2010-08-25 2012-03-08 Denso Corp Tactile presentation device
US20120063628A1 (en) 2010-09-14 2012-03-15 Frank Rizzello Sound reproduction systems and method for arranging transducers therein
US20120066280A1 (en) 2010-09-10 2012-03-15 Ryo Tsutsui Asynchronous Sample Rate Conversion Using A Polynomial Interpolator With Minimax Stopband Attenuation
KR20120065779A (en) 2010-12-13 2012-06-21 가천대학교 산학협력단 Graphic haptic electronic board and method for transferring the visual image information into the haptic information for visually impaired people
CN102591512A (en) 2011-01-07 2012-07-18 马克西姆综合产品公司 Contact feedback system and method for providing haptic feedback
WO2012104648A1 (en) 2011-02-03 2012-08-09 The Technology Partnership Plc Pump
US20120223880A1 (en) 2012-02-15 2012-09-06 Immersion Corporation Method and apparatus for producing a dynamic haptic effect
US20120229400A1 (en) 2012-02-15 2012-09-13 Immersion Corporation Interactivity model for shared feedback on mobile devices
US20120229401A1 (en) 2012-05-16 2012-09-13 Immersion Corporation System and method for display of multiple data channels on a single haptic display
US8269168B1 (en) 2007-04-30 2012-09-18 Physical Logic Ag Meta materials integration, detection and spectral analysis
US20120236689A1 (en) 2009-11-11 2012-09-20 Btech Acoustics Llc Acoustic transducers for underwater navigation and communication
US20120243374A1 (en) 2009-09-23 2012-09-27 Elliptic Laboratories As Acoustic motion determination
US20120249409A1 (en) 2011-03-31 2012-10-04 Nokia Corporation Method and apparatus for providing user interfaces
US20120249474A1 (en) 2011-04-01 2012-10-04 Analog Devices, Inc. Proximity and force detection for haptic effect generation
US20120299853A1 (en) 2011-05-26 2012-11-29 Sumit Dagar Haptic interface
US20120307649A1 (en) 2010-02-12 2012-12-06 Pantech Co., Ltd. Channel status information feedback apparatus and method for same, base station, and transmission method of said base station
US20120315605A1 (en) 2011-06-08 2012-12-13 Jin-Soo Cho System and method for providing learning information for visually impaired people based on haptic electronic board
US20130035582A1 (en) 2009-12-28 2013-02-07 Koninklijke Philips Electronics N.V. High intensity focused ultrasound transducer optimization
US20130079621A1 (en) 2010-05-05 2013-03-28 Technion Research & Development Foundation Ltd. Method and system of operating a multi focused acoustic wave source
US20130094678A1 (en) 2009-12-11 2013-04-18 Rick Scholte Acoustic transducer assembly
US20130100008A1 (en) 2011-10-19 2013-04-25 Stefan J. Marti Haptic Response Module
US20130101141A1 (en) 2011-10-19 2013-04-25 Wave Sciences Corporation Directional audio array apparatus and system
KR20130055972A (en) 2011-11-21 2013-05-29 알피니언메디칼시스템 주식회사 Transducer for hifu
US20130173658A1 (en) 2011-12-29 2013-07-04 Mighty Cast, Inc. Interactive base and token capable of communicating with computing device
WO2013179179A2 (en) 2012-05-31 2013-12-05 Koninklijke Philips N.V. Ultrasound transducer assembly and method for driving an ultrasound transducer head
US20130331705A1 (en) 2011-03-22 2013-12-12 Koninklijke Philips Electronics N.V. Ultrasonic cmut with suppressed acoustic coupling to the substrate
US8607922B1 (en) 2010-09-10 2013-12-17 Harman International Industries, Inc. High frequency horn having a tuned resonant cavity
US20140027201A1 (en) 2011-01-31 2014-01-30 Wayne State University Acoustic metamaterials
US20140104274A1 (en) 2012-10-17 2014-04-17 Microsoft Corporation Grasping virtual objects in augmented reality
CN103797379A (en) 2011-09-22 2014-05-14 皇家飞利浦有限公司 Ultrasound measurement assembly for multidirectional measurement
US20140139071A1 (en) 2011-08-03 2014-05-22 Murata Manufacturing Co., Ltd. Ultrasonic transducer
US20140168091A1 (en) 2012-12-13 2014-06-19 Immersion Corporation System and method for identifying users and selecting a haptic response
US20140201666A1 (en) 2013-01-15 2014-07-17 Raffi Bedikian Dynamic, free-space user interactions for machine control
US20140204002A1 (en) 2013-01-21 2014-07-24 Rotem Bennet Virtual interaction with image projection
US20140211593A1 (en) * 2011-10-21 2014-07-31 Neurotrek, Inc. Method and system for direct communication
CN103984414A (en) 2014-05-16 2014-08-13 北京智谷睿拓技术服务有限公司 Method and equipment for producing touch feedback
US8833510B2 (en) 2011-05-05 2014-09-16 Massachusetts Institute Of Technology Phononic metamaterials for vibration isolation and focusing of elastic waves
US20140269208A1 (en) 2013-03-15 2014-09-18 Elwha LLC, a limited liability company of the State of Delaware Portable electronic device directed audio targeted user system and method
US20140265572A1 (en) 2013-03-15 2014-09-18 Fujifilm Sonosite, Inc. Low noise power sources for portable electronic systems
US20140269207A1 (en) 2013-03-15 2014-09-18 Elwha Llc Portable Electronic Device Directed Audio Targeted User System and Method
US8884927B1 (en) 2013-06-27 2014-11-11 Elwha Llc Tactile feedback generated by phase conjugation of ultrasound surface acoustic waves
GB2513884A (en) 2013-05-08 2014-11-12 Univ Bristol Method and apparatus for producing an acoustic field
US20150002477A1 (en) 2013-06-27 2015-01-01 Elwha LLC, a limited company of the State of Delaware Tactile feedback generated by non-linear interaction of surface acoustic waves
US20150006645A1 (en) 2013-06-28 2015-01-01 Jerry Oh Social sharing of video clips
US20150005039A1 (en) 2013-06-29 2015-01-01 Min Liu System and method for adaptive haptic effects
US20150007025A1 (en) 2013-07-01 2015-01-01 Nokia Corporation Apparatus
US20150013023A1 (en) 2011-10-28 2015-01-08 Regeneron Pharmaceuticals, Inc. Humanized il-6 and il-6 receptor
WO2015006467A1 (en) 2013-07-09 2015-01-15 Coactive Drive Corporation Synchronized array of vibration actuators in an integrated module
US20150029155A1 (en) 2013-07-24 2015-01-29 Hyundai Motor Company Touch display apparatus of vehicle and driving method thereof
JP2015035657A (en) 2013-08-07 2015-02-19 株式会社豊田中央研究所 Notification device and input device
US20150066445A1 (en) 2013-08-27 2015-03-05 Halliburton Energy Services, Inc. Generating a smooth grid for simulating fluid flow in a well system environment
US20150070147A1 (en) 2013-09-06 2015-03-12 Immersion Corporation Systems and Methods for Generating Haptic Effects Associated With an Envelope in Audio Signals
US20150070245A1 (en) 2012-03-16 2015-03-12 City University Of Hong Kong Coil-based artificial atom for metamaterials, metamaterial comprising the artificial atom, and device comprising the metamaterial
US20150078136A1 (en) 2013-09-13 2015-03-19 Mitsubishi Heavy Industries, Ltd. Conformable Transducer With Self Position Sensing
US20150081110A1 (en) 2005-06-27 2015-03-19 Coative Drive Corporation Synchronized array of vibration actuators in a network topology
US20150084929A1 (en) 2013-09-25 2015-03-26 Hyundai Motor Company Curved touch display apparatus for providing tactile feedback and method thereof
WO2015039622A1 (en) 2013-09-19 2015-03-26 The Hong Kong University Of Science And Technology Active control of membrane-type acoustic metamaterial
US20150110310A1 (en) 2013-10-17 2015-04-23 Oticon A/S Method for reproducing an acoustical sound field
US20150130323A1 (en) 2012-05-18 2015-05-14 Nvf Tech Ltd Panel For Use in Vibratory Panel Device
US20150168205A1 (en) 2013-12-16 2015-06-18 Lifescan, Inc. Devices, systems and methods to determine area sensor
US20150189455A1 (en) * 2013-12-30 2015-07-02 Aliphcom Transformation of multiple sound fields to generate a transformed reproduced sound field including modified reproductions of the multiple sound fields
US20150189457A1 (en) * 2013-12-30 2015-07-02 Aliphcom Interactive positioning of perceived audio sources in a transformed reproduced sound field including modified reproductions of multiple sound fields
US20150192995A1 (en) 2014-01-07 2015-07-09 University Of Bristol Method and apparatus for providing tactile sensations
US20150220199A1 (en) 2011-04-26 2015-08-06 The Regents Of The University Of California Systems and devices for recording and reproducing senses
US20150226537A1 (en) 2012-08-29 2015-08-13 Agfa Healthcare Nv System and method for optical coherence tomography and positioning element
US20150226831A1 (en) 2014-02-13 2015-08-13 Honda Motor Co., Ltd. Sound processing apparatus and sound processing method
WO2015127335A2 (en) 2014-02-23 2015-08-27 Qualcomm Incorporated Ultrasonic authenticating button
US20150248787A1 (en) 2013-07-12 2015-09-03 Magic Leap, Inc. Method and system for retrieving data in response to user input
US20150258431A1 (en) 2014-03-14 2015-09-17 Sony Computer Entertainment Inc. Gaming device with rotatably placed cameras
US20150277610A1 (en) 2014-03-27 2015-10-01 Industry-Academic Cooperation Foundation, Yonsei University Apparatus and method for providing three-dimensional air-touch feedback
US20150293592A1 (en) 2014-04-15 2015-10-15 Samsung Electronics Co., Ltd. Haptic information management method and electronic device supporting the same
US20150304789A1 (en) 2012-11-18 2015-10-22 Noveto Systems Ltd. Method and system for generation of sound fields
US20150323667A1 (en) 2014-05-12 2015-11-12 Chirp Microsystems Time of flight range finding with an adaptive transmit pulse and adaptive receiver processing
US20150332075A1 (en) 2014-05-15 2015-11-19 Fedex Corporate Services, Inc. Wearable devices for courier processing and methods of use thereof
US20150331576A1 (en) 2014-05-14 2015-11-19 Purdue Research Foundation Manipulating virtual environment using non-instrumented physical object
US9208664B1 (en) 2013-03-11 2015-12-08 Amazon Technologies, Inc. Adjusting structural characteristics of a device
WO2016007920A1 (en) 2014-07-11 2016-01-14 New York University Three dimensional tactile feedback system
US20160019762A1 (en) 2014-07-15 2016-01-21 Immersion Corporation Systems and methods to generate haptic feedback for skin-mediated interactions
US20160019879A1 (en) 2013-03-13 2016-01-21 Bae Systems Plc Metamaterial
KR20160008280A (en) 2014-07-14 2016-01-22 한국기계연구원 Air-coupled ultrasonic transducer using metamaterials
US20160026253A1 (en) 2014-03-11 2016-01-28 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US20160044417A1 (en) 2014-08-05 2016-02-11 The Boeing Company Apparatus and method for an active and programmable acoustic metamaterial
US9267735B2 (en) 2011-03-24 2016-02-23 Twinbird Corporation Dryer
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
JP2016035646A (en) 2014-08-01 2016-03-17 株式会社デンソー Tactile device, and tactile display including the same
US20160138986A1 (en) 2013-06-12 2016-05-19 Atlas Copco Industrial Technique Ab A method of measuring elongation of a fastener with ultrasound, performed by a power tool, and a power tool
US20160175709A1 (en) 2014-12-17 2016-06-23 Fayez Idris Contactless tactile feedback on gaming terminal with 3d display
US20160175701A1 (en) 2014-12-17 2016-06-23 Gtech Canada Ulc Contactless tactile feedback on gaming terminal with 3d display
WO2016099279A1 (en) 2014-12-19 2016-06-23 Umc Utrecht Holding B.V. High intensity focused ultrasound apparatus
US20160189702A1 (en) 2014-12-24 2016-06-30 United Technology Corporation Acoustic metamaterial gate
US9421291B2 (en) 2011-05-12 2016-08-23 Fifth Third Bank Hand dryer with sanitizing ionization assembly
WO2016132144A1 (en) 2015-02-20 2016-08-25 Ultrahaptics Ip Limited Perceptions in a haptic system
US20160249150A1 (en) 2015-02-20 2016-08-25 Ultrahaptics Limited Algorithm Improvements in a Haptic System
US20160242724A1 (en) 2013-11-04 2016-08-25 Surgivisio Method for reconstructing a 3d image from 2d x-ray images
WO2016137675A1 (en) 2015-02-27 2016-09-01 Microsoft Technology Licensing, Llc Molding and anchoring physically constrained virtual environments to real-world environments
US20160291716A1 (en) 2013-03-11 2016-10-06 The Regents Of The University Of California In-air ultrasonic rangefinding and angle estimation
WO2016162058A1 (en) 2015-04-08 2016-10-13 Huawei Technologies Co., Ltd. Apparatus and method for driving an array of loudspeakers
US20160306423A1 (en) 2015-04-17 2016-10-20 Apple Inc. Contracting and Elongating Materials for Providing Input and Output for an Electronic Device
US20160339132A1 (en) 2015-05-24 2016-11-24 LivOnyx Inc. Systems and methods for sanitizing surfaces
US20160374562A1 (en) 2013-03-15 2016-12-29 LX Medical, Inc. Tissue imaging and image guidance in luminal anatomic structures and body cavities
US20170002839A1 (en) 2013-12-13 2017-01-05 The Technology Partnership Plc Acoustic-resonance fluid pump
US20170004819A1 (en) 2015-06-30 2017-01-05 Pixie Dust Technologies, Inc. System and method for manipulating objects in a computational acoustic-potential field
US20170018171A1 (en) 2015-07-16 2017-01-19 Thomas Andrew Carter Calibration Techniques in Haptic Systems
US20170024921A1 (en) 2015-07-23 2017-01-26 Disney Enterprises, Inc. Real-time high-quality facial performance capture
US20170052148A1 (en) 2015-08-17 2017-02-23 Texas Instruments Incorporated Methods and apparatus to measure and analyze vibration signatures
US20170123487A1 (en) 2015-10-30 2017-05-04 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US20170140552A1 (en) 2014-06-25 2017-05-18 Korea Advanced Institute Of Science And Technology Apparatus and method for estimating hand position utilizing head mounted color depth camera, and bare hand interaction system using same
US20170144190A1 (en) 2014-06-17 2017-05-25 Pixie Dust Technologies, Inc. Low-noise ultrasonic wave focusing apparatus
US20170168586A1 (en) 2015-12-15 2017-06-15 Purdue Research Foundation Method and System for Hand Pose Detection
US20170181725A1 (en) 2015-12-25 2017-06-29 General Electric Company Joint ultrasound imaging system and method
US20170193823A1 (en) 2016-01-06 2017-07-06 Honda Motor Co., Ltd. System for indicating vehicle presence and method thereof
US20170193768A1 (en) 2016-01-05 2017-07-06 Ultrahaptics Ip Ltd Calibration and Detection Techniques in Haptic Systems
US20170211022A1 (en) 2012-06-08 2017-07-27 Alm Holding Company Biodiesel emulsion for cleaning bituminous coated equipment
EP3207817A1 (en) 2016-02-17 2017-08-23 Koninklijke Philips N.V. Ultrasound hair drying and styling
US20170279951A1 (en) 2016-03-28 2017-09-28 International Business Machines Corporation Displaying Virtual Target Window on Mobile Device Based on User Intent
WO2017172006A1 (en) 2016-03-29 2017-10-05 Intel Corporation System to provide tactile feedback during non-contact interaction
CN107340871A (en) 2017-07-25 2017-11-10 深识全球创新科技(北京)有限公司 The devices and methods therefor and purposes of integrated gesture identification and ultrasonic wave touch feedback
US9816757B1 (en) 2012-02-01 2017-11-14 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US20170336860A1 (en) 2016-05-20 2017-11-23 Disney Enterprises, Inc. System for providing multi-directional and multi-person walking in virtual reality environments
US20170366908A1 (en) 2016-06-17 2017-12-21 Ultrahaptics Ip Ltd. Acoustic Transducers in Haptic Systems
US9863699B2 (en) 2014-06-09 2018-01-09 Terumo Bct, Inc. Lyophilization
US20180035891A1 (en) 2015-02-09 2018-02-08 Erasmus University Medical Center Rotterdam Intravascular photoacoustic imaging
US20180039333A1 (en) 2016-08-03 2018-02-08 Ultrahaptics Ip Ltd Three-Dimensional Perceptions in Haptic Systems
US20180047259A1 (en) 2016-08-09 2018-02-15 Ultrahaptics Limited Metamaterials and Acoustic Lenses in Haptic Systems
US20180074580A1 (en) 2016-09-15 2018-03-15 International Business Machines Corporation Interaction with holographic image notification
US20180081439A1 (en) 2015-04-14 2018-03-22 John James Daniels Wearable Electronic, Multi-Sensory, Human/Machine, Human/Human Interfaces
US20180139557A1 (en) 2016-04-04 2018-05-17 Pixie Dust Technologies, Inc. System and method for generating spatial sound using ultrasound
US20180146306A1 (en) 2016-11-18 2018-05-24 Stages Pcs, Llc Audio Analysis and Processing System
US20180151035A1 (en) 2016-11-29 2018-05-31 Immersion Corporation Targeted haptic projection
US20180166063A1 (en) 2016-12-13 2018-06-14 Ultrahaptics Ip Ltd Driving Techniques for Phased-Array Systems
US20180182372A1 (en) 2016-12-23 2018-06-28 Ultrahaptics Ip Ltd Transducer Driver
US20180190007A1 (en) 2017-01-04 2018-07-05 Nvidia Corporation Stereoscopic rendering using raymarching and a virtual view broadcaster for such rendering
US20180253627A1 (en) 2017-03-06 2018-09-06 Xerox Corporation Conditional adaptation network for image classification
US20180304310A1 (en) 2017-04-24 2018-10-25 Ultrahaptics Ip Ltd Interference Reduction Techniques in Haptic Systems
US20180309515A1 (en) 2015-08-03 2018-10-25 Phase Sensitive Innovations, Inc. Distributed array for direction and frequency finding
US20180310111A1 (en) 2017-04-24 2018-10-25 Ultrahaptics Ip Ltd Algorithm Enhancements for Haptic-Based Phased-Array Systems
US10140776B2 (en) 2016-06-13 2018-11-27 Microsoft Technology Licensing, Llc Altering properties of rendered objects via control points
US10146353B1 (en) 2011-08-05 2018-12-04 P4tents1, LLC Touch screen system, method, and computer program product
US20180350339A1 (en) 2017-05-31 2018-12-06 Nxp B.V. Acoustic processor
US10168782B1 (en) 2017-06-05 2019-01-01 Rockwell Collins, Inc. Ultrasonic haptic feedback control system and method
US20190038496A1 (en) 2017-08-02 2019-02-07 Immersion Corporation Haptic implants
US20190091565A1 (en) 2017-09-28 2019-03-28 Igt Interacting with three-dimensional game elements using gaze detection
US20190163275A1 (en) 2017-11-26 2019-05-30 Ultrahaptics Limited Haptic Effects from Focused Acoustic Fields
US20190175077A1 (en) 2016-08-15 2019-06-13 Georgia Tech Research Corporation Electronic Device and Method of Controlling Same
US20190187244A1 (en) 2017-12-06 2019-06-20 Invensense, Inc. Three dimensional object-localization and tracking using ultrasonic pulses with synchronized inertial position determination
US20190196578A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Tracking in Haptic Systems
US20190197840A1 (en) 2017-04-24 2019-06-27 Ultrahaptics Ip Ltd Grouping and Optimization of Phased Ultrasonic Transducers for Multi-Field Solutions
US20190196591A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Ip Ltd Human Interactions with Mid-Air Haptic Systems
US20190197842A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Minimizing Unwanted Responses in Haptic Systems
US20190235628A1 (en) 2018-01-26 2019-08-01 Immersion Corporation Method and device for performing actuator control based on an actuator model
EP3216231B1 (en) 2014-11-07 2019-08-21 Chirp Microsystems, Inc. Package waveguide for acoustic sensor with electronic delay compensation
US20190310710A1 (en) 2018-04-04 2019-10-10 Ultrahaptics Limited Dynamic Haptic Feedback Systems
US10469973B2 (en) 2017-04-28 2019-11-05 Bose Corporation Speaker array systems
US20190342654A1 (en) 2018-05-02 2019-11-07 Ultrahaptics Limited Blocking Plate Structure for Improved Acoustic Transmission Efficiency
US10510357B2 (en) 2014-06-27 2019-12-17 Orange Resampling of an audio signal by interpolation for low-delay encoding/decoding
US10523159B2 (en) 2018-05-11 2019-12-31 Nanosemi, Inc. Digital compensator for a non-linear system
WO2020049321A2 (en) 2018-09-09 2020-03-12 Ultrahaptics Ip Ltd Ultrasonic assisted liquid manipulation
US20200082804A1 (en) 2018-09-09 2020-03-12 Ultrahaptics Ip Ltd Event Triggering in Phased-Array Systems
US20200117229A1 (en) 2018-10-12 2020-04-16 Ultraleap Limited Variable Phase and Frequency Pulse-Width Modulation Technique
US20200193269A1 (en) 2018-12-18 2020-06-18 Samsung Electronics Co., Ltd. Recognizer, object recognition method, learning apparatus, and learning method for domain adaptation
KR20200082449A (en) 2018-12-28 2020-07-08 한국과학기술원 Apparatus and method of controlling virtual model
US20200218354A1 (en) 2019-01-04 2020-07-09 Ultrahaptics Ip Ltd Mid-Air Haptic Textures
US20200320347A1 (en) 2019-04-02 2020-10-08 Synthesis Ai, Inc. System and method for domain adaptation using synthetic data
US20200327418A1 (en) 2019-04-12 2020-10-15 Ultrahaptics Ip Ltd Using Iterative 3D-Model Fitting for Domain Adaptation of a Hand-Pose-Estimation Neural Network
US20210111731A1 (en) 2019-10-13 2021-04-15 Ultraleap Limited Reducing Harmonic Distortion by Dithering
US20210112353A1 (en) 2019-10-13 2021-04-15 Ultraleap Limited Dynamic Capping with Virtual Microphones
US20210109712A1 (en) 2019-10-13 2021-04-15 Ultraleap Limited Hardware Algorithm for Complex-Valued Exponentiation and Logarithm Using Simplified Sub-Steps
US20210141458A1 (en) 2019-11-08 2021-05-13 Ultraleap Limited Tracking Techniques in Haptic Systems
US20210165491A1 (en) 2018-08-24 2021-06-03 Jilin University Tactile sensation providing device and method
US11048329B1 (en) 2017-07-27 2021-06-29 Emerge Now Inc. Mid-air ultrasonic haptic interface for immersive computing environments
US20210201884A1 (en) 2019-12-25 2021-07-01 Ultraleap Limited Acoustic Transducer Structures
US20210303758A1 (en) 2020-03-31 2021-09-30 Ultraleap Limited Accelerated Hardware Using Dual Quaternions
US20210334706A1 (en) 2018-08-27 2021-10-28 Nippon Telegraph And Telephone Corporation Augmentation device, augmentation method, and augmentation program
US20210397261A1 (en) 2020-06-23 2021-12-23 Ultraleap Limited Features of Airborne Ultrasonic Fields
US20220083142A1 (en) 2020-09-17 2022-03-17 Ultraleap Limited Ultrahapticons
US20220155949A1 (en) 2020-11-16 2022-05-19 Ultraleap Limited Intent Driven Dynamic Gesture Recognition System
US20220252550A1 (en) 2021-01-26 2022-08-11 Ultraleap Limited Ultrasound Acoustic Field Manipulation Techniques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8520866B2 (en) * 2006-12-15 2013-08-27 Nokia Corporation Apparatus, method, and computer program product providing sound-produced tactile feedback
US20090102805A1 (en) * 2007-10-18 2009-04-23 Microsoft Corporation Three-dimensional object simulation using audio, visual, and tactile feedback
US9164584B2 (en) * 2009-04-21 2015-10-20 Google Technology Holdings LLC Methods and devices for consistency of the haptic response across a touch sensitive device
US8717152B2 (en) * 2011-02-11 2014-05-06 Immersion Corporation Sound to haptic effect conversion system using waveform
US20150003204A1 (en) * 2013-06-27 2015-01-01 Elwha Llc Tactile feedback in a two or three dimensional airspace

Patent Citations (357)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218921A (en) 1979-07-13 1980-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for shaping and enhancing acoustical levitation forces
EP0057594A2 (en) 1981-01-30 1982-08-11 Exxon Research And Engineering Company Ink jet apparatus
US4771205A (en) 1983-08-31 1988-09-13 U.S. Philips Corporation Ultrasound transducer
EP0309003A2 (en) 1984-02-15 1989-03-29 Trw Inc. Surface acoustic wave spectrum analyzer
US4881212A (en) 1986-04-25 1989-11-14 Yokogawa Medical Systems, Limited Ultrasonic transducer
US5226000A (en) 1988-11-08 1993-07-06 Wadia Digital Corporation Method and system for time domain interpolation of digital audio signals
WO1991018486A1 (en) 1990-05-14 1991-11-28 Commonwealth Scientific And Industrial Research Organisation A coupling device
US5329682A (en) 1991-02-07 1994-07-19 Siemens Aktiengesellschaft Method for the production of ultrasound transformers
US5243344A (en) 1991-05-30 1993-09-07 Koulopoulos Michael A Digital-to-analog converter--preamplifier apparatus
US5422431A (en) 1992-02-27 1995-06-06 Yamaha Corporation Electronic musical tone synthesizing apparatus generating tones with variable decay rates
US5426388A (en) 1994-02-15 1995-06-20 The Babcock & Wilcox Company Remote tone burst electromagnetic acoustic transducer pulser
US5477736A (en) 1994-03-14 1995-12-26 General Electric Company Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy
US5511296A (en) 1994-04-08 1996-04-30 Hewlett Packard Company Method for making integrated matching layer for ultrasonic transducers
EP0696670A1 (en) 1994-08-11 1996-02-14 Nabco Limited Automatic door opening and closing system
WO1996039754A1 (en) 1995-06-05 1996-12-12 Christian Constantinov Ultrasonic sound system and method for producing virtual sound
US7225404B1 (en) 1996-04-04 2007-05-29 Massachusetts Institute Of Technology Method and apparatus for determining forces to be applied to a user through a haptic interface
US5859915A (en) 1997-04-30 1999-01-12 American Technology Corporation Lighted enhanced bullhorn
US6029518A (en) 1997-09-17 2000-02-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Manipulation of liquids using phased array generation of acoustic radiation pressure
US6193936B1 (en) 1998-11-09 2001-02-27 Nanogram Corporation Reactant delivery apparatuses
US6647359B1 (en) 1999-07-16 2003-11-11 Interval Research Corporation System and method for synthesizing music by scanning real or simulated vibrating object
US6772490B2 (en) 1999-07-23 2004-08-10 Measurement Specialties, Inc. Method of forming a resonance transducer
US7577260B1 (en) 1999-09-29 2009-08-18 Cambridge Mechatronics Limited Method and apparatus to direct sound
US6771294B1 (en) 1999-12-29 2004-08-03 Petri Pulli User interface
US20010033124A1 (en) 2000-03-28 2001-10-25 Norris Elwood G. Horn array emitter
US6503204B1 (en) 2000-03-31 2003-01-07 Acuson Corporation Two-dimensional ultrasonic transducer array having transducer elements in a non-rectangular or hexagonal grid for medical diagnostic ultrasonic imaging and ultrasound imaging system using same
US7284027B2 (en) 2000-05-15 2007-10-16 Qsigma, Inc. Method and apparatus for high speed calculation of non-linear functions and networks using non-linear function calculations for digital signal processing
US20030144032A1 (en) 2000-05-25 2003-07-31 Christopher Brunner Beam forming method
US20040014434A1 (en) 2000-10-16 2004-01-22 Martin Haardt Beam-shaping method
US20040210158A1 (en) 2000-12-28 2004-10-21 Z-Tech (Canada) Inc. Electrical impedance method and apparatus for detecting and diagnosing diseases
US20020149570A1 (en) 2001-01-18 2002-10-17 Knowles Terence J. Acoustic wave touch actuated switch with feedback
US20070263741A1 (en) 2001-02-28 2007-11-15 Erving Richard H Efficient reduced complexity windowed optimal time domain equalizer for discrete multitone-based DSL modems
US7182726B2 (en) 2001-06-13 2007-02-27 Williams John I Brachytherapy device and method
US6436051B1 (en) 2001-07-20 2002-08-20 Ge Medical Systems Global Technology Company, Llc Electrical connection system for ultrasonic receiver array
US20030024317A1 (en) 2001-07-31 2003-02-06 Miller David G. Ultrasonic transducer wafer having variable acoustic impedance
US20040264707A1 (en) 2001-08-31 2004-12-30 Jun Yang Steering of directional sound beams
US20100066512A1 (en) 2001-10-09 2010-03-18 Immersion Corporation Haptic Feedback Sensations Based on Audio Output From Computer Devices
WO2003050511A1 (en) 2001-12-13 2003-06-19 The University Of Wyoming Research Corporation Doing Business As Western Research Institute Volatile organic compound sensor system
EP1461598B1 (en) 2001-12-13 2014-04-02 UNIVERSITY OF WYOMING RESEARCH CORPORATION, doing business as, WESTERN RESEARCH INSTITUTE Volatile organic compound sensor system
US20040005715A1 (en) 2001-12-13 2004-01-08 The University Of Wyoming Research Corporation D/B/A Western Research Institute Volatile organic compound sensor system
US7487662B2 (en) 2001-12-13 2009-02-10 The University Of Wyoming Research Corporation Volatile organic compound sensor system
CA2470115A1 (en) 2001-12-13 2003-06-19 The University Of Wyoming Research Corporation Doing Business As Western Research Institute Volatile organic compound sensor system
USRE42192E1 (en) 2001-12-13 2011-03-01 The University Of Wyoming Research Corporation Volatile organic compound sensor system
US7109789B2 (en) 2002-01-18 2006-09-19 American Technology Corporation Modulator—amplifier
US6800987B2 (en) 2002-01-22 2004-10-05 Measurement Specialties, Inc. Protective housing for ultrasonic transducer apparatus
US20030182647A1 (en) 2002-03-19 2003-09-25 Radeskog Mattias Dan Automatic interactive component placement for electronics-CAD software through the use of force simulations
US20040052387A1 (en) 2002-07-02 2004-03-18 American Technology Corporation. Piezoelectric film emitter configuration
US20040091119A1 (en) 2002-11-08 2004-05-13 Ramani Duraiswami Method for measurement of head related transfer functions
US20040226378A1 (en) 2003-05-16 2004-11-18 Denso Corporation Ultrasonic sensor
US20050052714A1 (en) 2003-07-24 2005-03-10 Zebra Imaging, Inc. Enhanced environment visualization using holographic stereograms
WO2005017965A2 (en) 2003-08-06 2005-02-24 Measurement Specialities, Inc. Ultrasonic air transducer arrays using polymer piezoelectric films and impedance matching structures for ultrasonic polymer transducer arrays
US20050056851A1 (en) 2003-09-11 2005-03-17 Infineon Technologies Ag Optoelectronic component and optoelectronic arrangement with an optoelectronic component
US20070177681A1 (en) 2003-12-27 2007-08-02 In-Kyeong Choi Mimo-ofdm system using eigenbeamforming method
US20050212760A1 (en) 2004-03-23 2005-09-29 Marvit David L Gesture based user interface supporting preexisting symbols
US20050267695A1 (en) 2004-03-29 2005-12-01 Peter German Systems and methods to determine elastic properties of materials
US7107159B2 (en) 2004-03-29 2006-09-12 Peter Thomas German Systems and methods to determine elastic properties of materials
US7966134B2 (en) 2004-03-29 2011-06-21 Peter Thomas German Systems and methods to determine elastic properties of materials
US20080084789A1 (en) 2004-05-17 2008-04-10 Epos Technologies Limited Acoustic Robust Synchronization Signaling for Acoustic Positioning System
US20050273483A1 (en) 2004-06-04 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Complex logarithmic ALU
US20060085049A1 (en) 2004-10-20 2006-04-20 Nervonix, Inc. Active electrode, bio-impedance based, tissue discrimination system and methods of use
US20060091301A1 (en) 2004-10-29 2006-05-04 Silicon Light Machines Corporation Two-dimensional motion sensor
US20060090955A1 (en) 2004-11-04 2006-05-04 George Cardas Microphone diaphragms defined by logarithmic curves and microphones for use therewith
US20060164428A1 (en) 2005-01-26 2006-07-27 Pixar Method of creating and evaluating bandlimited noise for computer graphics
US7692661B2 (en) 2005-01-26 2010-04-06 Pixar Method of creating and evaluating bandlimited noise for computer graphics
US20090116660A1 (en) 2005-02-09 2009-05-07 American Technology Corporation In-Band Parametric Sound Generation System
US7345600B1 (en) 2005-03-09 2008-03-18 Texas Instruments Incorporated Asynchronous sampling rate converter
EP1875081A1 (en) 2005-04-22 2008-01-09 The Technology Partnership Public Limited Company Pump
US8123502B2 (en) 2005-04-22 2012-02-28 The Technology Partnership Plc Acoustic pump utilizing radial pressure oscillations
US20150081110A1 (en) 2005-06-27 2015-03-19 Coative Drive Corporation Synchronized array of vibration actuators in a network topology
US20070036492A1 (en) 2005-08-15 2007-02-15 Lee Yee C System and method for fiber optics based direct view giant screen flat panel display
US20080226088A1 (en) 2005-09-20 2008-09-18 Koninklijke Philips Electronics, N.V. Audio Transducer System
US8000481B2 (en) 2005-10-12 2011-08-16 Yamaha Corporation Speaker array and microphone array
US20070094317A1 (en) 2005-10-25 2007-04-26 Broadcom Corporation Method and system for B-spline interpolation of a one-dimensional signal using a fractional interpolation ratio
US20100044120A1 (en) 2006-05-01 2010-02-25 Ident Technology Ag Input device
WO2007144801A2 (en) 2006-06-14 2007-12-21 Koninklijke Philips Electronics N. V. Device for transdermal drug delivery and method of operating such a device
US20080012647A1 (en) 2006-06-30 2008-01-17 Texas Instruments Incorporated All-Digital Phase-Locked Loop for a Digital Pulse-Width Modulator
US20100030076A1 (en) 2006-08-01 2010-02-04 Kobi Vortman Systems and Methods for Simultaneously Treating Multiple Target Sites
JP2008074075A (en) 2006-09-25 2008-04-03 Canon Inc Image formation device and its control method
EP1911530A1 (en) 2006-10-09 2008-04-16 Baumer Electric AG Ultrasound converter with acoustic impedance adjustment
US20080130906A1 (en) 2006-11-20 2008-06-05 Personics Holdings Inc. Methods and Devices for Hearing Damage Notification and Intervention II
US20100085168A1 (en) 2007-02-02 2010-04-08 Kyung Ki-Uk Tactile stimulation device and apparatus using the same
US20090093724A1 (en) 2007-02-21 2009-04-09 Super Sonic Imagine Method for optimising the focussing of waves through an aberration-inducing element
US20100103246A1 (en) 2007-04-10 2010-04-29 Seereal Technologies S.A. Holographic Projection System with Optical Wave Tracking and with Means for Correcting the Holographic Reconstruction
US8269168B1 (en) 2007-04-30 2012-09-18 Physical Logic Ag Meta materials integration, detection and spectral analysis
US20080273723A1 (en) 2007-05-04 2008-11-06 Klaus Hartung System and method for directionally radiating sound
US20080300055A1 (en) 2007-05-29 2008-12-04 Lutnick Howard W Game with hand motion control
US20090232684A1 (en) 2007-10-16 2009-09-17 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US20110051554A1 (en) 2007-11-12 2011-03-03 Super Sonic Imagine Insonification device that includes a three-dimensional network of emitters arranged in at least two concentric spirals, which are designed to generate a beam of high-intensity focussed waves
WO2009071746A1 (en) 2007-12-05 2009-06-11 Valtion Teknillinen Tutkimuskeskus Device for measuring pressure, variation in acoustic pressure, a magnetic field, acceleration, vibration, or the composition of a gas
US20100262008A1 (en) 2007-12-13 2010-10-14 Koninklijke Philips Electronics N.V. Robotic ultrasound system with microadjustment and positioning control using feedback responsive to acquired image data
WO2009112866A1 (en) 2008-03-14 2009-09-17 The Technology Partnership Plc Pump
CN101986787A (en) 2008-03-14 2011-03-16 技术合伙公司 Pump
US20090251421A1 (en) 2008-04-08 2009-10-08 Sony Ericsson Mobile Communications Ab Method and apparatus for tactile perception of digital images
US20090319065A1 (en) 2008-06-19 2009-12-24 Texas Instruments Incorporated Efficient Asynchronous Sample Rate Conversion
US8369973B2 (en) 2008-06-19 2013-02-05 Texas Instruments Incorporated Efficient asynchronous sample rate conversion
US20100013613A1 (en) 2008-07-08 2010-01-21 Jonathan Samuel Weston Haptic feedback projection system
WO2010003836A1 (en) 2008-07-08 2010-01-14 Brüel & Kjær Sound & Vibration Measurement A/S Method for reconstructing an acoustic field
US20100016727A1 (en) 2008-07-16 2010-01-21 Avner Rosenberg High power ultrasound transducer
GB2464117A (en) 2008-10-03 2010-04-07 New Transducers Ltd A touch sensitive device
JP2010109579A (en) 2008-10-29 2010-05-13 Nippon Telegr & Teleph Corp <Ntt> Sound output element array and sound output method
US20100109481A1 (en) 2008-10-30 2010-05-06 Avago Technologies, Ltd. Multi-aperture acoustic horn
US20100199232A1 (en) 2009-02-03 2010-08-05 Massachusetts Institute Of Technology Wearable Gestural Interface
US20100231508A1 (en) 2009-03-12 2010-09-16 Immersion Corporation Systems and Methods for Using Multiple Actuators to Realize Textures
US20120057733A1 (en) 2009-04-28 2012-03-08 Keiko Morii Hearing aid device and hearing aid method
US20100302015A1 (en) 2009-05-29 2010-12-02 Microsoft Corporation Systems and methods for immersive interaction with virtual objects
WO2010139916A1 (en) 2009-06-03 2010-12-09 The Technology Partnership Plc Fluid disc pump
CN102459900A (en) 2009-06-03 2012-05-16 技术合伙公司 Fluid disc pump
US20100321216A1 (en) 2009-06-19 2010-12-23 Conexant Systems, Inc. Systems and Methods for Variable Rate Conversion
EP2271129A1 (en) 2009-07-02 2011-01-05 Nxp B.V. Transducer with resonant cavity
US20110006888A1 (en) 2009-07-10 2011-01-13 Samsung Electronics Co., Ltd. Method and apparatus for generating vibrations in portable terminals
US20110010958A1 (en) 2009-07-16 2011-01-20 Wayne Clark Quiet hair dryer
US20110066032A1 (en) 2009-08-26 2011-03-17 Shuki Vitek Asymmetric ultrasound phased-array transducer
US20120243374A1 (en) 2009-09-23 2012-09-27 Elliptic Laboratories As Acoustic motion determination
US20120236689A1 (en) 2009-11-11 2012-09-20 Btech Acoustics Llc Acoustic transducers for underwater navigation and communication
US20130094678A1 (en) 2009-12-11 2013-04-18 Rick Scholte Acoustic transducer assembly
US20130035582A1 (en) 2009-12-28 2013-02-07 Koninklijke Philips Electronics N.V. High intensity focused ultrasound transducer optimization
US20180361174A1 (en) 2009-12-28 2018-12-20 Profound Medical Inc. High Intensity Focused Ultrasound Transducer Optimization
US20120307649A1 (en) 2010-02-12 2012-12-06 Pantech Co., Ltd. Channel status information feedback apparatus and method for same, base station, and transmission method of said base station
US20110199342A1 (en) 2010-02-16 2011-08-18 Harry Vartanian Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
JP2011172074A (en) 2010-02-19 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> Local reproduction apparatus and method, and program
WO2011132012A1 (en) 2010-04-20 2011-10-27 Nokia Corporation An apparatus and associated methods
US20130079621A1 (en) 2010-05-05 2013-03-28 Technion Research & Development Foundation Ltd. Method and system of operating a multi focused acoustic wave source
US20110310028A1 (en) 2010-06-21 2011-12-22 Sony Ericsson Mobile Communications Ab Active Acoustic Touch Location for Electronic Devices
WO2012023864A1 (en) 2010-08-20 2012-02-23 Industrial Research Limited Surround sound system
JP2012048378A (en) 2010-08-25 2012-03-08 Denso Corp Tactile presentation device
US8607922B1 (en) 2010-09-10 2013-12-17 Harman International Industries, Inc. High frequency horn having a tuned resonant cavity
US20120066280A1 (en) 2010-09-10 2012-03-15 Ryo Tsutsui Asynchronous Sample Rate Conversion Using A Polynomial Interpolator With Minimax Stopband Attenuation
US20120063628A1 (en) 2010-09-14 2012-03-15 Frank Rizzello Sound reproduction systems and method for arranging transducers therein
KR20120065779A (en) 2010-12-13 2012-06-21 가천대학교 산학협력단 Graphic haptic electronic board and method for transferring the visual image information into the haptic information for visually impaired people
CN102591512A (en) 2011-01-07 2012-07-18 马克西姆综合产品公司 Contact feedback system and method for providing haptic feedback
US20140027201A1 (en) 2011-01-31 2014-01-30 Wayne State University Acoustic metamaterials
WO2012104648A1 (en) 2011-02-03 2012-08-09 The Technology Partnership Plc Pump
US20130331705A1 (en) 2011-03-22 2013-12-12 Koninklijke Philips Electronics N.V. Ultrasonic cmut with suppressed acoustic coupling to the substrate
US9267735B2 (en) 2011-03-24 2016-02-23 Twinbird Corporation Dryer
US20120249409A1 (en) 2011-03-31 2012-10-04 Nokia Corporation Method and apparatus for providing user interfaces
US20120249474A1 (en) 2011-04-01 2012-10-04 Analog Devices, Inc. Proximity and force detection for haptic effect generation
US20150220199A1 (en) 2011-04-26 2015-08-06 The Regents Of The University Of California Systems and devices for recording and reproducing senses
US8833510B2 (en) 2011-05-05 2014-09-16 Massachusetts Institute Of Technology Phononic metamaterials for vibration isolation and focusing of elastic waves
US9421291B2 (en) 2011-05-12 2016-08-23 Fifth Third Bank Hand dryer with sanitizing ionization assembly
US20120299853A1 (en) 2011-05-26 2012-11-29 Sumit Dagar Haptic interface
US20120315605A1 (en) 2011-06-08 2012-12-13 Jin-Soo Cho System and method for providing learning information for visually impaired people based on haptic electronic board
US20140139071A1 (en) 2011-08-03 2014-05-22 Murata Manufacturing Co., Ltd. Ultrasonic transducer
US9662680B2 (en) 2011-08-03 2017-05-30 Murata Manufacturing Co., Ltd. Ultrasonic transducer
US10146353B1 (en) 2011-08-05 2018-12-04 P4tents1, LLC Touch screen system, method, and computer program product
CN103797379A (en) 2011-09-22 2014-05-14 皇家飞利浦有限公司 Ultrasound measurement assembly for multidirectional measurement
US20130101141A1 (en) 2011-10-19 2013-04-25 Wave Sciences Corporation Directional audio array apparatus and system
US20130100008A1 (en) 2011-10-19 2013-04-25 Stefan J. Marti Haptic Response Module
US20140211593A1 (en) * 2011-10-21 2014-07-31 Neurotrek, Inc. Method and system for direct communication
US20150013023A1 (en) 2011-10-28 2015-01-08 Regeneron Pharmaceuticals, Inc. Humanized il-6 and il-6 receptor
KR20130055972A (en) 2011-11-21 2013-05-29 알피니언메디칼시스템 주식회사 Transducer for hifu
US20130173658A1 (en) 2011-12-29 2013-07-04 Mighty Cast, Inc. Interactive base and token capable of communicating with computing device
US9816757B1 (en) 2012-02-01 2017-11-14 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US20120229400A1 (en) 2012-02-15 2012-09-13 Immersion Corporation Interactivity model for shared feedback on mobile devices
US20120223880A1 (en) 2012-02-15 2012-09-06 Immersion Corporation Method and apparatus for producing a dynamic haptic effect
US8279193B1 (en) 2012-02-15 2012-10-02 Immersion Corporation Interactivity model for shared feedback on mobile devices
US20150070245A1 (en) 2012-03-16 2015-03-12 City University Of Hong Kong Coil-based artificial atom for metamaterials, metamaterial comprising the artificial atom, and device comprising the metamaterial
US20120229401A1 (en) 2012-05-16 2012-09-13 Immersion Corporation System and method for display of multiple data channels on a single haptic display
US20150130323A1 (en) 2012-05-18 2015-05-14 Nvf Tech Ltd Panel For Use in Vibratory Panel Device
WO2013179179A2 (en) 2012-05-31 2013-12-05 Koninklijke Philips N.V. Ultrasound transducer assembly and method for driving an ultrasound transducer head
US20170211022A1 (en) 2012-06-08 2017-07-27 Alm Holding Company Biodiesel emulsion for cleaning bituminous coated equipment
US20150226537A1 (en) 2012-08-29 2015-08-13 Agfa Healthcare Nv System and method for optical coherence tomography and positioning element
US20140104274A1 (en) 2012-10-17 2014-04-17 Microsoft Corporation Grasping virtual objects in augmented reality
US20150304789A1 (en) 2012-11-18 2015-10-22 Noveto Systems Ltd. Method and system for generation of sound fields
US20140168091A1 (en) 2012-12-13 2014-06-19 Immersion Corporation System and method for identifying users and selecting a haptic response
US20140201666A1 (en) 2013-01-15 2014-07-17 Raffi Bedikian Dynamic, free-space user interactions for machine control
US20140204002A1 (en) 2013-01-21 2014-07-24 Rotem Bennet Virtual interaction with image projection
US9208664B1 (en) 2013-03-11 2015-12-08 Amazon Technologies, Inc. Adjusting structural characteristics of a device
US20160291716A1 (en) 2013-03-11 2016-10-06 The Regents Of The University Of California In-air ultrasonic rangefinding and angle estimation
US20160019879A1 (en) 2013-03-13 2016-01-21 Bae Systems Plc Metamaterial
US20160374562A1 (en) 2013-03-15 2016-12-29 LX Medical, Inc. Tissue imaging and image guidance in luminal anatomic structures and body cavities
US20140269208A1 (en) 2013-03-15 2014-09-18 Elwha LLC, a limited liability company of the State of Delaware Portable electronic device directed audio targeted user system and method
US20140265572A1 (en) 2013-03-15 2014-09-18 Fujifilm Sonosite, Inc. Low noise power sources for portable electronic systems
US20140269207A1 (en) 2013-03-15 2014-09-18 Elwha Llc Portable Electronic Device Directed Audio Targeted User System and Method
US9977120B2 (en) 2013-05-08 2018-05-22 Ultrahaptics Ip Ltd Method and apparatus for producing an acoustic field
US20160124080A1 (en) * 2013-05-08 2016-05-05 Ultrahaptics Limited Method and apparatus for producing an acoustic field
US10281567B2 (en) 2013-05-08 2019-05-07 Ultrahaptics Ip Ltd Method and apparatus for producing an acoustic field
US20190257932A1 (en) 2013-05-08 2019-08-22 Ultrahaptics Ip Ltd Method and Apparatus for Producing an Acoustic Field
GB2513884A (en) 2013-05-08 2014-11-12 Univ Bristol Method and apparatus for producing an acoustic field
WO2014181084A1 (en) 2013-05-08 2014-11-13 The University Of Bristol Method and apparatus for producing an acoustic field
US20180267156A1 (en) 2013-05-08 2018-09-20 Ultrahaptics Ip Ltd Method and Apparatus for Producing an Acoustic Field
US20160138986A1 (en) 2013-06-12 2016-05-19 Atlas Copco Industrial Technique Ab A method of measuring elongation of a fastener with ultrasound, performed by a power tool, and a power tool
US8884927B1 (en) 2013-06-27 2014-11-11 Elwha Llc Tactile feedback generated by phase conjugation of ultrasound surface acoustic waves
US20150002477A1 (en) 2013-06-27 2015-01-01 Elwha LLC, a limited company of the State of Delaware Tactile feedback generated by non-linear interaction of surface acoustic waves
US20150006645A1 (en) 2013-06-28 2015-01-01 Jerry Oh Social sharing of video clips
US20150005039A1 (en) 2013-06-29 2015-01-01 Min Liu System and method for adaptive haptic effects
US20150007025A1 (en) 2013-07-01 2015-01-01 Nokia Corporation Apparatus
WO2015006467A1 (en) 2013-07-09 2015-01-15 Coactive Drive Corporation Synchronized array of vibration actuators in an integrated module
US20150248787A1 (en) 2013-07-12 2015-09-03 Magic Leap, Inc. Method and system for retrieving data in response to user input
US20150029155A1 (en) 2013-07-24 2015-01-29 Hyundai Motor Company Touch display apparatus of vehicle and driving method thereof
JP2015035657A (en) 2013-08-07 2015-02-19 株式会社豊田中央研究所 Notification device and input device
US20150066445A1 (en) 2013-08-27 2015-03-05 Halliburton Energy Services, Inc. Generating a smooth grid for simulating fluid flow in a well system environment
US20150070147A1 (en) 2013-09-06 2015-03-12 Immersion Corporation Systems and Methods for Generating Haptic Effects Associated With an Envelope in Audio Signals
US20150078136A1 (en) 2013-09-13 2015-03-19 Mitsubishi Heavy Industries, Ltd. Conformable Transducer With Self Position Sensing
WO2015039622A1 (en) 2013-09-19 2015-03-26 The Hong Kong University Of Science And Technology Active control of membrane-type acoustic metamaterial
US20150084929A1 (en) 2013-09-25 2015-03-26 Hyundai Motor Company Curved touch display apparatus for providing tactile feedback and method thereof
US20150110310A1 (en) 2013-10-17 2015-04-23 Oticon A/S Method for reproducing an acoustical sound field
US20160242724A1 (en) 2013-11-04 2016-08-25 Surgivisio Method for reconstructing a 3d image from 2d x-ray images
US20170002839A1 (en) 2013-12-13 2017-01-05 The Technology Partnership Plc Acoustic-resonance fluid pump
US20150168205A1 (en) 2013-12-16 2015-06-18 Lifescan, Inc. Devices, systems and methods to determine area sensor
US20150189457A1 (en) * 2013-12-30 2015-07-02 Aliphcom Interactive positioning of perceived audio sources in a transformed reproduced sound field including modified reproductions of multiple sound fields
US20150189455A1 (en) * 2013-12-30 2015-07-02 Aliphcom Transformation of multiple sound fields to generate a transformed reproduced sound field including modified reproductions of the multiple sound fields
US20170153707A1 (en) 2014-01-07 2017-06-01 Ultrahaptics Ip Ltd Method and Apparatus for Providing Tactile Sensations
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
US20180181203A1 (en) 2014-01-07 2018-06-28 Ultrahaptics Ip Ltd Method and Apparatus for Providing Tactile Sensations
US9898089B2 (en) 2014-01-07 2018-02-20 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
US10921890B2 (en) 2014-01-07 2021-02-16 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
US20150192995A1 (en) 2014-01-07 2015-07-09 University Of Bristol Method and apparatus for providing tactile sensations
US20150226831A1 (en) 2014-02-13 2015-08-13 Honda Motor Co., Ltd. Sound processing apparatus and sound processing method
US9945818B2 (en) 2014-02-23 2018-04-17 Qualcomm Incorporated Ultrasonic authenticating button
WO2015127335A2 (en) 2014-02-23 2015-08-27 Qualcomm Incorporated Ultrasonic authenticating button
US20160026253A1 (en) 2014-03-11 2016-01-28 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US20150258431A1 (en) 2014-03-14 2015-09-17 Sony Computer Entertainment Inc. Gaming device with rotatably placed cameras
US20150277610A1 (en) 2014-03-27 2015-10-01 Industry-Academic Cooperation Foundation, Yonsei University Apparatus and method for providing three-dimensional air-touch feedback
US20150293592A1 (en) 2014-04-15 2015-10-15 Samsung Electronics Co., Ltd. Haptic information management method and electronic device supporting the same
US20150323667A1 (en) 2014-05-12 2015-11-12 Chirp Microsystems Time of flight range finding with an adaptive transmit pulse and adaptive receiver processing
US20150331576A1 (en) 2014-05-14 2015-11-19 Purdue Research Foundation Manipulating virtual environment using non-instrumented physical object
US20150332075A1 (en) 2014-05-15 2015-11-19 Fedex Corporate Services, Inc. Wearable devices for courier processing and methods of use thereof
CN103984414A (en) 2014-05-16 2014-08-13 北京智谷睿拓技术服务有限公司 Method and equipment for producing touch feedback
US9863699B2 (en) 2014-06-09 2018-01-09 Terumo Bct, Inc. Lyophilization
US20170144190A1 (en) 2014-06-17 2017-05-25 Pixie Dust Technologies, Inc. Low-noise ultrasonic wave focusing apparatus
US10569300B2 (en) 2014-06-17 2020-02-25 Pixie Dust Technologies, Inc. Low-noise ultrasonic wave focusing apparatus
US20170140552A1 (en) 2014-06-25 2017-05-18 Korea Advanced Institute Of Science And Technology Apparatus and method for estimating hand position utilizing head mounted color depth camera, and bare hand interaction system using same
US10510357B2 (en) 2014-06-27 2019-12-17 Orange Resampling of an audio signal by interpolation for low-delay encoding/decoding
US20170123499A1 (en) 2014-07-11 2017-05-04 New York University Three dimensional tactile feedback system
US10133353B2 (en) 2014-07-11 2018-11-20 New York University Three dimensional tactile feedback system
WO2016007920A1 (en) 2014-07-11 2016-01-14 New York University Three dimensional tactile feedback system
KR20160008280A (en) 2014-07-14 2016-01-22 한국기계연구원 Air-coupled ultrasonic transducer using metamaterials
US20160019762A1 (en) 2014-07-15 2016-01-21 Immersion Corporation Systems and methods to generate haptic feedback for skin-mediated interactions
JP2016035646A (en) 2014-08-01 2016-03-17 株式会社デンソー Tactile device, and tactile display including the same
US20160044417A1 (en) 2014-08-05 2016-02-11 The Boeing Company Apparatus and method for an active and programmable acoustic metamaterial
US20200042091A1 (en) 2014-09-09 2020-02-06 Ultrahaptics Ip Ltd Method and Apparatus for Modulating Haptic Feedback
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
US20180246576A1 (en) 2014-09-09 2018-08-30 Ultrahaptics Ip Ltd Method and Apparatus for Modulating Haptic Feedback
US9958943B2 (en) 2014-09-09 2018-05-01 Ultrahaptics Ip Ltd Method and apparatus for modulating haptic feedback
US20220113806A1 (en) 2014-09-09 2022-04-14 Ultrahaptics Ip Ltd Method and Apparatus for Modulating Haptic Feedback
US10444842B2 (en) 2014-09-09 2019-10-15 Ultrahaptics Ip Ltd Method and apparatus for modulating haptic feedback
US20160320843A1 (en) 2014-09-09 2016-11-03 Ultrahaptics Limited Method and Apparatus for Modulating Haptic Feedback
US11204644B2 (en) 2014-09-09 2021-12-21 Ultrahaptics Ip Ltd Method and apparatus for modulating haptic feedback
EP3216231B1 (en) 2014-11-07 2019-08-21 Chirp Microsystems, Inc. Package waveguide for acoustic sensor with electronic delay compensation
US20160175701A1 (en) 2014-12-17 2016-06-23 Gtech Canada Ulc Contactless tactile feedback on gaming terminal with 3d display
WO2016095033A1 (en) 2014-12-17 2016-06-23 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3d display
US20160175709A1 (en) 2014-12-17 2016-06-23 Fayez Idris Contactless tactile feedback on gaming terminal with 3d display
WO2016099279A1 (en) 2014-12-19 2016-06-23 Umc Utrecht Holding B.V. High intensity focused ultrasound apparatus
US20160189702A1 (en) 2014-12-24 2016-06-30 United Technology Corporation Acoustic metamaterial gate
US20180035891A1 (en) 2015-02-09 2018-02-08 Erasmus University Medical Center Rotterdam Intravascular photoacoustic imaging
US10101814B2 (en) 2015-02-20 2018-10-16 Ultrahaptics Ip Ltd. Perceptions in a haptic system
US20160249150A1 (en) 2015-02-20 2016-08-25 Ultrahaptics Limited Algorithm Improvements in a Haptic System
US10685538B2 (en) 2015-02-20 2020-06-16 Ultrahaptics Ip Ltd Algorithm improvements in a haptic system
US20190197841A1 (en) 2015-02-20 2019-06-27 Ultrahaptics Ip Ltd Algorithm Improvements in a Haptic System
US20220198892A1 (en) 2015-02-20 2022-06-23 Ultrahaptics Ip Ltd Algorithm Improvements in a Haptic System
US20190206202A1 (en) 2015-02-20 2019-07-04 Ultrahaptics Ip Ltd Perceptions in a Haptic System
US20180101234A1 (en) 2015-02-20 2018-04-12 Ultrahaptics Ip Ltd Perceptions in a Haptic System
US10930123B2 (en) 2015-02-20 2021-02-23 Ultrahaptics Ip Ltd Perceptions in a haptic system
WO2016132144A1 (en) 2015-02-20 2016-08-25 Ultrahaptics Ip Limited Perceptions in a haptic system
US20200302760A1 (en) 2015-02-20 2020-09-24 Ultrahaptics Ip Ltd Algorithm Improvements in a Haptic System
US20160246374A1 (en) 2015-02-20 2016-08-25 Ultrahaptics Limited Perceptions in a Haptic System
US10101811B2 (en) 2015-02-20 2018-10-16 Ultrahaptics Ip Ltd. Algorithm improvements in a haptic system
US9841819B2 (en) 2015-02-20 2017-12-12 Ultrahaptics Ip Ltd Perceptions in a haptic system
US11276281B2 (en) 2015-02-20 2022-03-15 Ultrahaptics Ip Ltd Algorithm improvements in a haptic system
WO2016137675A1 (en) 2015-02-27 2016-09-01 Microsoft Technology Licensing, Llc Molding and anchoring physically constrained virtual environments to real-world environments
WO2016162058A1 (en) 2015-04-08 2016-10-13 Huawei Technologies Co., Ltd. Apparatus and method for driving an array of loudspeakers
US20180081439A1 (en) 2015-04-14 2018-03-22 John James Daniels Wearable Electronic, Multi-Sensory, Human/Machine, Human/Human Interfaces
US20160306423A1 (en) 2015-04-17 2016-10-20 Apple Inc. Contracting and Elongating Materials for Providing Input and Output for an Electronic Device
US20160339132A1 (en) 2015-05-24 2016-11-24 LivOnyx Inc. Systems and methods for sanitizing surfaces
US20170004819A1 (en) 2015-06-30 2017-01-05 Pixie Dust Technologies, Inc. System and method for manipulating objects in a computational acoustic-potential field
US20170018171A1 (en) 2015-07-16 2017-01-19 Thomas Andrew Carter Calibration Techniques in Haptic Systems
US10818162B2 (en) 2015-07-16 2020-10-27 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US20210043070A1 (en) 2015-07-16 2021-02-11 Ultrahaptics Ip Ltd Calibration Techniques in Haptic Systems
US20170024921A1 (en) 2015-07-23 2017-01-26 Disney Enterprises, Inc. Real-time high-quality facial performance capture
US20180309515A1 (en) 2015-08-03 2018-10-25 Phase Sensitive Innovations, Inc. Distributed array for direction and frequency finding
US20170052148A1 (en) 2015-08-17 2017-02-23 Texas Instruments Incorporated Methods and apparatus to measure and analyze vibration signatures
US20170123487A1 (en) 2015-10-30 2017-05-04 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US20170168586A1 (en) 2015-12-15 2017-06-15 Purdue Research Foundation Method and System for Hand Pose Detection
US10318008B2 (en) 2015-12-15 2019-06-11 Purdue Research Foundation Method and system for hand pose detection
US20170181725A1 (en) 2015-12-25 2017-06-29 General Electric Company Joint ultrasound imaging system and method
US20170193768A1 (en) 2016-01-05 2017-07-06 Ultrahaptics Ip Ltd Calibration and Detection Techniques in Haptic Systems
US11189140B2 (en) 2016-01-05 2021-11-30 Ultrahaptics Ip Ltd Calibration and detection techniques in haptic systems
US20170193823A1 (en) 2016-01-06 2017-07-06 Honda Motor Co., Ltd. System for indicating vehicle presence and method thereof
EP3207817A1 (en) 2016-02-17 2017-08-23 Koninklijke Philips N.V. Ultrasound hair drying and styling
US20170279951A1 (en) 2016-03-28 2017-09-28 International Business Machines Corporation Displaying Virtual Target Window on Mobile Device Based on User Intent
WO2017172006A1 (en) 2016-03-29 2017-10-05 Intel Corporation System to provide tactile feedback during non-contact interaction
US20180139557A1 (en) 2016-04-04 2018-05-17 Pixie Dust Technologies, Inc. System and method for generating spatial sound using ultrasound
US20170336860A1 (en) 2016-05-20 2017-11-23 Disney Enterprises, Inc. System for providing multi-directional and multi-person walking in virtual reality environments
US10140776B2 (en) 2016-06-13 2018-11-27 Microsoft Technology Licensing, Llc Altering properties of rendered objects via control points
US10531212B2 (en) 2016-06-17 2020-01-07 Ultrahaptics Ip Ltd. Acoustic transducers in haptic systems
US20170366908A1 (en) 2016-06-17 2017-12-21 Ultrahaptics Ip Ltd. Acoustic Transducers in Haptic Systems
US20200103974A1 (en) 2016-08-03 2020-04-02 Ultrahaptics Ip Ltd Three-Dimensional Perceptions in Haptic Systems
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US20210303072A1 (en) 2016-08-03 2021-09-30 Ultrahaptics Ip Ltd Three-Dimensional Perceptions in Haptic Systems
US20220236806A1 (en) 2016-08-03 2022-07-28 Ultrahaptics Ip Ltd Three-Dimensional Perceptions in Haptic Systems
US10496175B2 (en) 2016-08-03 2019-12-03 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US20180039333A1 (en) 2016-08-03 2018-02-08 Ultrahaptics Ip Ltd Three-Dimensional Perceptions in Haptic Systems
US20190204925A1 (en) 2016-08-03 2019-07-04 Ultrahaptics Ip Ltd Three-Dimensional Perceptions in Haptic Systems
US10915177B2 (en) 2016-08-03 2021-02-09 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10755538B2 (en) 2016-08-09 2020-08-25 Ultrahaptics ilP LTD Metamaterials and acoustic lenses in haptic systems
US20180047259A1 (en) 2016-08-09 2018-02-15 Ultrahaptics Limited Metamaterials and Acoustic Lenses in Haptic Systems
US20200380832A1 (en) 2016-08-09 2020-12-03 Ultrahaptics Ip Ltd Metamaterials and Acoustic Lenses in Haptic Systems
US20190175077A1 (en) 2016-08-15 2019-06-13 Georgia Tech Research Corporation Electronic Device and Method of Controlling Same
US20180074580A1 (en) 2016-09-15 2018-03-15 International Business Machines Corporation Interaction with holographic image notification
US20180146306A1 (en) 2016-11-18 2018-05-24 Stages Pcs, Llc Audio Analysis and Processing System
US20180151035A1 (en) 2016-11-29 2018-05-31 Immersion Corporation Targeted haptic projection
US10943578B2 (en) 2016-12-13 2021-03-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US20180166063A1 (en) 2016-12-13 2018-06-14 Ultrahaptics Ip Ltd Driving Techniques for Phased-Array Systems
US20210225355A1 (en) 2016-12-13 2021-07-22 Ultrahaptics Ip Ltd Driving Techniques for Phased-Array Systems
US10497358B2 (en) 2016-12-23 2019-12-03 Ultrahaptics Ip Ltd Transducer driver
US20180182372A1 (en) 2016-12-23 2018-06-28 Ultrahaptics Ip Ltd Transducer Driver
US20180190007A1 (en) 2017-01-04 2018-07-05 Nvidia Corporation Stereoscopic rendering using raymarching and a virtual view broadcaster for such rendering
US20180253627A1 (en) 2017-03-06 2018-09-06 Xerox Corporation Conditional adaptation network for image classification
US20180304310A1 (en) 2017-04-24 2018-10-25 Ultrahaptics Ip Ltd Interference Reduction Techniques in Haptic Systems
US20220095068A1 (en) 2017-04-24 2022-03-24 Ultrahaptics Ip Ltd Algorithm Enhancements for Haptic-Based Phased-Array Solutions
US20180310111A1 (en) 2017-04-24 2018-10-25 Ultrahaptics Ip Ltd Algorithm Enhancements for Haptic-Based Phased-Array Systems
US20210037332A1 (en) 2017-04-24 2021-02-04 Ultrahaptics Ip Ltd Algorithm Enhancements for Haptic-Based Phased-Array Solutions
US20190197840A1 (en) 2017-04-24 2019-06-27 Ultrahaptics Ip Ltd Grouping and Optimization of Phased Ultrasonic Transducers for Multi-Field Solutions
US10469973B2 (en) 2017-04-28 2019-11-05 Bose Corporation Speaker array systems
US20180350339A1 (en) 2017-05-31 2018-12-06 Nxp B.V. Acoustic processor
US10168782B1 (en) 2017-06-05 2019-01-01 Rockwell Collins, Inc. Ultrasonic haptic feedback control system and method
CN107340871A (en) 2017-07-25 2017-11-10 深识全球创新科技(北京)有限公司 The devices and methods therefor and purposes of integrated gesture identification and ultrasonic wave touch feedback
US11048329B1 (en) 2017-07-27 2021-06-29 Emerge Now Inc. Mid-air ultrasonic haptic interface for immersive computing environments
US20190038496A1 (en) 2017-08-02 2019-02-07 Immersion Corporation Haptic implants
US20190091565A1 (en) 2017-09-28 2019-03-28 Igt Interacting with three-dimensional game elements using gaze detection
US20190163275A1 (en) 2017-11-26 2019-05-30 Ultrahaptics Limited Haptic Effects from Focused Acoustic Fields
US20190187244A1 (en) 2017-12-06 2019-06-20 Invensense, Inc. Three dimensional object-localization and tracking using ultrasonic pulses with synchronized inertial position determination
US20190196578A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Tracking in Haptic Systems
US20220300070A1 (en) 2017-12-22 2022-09-22 Ultrahaptics Ip Ltd Tracking in Haptic Systems
US20190196591A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Ip Ltd Human Interactions with Mid-Air Haptic Systems
US20190197842A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Minimizing Unwanted Responses in Haptic Systems
US20190235628A1 (en) 2018-01-26 2019-08-01 Immersion Corporation Method and device for performing actuator control based on an actuator model
US20190310710A1 (en) 2018-04-04 2019-10-10 Ultrahaptics Limited Dynamic Haptic Feedback Systems
US10911861B2 (en) 2018-05-02 2021-02-02 Ultrahaptics Ip Ltd Blocking plate structure for improved acoustic transmission efficiency
US20190342654A1 (en) 2018-05-02 2019-11-07 Ultrahaptics Limited Blocking Plate Structure for Improved Acoustic Transmission Efficiency
US20210170447A1 (en) 2018-05-02 2021-06-10 Ultrahaptics Ip Limited Blocking Plate Structure for Improved Acoustic Transmission Efficiency
US10523159B2 (en) 2018-05-11 2019-12-31 Nanosemi, Inc. Digital compensator for a non-linear system
US20210165491A1 (en) 2018-08-24 2021-06-03 Jilin University Tactile sensation providing device and method
US20210334706A1 (en) 2018-08-27 2021-10-28 Nippon Telegraph And Telephone Corporation Augmentation device, augmentation method, and augmentation program
US20200080776A1 (en) 2018-09-09 2020-03-12 Ultrahaptics Limited Ultrasonic-Assisted Liquid Manipulation
US20200082804A1 (en) 2018-09-09 2020-03-12 Ultrahaptics Ip Ltd Event Triggering in Phased-Array Systems
US11098951B2 (en) 2018-09-09 2021-08-24 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
WO2020049321A2 (en) 2018-09-09 2020-03-12 Ultrahaptics Ip Ltd Ultrasonic assisted liquid manipulation
US20210381765A1 (en) 2018-09-09 2021-12-09 Ultrahaptics Ip Ltd Ultrasonic-Assisted Liquid Manipulation
US20220300028A1 (en) 2018-10-12 2022-09-22 Ultrahaptics Ip Ltd. Variable Phase and Frequency Pulse-Width Modulation Technique
US20200117229A1 (en) 2018-10-12 2020-04-16 Ultraleap Limited Variable Phase and Frequency Pulse-Width Modulation Technique
US20200193269A1 (en) 2018-12-18 2020-06-18 Samsung Electronics Co., Ltd. Recognizer, object recognition method, learning apparatus, and learning method for domain adaptation
KR20200082449A (en) 2018-12-28 2020-07-08 한국과학기술원 Apparatus and method of controlling virtual model
US20200218354A1 (en) 2019-01-04 2020-07-09 Ultrahaptics Ip Ltd Mid-Air Haptic Textures
US20200320347A1 (en) 2019-04-02 2020-10-08 Synthesis Ai, Inc. System and method for domain adaptation using synthetic data
US20200327418A1 (en) 2019-04-12 2020-10-15 Ultrahaptics Ip Ltd Using Iterative 3D-Model Fitting for Domain Adaptation of a Hand-Pose-Estimation Neural Network
US20220329250A1 (en) 2019-10-13 2022-10-13 Ultraleap Limited Reducing Harmonic Distortion by Dithering
US20210111731A1 (en) 2019-10-13 2021-04-15 Ultraleap Limited Reducing Harmonic Distortion by Dithering
US20210112353A1 (en) 2019-10-13 2021-04-15 Ultraleap Limited Dynamic Capping with Virtual Microphones
US20210109712A1 (en) 2019-10-13 2021-04-15 Ultraleap Limited Hardware Algorithm for Complex-Valued Exponentiation and Logarithm Using Simplified Sub-Steps
US11169610B2 (en) 2019-11-08 2021-11-09 Ultraleap Limited Tracking techniques in haptic systems
US20210141458A1 (en) 2019-11-08 2021-05-13 Ultraleap Limited Tracking Techniques in Haptic Systems
US20210201884A1 (en) 2019-12-25 2021-07-01 Ultraleap Limited Acoustic Transducer Structures
US20210303758A1 (en) 2020-03-31 2021-09-30 Ultraleap Limited Accelerated Hardware Using Dual Quaternions
US20210397261A1 (en) 2020-06-23 2021-12-23 Ultraleap Limited Features of Airborne Ultrasonic Fields
US20220083142A1 (en) 2020-09-17 2022-03-17 Ultraleap Limited Ultrahapticons
US20220155949A1 (en) 2020-11-16 2022-05-19 Ultraleap Limited Intent Driven Dynamic Gesture Recognition System
US20220252550A1 (en) 2021-01-26 2022-08-11 Ultraleap Limited Ultrasound Acoustic Field Manipulation Techniques

Non-Patent Citations (297)

* Cited by examiner, † Cited by third party
Title
"Welcome to Project Soli" video, https://atap.google.eom/#project-soli Accessed Nov. 30, 2018, 2 pages.
A. B. Vallbo, Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects, Journal of Physiology (1995), 483.3, pp. 783-795.
A. Sand, Head-Mounted Display with Mid-Air Tactile Feedback, Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, Nov. 13-15, 2015 (8 pages).
Alexander, J. et al. (2011), Adding Haptic Feedback to Mobile TV (6 pages).
Almusawi et al., "A new artificial neural network approach in solving inverse kinematics of robotic arm (denso vp6242)." Computational intelligence and neuroscience 2016 (2016). (Year: 2016).
Amanda Zimmerman, The gentle touch receptors of mammalian skin, Science, Nov. 21, 2014, vol. 346 Issue 6212, p. 950.
Anonymous: "How does Ultrahaptics technology work?—Ultrahaptics Developer Information", Jul. 31, 2018 (Jul. 31, 2018), XP055839320, Retrieved from the Internet: URL:https://developer.ultrahaptics.com/knowledgebase/haptics-overview/ [retrieved on Sep. 8, 2021].
Aoki et al., Sound location of stero reproduction with parametric loudspeakers, Applied Acoustics 73 (2012) 1289-1295 (7 pages).
Ashish Shrivastava et al., Learning from Simulated and Unsupervised Images through Adversarial Training, Jul. 19, 2017, pp. 1-16.
Azad et al., Deep domain adaptation under deep label scarcity. arXiv preprint arXiv:1809.08097 (2018) (Year: 2018).
Bajard et al., BKM: A New Hardware Algorithm for Complex Elementary Functions, 8092 IEEE Transactions on Computers 43 (1994) (9 pages).
Bajard et al., Evaluation of Complex Elementary Functions / A New Version of BKM, SPIE Conference on Advanced Signal Processing, Jul. 1999 (8 pages).
Benjamin Long et al, "Rendering volumetric haptic shapes in mid-air using ultrasound", ACM Transactions on Graphics (TOG), ACM, US, (Nov. 19, 2014), vol. 33, No. 6, ISSN 0730-0301, pp. 1-10.
Beranek, L., & Mellow, T. (2019). Acoustics: Sound Fields, Transducers and Vibration. Academic Press.
Bortoff et al., Pseudolinearization of the Acrobot using Spline Functions, IEEE Proceedings of the 31st Conference on Decision and Control, Sep. 10, 1992 (6 pages).
Boureau et al.,"A theoretical analysis of feature pooling in visual recognition." In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 111-118. 2010. (Year: 2010).
Bożena Smagowska & Małgorzata Pawlaczyk-Łuszczyńska (2013) Effects of Ultrasonic Noise on the Human Body—A Bibliographic Review, International Journal of Occupational Safety and Ergonomics, 19:2, 195-202.
Brian Kappus and Ben Long, Spatiotemporal Modulation for Mid-Air Haptic Feedback from an Ultrasonic Phased Array, ICSV25, Hiroshima, Jul. 8-12, 2018, 6 pages.
Bybi, A., Grondel, S., Mzerd, A., Granger, C., Garoum, M., & Assaad, J. (2019). Investigation of cross-coupling in piezoelectric transducer arrays and correction. International Journal of Engineering and Technology Innovation, 9(4), 287.
Canada Application 2,909,804 Office Action dated Oct. 18, 2019, 4 pages.
Casper et al., Realtime Control of Multiple-focus Phased Array Heating Patterns Based on Noninvasive Ultrasound Thermography, IEEE Trans Biomed Eng. Jan. 2012; 59(1): 95-105.
Certon, D., Felix, N., Hue, P. T. H., Patat, F., & Lethiecq, M. (Oct. 1999). Evaluation of laser probe performances for measuring cross-coupling in 1-3 piezocomposite arrays. In 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027) (vol. 2, pp. 1091-1094).
Certon, D., Felix, N., Lacaze, E., Teston, F., & Patat, F. (2001). Investigation of cross-coupling in 1-3 piezocomposite arrays. ieee transactions on ultrasonics, ferroelectrics, and frequency control, 48(1), 85-92.
Chang Suk Lee et al., An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter, J. Mater. Chem. C, 2018, 6, 4243 (7 pages).
Christoper M. Bishop, Pattern Recognition and Machine Learning, 2006, pp. 1-758.
Colgan, A., "How Does the Leap Motion Controller Work?" Leap Motion, Aug. 9, 2014, 10 pages.
Communication Pursuant to Article 94(3) EPC for EP 19723179.8 (dated Feb. 15, 2022), 10 pages.
Corrected Notice of Allowability dated Aug. 9, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-6).
Corrected Notice of Allowability dated Jan. 14, 2021 for U.S. Appl. No. 15/897,804 (pp. 1-2).
Corrected Notice of Allowability dated Jun. 21, 2019 for U.S. Appl. No. 15/966,213 (2 pages).
Corrected Notice of Allowability dated Nov. 24, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-5).
Corrected Notice of Allowability dated Oct. 31, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-2).
Damn Geeky, "Virtual projection keyboard technology with haptic feedback on palm of your hand," May 30, 2013, 4 pages.
David Joseph Tan et al., Fits like a Glove: Rapid and Reliable Hand Shape Personalization, 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610-5619.
Definition of "lnterferometry" according to Wikipedia, 25 pages., Retrieved Nov. 2018.
Definition of "Multilateration" according to Wikipedia, 7 pages., Retrieved Nov. 2018.
Definition of "Trilateration" according to Wikipedia, 2 pages., Retrieved Nov. 2018.
Der et al., Inverse kinematics for reduced deformable models. ACM Transactions on graphics (TOG) 25, No. 3 (2006): 1174-1179. (Year: 2006).
DeSilets, C. S. (1978). Transducer arrays suitable for acoustic imaging (No. GL-2833). Stanford Univ CA Edward L Ginzton Lab of Physics.
Diederik P. Kingma et al., Adam: A Method for Stochastic Optimization, Jan. 30, 2017, pp. 1-15.
Duka, "Neural network based inverse kinematics solution for trajectory tracking of a robotic arm." Procedia Technology 12 (2014) 20-27. (Year: 2014).
E. Bok, Metasurface for Water-to-Air Sound Transmission, Physical Review Letters 120, 044302 (2018) (6 pages).
E.S. Ebbini et al. (1991), A spherical-section ultrasound phased array applicator for deep localized hyperthermia, Biomedical Engineering, IEEE Transactions on (vol. 38 Issue: 7), pp. 634-643.
EPO 21186570.4 Extended Search Report dated Oct. 29, 2021.
EPO Application 18 725 358.8 Examination Report dated Sep. 22, 2021.
EPO Communication for Application 18 811 906.9 (dated Nov. 29, 2021) (15 pages).
EPO Examination Report 17 748 4656.4 (dated Jan. 12, 2021) (16 pages).
EPO Examination Search Report 17 702 910.5 (dated Jun. 23, 2021).
EPO ISR and WO for PCT/GB2022/050204 (Apr. 7, 2022) (15 pages).
EPO Office Action for EP16708440.9 dated Sep. 12, 2018 (7 pages).
EPSRC Grant summary EP/J004448/1 (dated 2011) (1 page).
Eric Tzeng et al., Adversarial Discriminative Domain Adaptation, Feb. 17, 2017, pp. 1-10.
European Office Action for Application No. EP16750992.6, dated Oct. 2, 2019, 3 pages.
Ex Parte Quayle Action dated Dec. 28, 2018 for U.S. Appl. No. 15/966,213 (pp. 1-7).
Extended European Search Report for Application No. EP19169929.7, dated Aug. 6, 2019, 7 pages.
Freeman et al., Tactile Feedback for Above-Device Gesture Interfaces: Adding Touch to Touchless Interactions ICMI'14, Nov. 12-16, 2014, Istanbul, Turkey (8 pages).
Gareth Young et al.. Designing Mid-Air Haptic Gesture Controlled User Interfaces for Cars, PACM on Human-Computer Interactions, Jun. 2020 (24 pages).
Gavrilov L R et al (2000) "A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery" Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on (vol. 47, Issue: 1), pp. 125-139.
Gavrilov, L.R. (2008) "The Possibility of Generating Focal Regions of Complex Configurations in Application to the Problems of Stimulation of Human Receptor Structures by Focused Ultrasound" Acoustical Physics, vol. 54, No. 2, pp. 269-278.
Georgiou et al., Haptic In-Vehicle Gesture Controls, Adjunct Proceedings of the 9th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '17), Sep. 24-27, 2017 (6 pages).
GitHub—danfis/libccd: Library for collision detection between two convex shapes, Mar. 26, 2020, pp. 1-6.
GitHub—IntelRealSense/hand_tracking_samples: researc codebase for depth-based hand pose estimation using dynamics based tracking and CNNs, Mar. 26, 2020, 3 pages.
Gokturk, et al., "ATime-of-Flight Depth Sensor-System Description, Issues and Solutions," Published in: 2004 Conference on Computer Vision and Pattern Recognition Workshop, Date of Conference: Jun. 27-Jul. 2, 2004, 9 pages.
Hasegawa, K. and Shinoda, H. (2013) "Aerial Display of Vibrotactile Sensation with High Spatial-Temporal Resolution using Large Aperture Airbourne Ultrasound Phased Array", University of Tokyo (6 pages).
Henneberg, J., Geriach, A., Storck, H., Cebulla, H., & Marburg, S. (2018). Reducing mechanical cross-coupling in phased array transducers using stop band material as backing. Journal of Sound and Vibration, 424, 352-364.
Henrik Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes, Lab Chip, 2012, 12, 20-28.
Hilleges et al. Interactions in the air: adding further depth to interactive tabletops, UIST '09: Proceedings of the 22nd annual ACM symposium on User interface software and technologyOct. 2009 pp. 139-148.
Hoshi et al.,Tactile Presentation by Airborne Ultrasonic Oscillator Array, Proceedings of Robotics and Mechatronics Lecture 2009, Japan Society of Mechanical Engineers; May 24, 2009 (5 pages).
Hoshi T et al, "Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound", IEEE Transactions on Haptics, IEEE, USA, (Jul. 1, 2010), vol. 3, No. 3, ISSN 1939-1412, pp. 155-165.
Hoshi, T., Development of Aerial-Input and Aerial-Tactile-Feedback System, IEEE World Haptics Conference 2011, p. 569-573.
Hoshi, T., Handwriting Transmission System Using Noncontact Tactile Display, IEEE Haptics Symposium 2012 pp. 399-401.
Hoshi, T., Non-contact Tactile Sensation Synthesized by Ultrasound Transducers, Third Joint Euro haptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 2009 (5 pages).
Hoshi, T., Touchable Holography, SIGGRAPH 2009, New Orleans, Louisiana, Aug. 3-7, 2009. (1 page).
https://radiopaedia.org/articles/physical-principles-of-ultrasound-1?lang=gb (Accessed May 29, 2022).
Hua J, Qin H., Haptics-based dynamic implicit solid modeling, IEEE Trans Vis Comput Graph. Sep.-Oct. 2004;10(5):574-86.
Hyunjae Gil, Whiskers: Exploring the Use of Ultrasonic Haptic Cues on the Face, CHI 2018, Apr. 21-26, 2018, Montréal, QC, Canada.
Iddan, et al., "3D Imaging in the Studio (And Elsewhwere . . . " Apr. 2001, 3DV systems Ltd., Yokneam, Isreal, www.3dvsystems.com.il, 9 pages.
Imaginary Phone: Learning Imaginary Interfaces by Transferring Spatial Memory From a Familiar Device Sean Gustafson, Christian Holz and Patrick Baudisch. UIST 2011. (10pages).
IN 202047026493 Office Action dated Mar. 8, 2022, 6 pages.
India Morrison, The skin as a social organ, Exp Brain Res (2010) 204:305-314.
International Preliminary Report on Patentability and Written Opinion issued in corresponding PCT/US2017/035009, dated Dec. 4, 2018, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2017/069569 dated Feb. 5, 2019, 11 pages.
International Search Report and Written Opinion for App. No. PCT/GB2021/051590, dated Nov. 11, 2021, 20 pages.
International Search Report and Written Opinion for Application No. PCT/GB2018/053738, dated Apr. 11, 2019, 14 pages.
International Search Report and Written Opinion for Application No. PCT/GB2018/053739, dated Jun. 4, 2019, 16 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/050969, dated Jun. 13, 2019, 15 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/051223, dated Aug. 8, 2019, 15 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/052510, dated Jan. 14, 2020, 25 pages.
ISR & WO for PCT/GB2020/052545 (Jan. 27, 2021) 14 pages.
ISR & WO For PCT/GB2021/052946, 15 pages.
ISR & WO for PCT/GB2022/051388 (dated Aug. 30, 2022) (15 pages).
ISR and WO for PCT/GB2020/050013 (Jul. 13, 2020) (20 pages).
ISR and WO for PCT/GB2020/050926 (Jun. 2, 2020) (16 pages).
ISR and WO for PCT/GB2020/052544 (Dec. 18, 2020) (14 pages).
ISR and WO for PCT/GB2020/052545 (Jan. 27, 2021) (14 pages).
ISR and WO for PCT/GB2020/052829 (Feb. 1, 2021) (15 pages).
ISR and WO for PCT/GB2020/052829 (Feb. 10, 2021) (15 pages).
ISR and WO for PCT/GB2021/052415 (Dec. 22, 2021) (16 pages).
ISR for PCT/GB2020/052546 (Feb. 23, 2021) (14 pages).
ISR for PCT/GB2020/053373 (Mar. 26, 2021) (16 pages).
Iwamoto et al. (2008), Non-contact Method for Producing Tactile Sensation Using Airborne Ultrasound, EuroHaptics, pp. 504-513.
Iwamoto et al., Airborne Ultrasound Tactile Display: Supplement, The University of Tokyo 2008 (2 pages).
Iwamoto T et al, "Two-dimensional Scanning Tactile Display using Ultrasound Radiation Pressure", Haptic Interfaces for Virtual Environment and Teleoperator Systems, 20 06 14th Symposium on Alexandria, VA, USA Mar. 25-26, 2006, Piscataway, NJ, USA,IEEE, (Mar. 25, 2006), ISBN 978-1-4244-0226-7, pp. 57-61.
Jager et al., "Air-Coupled 40-KHZ Ultrasonic 2D-Phased Array Based on a 3D-Printed Waveguide Structure", 2017 IEEE, 4 pages.
Japanese Office Action (with English language translation) for Application No. 2017-514569, dated Mar. 31, 3019, 10 pages.
JonasChatel-Goldman, Touch increases autonomic coupling between romantic partners, Frontiers in Behavioral Neuroscience Mar. 2014, vol. 8, Article 95.
Jonathan Taylor et al., Articulated Distance Fields for Ultra-Fast Tracking of Hands Interacting, ACM Transactions on Graphics, vol. 36, No. 4, Article 244, Publication Date: Nov. 2017, pp. 1-12.
Jonathan Taylor et al., Efficient and Precise Interactive Hand Tracking Through Joint, Continuous Optimization of Pose and Correspondences, SIGGRAPH '16 Technical Paper, Jul. 24-28, 2016, Anaheim, CA, ISBN: 978-1-4503-4279-87/16/07, pp. 1-12.
Jonathan Tompson et al., Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks, ACM Trans. Graph. 33, 5, Article 169, Aug. 2014, pp. 1-10.
K. Jia, Dynamic properties of micro-particles in ultrasonic transportation using phase-controlled standing waves, J. Applied Physics 116, n. 16 (2014) (12 pages).
Kai Tsumoto, Presentation of Tactile Pleasantness Using Airborne Ultrasound, 2021 IEEE World Haptics Conference (WHC) Jul. 6-9, 2021. Montreal, Canada.
Kaiming He et al., Deep Residual Learning for Image Recognition, http://image-net.org/challenges/LSVRC/2015/ and http://mscoco.org/dataset/#detections-challenge2015, Dec. 10, 2015, pp. 1-12.
Kamakura, T. and Aoki, K. (2006) "A Highly Directional Audio System using a Parametric Array in Air" WESPAC IX 2006 (8 pages).
Keisuke Hasegawa, Electronically steerable ultrasound-driven long narrow airstream, Applied Physics Letters 111, 064104 (2017).
Keisuke Hasegawa, Midair Ultrasound Fragrance Rendering, IEEE Transactions on Visualization and Computer Graphics, vol. 24, No. 4, Apr. 2018 1477.
Keisuke Hasegawa,,Curved acceleration path of ultrasound-driven airflow, J. Appl. Phys. 125, 054902 (2019).
Kolb, et al., "Time-of-Flight Cameras in Computer Graphics," Computer Graphics forum, vol. 29 (2010), No. 1, pp. 141-159.
Konstantinos Bousmalis et al., Domain Separation Networks, 29th Conference on Neural Information Processing Sysgtems (NIPS 2016), Barcelona, Spain. Aug. 22, 2016, pp. 1-15.
Krim, et al., "Two Decades of Array Signal Processing Research—The Parametric Approach", IEEE Signal Processing Magazine, Jul. 1996, pp. 67-94.
Lang, Robert, "3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD—Technology", A dissertation submitted to Department of EE and CS at Univ. of Siegen, dated Jun. 28, 2000, 223 pages.
Large et al.,Feel the noise: Mid-air ultrasound haptics as a novel human-vehicle interaction paradigm, Applied Ergonomics (2019) (10 pages).
Li, Larry, "Time-of-Flight Camera—An Introduction," Texas Instruments, Technical White Paper, SLOA190B—Jan. 2014 Revised May 2014, 10 pages.
Light, E.D., Progress in Two Dimensional Arrays for Real Time Volumetric Imaging, 1998 (17 pages).
Line S Loken, Coding of pleasant touch by unmyelinated afferents in humans, Nature Neuroscience vol. 12 [ No. 5 [ May 2009 547.
M. Barmatz et al, "Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields", The Journal of the Acoustical Society of America, New York, NY, US, (Mar. 1, 1985), vol. 77, No. 3, pp. 928-945, XP055389249.
M. BARMATZ, P. COLLAS: "Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields", THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 77, no. 3, 1 March 1985 (1985-03-01), 2 Huntington Quadrangle, Melville, NY 11747, pages 928 - 945, XP055389249, ISSN: 0001-4966, DOI: 10.1121/1.392061
M. Toda, New Type of Matching Layer for Air-Coupled Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelecthcs, and Frequency Control, vol. 49, No. 7, Jul. 2002 (8 pages).
Mahdi Rad et al., Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images, Mar. 26, 2018, pp. 1-14.
Marco A B Andrade et al, "Matrix method for acoustic levitation simulation", IEEE Transactions on Ultrasonics, Ferroelectricsand Frequency Control, IEEE, US, (Aug. 1, 2011), vol. 58, No. 8, ISSN 0885-3010, pp. 1674-1683.
Mariana von Mohr, The soothing function of touch: affective touch reduces feelings of social exclusion, Scientific Reports, 7: 13516, Oct. 18, 2017.
Marin, About LibHand, LibHand-A Hand Articulation Library, www.libhand.org/index.html, Mar. 26, 2020, pp. 1-2; www.libhand.org/download.html, 1 page; www.libhand.org/examples.html, pp. 1-2.
Markus Oberweger et al., DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation, Aug. 28, 2017, pp. 1-10.
Markus Oberweger et al., Hands Deep in Deep Learning for Hand Pose Estimation, Dec. 2, 2016, pp. 1-10.
Marshall, M ., Carter, T., Alexander, J., & Subramanian, S. (2012). Ultratangibles: creating movable tangible objects on interactive tables. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, (pp. 2185-2188).
Marzo et al., Holographic acoustic elements for manipulation of levitated objects, Nature Communications DOI: I0.1038/ncomms9661 (2015) (7 pages).
Meijster, A., et al., "A General Algorithm for Computing Distance Transforms in Linear Time," Mathematical Morphology and its Applications to Image and Signal Processing, 2002, pp. 331-340.
Mingzhu Lu et al. (2006) Design and experiment of 256-element ultrasound phased array for noninvasive focused ultrasound surgery, Ultrasonics, vol. 44, Supplement, Dec. 22, 2006, pp. e325-e330.
Mitsuru Nakajima, Remotely Displaying Cooling Sensation via Ultrasound-Driven Air Flow, Haptics Symposium 2018, San Francisco, USA p. 340.
Mohamed Yacine Tsalamlal, Affective Communication through Air Jet Stimulation: Evidence from Event-Related Potentials, International Journal of Human-Computer Interaction 2018.
Mohamed Yacine Tsalamlal, Non-Intrusive Haptic Interfaces: State-of-the Art Survey, HAID 2013, LNCS 7989, pp. 1-9, 2013.
Mueller, GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB, Eye in-Painting with Exemplar Generative Adverserial Networks, pp. 49-59 (Jun. 1, 2018).
Nina Gaissert, Christian Wallraven, and Heinrich H. Bulthoff, "Visual and Haptic Perceptual Spaces Show High Similarity in Humans ", published to Journal of Vision in 2010, available at http://www.journalofvision.org/content/10/11/2 and retrieved on Apr. 22, 2020 (Year: 2010), 20 pages.
Notice of Allowance dated Apr. 20, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-5).
Notice of Allowance dated Apr. 22, 2020 for U.S. Appl. No. 15/671,107 (pp. 1-5).
Notice of Allowance dated Dec. 19, 2018 for U.S. Appl. No. 15/665,629 (pp. 1-9).
Notice of Allowance dated Dec. 21, 2018 for U.S. Appl. No. 15/983,864 (pp. 1-7).
Notice of Allowance dated Feb. 10, 2020, for U.S. Appl. No. 16/160,862 (pp. 1-9).
Notice of Allowance dated Feb. 7, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-7).
Notice of Allowance dated Jul. 22, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9).
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-9).
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-9).
Notice of Allowance dated Jun. 10, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-9).
Notice of Allowance dated Jun. 17, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-9).
Notice of Allowance dated Jun. 25, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-10).
Notice of Allowance dated May 30, 2019 for U.S. Appl. No. 15/966,213 (pp. 1-9).
Notice of Allowance dated Nov. 5, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-9).
Notice of Allowance dated Oct. 1, 2020 for U.S. Appl. No. 15/897,804 (pp. 1-9).
Notice of Allowance dated Oct. 16, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-7).
Notice of Allowance dated Oct. 30, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-9).
Notice of Allowance dated Oct. 6, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-8).
Notice of Allowance dated Sep. 30, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-10).
Notice of Allowance in U.S. Appl. No. 15/210,661 dated Jun. 17, 2020 (22 pages).
Obrist et al., Emotions Mediated Through Mid-Air Haptics, CHI 2015, Apr. 18-23, 2015, Seoul, Republic of Korea. (10 pages).
Obrist et al., Talking about Tactile Experiences, CHI 2013, Apr. 27-May 2, 2013 (10 pages).
Office Action (Final Rejection) dated Mar. 14, 2022 for U.S. Appl. No. 16/564,016 (pp. 1-12).
Office Action (Final Rejection) dated Sep. 16, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-6).
Office Action (Non-Final Rejection) dated Apr. 1, 2022 for U.S. Appl. No. 16/229,091 (pp. 1-10).
Office Action (Non-Final Rejection) dated Aug. 29, 2022 for U.S. Appl. No. 16/995,819 (pp. 1-6).
Office Action (Non-Final Rejection) dated Dec. 20, 2021 for U.S. Appl. No. 17/195,795 (pp. 1-7).
Office Action (Non-Final Rejection) dated Jan. 21, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-12).
Office Action (Non-Final Rejection) dated Jan. 24, 2022 for U.S. Appl. No. 16/228,767 (pp. 1-22).
Office Action (Non-Final Rejection) dated Jun. 27, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-17).
Office Action (Non-Final Rejection) dated Jun. 27, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-13).
Office Action (Non-Final Rejection) dated Jun. 9, 2022 for U.S. Appl. No. 17/080,840 (pp. 1-9).
Office Action (Non-Final Rejection) dated Mar. 15, 2022 for U.S. Appl. No. 16/144,474 (pp. 1-13).
Office Action (Non-Final Rejection) dated Mar. 4, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-5).
Office Action (Non-Final Rejection) dated May 2, 2022 for U.S. Appl. No. 17/068,831 (pp. 1-10).
Office Action (Non-Final Rejection) dated May 25, 2022 for U.S. Appl. No. 16/843,281 (pp. 1-28).
Office Action (Non-Final Rejection) dated Sep. 21, 2022 for U.S. Appl. No. 17/721,315 (pp. 1-10).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 24, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-6).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 31, 2022 for U.S. Appl. No. 16/198,959 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Dec. 14, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-8).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 11, 2022 for U.S. Appl. No. 16/228,760 (pp. 1-8).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 28, 2022 for U.S. Appl. No. 17/068,825 (pp. 1-7).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jan. 18, 2022 for U.S. Appl. No. 16/899,720 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 7, 2022 for U.S. Appl. No. 16/600,496 (pp. 1-5).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 12, 2022 for U.S. Appl. No. 16/734,479 (pp. 1-7).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 7, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-8).
Office Action dated Apr. 16, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-8).
Office Action dated Apr. 17, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-15).
Office Action dated Apr. 18, 2019 for U.S. Appl. No. 16/296,127 (pags 1-6).
Office Action dated Apr. 28, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-12).
Office Action dated Apr. 29, 2020 for U.S. Appl. No. 16/374,301 (pp. 1-18).
Office Action dated Apr. 4, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10).
Office Action dated Apr. 8, 2020, for U.S. Appl. No. 16/198,959 (pp. 1-17).
Office Action dated Aug. 10, 2021 for U.S. Appl. No. 16/564,016 (pp. 1-14).
Office Action dated Aug. 19, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-9).
Office Action dated Aug. 22, 2019 for U.S. Appl. No. 16/160,862 (pp. 1-5).
Office Action dated Aug. 9, 2021 for U.S. Appl. No. 17/068,825 (pp. 1-9).
Office Action dated Dec. 11, 2019 for U.S. Appl. No. 15/959,266 (pp. 1-15).
Office Action dated Dec. 7, 2020 for U.S. Appl. No. 16/563,608 (pp. 1-8).
Office Action dated Feb. 20, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-8).
Office Action dated Feb. 25, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-7).
Office Action dated Feb. 7, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-8).
Office Action dated Jan. 10, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-6).
Office Action dated Jan. 29, 2020 for U.S. Appl. No. 16/198,959 (p. 1-6).
Office Action dated Jul. 10, 2019 for U.S. Appl. No. 15/210,661 (pp. 1-12).
Office Action dated Jul. 26, 2019 for U.S. Appl. No. 16/159,695 (pp. 1-8).
Office Action dated Jul. 9, 2020 for U.S. Appl. No. 16/228,760 (pp. 1-17).
Office Action dated Jun. 19, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-12).
Office Action dated Jun. 25, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-27).
Office Action dated Jun. 25, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-5).
Office Action dated Mar. 11, 2021 for U.S. Appl. No. 16/228,767 (pp. 1-23).
Office Action dated Mar. 20, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-10).
Office Action dated Mar. 31, 2021 for U.S. Appl. No. 16/228,760 (pp. 1-21).
Office Action dated May 13, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9).
Office Action dated May 14, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-6).
Office Action dated May 16, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-7).
Office Action dated May 18, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-21).
Office Action dated Oct. 17, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10).
Office Action dated Oct. 29, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-7).
Office Action dated Oct. 31, 2019 for U.S. Appl. No. 15/671,107 (pp. 1-6).
Office Action dated Oct. 7, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-9).
Office Action dated Sep. 16, 2021 for U.S. Appl. No. 16/600,496 (pp. 1-8).
Office Action dated Sep. 18, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-14).
Office Action dated Sep. 21, 2020 for U.S. Appl. No. 16/198,959 (pp. 1-17).
Office Action dated Sep. 24, 2021 for U.S. Appl. No. 17/080,840 (pp. 1-9).
OGRECave/ogre—GitHub: ogre/Samples/Media/materials at 7de80a7483f20b50f2b10d7ac6de9d9c6c87d364, Mar. 26, 2020, 1 page.
Oikonomidis et al., "Efficient model-based 3D tracking of hand articulations using Kinect." In BmVC, vol. 1, No. 2, p. 3. 2011. (Year: 2011).
Optimal regularisation for acoustic source reconstruction by inverse methods, Y. Kim, P.A. Nelson, Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, UK; 25 pages.
Oscar Martínez-Graullera et al, "2D array design based on Fermat spiral for ultrasound imaging", Ultrasonics, (Feb. 1, 2010), vol. 50, No. 2, ISSN 0041-624X, pp. 280-289, XP055210119.
OSCAR MARTÍNEZ-GRAULLERA, CARLOS J. MARTÍN, GREGORIO GODOY, LUIS G. ULLATE: "2D array design based on Fermat spiral for ultrasound imaging", ULTRASONICS, ELSEVIER, vol. 50, no. 2, 1 February 2010 (2010-02-01), pages 280 - 289, XP055210119, ISSN: 0041624X, DOI: 10.1016/j.ultras.2009.09.010
Partial International Search Report for Application No. PCT/GB2018/053735, dated Apr. 12, 2019, 14 pages.
Partial ISR for Application No. PCT/GB2020/050013 dated May 19, 2020 (16 pages).
Patricio Rodrigues, E., Francisco de Oliveira, T., Yassunori Matuda, M., & Buiochi, F. (Sep. 2019). Design and Construction of a 2-D Phased Array Ultrasonic Transducer for Coupling in Water. In INTER-Noise and Noise-CON Congress and Conference Proceedings (vol. 259, No. 4, pp. 5720-5731). Institute of Noise Control Engineering.
PCT Partial International Search Report for Application No. PCT/GB2018/053404 dated Feb. 25, 2019, 13 pages.
Péter Tamás Kovács et al, "Tangible Holographic 3D Objects with Virtual Touch", Interactive Tabletops & Surfaces, ACM, 2 Penn Plaza, Suite 701 New York NY 10121-0701 USA, (Nov. 15, 2015), ISBN 978-1-4503-3899-8, pp. 319-324.
Phys.org, Touchable Hologram Becomes Reality, Aug. 6, 2009, by Lisa Zyga (2 pages).
Pompei, F.J. (2002), "Sound from Ultrasound: The Parametric Array as an Audible Sound Source", Massachusetts Institute of Technology (132 pages).
Rocchesso et al., Accessing and Selecting Menu Items by In-Air Touch, ACM CHItaly'19, Sep. 23-25, 2019, Padova, Italy (9 pages).
Rochelle Ackerley, Human C-Tactile Afferents Are Tuned to the Temperature of a Skin-Stroking Caress, J. Neurosci., Feb. 19, 2014, 34(8):2879-2883.
Ryoko Takahashi, Tactile Stimulation by Repetitive Lateral Movement of Midair Ultrasound Focus, Journal of Latex Class Files, vol. 14, No. 8, Aug. 2015.
Schmidt, Ralph, "Multiple Emitter Location and Signal Parameter Estimation" IEEE Transactions of Antenna and Propagation, vol. AP-34, No. 3, Mar. 1986, pp. 276-280.
Sean Gustafson et al., "Imaginary Phone", Proceedings of the 24th Annual ACM Symposium on User Interface Software and Techology: Oct. 16-19, 2011, Santa Barbara, CA, USA, ACM, New York, NY, Oct. 16, 2011, pp. 283-292, XP058006125, DOI: 10.1145/2047196.2047233, ISBN: 978-1-4503-0716-1.
Search report and Written Opinion of ISA for PCT/GB2015/050417 dated Jul. 8, 2016 (20 pages).
Search report and Written Opinion of ISA for PCT/GB2015/050421 dated Jul. 8, 2016 (15 pages).
Search report and Written Opinion of ISA for PCT/GB2017/050012 dated Jun. 8, 2017. (18 pages).
Search Report by EPO for EP 17748466 dated Jan. 13, 2021 (16 pages).
Search Report for GB1308274.8 dated Nov. 11, 2013. (2 pages).
Search Report for GB1415923.0 dated Mar. 11, 2015. (1 page).
Search Report for PCT/GB/2017/053729 dated Mar. 15, 2018 (16 pages).
Search Report for PCT/GB/2017/053880 dated Mar. 21, 2018. (13 pages).
Search report for PCT/GB2014/051319 dated Dec. 8, 2014 (4 pages).
Search report for PCT/GB2015/052507 dated Mar. 11, 2020 (19 pages).
Search report for PCT/GB2015/052578 dated Oct. 26, 2015 (12 pages).
Search report for PCT/GB2015/052916 dated Feb. 26, 2020 (18 pages).
Search Report for PCT/GB2017/052332 dated Oct. 10, 2017 (12 pages).
Search report for PCT/GB2018/051061 dated Sep. 26, 2018 (17 pages).
Search report for PCT/US2018/028966 dated Jul. 13, 2018 (43 pages).
Seo et al., "Improved numerical inverse kinematics for human pose estimation," Opt. Eng. 50(3 037001 (Mar. 1, 2011) https://doi.org/10.1117/1.3549255 (Year: 2011).
Sergey Ioffe et al., Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariat Shift, Mar. 2, 2015, pp. 1-11.
Seungryul, Pushing the Envelope for RGB-based Dense 3D Hand Pose Estimation for RGB-based Desne 3D Hand Pose Estimation via Neural Rendering, arXiv:1904.04196v2 [cs.CV] Apr. 9, 2019 (5 pages).
Shakeri, G., Williamson, J. H. and Brewster, S. (2018) May the Force Be with You: Ultrasound Haptic Feedback for Mid-Air Gesture Interaction in Cars. In: 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2018) (11 pages).
Shanxin Yuan et al., BigHand2.2M Bechmark: Hand Pose Dataset and State of the Art Analysis, Dec. 9, 2017, pp. 1-9.
Shome Subhra Das, Detectioin of Self Intersection in Synthetic Hand Pose Generators, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya University, Nagoya, Japan, May 8-12, 2017, pp. 354-357.
Sixth Sense webpage, http://www.pranavmistry.com/projects/sixthsense/ Accessed Nov. 30, 2018, 7 pages.
Stan Melax et al., Dynamics Based 3D Skeletal Hand Tracking, May 22, 2017, pp. 1-8.
Stanley J. Bolanowski, Hairy Skin: Psychophysical Channels and Their Physiological Substrates, Somatosensory and Motor Research, vol. 11. No. 3, 1994, pp. 279-290.
Stefan G. Lechner, Hairy Sensation, Physiology 28: 142-150, 2013.
Steve Guest et al., "Audiotactile interactions in roughness perception", Exp. Brain Res (2002) 146:161-171, DOI 10.1007/S00221-002-1164-z, Accepted: May 16, 2002/Published online: Jul. 26, 2002, Springer-Verlag 2002, (11 pages).
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-2).
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-2).
Sylvia Gebhardt, Ultrasonic Transducer Arrays for Particle Manipulation (date unknown) (2 pages).
Takaaki Kamigaki, Noncontact Thermal and Vibrotactile Display Using Focused Airborne Ultrasound, EuroHaptics 2020, LNCS 12272, pp. 271-278, 2020.
Takahashi Dean: "Ultrahaptics shows off sense of touch in virtual reality", Dec. 10, 2016 (Dec. 10, 2016), XP055556416, Retrieved from the Internet: URL: https://venturebeat.com/2016/12/10/ultrahaptics-shows-off-sense-of-touch-in-virtual-reality/ [retrieved on Feb. 13, 2019] 4 pages.
Takahashi, M. et al., Large Aperture Airborne Ultrasound Tactile Display Using Distributed Array Units, SICE Annual Conference 2010 p. 359-62.
Takayuki et al., "Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound" IEEE Transactions on Haptics vol. 3, No. 3, p. 165 (2010).
Teixeira, et al., "A brief introduction to Microsoft's Kinect Sensor," Kinect, 26 pages, retrieved Nov. 2018.
Toby Sharp et al., Accurate, Robust, and Flexible Real-time Hand Tracking, CHI '15, Apr. 18-23, 2015, Seoul, Republic of Korea, ACM 978-1-4503-3145-6/15/04, pp. 1-10.
Tom Carter et al, "UltraHaptics: Multi-Point Mid-Air Haptic Feedback for Touch Surfaces", Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, New York, New York, USA, (Jan. 1, 2013), ISBN 978-1-45-032268-3, pp. 505-514.
Tom Nelligan and Dan Kass, Intro to Ultrasonic Phased Array (date unknown) (8 pages).
Tomoo Kamakura, Acoustic streaming induced in focused Gaussian beams, J. Acoust. Soc. Am. 97(5), Pt. 1, May 1995 p. 2740.
Uta Sailer, How Sensory and Affective Attributes Describe Touch Targeting C-Tactile Fibers, Experimental Psychology (2020), 67(4), 224-236.
Vincent Lepetit et al., Model Based Augmentation and Testing of an Annotated Hand Pose Dataset, ResearchGate, https://www.researchgate.net/publication/307910344, Sep. 2016, 13 pages.
Walter, S., Nieweglowski, K., Rebenklau, L., Wolter, K. J., Lamek, B., Schubert, F., . . . & Meyendorf, N. (May 2008). Manufacturing and electrical interconnection of piezoelectric 1-3 composite materials for phased array ultrasonic transducers. In 2008 31st International Spring Seminar on Electronics Technology (pp. 255-260).
Wang et al., Device-Free Gesture Tracking Using Acoustic Signals, ACM MobiCom '16, pp. 82-94 (13 pages).
Wang et al., Few-shot adaptive faster r-cnn. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7173-7182. 2019. (Year: 2019).
Wilson et al., Perception of Ultrasonic Haptic Feedback on the Hand: Localisation and Apparent Motion, CHI 2014, Apr. 26-May 1, 2014, Toronto, Ontario, Canada. (10 pages).
Wooh et al., "Optimum beam steering of linear phased arays," Wave Motion 29 (1999) pp. 245-265, 21 pages.
Xin Cheng et al, "Computation of the acoustic radiation force on a sphere based on the 3-D FDTD method", Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2010 Symposium on, IEEE, (Dec. 10, 2010), ISBN 978-1-4244-9822-2, pp. 236-239.
Xu Hongyi et al, "6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields", IEEE Transactions on Haptics, IEEE, USA, vol. 10, No. 2, ISSN 1939-1412, (Sep. 27, 2016), pp. 151-161, (Jun. 16, 2017).
Yang Ling et al, "Phase-coded approach for controllable generation of acoustical vortices", Journal of Applied Physics, American Institute of Physics, US, vol. 113, No. 15, ISSN 0021-8979, (Apr. 21, 2013), pp. 154904-154904.
Yarin Gal et al., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, Oct. 4, 2016, pp. 1-12, Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016, JMLR: W&CP vol. 48.
Yaroslav Ganin et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 (2016) 1-35, submitted May 2015; published Apr. 2016.
Yaroslav Ganin et al., Unsupervised Domain Adaptataion by Backpropagation, Skolkovo Institute of Science and Technology (Skoltech), Moscow Region, Russia, Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015, JMLR: W&CP vol. 37, copyright 2015 by the author(s), 11 pages.
Yoshino, K. and Shinoda, H. (2013), "Visio Acoustic Screen for Contactless Touch Interface with Tactile Sensation", University of Tokyo (5 pages).
Zeng, Wejun, "Microsoft Kinect Sensor and Its Effect," IEEE Multimedia, Apr.-Jun. 2012, 7 pages.

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624815B1 (en) 2013-05-08 2023-04-11 Ultrahaptics Ip Ltd Method and apparatus for producing an acoustic field
US11656686B2 (en) 2014-09-09 2023-05-23 Ultrahaptics Ip Ltd Method and apparatus for modulating haptic feedback
US11768540B2 (en) 2014-09-09 2023-09-26 Ultrahaptics Ip Ltd Method and apparatus for modulating haptic feedback
US11830351B2 (en) 2015-02-20 2023-11-28 Ultrahaptics Ip Ltd Algorithm improvements in a haptic system
US12100288B2 (en) 2015-07-16 2024-09-24 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US11727790B2 (en) 2015-07-16 2023-08-15 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US11714492B2 (en) 2016-08-03 2023-08-01 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US12001610B2 (en) 2016-08-03 2024-06-04 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US11955109B2 (en) 2016-12-13 2024-04-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US11921928B2 (en) 2017-11-26 2024-03-05 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
US11883847B2 (en) 2018-05-02 2024-01-30 Ultraleap Limited Blocking plate structure for improved acoustic transmission efficiency
US11740018B2 (en) 2018-09-09 2023-08-29 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
US11742870B2 (en) 2019-10-13 2023-08-29 Ultraleap Limited Reducing harmonic distortion by dithering
US12002448B2 (en) 2019-12-25 2024-06-04 Ultraleap Limited Acoustic transducer structures
US11715453B2 (en) 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
US11886639B2 (en) 2020-09-17 2024-01-30 Ultraleap Limited Ultrahapticons

Also Published As

Publication number Publication date
IL254036B (en) 2021-01-31
HK1245937B (en) 2020-05-22
US20180101234A1 (en) 2018-04-12
CA2976312A1 (en) 2016-08-25
EP3259653B1 (en) 2019-04-24
US20190206202A1 (en) 2019-07-04
CA2976312C (en) 2023-06-13
US10101814B2 (en) 2018-10-16
US10930123B2 (en) 2021-02-23
SG11201706557SA (en) 2017-09-28
EP3537265A1 (en) 2019-09-11
WO2016132144A1 (en) 2016-08-25
EP3537265B1 (en) 2021-09-29
JP2023123472A (en) 2023-09-05
AU2016221500B2 (en) 2021-06-10
EP3916525A1 (en) 2021-12-01
AU2016221500A1 (en) 2017-08-31
MX2017010254A (en) 2018-03-07
EP3916525B1 (en) 2024-09-18
CN107407969A (en) 2017-11-28
CN107407969B (en) 2020-09-11
EP3259653A1 (en) 2017-12-27
IL254036A0 (en) 2017-10-31
ES2731673T3 (en) 2019-11-18
JP2021119486A (en) 2021-08-12
BR112017017869A2 (en) 2018-04-10
KR102515997B1 (en) 2023-03-29
US20160246374A1 (en) 2016-08-25
JP2018507485A (en) 2018-03-15
ES2896875T3 (en) 2022-02-28
US20210183215A1 (en) 2021-06-17
KR20170116161A (en) 2017-10-18
US9841819B2 (en) 2017-12-12

Similar Documents

Publication Publication Date Title
US11550432B2 (en) Perceptions in a haptic system
US11768540B2 (en) Method and apparatus for modulating haptic feedback
BR112017017869B1 (en) TACTILE SYSTEM, RELATED METHODS AND PROCESSES

Legal Events

Date Code Title Description
AS Assignment

Owner name: ULTRAHAPTICS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARTER, THOMAS ANDREW;LONG, BENJAMIN JOHN OLIVER;SUBRAMANIAN, SRIRAM;AND OTHERS;REEL/FRAME:055277/0436

Effective date: 20160219

Owner name: ULTRAHAPTICS IP LTD, UNITED KINGDOM

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:ULTRAHAPTICS LIMITED;REEL/FRAME:055277/0569

Effective date: 20160814

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE