JP2023183856A - タイヤ用加硫ゴム組成物及びタイヤ - Google Patents

タイヤ用加硫ゴム組成物及びタイヤ Download PDF

Info

Publication number
JP2023183856A
JP2023183856A JP2022097630A JP2022097630A JP2023183856A JP 2023183856 A JP2023183856 A JP 2023183856A JP 2022097630 A JP2022097630 A JP 2022097630A JP 2022097630 A JP2022097630 A JP 2022097630A JP 2023183856 A JP2023183856 A JP 2023183856A
Authority
JP
Japan
Prior art keywords
rubber composition
group
vulcanized rubber
mass
tires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022097630A
Other languages
English (en)
Inventor
明子 荻原
Akiko Ogiwara
健太郎 半澤
Kentaro Hanzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2022097630A priority Critical patent/JP2023183856A/ja
Publication of JP2023183856A publication Critical patent/JP2023183856A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】優れた氷上性能を有するタイヤ用加硫ゴム組成物を提供する。【解決手段】上記課題を解決するべく、本発明は、ゴム成分と、脂肪酸アマイドと、を含むゴム組成物を、加硫してなり、複数の空隙を有することを特徴とする。【選択図】図1

Description

本発明は、タイヤ用加硫ゴム組成物及びタイヤに関する。
氷雪路面上でタイヤを走行させると、路面とタイヤとの間にできる水膜によりタイヤがスリップし、ブレーキ性能が低下することから、スタッドレスタイヤにおいては、氷雪路面上でもグリップが効き、車両を制動し易いといった氷上性能の向上が求められている。
氷上性能を高める方法としては、トレッドゴムの表面粗さ(表面の凹凸)を大きくすることや、低温時のしなやかさ(柔軟性や凝着性)を改良することが知られている。
表面粗さを大きくすると、凹部が氷上の水膜を取り込み、凸部が氷上面と接触することで、表面が平滑なトレッドゴムよりも氷上面との接触面積を大きくする効果があると考えられる。
ここで、トレッドゴムの表面粗さを増大させるための手法としては、ゴム組成物中に発泡剤や熱膨張性マイクロカプセルなどを配合することが一般的である(例えば特許文献1を参照。)。
特開2020-19862号公報
特許文献1に例示される手法では、表面粗さが増大するほど水膜を取り込むことができる一方で、氷上面と接触可能な面積が減少する。このため、表面粗さによる氷上性能を改良する効果には限界があるといえる。
そのため、本発明の目的は、優れた氷上性能を有するタイヤ用加硫ゴム組成物を提供することにある。また、本発明の他の目的は、氷上性能に優れたタイヤを提供することにある。
本発明者らは、氷上性能のより一層の向上を図るべく鋭意研究を行った。そして、タイヤ用加硫ゴム組成物に、脂肪酸アマイドを含有させることに加えて、複数の空隙を形成することにより、氷上性能の大幅な向上が図れることを見出した。
即ち、本発明のタイヤ用加硫ゴム組成物は、ゴム成分と、脂肪酸アマイドと、を含むゴム組成物を、加硫してなり、複数の空隙を有することを特徴とする。
上記構成を具えることによって、優れた氷上性能を実現できる。
また、本発明のタイヤ用加硫ゴム組成物では、前記ゴム組成物が、前記ゴム成分100質量部に対して前記脂肪酸アマイドを0.1~10質量部含むことが好ましい。耐摩耗性等の性能を低下させることなく、より優れた氷上性能を実現できるためである。
さらに、本発明のタイヤ用加硫ゴム組成物では、前記脂肪酸アマイドが、脂肪酸ビスアマイドであることが好ましく、エチレンビス脂肪酸アマイドであることがより好ましい。より優れた氷上性能を実現できるためである。
さらにまた、本発明のタイヤ用加硫ゴム組成物では、前記ゴム組成物が、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000以上40,000未満である液状ポリマーをさらに含むことが好ましい。より優れた氷上性能を実現できるためである。
また、本発明のタイヤ用加硫ゴム組成物では、前記ゴム成分が、天然ゴムを含有することが好ましい。耐摩耗性や低発熱性等の性能をより向上できるためである。
さらに、本発明のタイヤ用加硫ゴム組成物では、前記ゴム成分が、官能基を有する変性共役ジエン系重合体を含有することが好ましく、前記変性共役ジエン系重合体の官能基が、窒素、酸素及びケイ素から選択される少なくとも一種の元素を有することがより好ましい。より優れた低発熱性を実現できるためである。
また、本発明のタイヤ用加硫ゴム組成物では、前記ゴム組成物が、さらに空隙導入剤を含むことが好ましく、前記空隙導入剤が、発泡剤、硫酸金属塩、熱膨張性マイクロカプセル、多孔質セルロース及びリグニン誘導体からなる群から選択される少なくとも一種であることがより好ましい。より優れた氷上性能を実現できるためである。
さらに、本発明のタイヤ用加硫ゴム組成物では、前記ゴム組成物が、複合繊維をさらに含むことが好ましい。より優れた氷上性能を実現できるためである。
さらにまた、本発明のタイヤ用加硫ゴム組成物では、前記加硫ゴム組成物の空隙率が、5~45%であることが好ましい。より優れた氷上性能を実現できるためである。
また、本発明のタイヤ用加硫ゴム組成物では、前記ゴム組成物が、シリカ及びカーボンブラックを含有する充填剤をさらに含むことが好ましく、前記シリカ及び前記カーボンブラックの合計含有量が、前記ゴム成分100質量部に対して50~90質量部であることがより好ましい。耐摩耗性や低発熱性等の性能を良好に維持しつつ、より優れた氷上性能を実現できるためである。
本発明のタイヤは、上述のタイヤ用加硫ゴム組成物をトレッド部に用いたことを特徴とする。
上記構成を具えることによって、優れた氷上性能を実現できる。
本発明によれば、優れた氷上性能を有するタイヤ用加硫ゴム組成物を提供することができる。また、本発明によれば、氷上性能に優れたタイヤを提供することもできる。
本発明の一実施形態に係るタイヤ用加硫ゴム組成物中に存在する複数の空隙を模式的に示した図である。 本発明の一実施形態に係るタイヤ用加硫ゴム組成物中に存在する空隙の断面を模式的に示した図である。
以下、本発明の実施形態について、必要に応じて図面を用いて説明する。
<タイヤ用加硫ゴム組成物>
本発明のタイヤ用加硫ゴム組成物は、ゴム成分と、脂肪酸アマイドと、を含むゴム組成物を、加硫してなる加硫ゴム組成物であり、図1に示すように、加硫ゴム組成物10が、複数の空隙20を有することを特徴とする。
本発明のタイヤ用加硫ゴム組成物では、ゴム組成物中に後述する脂肪酸アマイドを含有させることに加えて、本発明のタイヤ用加硫ゴム組成物10では、図1に示すように、空隙20を複数有することによって、タイヤに適用した際、氷上性能を大きく向上させることができる。
ここで、本発明のタイヤ用加硫ゴム組成物における空隙とは、図1に示すように、タイヤ用加硫ゴム組成物中に複数形成された平均径1~500μm程度の孔のことである。また、前記空隙の径とは、図2に示すように、前記空隙20の最も大きな径D(空隙が球状ではない場合には、空隙の内壁の任意の二点間の距離のうち、最大の距離D)のことをいう。
前記空隙の平均径については、本発明のタイヤ用加硫ゴム組成物中に存在する空隙20の径Dの平均値である。本発明では、デジタルマイクロスコープ(株式会社キーエンス製 「VHX-100」)によって、タイヤ用加硫ゴム組成物の断面を観察し、一つの視野(2.5mm×2.5mm)に存在する全ての空隙の径の平均値としている。なお、本発明のタイヤ用加硫ゴム組成物では、前記空隙の形状や大きさが、一つのタイヤ用加硫ゴム組成物の中で大きく変わることがないため、一視野における空隙の平均値を、空隙の平均径とすることができる。
また、本発明のタイヤ用加硫ゴム組成物の空隙率については、5~45%であることが好ましい。前記空隙率の下限値を5%とすることで、より確実に氷上性能を向上させることができる。同様の観点から、前記空隙率は、7%以上であることが好ましく、15%以上であることがより好ましい。一方、前記空隙率の上限値を45%とすることで、複数の空隙を有する場合であっても、耐摩耗性の低下をより確実に抑制できる。同様の観点から、記空隙率は、40%以下であることが好ましく、37%以下であることがより好ましい。
前記空隙率は、本発明のタイヤ用加硫ゴム組成物における前記空隙の体積の割合(体積%)のことである。前記空隙率の測定方法については、特に限定はされず、例えば、比重計(新光電子株式会社製ViBRA比重計「DMA-220」)等を用いて測定できる。
ここで、本発明のタイヤ用加硫ゴム組成物は複数の空隙を有しているが、空隙を設ける方法については、特に限定はされない。空隙の条件や、タイヤ用加硫ゴム組成物を製造する設備などに応じて、公知の技術を用いて空隙を形成することができる。
例えば、後述するように、加硫前のゴム組成物中に、発泡剤、発泡助剤、複合繊維等を配合することによって、タイヤ用加硫ゴム組成物中に空隙を設ける方法が挙げられる。なお、空隙率は、加硫条件の変更や、発泡剤、複合繊維等の空隙導入剤の含有量によって制御することが可能である。
なお、前記タイヤ用加硫ゴム組成物とは、未加硫のゴム組成物を加硫して得られた加硫ゴムのことである。また、加硫条件(温度、時間)については、特に限定はされず、要求される性能に応じて、任意の条件で加硫処理を行うことができる。
本発明のタイヤ用加硫ゴム組成物の元となる、未加硫のゴム組成物(以下、単に「ゴム組成物」という。)について、以下に説明する。
前記ゴム組成物は、ゴム成分と、脂肪酸アマイドと、を含む。
(ゴム成分)
前記ゴム組成物に含まれるゴム成分については、特に限定はされないが、タイヤ用加硫ゴム組成物をタイヤに適用した際の耐摩耗性や補強性の観点から、天然ゴム(NR)を含有することが好ましい。
ここで、前記ゴム成分中の天然ゴムの含有量については、特に限定はされない。例えば、耐摩耗性や氷上性能をより高める観点からは、前記天然ゴムの含有量が前記ゴム成分の30質量%以上であることが好ましい。
前記天然ゴムを一定量含有するゴム成分を後述する脂肪酸アマイドとともに用いることで、より確実にタイヤ用加硫ゴム組成物の氷上性能の向上が図れ、同様の観点から、前記ゴム成分中の天然ゴムの含有量は、35質量%以上であることが好ましく、40質量%以上であることがより好ましい。上限については、100質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。
なお、前記ゴム成分は、前記天然ゴムの他にも、任意の合成ゴムを含有することが可能である。
例えば、優れた耐カット性や耐摩耗性を得ることができる点からは、前記ゴム成分は、ジエン系合成ゴムを含むことが好ましい。
前記ジエン系合成ゴムについては、例えば、合成ポリイソプレン(IR)、スチレン・ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)等が挙げられる。なお、前記ゴム成分中のジエン系合成ゴムについては、1種単独で含有してもよいし、2種以上のブレンドとして含有してもよい。また、前記ゴム成分は、要求される性能に応じて、非ジエン系の合成ゴムを含有することも可能である。
また、前記ゴム成分は、官能基を有する変性共役ジエン系重合体をさらに含有することが好ましい。前記ゴム成分が官能基を有する変性共役ジエン系重合体を含有することによって、後述する充填剤の分散性を改善できるため、より優れた耐摩耗性及び氷上性能を実現できる。
なお、前記変性共役ジエン系重合体の官能基については、特に限定はされず、充填剤の種類や要求される性能に応じ適宜選択できる。例えば、前記官能基として、窒素原子、ケイ素原子、酸素原子、及びスズ原子からなる群から選択される少なくとも1種の原子を含むを有する官能基が挙げられる。また、前記変性共役ジエン系重合体は、異なる官能基を有する二種以上の変性共役ジエン系重合体を含有することが好ましい。
さらに、前記変性共役ジエン系重合体は、上述した官能基の中でも、アルコキシシラン及び/又は(メタ)アクリレートを官能基として有することがより好ましく、アルコキシシランを官能基として有する変性共役ジエン系重合体及び(メタ)アクリレートを官能基として有する変性共役ジエン系重合体の二種を含有することがより好ましい。
なお、前記共役ジエン系重合体に特定の官能基を導入する方法については、特に限定はされず、要求された性能に応じて公知の方法に従って行うことができる。
また、前記窒素原子を含む変性官能基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(I)で表される置換アミノ基、下記一般式(II)で表される環状アミノ基等が挙げられる。
Figure 2023183856000002
式中、Rは、1~12個の炭素原子を有する、アルキル基、シクロアルキル基、又はアラルキル基である。ここで、アルキル基としては、メチル基、エチル基、ブチル基、オクチル基、又はイソブチル基が好ましく、シクロアルキル基としては、シクロヘキシル基が好ましく、アラルキル基としては、3-フェニル-1-プロピル基が好ましい。各々のRは、同種のものであっても異種のものであってもよい。
Figure 2023183856000003
式中、R基は、3~16個のメチレン基を有する、アルキレン基、置換アルキレン基、オキシ-アルキレン基又はN-アルキルアミノ-アルキレン基である。ここで、置換アルキレン基は、一置換から八置換されたアルキレン基を含み、置換基の例としては、1~12個の炭素原子を有する、直鎖若しくは分岐鎖アルキル基、シクロアルキル基、ビシクロアルキル基、アリール基、又はアラルキル基が挙げられる。ここで、アルキレン基としては、トリメチレン基、テトラメチレン基、ヘキサメチレン基、及びドデカメチレン基が好ましく、置換アルキレン基としては、ヘキサデカメチレン基が好ましく、オキシアルキレン基としては、オキシジエチレン基が好ましく、N-アルキルアミノ-アルキレン基としては、N-アルキルアザジエチレン基が好ましい。
一般式(II)で表される環状アミノ基の例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-(2-エチルヘキシル)ピロリジン、3-(2-プロピル)ピロリジン、3,5-ビス(2-エチルヘキシル)ピペリジン、4-フェニルピペリジン、7-デシル-1-アザシクロトリデカン、3,3-ジメチル-1-アザシクロテトラデカン、4-ドデシル-1-アザシクロオクタン、4-(2-フェニルブチル)-1-アザシクロオクタン、3-エチル-5-シクロヘキシル-1-アザシクロヘプタン、4-ヘキシル-1-アザシクロヘプタン、9-イソアミル-1-アザシクロヘプタデカン、2-メチル-1-アザシクロヘプタデセ-9-エン、3-イソブチル-1-アザシクロドデカン、2-メチル-7-t-ブチル-1-アザシクロドデカン、5-ノニル-1-アザシクロドデカン、8-(4’-メチルフェニル)-5-ペンチル-3-アザビシクロ[5.4.0]ウンデカン、1-ブチル-6-アザビシクロ[3.2.1]オクタン、8-エチル-3-アザビシクロ[3.2.1]オクタン、1-プロピル-3-アザビシクロ[3.2.2]ノナン、3-(t-ブチル)-7-アザビシクロ[4.3.0]ノナン、1,5,5-トリメチル-3-アザビシクロ[4.4.0]デカン等から、窒素原子に結合した水素原子を1つ取り除いた基が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
また、前記ケイ素原子を含む変性官能基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(III)で表されるカップリング剤を用いて形成される、ケイ素-炭素結合を有する変性官能基等が挙げられる。
SB相を構成するゴム成分と、ケイ素とを、ケイ素-炭素結合を介して化学的に結合させることにより、SB相と充填剤との親和性を高め、SB相により多くの充填剤を分配することができる点で好ましい。
一般的に、ケイ素は、単にゴム組成物中に混合された場合、ゴム成分との親和性の低さに起因して、ゴム組成物の補強性等は低いが、SB相を構成するゴム成分とケイ素とを、ケイ素-炭素結合を介して化学的に結合させることにより、SB相を構成するゴム成分と充填剤との親和性を高め、タイヤのヒステリシスロスをより高めることができる。
Figure 2023183856000004
式中、Zはケイ素であり、Rはそれぞれ独立して、1~20個の炭素原子を有するアルキル基、3~20個の炭素原子を有するシクロアルキル基、6~20個の炭素原子を有するアリール基、及び7~20個の炭素原子を有するアラルキル基からなる群から選択され、R4はそれぞれ独立して塩素又は臭素であり、aは0~3であり、bは1~4であり、且つa+b=4である。ここで、アルキル基としては、メチル基、エチル基、n-ブチル基、n-オクチル基、及び2-エチルヘキシルが好ましく、シクロアルキル基としては、シクロヘキシル基が好ましく、アリール基としては、フェニル基が好ましく、アラルキル基としては、ネオフィル基が好ましい。各々のRは、同種ものであっても異種のものであってもよい。各々のRは、同種ものであっても異種のものであってもよい。
変性ゴムのシリカとの相互作用を高めることを目的とした場合には、以下の一般式(III-1)で示される化合物及び一般式(III-2)で示される化合物の少なくとも一種を有する変性剤が挙げられる。
Figure 2023183856000005
一般式(III-1)中、R1及びR2は、それぞれ独立に炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基を示し、aは0~2の整数であり、ORが複数ある場合、複数のORは互いに同一でも異なっていても良く、また分子中には活性プロトンは含まれない。
ここで、一般式(III-1)で表される化合物(アルコキシシラン化合物)の具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトライソブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリプロポキシシラン、プロピルトリイソプロポキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシジメチルシラン、メチルフェニルジメトキシシラン、ジメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジビニルジエトキシシラン等を挙げることができるが、これらの中で、テトラエトキシシラン、メチルトリエトキシシラン及びジメチルジエトキシシランが好適である。これらは1種を単独で用いてもよく、2種以上を組み合わせても用いてもよい。
Figure 2023183856000006
一般式(III-2)中、Aはエポキシ、グリシジルオキシ、イソシアネート、イミン、カルボン酸エステル、カルボン酸無水物、環状三級アミン、非環状三級アミン、ピリジン、シラザン及ジスルフィドからなる群より選択される少なくとも一種の官能基を有する一価の基であり、Rは単結合又は二価の炭化水素基であり、R及びRは、それぞれ独立に炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、bは0~2の整数であり、ORが複数ある場合、複数のOR5は互いに同一であっても異なっていても良く、また分子中には活性プロトンは含まれない。
一般式(III-2)で表される化合物の具体例としては、エポキシ基含有アルコキシシラン化合物、例えば、2-グリシジルオキシエチルトリメトキシシラン、2-グリシジルオキシエチルトリエトキシシラン、(2-グリシジルオキシエチル)メチルジメトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、(3-グリシジルオキシプロピル)メチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(メチル)ジメトキシシラン等を挙げることができる。これらの中で、3-グリシジルオキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを好適に用いることができる。
ケイ素を用いたカップリング剤の例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒドロカルビルオキシシラン化合物、SiCl(四塩化ケイ素)、(Ra)SiCl、(Ra)SiCl、(Ra)SiCl等が挙げられる。なお、Raは、各々独立に1~20個の炭素原子を有するアルキル基、3~20個の炭素原子を有するシクロアルキル基、6~20個の炭素原子を有するアリール基、又は7~20個の炭素原子を有するアラルキル基を表す。
これらの中でも、ヒドロカルビルオキシシラン化合物は、シリカに対して高い親和性を有する観点から好ましい。
前記ヒドロカルビルオキシシラン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(IV)で表されるヒドロカルビルオキシシラン化合物を挙げることができる。
Figure 2023183856000007
式中、n1+n2+n3+n4=4(但し、n2は1~4の整数であり、n1、n3及びn4は0~3の整数である)であり、A1は、飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、ケチミン残基、ニトリル基、(チオ)イソシアナート基(イソシアナート基又はチオイソシアナート基を示す。以下、同様)、(チオ)エポキシ基、イソシアヌル酸トリヒドロカルビルエステル基、炭酸ジヒドロカルビルエステル基、ニトリル基、ピリジン基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)カルボン酸エステル基、(チオ)カルボン酸エステルの金属塩、カルボン酸無水物残基、カルボン酸ハロゲン化合物残基、並びに加水分解性基を有する第一もしくは第二アミノ基又はメルカプト基の中から選択される少なくとも1種の官能基であり、n4が2以上の場合には同一でも異なっていてもよく、A1は、Siと結合して環状構造を形成する二価の基であっても良く、R21は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、n1が2以上の場合には同一でも異なっていてもよく、R23は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又はハロゲン原子(フッ素、塩素、臭素、ヨウ素)であり、n3が2以上の場合には同一でも異なっていてもよく、R22は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、いずれも窒素原子及び/又はケイ素原子を含有していてもよく、n2が2以上の場合には、互いに同一もしくは異なっていてもよく、或いは、一緒になって環を形成しており、R24は、炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、n4が2以上の場合には同一でも異なっていてもよい。加水分解性基を有する第一もしくは第二アミノ基又は加水分解性基を有するメルカプト基における加水分解性基として、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。なお、本明細書において、「炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基」は、「炭素数1~20の一価の脂肪族炭化水素基もしくは炭素数3~20の一価の脂環式炭化水素基」を意味する。二価の炭化水素基の場合も同様である。
さらに、一般式(IV)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(V)で表されるヒドロカルビルオキシシラン化合物であることがより好ましい。
Figure 2023183856000008
式中、p1+p2+p3=2(但し、p2は1~2の整数であり、p1及びp3は0~1の整数である)であり、A2は、NRa(Raは、一価の炭化水素基、加水分解性基又は含窒素有機基である。加水分解性基として、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。)、或いは、硫黄であり、R25は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R27は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又はハロゲン原子(フッ素、塩素、臭素、ヨウ素)であり、R26は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又は含窒素有機基であり、いずれも窒素原子及び/又はケイ素原子を含有していてもよく、p2が2の場合には、互いに同一もしくは異なり、或いは、一緒になって環を形成しており、R28は、炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
さらに、一般式(IV)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(VI)又は(VII)で表されるヒドロカルビルオキシシラン化合物であることがより好ましい。
Figure 2023183856000009
式中、q1+q2=3(但し、q1は0~2の整数であり、q2は1~3の整数である)であり、R31は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R32及びR33はそれぞれ独立して加水分解性基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R34は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、q1が2の場合には同一でも異なっていてもよく、R35は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、q2が2以上の場合には同一でも異なってもよい。
Figure 2023183856000010
式中、r1+r2=3(但し、r1は1~3の整数であり、r2は0~2の整数である)であり、R36は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R37はジメチルアミノメチル基、ジメチルアミノエチル基、ジエチルアミノメチル基、ジエチルアミノエチル基、メチルシリル(メチル)アミノメチル基、メチルシリル(メチル)アミノエチル基、メチルシリル(エチル)アミノメチル基、メチルシリル(エチル)アミノエチル基、ジメチルシリルアミノメチル基、ジメチルシリルアミノエチル基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、r1が2以上の場合には同一でも異なっていてもよく、R38は炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、r2が2の場合には同一でも異なっていてもよい。
また、一般式(IV)で表されるヒドロカルビルオキシシラン化合物が、下記一般式(VIII)又は(IX)で表される2つ以上の窒素原子を有する化合物であることが好ましい。
Figure 2023183856000011
式中、TMSはトリメチルシリル基であり、R40はトリメチルシリル基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R41は炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R42は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
式中、TMSはトリメチルシリル基であり、R43及びR44はそれぞれ独立して炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R45は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、複数のR45は、同一でも異なっていてもよい。
また、一般式(IV)で表されるヒドロカルビルオキシシラン化合物が、下記一般式(X)で表されるヒドロカルビルオキシシラン化合物であることも好ましい。
Figure 2023183856000012
式中、r1+r2=3(但し、r1は0~2の整数であり、r2は1~3の整数である。)であり、TMSはトリメチルシリル基であり、R46は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R47及びR48はそれぞれ独立して炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。複数のR47又はR48は、同一でも異なっていてもよい。
さらに、一般式(IV)で表されるヒドロカルビルオキシシラン化合物が、下記一般式(XI)で表される化合物であることが好ましい。
Figure 2023183856000013
式中、Yはハロゲン原子であり、R49は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R50及びR51はそれぞれ独立して加水分解性基又は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であるか、或いは、R50及びR51は結合して二価の有機基を形成しており、R52及びR53はそれぞれ独立してハロゲン原子、ヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。R50及びR51としては、加水分解性基であることが好ましく、加水分解性基として、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
以上の一般式(IV)~(XI)で表されるヒドロカルビルオキシシラン化合物は、変性ゴム成分がアニオン重合により製造される場合に用いられることが好ましい。
また、一般式(IV)~(XI)で表されるヒドロカルビルオキシシラン化合物は、アルコキシシラン化合物であることが好ましい。
アニオン重合によってジエン系重合体を変性する場合に好適な変性剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン、3,4-ビス(トリメチルシリルオキシ)ベンズアルデヒド、3,4-ビス(tert-ブチルジメチルシリルオキシ)ベンズアルデヒド、2-シアノピリジン、1,3-ジメチル-2-イミダゾリジノン、1―メチル-2-ピロリドン等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
ヒドロカルビルオキシシラン化合物は、アニオン重合における重合開始剤として用いられるリチウムアミド化合物のアミド部分であることが好ましい。
リチウムアミド化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド等が挙げられる。例えば、リチウムヘキサメチレンイミドのアミド部分となる変性剤はヘキサメチレンイミンであり、リチウムピロリジドのアミド部分となる変性剤はピロリジンであり、リチウムピぺリジドのアミド部分となる変性剤はピぺリジンである。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記酸素原子を含む変性官能基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブドキシ基、t-ブトキシ基等のアルコキシ基;メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等のアルコキシアルキル基;メトキシフェニル基、エトキシフェニル基等のアルコキシアリール基;エポキシ基、テトラヒドロフラニル基等のアルキレンオキシド基;トリメチルシリロキシ基、トリエチルシリロキシ基、t-ブチルジメチルシリロキシ基等のトリアルキルシリロキシ基等が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
前記ゴム成分中の前記変性共役ジエン系重合体の含有量は、特に限定はされないが、より優れた耐摩耗性及び氷上性能を実現する観点から、10~90質量%であることが好ましく、20~85質量%であることがより好ましく、28~78質量%であることがより好ましく、38~72質量%であることがより好ましく、40~70質量%であることがより好ましく、45~65質量%であることがさらに好ましい。
(脂肪酸アマイド)
そして、本発明のタイヤ用加硫ゴム組成物は、前記ゴム組成物中に脂肪酸アマイドを含む。
前記脂肪酸アマイドは、ゴム表面の親水性付与を促進し、粘性抵抗を高めることができるため、タイヤ用加硫ゴム組成物の氷上性能を大きく向上させることができる。
ここで、前記脂肪酸アマイドの含有量は、前記ゴム成分100質量部に対して0.1~10質量部であることが好ましい。前記脂肪酸アマイドの含有量が、前記ゴム成分100質量部に対して0.1質量部以上の場合には、十分な氷上性能の向上効果が得られる。一方、前記脂肪酸アマイドの含有量が、前記ゴム成分100質量部に対して10質量部以下の場合には、ゴム組成物の耐摩耗性や補強性等の性能の低下を抑えることができる。
同様の観点から、前記脂肪酸アマイドの含有量は、前記ゴム成分100質量部に対し0.1~8質量部であることが好ましく、0.3~5質量部であることがより好ましい。
ここで、前記脂肪酸アマイドの種類については、ゴム表面の親水性付与を促進できるものであれば特に限定はされず、例えば、カプロン酸アマイド、ラウリン酸アマイド、ミリスチン酸アマイド、パルミチン酸アマイド、ステアリン酸アマイド、オレイン酸アマイド、エルカ酸アマイド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等が挙げられる。
また、前記脂肪酸アマイドについては、より優れた氷上性能を実現する観点から、脂肪酸ビスアマイドであることが好ましく、エチレンビス脂肪酸アマイドであることがより好ましい。
ここで、前記エチレンビス脂肪酸アマイドとしては、例えば、エチレンビスステアリン酸アマイド、エチレンビスオレイン酸アマイド等が挙げられる。
(液状ポリマー)
前記ゴム組成物は、上述したゴム成分及び脂肪酸アマイドに加え、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000以上40,000未満である液状ポリマーをさらに含むことが好ましい。
前記液状ポリマーを含むことで、ゴム組成物全体としては柔軟性を確保でき、さらに、後述する環状ポリオール化合物や充填剤とともに用いることで、氷上性能と耐摩耗性とを高いレベルで両立できる。
ここで、前記液状ポリマーは、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000以上40,000未満のポリマーであるが、結合スチレン量が10%未満で且つ共役ジエン化合物部分のビニル結合量が20%以上である未変性の共役ジエン系重合体であることがより好ましい。前記液状ポリマーが前記ゴム成分の天然ゴム相に偏在しやすくなり、より優れた氷上性能を得ることができる。
また、前記液状ポリマーを、より優れた氷上性能を得る観点から、前記液状ポリマーの共役ジエン化合物部分のビニル結合量は30%以上であることが好ましく、40%以上がより好ましく、45%以上がより好ましい。また、ゴムの硬度上昇抑制の観点から、前記液状ポリマーの共役ジエン化合物部分のビニル結合量は70%以下であることが好ましく、65%以下であることがより好ましく、55%以下であることがさらに好ましい。
さらに、前記液状ポリマーの含有量は、前記ゴム成分100質量部に対して1~40質量部であることが好ましい。ゴム組成物に柔軟性をもたらし、ゴム組成物から得られる加硫ゴム及びトレッド部を供えたタイヤの氷上性能を向上することができるとともに、耐摩耗性の低下を抑えることができるためである。
また、同様の観点から、前記液状ポリマーの含有量は、前記ゴム成分100質量部に対して3~30質量部であることがより好ましく、5~25質量部であることがさらに好ましく、7~20質量部であることが特に好ましい。
なお、前記液状ポリマーは、ゴム組成物が加硫されても、ゴム成分(A)と架橋構造を構築しないように、低分子量であり、具体的には、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量(以下、単に、重量平均分子量と称することがある)が5,000以上40,000未満であることが好ましい。
前記液状ポリマーの重量平均分子量が5,000未満であると、ゴム組成物から得られる加硫ゴム及びタイヤのトレッド部を過度に柔軟にし、耐摩耗性を損ねる可能性がある。前記液状ポリマーの重量平均分子量が40,000以上となると、柔軟性が失われ、ゴム組成物から得られる加硫ゴム及びゴム組成物を適用したトレッド部を供えたタイヤの氷上性能が損なわれる可能性がある。
また、同様の観点から、前記液状ポリマーの重量平均分子量は、5,500~30,000であることがより好ましく、6,000~25,000であることがさらに好ましく、6,500~20,000であることが特に好ましい。
また、前記液状ポリマーは、未変性の共役ジエン系重合体であることが好ましい。共役ジエン化合物部分の結合スチレン量が10%未満であると、ゴム組成物の柔軟性を十分に確保でき、ゴム組成物から得られる加硫ゴム及びトレッド部を供えたタイヤの氷上性能をより高めることができる。
同様の観点から、前記液状ポリマーは、共役ジエン化合物部分の結合スチレン量が5%以下であることがより好ましく、3%以下であることがさらに好ましく、0%であることが特に好ましい。
なお、前記液状ポリマーが未変性の重合体であることが好ましい理由としては、後述する充填剤との相互作用を持ちにくく、充填剤が天然ゴム相に含まれることを抑制し、氷上性を良好に維持できるためである。
ここで、前記共役ジエン系重合体としては、特定の重量平均分子量、共役ジエン化合物部分の結合スチレン量を一定値未満に抑え、及び特定のビニル結合量を有する限り、特に限定されないが、共役ジエン化合物の単独重合体、又は芳香族ビニル化合物と共役ジエン化合物との共重合体が好ましい。
前記単量体としての共役ジエン化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン等が挙げられ、これらの中でも、1,3-ブタジエン及びイソプレンが好ましい。一方、単量体としての芳香族ビニル化合物としては、スチレン、p-メチルスチレン、m-メチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、クロロメチルスチレン、ビニルトルエン等が挙げられる。
前記液状ポリマーとしては、ポリブタジエン及びポリイソプレンのいずれか一方又は両方が好ましく、ポリブタジエンがより好ましい。なお、これら単量体は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
また、前記液状ポリマーが、芳香族ビニル化合物-共役ジエン化合物共重合体である場合、芳香族ビニル化合物の結合量は5質量%未満であることが好ましい。芳香族ビニル化合物の結合量を5質量%未満とすることで、ゴムの硬度が上昇し、氷上性能が悪化することを抑制することができる。
前記液状ポリマーとしての前記共役ジエン系重合体の製造方法は、特に制限されず、例えば、重合反応に不活性な炭化水素溶媒中で、単量体である共役ジエン化合物を単独で、又は単量体である芳香族ビニル化合物と共役ジエン化合物との混合物を重合して得ることができる。
前記前記共役ジエン系重合体の合成に用いる重合開始剤としては、リチウム化合物が好ましく、n-ブチルチリウムがさらに好ましい。重合開始剤としてリチウム化合物を用いた場合、芳香族ビニル化合物と共役ジエン化合物とは、アニオン重合で重合される。
重合開始剤を用いて、前記共役ジエン系重合体を製造する方法としては、上述のとおり、特に制限はなく、例えば、重合反応に不活性な炭化水素溶媒中で、単量体を重合させることで前記共役ジエン系重合体を製造することができる。
ここで、重合反応に不活性な炭化水素溶媒としては、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン等が挙げられる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
なお、前記重合反応は、ランダマイザーの存在下で実施するとよい。
ランダマイザーは、(共)重合体の共役ジエン化合物部分のミクロ構造を制御することができ、より具体的には、(共)重合体の共役ジエン化合物部分のビニル結合量を制御したり、共重合体中の共役ジエン化合物単位と芳香族ビニル化合物単位とをランダム化する等の作用を有する。
ランダマイザーとしては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジテトラヒドロフリルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピペリジノエタン、カリウム-t-アミレート、カリウム-t-ブトキシド、ナトリウム-t-アミレート等が挙げられる。これらランダマイザーの使用量は、重合開始剤1モル当り0.1~100モル当量の範囲が好ましい。
アニオン重合は、溶液重合で実施することが好ましく、重合反応溶液中の上記単量体の濃度は、5~50質量%の範囲が好ましく、10~30質量%の範囲がさらに好ましい。なお、共役ジエン化合物と芳香族ビニル化合物を併用する場合、単量体混合物中の芳香族ビニル化合物の含有率は、目的とする共重合体の芳香族ビニル化合物量に応じて適宜選択することができる。また、重合形式は特に限定されず、回分式でも連続式でもよい。
アニオン重合の重合温度は、0~150℃の範囲が好ましく、20~130℃の範囲がさらに好ましい。また、該重合は、発生圧力下で実施できるが、通常は、使用する単量体を実質的に液相に保つのに十分な圧力下で行うことが好ましい。ここで、重合反応を発生圧力より高い圧力下で実施する場合、反応系を不活性ガスで加圧することが好ましい。また、重合に使用する単量体、重合開始剤、溶媒等の原材料は、水、酸素、二酸化炭素、プロトン性化合物等の反応阻害物質を予め除去したものを用いることが好ましい。
なお、前記液状ポリマーの重量平均分子量、共役ジエン化合物部分の結合スチレン量、共役ジエン化合物部分のビニル結合量は、重合に用いる単量体の量、重合度等により調整することができる。また、前記液状ポリマーの共役ジエン化合物部分の結合スチレン量および共役ジエン化合物部分のビニル結合量(前記液状ポリマーのミクロ構造と称することがある)は、赤外法(モレロ法)で求めることができる。
(充填剤)
前記ゴム組成物は、上述したゴム成分及び脂肪酸アマイド、好適成分としての液状ポリマーに加え、シリカ及びカーボンブラックのうちの少なくとも一種を含有する充填剤をさらに含むことが好ましい。
シリカ及びカーボンブラックのうちの少なくとも一種を含む充填剤を前記ゴム成分とともに含むことによって、タイヤ用加硫ゴム組成物の耐摩耗性や氷上性能等の特性をより高めることができる。
同様の観点から、前記充填剤は、前記シリカ及び前記カーボンブラックのいずれも含むことがより好ましい。
ここで、前記シリカの種類としては、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、湿式シリカが好ましい。これらのシリカは、1種単独で使用してもよいし、2種以上を併用してもよい。
また、前記湿式シリカは、沈降シリカを用いることができる。なお、沈降シリカとは、製造初期に、反応溶液を比較的高温、中性~アルカリ性のpH領域で反応を進めてシリカ一次粒子を成長させ、その後酸性側へ制御することで、一次粒子を凝集させる結果得られるシリカのことである。
また、前記シリカとしては、特に限定されないが、例えばCTAB比表面積(セチルトリメチルアンモニウムブロミド吸着比表面積)を、70m/g以上、250m/g以下とすることができる。なお、前記CTAB比表面積は、ASTMD3765-92に準拠して測定された値を意味する。ただし、シリカ表面に対するセチルトリメチルアンモニウムブロミド1分子当たりの吸着断面積を0.35nmとして、CTABの吸着量から算出される比表面積(m/g)をCTAB比表面積とする。
また、前記シリカのBET比表面積は、100m/g以上、250m/g以下とすることができる。なお、前記BET比表面積は、BET法により求めた比表面積のことであり、本発明では、ASTMD4820-93に準拠して測定することができる。
また、前記シリカの含有量は、前記ゴム成分100質量部に対して、5~90質量部であることが好ましく、10~5070質量部であることがより好ましく、20~65質量部であることがさらに好ましい。前記シリカの含有量が、前記ゴム成分100質量部に対して5質量部以上であれば、タイヤ用加硫ゴム組成物の耐摩耗性や氷上性能をより向上でき、90質量部以下とすることで、ゴム組成物の加工性悪化や低転がり抵抗性の悪化を抑えることができる。
また、前記カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、N339、IISAF、ISAF、SAFグレードのカーボンブラックが挙げられ、これらの中でも、ゴム組成物の耐摩耗性を向上させる観点から、ISAF、SAFグレードのカーボンブラックが好ましい。これらカーボンブラックは、1種単独で使用してもよいし、2種以上を併用してもよい。
さらに、前記カーボンブラックについては、窒素吸着比表面積(NSA、JIS K 6217-2:2001に準拠して測定する)が20~250m/gのものを用いることができ、30~200m/gのものを用いることができ、30~150m/gのものを用いることができる。
さらにまた、前記カーボンブラックについては、ジブチルフタレート(DBP)吸油量(JIS K 6217-4:2001「DBP吸収量の求め方」に記載の方法により測定される)が、50~200cm/100gのものを用いることができ、60~150cm/100gのものを用いることができる。
前記カーボンブラックの含有量については、特に限定はされないが、前記ゴム成分100質量部に対して、5~90質量部であることが好ましく、20~80質量部であることがより好ましく、25~70質量部であることがさらに好ましく、30~65質量部であることが特に好ましい。前記カーボンブラックの含有量が、前記ゴム成分100質量部に対して5質量部以上であれば、耐摩耗性をより向上でき、90質量部以下とすることで低発熱性の悪化をより確実に抑えることができる。
また、前記シリカ及び前記カーボンブラックの合計含有量については、前記ゴム成分100質量部に対して50~90質量部であることが好ましい。低発熱性や加工性等の性能を良好に維持しつつ、タイヤ用加硫ゴム組成物の耐摩耗性や氷上性能等の特性をより高めることができるためである。
さらに、前記シリカの含有量に対する前記カーボンブラックの含有量の質量比(カーボンブラックの含有量/シリカの含有量)が、0.5~2であることが好ましく、0.5~1.5であることがより好ましく、0.7~1.2であることがさらに好ましい。
前記シリカの含有量に対する前記カーボンブラックの含有質量比が、0.5以上であることで、より優れた耐摩耗性や補強性を得ることができ、前記シリカの含有量に対する前記カーボンブラックの含有質量比が、2以下であることで、低発熱性の悪化を招くことがない。
また、前記充填剤は、上述したシリカ及びカーボンブラックの他、下記一般式(XX):
nM・xSiO・zHO ・・・ (XX)
[式中、Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、またはこれらの金属の炭酸塩から選ばれる少なくとも一種であり;n、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である]で表される無機化合物を含むこともできる。
前記一般式(XX)の無機化合物としては、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・H2O)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・H2O)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・H2O)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(CaSiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように、電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等を挙げることができる。
前記一般式(XX)の無機化合物は、耐摩耗性とウェット性能のバランスの観点から、平均粒径が0.01~10μmであることが好ましく、0.05~5μmであることがより好ましい。
(空隙導入剤)
また、前記ゴム組成物は、上述したゴム成分及び脂肪酸アマイド、並びに、好適成分としての充填剤及び液状ポリマーに加えて、空隙導入剤をさらに含むことが好ましい。前記ゴム組成物が空隙導入剤を含有することで、加硫ゴムが表面又は内部、あるいは表面及び内部に空隙を有するため、当該加硫ゴムを用いたタイヤは、柔軟性を有し、氷路面に密着し易くなると共に、タイヤ表面の空隙に、路面上の水が吸い込まれ、氷雪路面から水が排除され易いため、氷上ブレーキ制動性能を向上することができる。
前記空隙導入剤は、例えば、発泡剤、硫酸金属塩、熱膨張性マイクロカプセル、多孔質セルロース粒子、リグニン誘導体等が挙げられ、これらの中の1種を単独又は2種以上を混合して用いることができる。さらに、氷上性能の観点からは、前記発泡剤を用いることが好ましい。
なお、前記ゴム組成物における空隙導入剤の含有量は、特に限定されるものではないが、所望の空隙率を得る観点や、耐摩耗性等を維持する観点から、前記ゴム成分100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.3~10質量部、さらに好ましくは0.5~5質量部である。
・発泡剤
前記ゴム組成物が、前記空隙導入剤として発泡剤を含有することにより、前記ゴム組成物の加硫中に、発泡剤によって加硫ゴムに気泡が生じ、加硫ゴムを発泡ゴムとすることができる。発泡ゴムは柔軟性を有するため、加硫ゴムを用いたタイヤ表面は、氷路面に密着し易くなる。また、気泡により加硫ゴム表面及びタイヤ表面に気泡由来の穴(発泡孔)が生じ、水を排水する水路として機能する。
発泡剤としては、具体的には、例えば、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DPT)、ジニトロソペンタスチレンテトラミン、ベンゼンスルホニルヒドラジド誘導体、p,p’-オキシビスベンゼンスルホニルヒドラジド(OBSH)、炭酸アンモニウム、炭酸ナトリウム、炭酸カリウム等の炭酸塩、重炭酸アンモニウム、重炭酸ナトリウム、重炭酸カリウム等の重炭酸塩(炭酸水素塩)といった無機発泡剤、窒素を発生するニトロソスルホニルアゾ化合物、N,N’-ジメチル-N,N’-ジニトロソフタル
アミド、トルエンスルホニルヒドラジド、p-トルエンスルホニルセミカルバジド、p,p’-オキシビスベンゼンスルホニルセミカルバジド等が挙げられる。これらの中でも、製造加工性の観点から、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DPT)、無機発泡剤を用いることが好ましい。これら発泡剤は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
また、前記発泡剤のゴム組成物中の含有量は、特に限定されるものではないが、ゴム成分100質量部に対して1~10質量部が好ましく、2~8質量部であることがより好ましい。
ゴム組成物は、さらに、発泡助剤として尿素、ステアリン酸亜鉛、ベンゼンスルフィン酸亜鉛、亜鉛華等を用いてもよい。これらは、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。発泡助剤を併用することにより、発泡反応を促進して反応の完結度を高め、経時的に不要な劣化を抑制することができる。
・硫酸金属塩
前記ゴム組成物が、前記空隙導入剤として硫酸金属塩を含有すると、ゴム組成物を加硫して得られるタイヤ表面から硫酸金属塩が突出し、研磨性であるという不利益なしでクロー(claw)機能を果す。その後、引続いて、ゴムマトリックスから硫酸金属塩が漸次退出することで空洞が生じ、氷表面の水膜を排出するための貯蔵容積および通路として機能する。これらの条件下においては、タイヤ表面(例えば、トレッドの表面)と氷との接触はもはや潤滑ではなく、従って、摩擦係数が改良される
硫酸金属塩としては、硫酸マグネシウムが挙げられる。
前記硫酸金属塩は、マイクロメートルサイズの粒子であることが好ましい。具体的には、平均粒度および中央値粒度(双方とも質量で示す)が、1μm~1mmであることが好ましく、中央値粒度が、2μm~800μmであるがより好ましい。
平均粒度および中央値粒度が、1μm以上であることで、目標とする技術的効果(即ち、適切な微細粗さの形成)が得られ易い。また、平均粒度および中央値粒度が、1mm以下であることで、特にゴム組成物をトレッドとして使用する場合、審美性の低下を抑制し(トレッド表面上に明白過ぎる粒子が出現することを抑制することができる)、融氷上のグリップ性能を損ないにくい。
これらの全ての理由により、硫酸金属塩の中央値粒度は、2μm~500μmであることが好ましく、5~200μmであることがより好ましい。この特に好ましい粒度範囲は、一方での所望の表面粗さと他方でのゴム組成物と氷との良好な接触と間の最適な妥協点に相応しているようである。
さらにまた、上記の理由と同じ理由により、前記ゴム組成物中の硫酸金属塩の含有量は、ゴム成分100質量部に対し、好ましくは5~40質量部、より好ましくは10~35質量部である。
なお、粒度の分析および微小粒子の中央値粒度(または実質的に球形であると想定しての微小粒子の平均直径)の算出のための、例えば、レーザー回析による種々の既知の方法が応用可能である(例えば、規格ISO‐8130‐13または規格JIS K5600‐9‐3を参照されたい)。
また、機械的篩分けによる粒度分析も、簡単に勝つ好ましく使用し得る;その操作は、規定量のサンプル(例えば、200g)を、振動テーブル上で、種々の篩直径により(例えば、1.26に等しい累進比に従い、1000、800、630、500、400、…100、80および63μmのメッシュにより)、30分間篩分けすることからなる;各篩において集めた超過サイズを精密天秤で秤量する;物質の総質量に対する各メッシュ直径における超過サイズの%を、その秤量から推定する;最後に、中央値粒度(または中央値直径)または平均粒度(または平均直径)を粒度分布のヒストグラムから既知の方法で算出する。
・熱膨張性マイクロカプセル
前記熱膨張性マイクロカプセルは、熱可塑性樹脂で形成された殻材中に、熱膨張性物質を内包した構成からなる。熱膨張性マイクロカプセルの殻材はニトリル系重合体により形成することができる。
またマイクロカプセルの殻材中に内包する熱膨張性物質は、熱によって気化または膨張する特性をもち、例えば、イソアルカン、ノルマルアルカン等の炭化水素からなる群から選ばれる少なくとも1種類が例示される。イソアルカンとしては、イソブタン、イソペンタン、2-メチルペンタン、2-メチルヘキサン、2,2,4-トリメチルペンタン等を挙げることができ、ノルマルアルカンとしては、n-ブタン、n-プロパン、n-ヘキサン、n-ヘプタン、n-オクタン等を挙げることができる。これらの炭化水素は、それぞれ単独で使用しても複数を組み合わせて使用してもよい。熱膨張性物質の好ましい形態としては、常温で液体の炭化水素に、常温で気体の炭化水素を溶解させたものがよい。このような炭化水素の混合物を使用することにより、未加硫タイヤの加硫成形温度域(150℃~190℃)において、低温領域から高温領域にかけて十分な膨張力を得ることができる。
このような熱膨張性マイクロカプセルとしては、例えばスェーデン国エクスパンセル社製の商品名「EXPANCEL 091DU-80」または「EXPANCEL 092DU-120」等、或いは松本油脂製薬社製の商品名「マツモトマイクロスフェアー F-85D」または「マツモトマイクロスフェアー F-100D」等を使用することができる。
熱膨張性マイクロカプセルのゴム組成物中の含有量は、ゴム成分100質量部に対し、0.1~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。
・多孔質セルロース粒子
前記ゴム組成物が、前記空隙導入剤として多孔性セルロース粒子を含有すると、ゴム組成物を加硫して得られるタイヤ表面に多孔性セルロース粒子が露出している場合、氷雪路面上の水が多孔性セルロース粒子に吸収され、タイヤと路面との間の水を除去することができる。また、多糖類であるセルロースの存在により、タイヤと氷雪路面上の水との相互作用が生じるため、変性ポリオキシアルキレングリコールによるタイヤと水との相互作用をより高めることもできる。
前記多孔質セルロース粒子は、空隙率75~95%という多孔質構造を持つセルロース粒子であり、ゴム組成物に配合することにより、氷上性能を著しく向上させることができる。多孔質セルロース粒子の空隙率が75%以上であることにより、氷上性能の向上効果に優れ、また、空隙率が95%以下であることにより、粒子の強度を高めることができる。該空隙率は、より好ましくは80~90%である。
なお、前記多孔質セルロース粒子の空隙率は、一定質量の試料(即ち、多孔質セルロース粒子)の体積をメスシリンダーで測定し、嵩比重を求めて、下記式から求めることができる。
空隙率[%]={1-(試料の嵩比重[g/ml])/(試料の真比重[g/ml])}×100
ここで、セルロースの真比重は1.5である。
前記多孔質セルロース粒子の粒径は、特に限定しないが、耐摩耗性の観点から、平均粒径が1000μm以下のものが好ましく用いられる。平均粒径の下限は、特に限定されないが、5μm以上であることが好ましい。平均粒径は、より好ましくは100~800μmであり、さらに好ましくは200~800μmである。
前記多孔質セルロース粒子としては、長径/短径の比が1~2である球状粒子が好ましく用いられる。このような球状構造の粒子を用いることにより、ゴム組成物中への分散性を向上して、氷上性能の向上、耐摩耗性等の維持に寄与することができる。長径/短径の比は、より好ましくは1.0~1.5である。
多孔質セルロース粒子の平均粒径と、長径/短径の比は、次のようにして求められる。すなわち、多孔質セルロース粒子を顕微鏡で観察して画像を得て、この画像を用いて、粒子の長径と短径(長径と短径が同じ場合には、ある軸方向の長さとこれに直交する軸方向の長さ)を100個の粒子について測定し、その平均値を算出することで平均粒径が得られ、また、長径を短径で割った値の平均値により長径/短径の比が得られる。
このような多孔質セルロース粒子としては、レンゴー株式会社から「ビスコパール」として市販されており、また、特開2001-323095号公報、特開2004-115284号公報等に記載されており、それらを好適に用いることができる。
多孔質セルロース粒子のゴム組成物中の含有量は、ゴム成分100質量部に対し、0.3~20質量部であることが好ましい。含有量が0.3質量部以上であることにより、氷上性能の向上効果を高めることができ、また、20質量部以下であることにより、ゴム硬度が高くなりすぎるのを抑えることができ、耐摩耗性の低下を抑制することができる。多孔質セルロース粒子の含有量は、より好ましくは1~15重量部であり、さらに好ましくは3~15質量部である。
・リグニン誘導体
前記ゴム組成物が、前記空隙導入剤としてリグニン誘導体を含有すると、氷上性能の向上効果を高めることができる。
ここで、前記リグニン誘導体としては、リグニンスルホン酸塩が好ましく用いられる。リグニンスルホン酸塩としては、リグニンスルホン酸のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アルコールアミン塩等が挙げられ、これらの少なくとも一種を含んで使用することができる。好ましくは、リグニンスルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩であり、例えば、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩、リチウム塩、バリウム塩などが挙げられ、これらの混合塩でもよい。
(発泡助剤)
さらに、前記ゴム組成物が、前記空隙導入剤として発泡剤を含む場合には、発泡助剤をさらに含むことが好ましい。前記発泡助剤としては、尿素、ステアリン酸亜鉛、ベンゼンスルフィン酸亜鉛、亜鉛華等が例示される。これらは、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
前記発泡助剤を併用することにより、発泡反応を促進して反応の完結度を高め、経時的に不要な劣化を抑制することが可能となる。
さらにまた、前記発泡剤と前記発泡助剤との総含有量は、前記ゴム成分100質量部に対して、好ましくは1~30質量部である。発泡剤と発泡助剤との総含有量が1質量部以上の場合、加硫時にゴム組成物を十分に発泡でき、加硫ゴムの発泡率を高く維持できる。一方、前記発泡剤と発泡助剤との総含有量が30質量部以下の場合も、発泡率の低下を抑えることができる。
上記のように発泡率の低下を抑える観点から、前記発泡剤と前記発泡助剤との総含有量は、前記ゴム成分100質量部に対して、3質量部以上が好ましく、5質量部以上がさらに好ましい。また、上記のように発泡率の低下を抑える観点から、前記発泡剤と前記発泡助剤との総含有量は、前記ゴム成分100質量部に対して、25質量部以下が好ましく、20質量部以下がさらに好ましい。
加えて、前記ゴム組成物においては、前記発泡剤と前記発泡助剤との質量比(発泡剤:発泡助剤)が、1:1.1~1:3.3であることが好ましい。該質量比(発泡剤:発泡助剤)が1:1.1未満であると、加硫時にゴム組成物が十分に発泡せず、加硫ゴムの発泡率が低下するおそれがあり、一方、該質量比(発泡剤:発泡助剤)が1:3.3を超える場合も、発泡率が低下するおそれがある。
上記のように発泡率の低下を抑える観点から、前記発泡剤と前記発泡助剤との質量比(発泡剤:発泡助剤)は、1:1.2以上が好ましく、1:1.3以上がさらに好ましい。また、上記のように発泡率の低下を抑える観点から、前記発泡剤と前記発泡助剤との質量比(発泡剤:発泡助剤)は、1:3.2以下が好ましく、1:3.1以下がより好ましく、1:2.9以下がさらに好ましく、1:2.7以下がより一層好ましく、1:2.5以下がさらに一層好ましく、1:2.3以下が特に好ましい。
また、前記発泡助剤の含有量は、加硫ゴムの発泡率及びタイヤの氷上性能の観点から、前記ゴム成分100質量部に対して4~14質量部の範囲であることが好ましく、6~14質量部の範囲であることがさらに好ましい。
(複合繊維)
前記ゴム組成物は、上述したゴム成分及び脂肪酸アマイド、好適成分としての、充填剤、液状ポリマー、空隙導入剤及び発泡助剤に加え、複合繊維をさらに含むことが好ましい。
前記複合繊維を含むすることにより、水との親和性を充分に確保することができ、特にタイヤ用途に使用する際に、優れた排水性や氷上性能を付与することができる。
また、前記複合繊維は、表面に被覆層が形成された親水性樹脂からなることが好ましい。複合繊維の表面に被覆層を設けることにより、ゴム組成物中での複合繊維の分散性が良好となるためである。
なお、前記親水性樹脂は、水に不溶であることが好ましく、水に不溶な親水性樹脂を採用することにより、製品(例えばタイヤ)の表面に複合繊維が露出した際にも、複合繊維の溶解を抑制できる。
前記親水性樹脂としては、水との間に親和性を発揮し得る樹脂、すなわち分子内に親水性基を有する樹脂であれば特に限定されないが、具体的には、酸素原子、窒素原子又は硫黄原子を含む樹脂であることが好ましく、例えば、-OH、-C(=O)OH、-OC(=O)R(Rはアルキル基)、-NH2、-NCO、及び-SHよりなる群から選択される基を少なくとも1種含む樹脂が挙げられる。これらの基の中でも、-OH、-C(=O)OH、-OC(=O)R、-NH2、-NCO、が好ましい。
前記親水性樹脂として、より具体的には、エチレン-ビニルアルコール共重合体、ビニルアルコール単独重合体、ポリ(メタ)アクリル酸樹脂或いはそのエステル樹脂(以下、(メタ)アクリル酸に由来する構成単位を含む共重合体及び(メタ)アクリル酸エステルに由来する構成単位を含む(共)重合体を、総称して(メタ)アクリル系樹脂ともいう。)、ポリアミド樹脂、ポリエチレングリコール樹脂、カルボキシビニル共重合体、スチレン-マレイン酸共重合体、ポリビニルピロリドン樹脂、ビニルピロリドン-酢酸ビニル共重合体、ポリエステル樹脂、セルロース系樹脂等が挙げられる。これら中でも、エチレン-ビニルアルコール共重合体、ビニルアルコール単独重合体、ポリ(メタ)アクリル酸樹脂、ポリアミド樹脂、脂肪族ポリアミド系樹脂、芳香族ポリアミド系樹脂、ポリエステル樹脂、ポリビニルアルコール系樹脂、セルロース系樹脂、又は(メタ)アクリル系樹脂が好ましく、エチレン-ビニルアルコール共重合体がより好ましい。
前記親水性樹脂からなる繊維の表面は、ゴム成分に対して親和性を有し、好ましくは、加硫最高温度よりも低い融点を有する低融点樹脂(以下、「低融点樹脂」ともいう)からなる被覆層が形成されていることが好ましい。かかる被覆層を形成することで、親水性樹脂自体が有する水との親和性を有効に保持しつつ、複合繊維近傍のゴム成分との良好な親和性を発揮することができると共に、加硫時(発泡時)には融解しにくい親水性樹脂を捕捉し、複合繊維の内部における空洞の形成を促進することができる。すなわち、ゴム成分中における複合繊維の良好な分散を確保して親水性樹脂に起因する排水性効果を充分に発揮させつつ、複合繊維の内部に存在する空隙による氷上性能向上効果をも充分に発揮させることができる。また、かかる低融点樹脂が加硫時に溶融することで流動性を帯びた被覆層となって前記ゴム成分と前記複合繊維との接着を図ることに寄与し、良好な氷上性能と耐摩耗性とが付与される。
なお、前記被覆層の厚みは、前記親水性樹脂の配合量や前記複合繊維の平均径等によって変動し得るが、好ましくは0.001~10μm、より好ましくは0.001~5μmである。上記範囲の厚みで被覆層を形成することにより、本発明における所望の効果を充分に発揮することができる。また、前記被覆層は、親水性樹脂の全表面にわたって形成されていてもよく、親水性樹脂の一部の表面に形成されていてもよく、具体的には、少なくとも親水性樹脂全表面積の50%を占める割合で被覆層が形成されていることが好ましい。
前記被覆層に使用する低融点樹脂としては、具体的には、低融点樹脂中において、極性成分が全成分に対して50質量%以下である樹脂が好ましく、ポリオレフィン系樹脂であることがより好ましい。極性成分が全成分に対して上記範囲内である樹脂であると、前記ゴム成分とのSP値の差が適度であると共に、加硫最高温度よりも適度に低い融点を有しており、ゴム成分との良好な親和性を充分に確保しつつ、加硫時に容易に融解して加硫ゴムの発泡を促進することができる。従って、前記ゴム組成物中での親水性樹脂からなる繊維の分散性をより確実に向上させつつ、複合繊維の内部に確実に空洞を形成することが可能となる。
前記ポリオレフィン系樹脂としては、分岐状、直鎖状等のいずれであってもよい。また、エチレン-メタクリル酸共重合体の分子間を金属イオンで架橋したアイオノマー樹脂であってもよい。具体的には、前記ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリスチレン、エチレン-プロピレン共重合体、エチレン-メタクリル酸共重合体、エチレン-エチルアクリレート共重合体、エチレン・プロピレン・ジエン三元共重合体、エチレン・酢酸ビニル共重合体、並びにこれらのアイオノマー樹脂等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
これらの中でも、前記ポリオレフィン系樹脂は、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリオレフィンアイオノマー、無水マレイン酸変性α-ポリオレフィンが好適である。ポリオレフィンアイオノマーや無水マレイン酸変性α-ポリオレフィンを用いた場合、親水性樹脂の水酸基とも接着するため、ゴム強度をより向上させることが可能となる。
前記低融点樹脂からなる被覆層が形成された親水性樹脂からなる複合繊維を製造するには、これらの樹脂を混合ミルを用いてブレンドし、溶融紡糸して未延伸糸を形成して、かかる未延伸糸を熱延伸しながら繊維状にする方法を採用することができる。また、前記樹脂を、ダイを具えた二軸押出機を2台用いてブレンドした後、同様にして繊維状にする方法を採用してもよい。この場合、2つのダイ出口からは、親水性樹脂と、低融点樹脂が各々同時に押し出され、これから未延伸糸が形成されることとなる。これら樹脂の混合ミル又はホッパーへの投入量は、得られる複合体(繊維)の長さや径によっても変動し得るが、親水性樹脂100質量部に対し、前記低融点樹脂を好ましくは5~300質量部、より好ましくは10~150質量部の量である。これらの樹脂を前記範囲内の量で投入することにより、延伸工程を経た後に得られる親水性樹脂からなる複合体(繊維)の表面に、所望の効果を発揮し得る被覆層が有効に形成される。
また、得られる複合繊維の平均長さは、好ましくは0.1~500mm、より好ましくは0.1~7mm、平均径は、好ましくは0.001~2mm、より好ましくは0.005~0.5mmである。平均長さ及び平均径が上記範囲内であると、複合繊維同士が必要以上に絡まるおそれがなく、良好な分散性を阻害するおそれもない。また、アスペクト比は好ましくは10~4,000、より好ましくは50~2,000である。なお、アルペクト比とは、複合繊維の長軸の短軸に対する比を意味する。
さらに、得られる複合繊維については、長軸方向に垂直な断面における長径方向の前記断面の長さA及び前記長径方向に垂直な短径方向の前記断面の長さBとの比(A/B)が、好ましくは1より大きく、より好ましくは1.5以上、さらに好ましくは1.8以上、特に好ましくは2.0以上である。また、前記比A/Bは、好ましくは20以下、さらに好ましくは15以下、特に好ましくは10以下である。上記範囲とすることで氷上性能が一層向上する。なお、A/Bが1より大きければ、断面形状は特に制限されず、楕円形、長方形、多角形、不定形等のいずれでもよい。
また、前記被覆層が形成された親水性樹脂からなる複合繊維の配合量は、前記ゴム成分100質量部に対し、好ましくは0.1~100質量部、より好ましくは0.3~30質量部、さらに好ましくは0.5~10質量部、よりさらに好ましくは1~6質量部である。前記被覆層が形成された親水性樹脂からなる複合繊維の配合量が上記範囲内であると、複合繊維の内部に空洞を形成して良好な排水性を発揮しつつ、充分な耐久性を保持することが可能となる。
さらにまた、複合繊維と空隙導入剤の含有割合は、特に限定されるものではないが、耐摩耗性や氷上性能を両立・向上させる観点から、複合繊維と空隙導入剤との質量比(空隙導入剤/複合繊維)が好ましくは0.5~10、より好ましくは1~8、さらに好ましくは1.5~7、特に好ましくは2~6である。
(水添樹脂)
前記ゴム組成物は、上述したゴム成分及び脂肪酸アマイド、並びに、好適成分としての充填剤、液状ポリマー、空隙導入剤、発泡助剤及び複合繊維に加えて、水添樹脂をさらに含むことが好ましい。
前記水添樹脂は、ゴム成分との相溶し易いため、湿潤路面及び氷雪路面でのグリップ性能に必要な柔軟性をタイヤに与えることができ、氷雪路面でのグリップ性能、即ち、氷上性能を向上させることができる。
ここで、前記水添樹脂とは、樹脂を還元水素化して得られる樹脂のことである。水添樹脂の原料となる樹脂としては、C系樹脂、C-C系樹脂、C系樹脂、テルペン系樹脂、ジシクロペンタジエン系樹脂、テルペン-芳香族化合物系樹脂等が挙げられ、これら樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
前記C系樹脂としては、石油化学工業のナフサの熱分解によって得られるC留分を(共)重合して得られる脂肪族系石油樹脂が挙げられる。
留分には、通常1-ペンテン、2-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン等のオレフィン系炭化水素、2-メチル-1,3-ブタジエン、1,2-ペンタジエン、1,3-ペンタジエン、3-メチル-1,2-ブタジエン等のジオレフィン系炭化水素等が含まれる。なお、C系樹脂は、市販品を利用することができる。
前記C-C系樹脂とは、C-C系合成石油樹脂を指し、C-C系樹脂としては、例えば、石油由来のC-C11留分を、AlCl、BF等のフリーデルクラフツ触媒を用いて重合して得られる固体重合体が挙げられ、より具体的には、スチレン、ビニルトルエン、α-メチルスチレン、インデン等を主成分とする共重合体等が挙げられる。
-C系樹脂としては、C以上の成分の少ない樹脂が、ゴム成分との相溶性の観点から好ましい。ここで、「C以上の成分が少ない」とは、樹脂全量中のC以上の成分が50質量%未満、好ましくは40質量%以下であることを言うものとする。C-C系樹脂は、市販品を利用することができる。
前記C系樹脂とは、C系合成石油樹脂を指し、例えばAlClやBF等のフリーデルクラフツ型触媒を用い、C留分を重合して得られる固体重合体を指す。
系樹脂としては、例えば、インデン、α-メチルスチレン、ビニルトルエン等を主成分とする共重合体等が挙げられる。
前記テルペン系樹脂は、松属の木からロジンを得る際に同時に得られるテレビン油、或いはこれから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得られる固体状の樹脂であり、β-ピネン樹脂、α-ピネン樹脂等がある。また、テルペン-芳香族化合物系樹脂としては、代表例としてテルペン-フェノール樹脂を挙げることができる。このテルペン-フェノール樹脂は、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、或いはさらにホルマリンで縮合する方法で得ることができる。原料のテルペン類としては特に制限はなく、α-ピネンやリモネン等のモノテルペン炭化水素が好ましく、α-ピネンを含むものがより好ましく、特にα-ピネンであることが好ましい。
前記ジシクロペンタジエン系樹脂は、例えばAlClやBF等のフリーデルクラフツ型触媒等を用い、ジシクロペンタジエンを重合して得られる樹脂を指す。
また、前記水添樹脂の原料となる樹脂は、例えば、C留分とジシクロペンタジエン(DCPD)とを共重合した樹脂(C-DCPD系樹脂)を含んでいてもよい。
ここで、樹脂全量中のジシクロペンタジエン由来成分が50質量%以上の場合、C-DCPD系樹脂はジシクロペンタジエン系樹脂に含まれるものとする。樹脂全量中のジシクロペンタジエン由来成分が50質量%未満の場合、C-DCPD系樹脂はC系樹脂に含まれるものとする。さらに第三成分等が少量含まれる場合でも同様である。
前記ゴム成分と水添樹脂との相溶性を高め、タイヤの雪上性能をさらに向上させる観点から、水添樹脂は、水添C系樹脂、水添C-C系樹脂、及び水添ジシクロペンタジエン系樹脂(水添DCPD系樹脂)からなる群より選択される少なくとも1種であることが好ましく、水添C系樹脂及び水添C-C系樹脂からなる群より選択される少なくとも1種であることがより好ましく、水添C系樹脂であることがさらに好ましい。また、少なくともモノマーに水添DCPD構造又は水添された環状構造を有する樹脂であることが好ましい。
また、前記水添樹脂の軟化点は、110℃より高いことが好ましい。前記水添樹脂の軟化点が110℃を超えると、タイヤの転がり抵抗を十分に低減できるためである。前記水添樹脂の軟化点は、タイヤの転がり抵抗をさらに低くする観点から、115℃以上であることが好ましく、118℃以上であることがより好ましく、123℃以上であることがより好ましく、125℃以上であることがさらに好ましい。加えて、水添樹脂の軟化点は、タイヤのウェットグリップ性能及び雪上性能をさらに向上させる観点から、145℃以下であることが好ましく、138℃以下であることがより好ましく、133℃以下であることがさらに好ましい。
また、前記水添樹脂のポリスチレン換算の重量平均分子量は、200~1200g/molであることが好ましい。前記水添樹脂のポリスチレン換算の重量平均分子量が200g/mol以上の場合、タイヤからの水添樹脂の析出を抑制でき、また、1200g/mol以下の場合、水添樹脂がゴム成分と確実に相溶できるためである。
タイヤからの水添樹脂の析出を抑制し、タイヤ外観の低下を抑制する観点から、水添樹脂のポリスチレン換算の重量平均分子量は、500g/mol以上であることが好ましく、550g/mol以上であることがより好ましく、620g/mol以上であることがより好ましく、670g/mol以上であることがより好ましく、720g/mol以上であることがより好ましく、750g/mol以上であることがより好ましく、780g/mol以上であることがさらに好ましい。また、ゴム成分への水添樹脂の相溶性を高め、水添樹脂による効果をより高める観点から、水添樹脂のポリスチレン換算の重量平均分子量は、1300g/mol以下であることが好ましく、1100g/mol以下であることが好ましく、1050g/mol以下であることが好ましく、950g/mol以下であることが好ましく、900g/mol以下であることが好ましく、850g/mol以下であることがさらに好ましい。
さらに、前記水添樹脂のポリスチレン換算の重量平均分子量(MwHR)(単位はg/mol)に対する水添樹脂の軟化点(TsHR)(単位は℃)は、0.15以上であることが好ましい[0.15≦(TsHR/MwHR)]。
前記(TsHR/MwHR)は、タイヤのウェットグリップ性能及び雪上性能をさらに向上させる観点から、0.155以上であることがより好ましく、0.158以上であることがより好ましく、0.160以上であることがより好ましく、0.162以上であることがさらに好ましい。また、(TsHR/MwHR)は、タイヤの性能の低下を抑制する観点から、0.2以下であることが好ましく、0.185以下であることがより好ましく、0.178以下であることがより好ましく、0.172以下であることがより好ましく、0.168以下であることがより好ましく、0.163以下であることがさらに好ましい。
また、前記ゴム組成物中の水添樹脂の含有量は、前記ゴム成分100質量部に対して5~50質量部であることが好ましい。前記水添樹脂の含有量が、前記ゴム成分100質量部に対し5質量部以上の場合には、水添樹脂による効果を十分に発現することができ、一方、前記ゴム成分100質量部に対し50質量部以下の場合には、タイヤから水添樹脂が析出することを抑制できる。
さらに、前記ゴム組成物中の水添樹脂の含有量は、水添樹脂による効果をより高める観点から、ゴム成分100質量部に対して、7質量部以上であることが好ましく、9質量部以上であることがさらに好ましい。加えて、タイヤからの水添樹脂の析出を抑制し、タイヤ外観の低下を抑制する観点から、ゴム組成物中の水添樹脂の含有量は、ゴム成分100質量部に対して、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、25質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。
(ヒドロカルビル基を有する環状ポリオール化合物)
さらに、前記ゴム組成物は、上述したゴム成分及び脂肪酸アマイド、並びに、好適成分としての充填剤、液状ポリマー、空隙導入剤、発泡助剤、複合繊維及び水添樹脂に加えて、ヒドロカルビル基を有する環状ポリオール化合物をさらに含むことが好ましい。
前記ゴム組成物中に含有されたヒドロカルビル基を有する環状ポリオール化合物は、本発明のタイヤ用加硫ゴム組成物の耐摩耗性や耐カット性を大きく向上させることができる。また、前記ゴム成分のゴム分子と後述する剤との相互作用を高めることによって、架橋後のゴムの物理的特性を均質化させることができる結果、補強性についても向上できる。
また、本発明の空隙を有するゴム組成物は、耐摩耗性や耐カット性が一層向上することも明らかとなった。
さらに、前記ヒドロカルビル基を有する環状ポリオール化合物は、ソルビトール等の化合物に比べて親水部位が少ないため、ゴム組成物中での自己凝集についても抑えることができる結果、タイヤ用加硫ゴム組成物の伸長疲労性についても良好に維持できる。
ここで、前記ヒドロカルビル基を有する環状ポリオール化合物の含有量は、前記天然ゴム100質量部に対して0.1~5質量部であることが好ましい。前記ヒドロカルビル基を有する環状ポリオール化合物の含有量が、前記天然ゴム100質量部に対して0.1質量部以上の場合には、十分な耐摩耗性の向上効果が得られる。一方、前記ヒドロカルビル基を有する環状ポリオール化合物の含有量が、前記天然ゴム100質量部に対して5質量部以下の場合には、ゴム組成物中での自己凝集を確実に抑制し、より伸長疲労性を改善できる。
同様の観点から、前記ヒドロカルビル基を有する環状ポリオール化合物の含有量は、前記天然ゴム100質量部に対し0.1~3質量部であることが好ましく、0.3~2.5質量部であることがより好ましい。
なお、前記ヒドロカルビル基を有する環状ポリオール化合物は、耐摩耗性や耐カット性を向上させる観点から、ゴム成分中に分散していることが好ましく、前記天然ゴム中に分散していることがより好ましい。
前記ヒドロカルビル基を有する環状ポリオール化合物は、他配合剤の界面活性剤として作用するものでなく、ゴム中に分散して耐摩耗性や耐カット性を向上させるものであり、界面活性剤とは区別される。
ここで、前記ヒドロカルビル基を有する環状ポリオール化合物については、2つ以上の水酸基を有することが好ましく、3つ以上の水酸基を有することが好ましい。多くの水酸基を有することにより、ゴム成分と添加剤との相互作用がより強く発揮され、より優れた耐摩耗性や耐カット性を実現できるからである。一方、親水部位が多くなることによる、ゴム中での自己凝集を抑える観点から、5つ以下の水酸基を有することが好ましく、4つ以下の水酸基を有することがより好ましい。
さらに、前記ヒドロカルビル基を有する環状ポリオール化合物については、ヒドロカルビルエステル基を有する環状ポリオール化合物であることが好ましい。より優れた耐摩耗性や耐カット性を実現できるためである。
さらにまた、前記ヒドロカルビル基を有する環状ポリオール化合物については、より優れた耐摩耗性や耐カット性を実現する観点から、下記式(1):
Figure 2023183856000014
で表わされる化合物であることがより好ましい。
上記式(1)中、Aは炭素数6~30のヒドロカルビルエステル基又は炭素数6~30のヒドロカルビルエーテル基であり、該Aのヒドロカルビル基部分の炭素数は、12~24であることが好ましい。式(1)中のAのヒドロカルビル基部分の炭素数が12~24の範囲であれば、良好な伸長疲労性を維持しつつ、耐摩耗性及び耐カット性がより向上する。
なお、式(1)中のAは、環部分から1番目の原子(即ち、環に結合している原子)、又は環部分から2番目の原子が酸素原子であることが好ましい。環部分から1番目の原子が酸素原子であるAとしては、例えば、-O-A’、-O-CO-A’’で表わされる基が挙げられ、また、環部分から2番目の原子が酸素原子であるAとしては、例えば、-CH-O-A''、-CH-O-CO-A’’’で表わされる基が挙げられ、ここで、A'は炭素数6~30のヒドロカルビル基、A''は炭素数5~29のヒドロカルビル基、A’’’は炭素数4~28のヒドロカルビル基であることが好ましく、また、A’、A’’及びA’’’は炭素数12~24のヒドロカルビル基であることがさらに好ましい。
また、上記式(1)中、X、X、X及びXはそれぞれ独立して-OH又は-R(ここで、-Rは-H又は-CHOHである)であり、但し、X、X、X及びXのうち少なくとも2つは-OHである。X、X、X及びXの2つ以上が、好ましくはX、X、X及びXの3つ以上が-OHであることで、ゴム組成物の耐摩耗性や耐カット性が更に向上する。
さらに、上記式(1)で表わされる化合物の中でも、下記式(2)又は式(3):
Figure 2023183856000015
Figure 2023183856000016
で表わされる化合物が更に好ましく、上記式(2)で表わされる化合物が特に好ましい。
なお、式(2)及び式(3)中、nは自然数であり、11~23の範囲が好ましい。
前記変性環状ポリオール化合物として、上記式(2)又は式(3)で表わされる化合物を配合することで、耐摩耗性をより向上させることができる。
前記ヒドロカルビル基を有する環状ポリオール化合物については、特に限定されるものではないが、例えば、ソルビット、ソルビタン、グルコース、フルクトース等のポリオール化合物に、オクタノール、デカノール、ドデカノール、テトラデカノール、ヘキサデカノール等の脂肪族アルコールや、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸等の脂肪族カルボン酸を反応させることで得ることができる。
前記ヒドロカルビル基を有する環状ポリオール化合物の例として、具体的には、ソルビタンモノラウレート、ソルビタンモノミリステート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート等のエステル化合物、オクチル-β-D-グルコピラノシド、デシル-β-D-グルコピラノシド、ドデシル-β-D-グルコピラノシド、テトラデシル-β-D-グルコピラノシド、ヘキサデシル-β-D-グルコピラノシド等のエーテル化合物が挙げられる。これら化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、これらの化合物の中でも、伸長疲労性及び耐カット性をより高いレベルで両立できる観点からは、前記ヒドロカルビル基を有する環状ポリオール化合物は、ソルビタンモノステアレート(ソルビタンモノエステル)であることが好ましい。
さらに、前記ヒドロカルビル基を有する環状ポリオール化合物の融点は、40~100℃であることが好ましく、45~90℃であることがより好ましい。前記ヒドロカルビル基を有する環状ポリオール化合物の融点が100℃以下の場合、混練、加硫反応時の溶解性を向上でき、40℃以上の場合、高温時の耐カット性を高めることができるためである。
(その他の成分)
前記ゴム組成物は、上述した各成分の他に、ゴム工業界で通常使用される配合剤をその他の成分として含むことができる。その他の成分については、例えば、シランカップリング剤、加硫剤、加硫促進剤、ポリエチレングリコール、軟化剤、老化防止剤、亜鉛華等を、本発明の目的を害しない範囲内で適宜選択して含むことができる。これら配合剤としては、市販品を好適に使用することができる。
また、上述した充填剤としてシリカを含有する場合には、シランカップリング剤をさらに含有することが好ましい。シリカによる耐カット性や、補強性、低ロス性の効果をさらに向上させることができるからである。なお、シランカップリング剤は、公知のものを適宜使用することができる。
前記シランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)ポリスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド等が挙げられる。これらシランカップリング剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
なお、前記シランカップリング剤の含有量については、シランカップリング剤の種類などによっても異なるが、前記シリカの含有量に対して、質量比で0.2以下であることが好ましく、0.1以下であることがより好ましく、0.09以下であることがさらに好ましい。前記シランカップリング剤の含有量を、前記シリカの含有量に対して質量比で0.2以下と小さくすることで、ゴム組成物の耐カット性をより向上させることができるためである。
前記加硫促進剤としては、従来公知のものを用いることができ、特に制限されるものではないが、例えば、CBS(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド)、TBBS(N-t-ブチル-2-ベンゾチアジルスルフェンアミド)、TBSI(N-t-ブチル-2-ベンゾチアジルスルフェンイミド)等のスルフェンアミド系の加硫促進剤;DPG(ジフェニルグアニジン)等のグアニジン系の加硫促進剤;テトラオクチルチウラムジスルフィド、テトラベンジルチウラムジスルフィド等のチウラム系加硫促進剤;ジアルキルジチオリン酸亜鉛等が挙げられる。その含有量としては、前記硫黄の含有量よりも少ないことが好ましく、前記ゴム成分100質量部に対し、1~10質量部程度であることがより好ましい。
さらに、前記ゴム組成物は、ゴムの柔軟性を高め、より優れたウェット性能及び氷上性能を実現できる点から、軟化剤を含むこともできる。該軟化剤は、従来公知のものを用いることができ、特に制限されるものではないが、アロマオイル、パラフィンオイル、ナフテンオイル等の石油系軟化剤や、パーム油、ひまし油、綿実油、大豆油等の植物系軟化剤が挙げられる。使用の際にはこれらの中から1種単独で又は2種以上を適宜選択使用すればよい。なお、前記軟化剤には、上述した脂肪酸アマイドは含まないものとする。
前記軟化剤を含有する場合には、取り扱い容易性の観点から、上述した軟化剤中でも、25℃等の常温で液体であるもの、例えば、アロマオイル、パラフィンオイル、ナフテンオイル等の石油系軟化剤を含有することが好ましい。
なお、前記ゴム組成物の製造方法は、特に限定はされない。例えば、上述した各成分を、公知の方法で、配合し、混錬することで得ることができる。
<タイヤ>
本発明のタイヤは、上述した本発明のタイヤ用加硫ゴム組成物を、トレッド部に用いたことを特徴とする。前記ゴム組成物をトレッド部に適用することで、氷上性能を良好に維持しつつ、優れた耐摩耗性を実現できる。
ここで、本発明のタイヤは、例えば、建設車両用タイヤ、トラック・バス用タイヤ、航空機用タイヤ、乗用車用タイヤとして用いることができ、特に、乗用車用タイヤ又はトラック・バス用タイヤであることが好ましい。トレッド部の材料として用いているタイヤ用加硫ゴム組成物は、氷上性能及び耐摩耗性に優れており、乗用車用タイヤやトラック・バス用タイヤとして使用した際のメリットが大きいためである。
なお、上述した本発明のタイヤ用加硫ゴム組成物をトレッド部に用いる際は、トレッドの構造として、例えば以下の公報に記載の構造を採用することができる。
特開2016-203842号公報、特開2009-196527号公報、特開2000-225815号公報、特開2000-264019号公報、特開2003-211921号公報、国際公開第2014/196409号
なお、本発明のタイヤは、上述した本発明のタイヤ用加硫ゴム組成物をタイヤのトレッド部に用いること以外は、特に制限はなく、常法に従って製造することができる。なお、タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1、2、比較例1)
表1に示す配合に従って、常法で配合・混練することで、ゴム組成物のサンプルを調製した。
なお、得られた各サンプルについては、加硫処理を施し、タイヤ用加硫ゴム組成物のサンプルを作製した後、以下の評価(1)~(3)を実施した。
<評価>
(1)加硫ゴムの発泡率(空隙率)
タイヤ用加硫ゴム組成物の各サンプルについて、任意の箇所で切断した後、切断したタイヤ用加硫ゴム組成物の各サンプルについて、密電子天秤を用いて重量を測定し、理論重量との差異((理論比重/測定比重-1)×100)を発泡率(空隙率)(%)として算出した。得られた発泡率は、表1に示す。
(2)加硫ゴムの氷上性能
タイヤ用加硫ゴム組成物の各サンプルについて、直径50mm、厚さ10mmの試験片に成形した後、固定した氷上に押しつけて回転させるときに発生する摩擦力をロードセルで検出し、動摩擦係数μを算出した。なお、測定温度は-2℃、面圧は12kgf/cm、サンプル回転周速度は20cm/secとした。
評価は、表1では比較例1の動摩擦係数μを100としたときの指数として表示した。指数値が大きい程、動摩擦係数μが大きく、氷上性能が良好であることを示す。
(3)加硫ゴムの耐摩耗性
タイヤ用加硫ゴム組成物の各サンプルについて、JIS K 7218:1986の滑り摩耗試験のB法に準じて、摩耗量を測定した。なお、測定温度は室温(23℃)、荷重は16Nとした。
評価は、表1では比較例1の加硫ゴムの摩耗量を100としたときの指数として表示した。指数値が小さい程、摩耗量が少なく、耐摩耗性が良好であることを示す。
Figure 2023183856000017
*1 変性スチレンブタジエンゴム: N,N-ビス-(トリメチルシリル)-アミノプロピルメチルジエトキシシラン変性SBR
*2 ブタジエンゴム: 宇部興産株式会社製、「UBEPOL BR150L」
*3 カーボンブラック: SAF級カーボンブラック
*4 シリカ: 東ソー・シリカ工業株式会社製、商品名「Nipsil AQ」
*5 シランカップリング剤: ビス(3-トリエトキシシリルプロピル)ポリスルフィド、信越化学株式会社製
*6 発泡剤: ジニトロソペンタメチレンテトラミン、永和化成工業株式会社製、「セルラー Z-K」
*7 短繊維: 以下の方法で作製した親水性短繊維
特開2012-219245号公報に開示の製造例3に従い、二軸押出機を2台用い、ホッパーにポリエチレン[日本ポリエチレン製、ノバテックHJ360(MFR5.5、融点132℃)]40質量部と、エチレン-ビニルアルコール共重合体[クラレ製、エバールF104B(MFR4.4、融点183℃)]40質量部とを投入し、ダイ出口から各々同時に押し出して、常法に従って得られた繊維を長さ2mmにカットして、エチレン-ビニルアルコール共重合体からなるコアの表面にポリエチレンからなる被覆層が形成された親水性短繊維を作製した。
*8 液状ポリマー: 分子量7000、ビニル量49%の液状ポリブタジエン
*9 脂肪酸アマイド:日油株式会社製、「アルフローAD-281F」
なお、表1では、記載の配合成分以外に、樹脂、オイル、ステアリン酸、亜鉛華を各実施例・比較例で同量含む。
表1の結果から、各実施例のタイヤ用加硫ゴム組成物は、いずれも、比較例1に比べて耐摩耗性及び氷上性能が高いレベルで両立できていることがわかる。
本発明によれば、優れた氷上性能を有するタイヤ用加硫ゴム組成物を提供することができる。また、本発明によれば、氷上性能に優れたタイヤを提供することもできる。
10 タイヤ用加硫ゴム組成物
20 空隙

Claims (12)

  1. ゴム成分と、脂肪酸アマイドと、を含むゴム組成物を、加硫してなり、
    複数の空隙を有することを特徴とする、タイヤ用加硫ゴム組成物。
  2. 前記ゴム組成物が、前記ゴム成分100質量部に対して前記脂肪酸アマイドを0.1~10質量部含むことを特徴とする、請求項1に記載のタイヤ用加硫ゴム組成物。
  3. 前記脂肪酸アマイドが、脂肪酸ビスアマイドであることを特徴とする、請求項1又は2に記載のタイヤ用加硫ゴム組成物。
  4. 前記脂肪酸ビスアマイドが、エチレンビス脂肪酸アマイドであることを特徴とする、請求項3に記載のタイヤ用加硫ゴム組成物。
  5. 前記ゴム組成物が、ゲル浸透クロマトグラフィーで測定したポリスチレン換算重量平均分子量が5,000以上40,000未満である液状ポリマーをさらに含むことを特徴とする、請求項1又は2に記載のタイヤ用加硫ゴム組成物。
  6. 前記ゴム成分が、天然ゴムを含有することを特徴とする、請求項1又は2に記載のタイヤ用加硫ゴム組成物。
  7. 前記ゴム成分が、官能基を有する変性共役ジエン系重合体を含有することを特徴とする、請求項1又は2に記載のタイヤ用加硫ゴム組成物。
  8. 前記ゴム組成物が、さらに空隙導入剤を含むことを特徴とする、請求項1又は2に記載のタイヤ用加硫ゴム組成物。
  9. 前記空隙導入剤が、発泡剤、硫酸金属塩、熱膨張性マイクロカプセル、多孔質セルロース及びリグニン誘導体からなる群から選択される少なくとも一種であることを特徴とする、請求項8に記載のタイヤ用加硫ゴム組成物。
  10. 前記ゴム組成物が、複合繊維をさらに含むことを特徴とする、請求項1又は2に記載のタイヤ用加硫ゴム組成物。
  11. 前記タイヤ用加硫ゴム組成物の空隙率が、5~45%であることを特徴とする、請求項1又は2に記載のタイヤ用加硫ゴム組成物。
  12. 請求項1又は2に記載のタイヤ用加硫ゴム組成物を、トレッドに用いたことを特徴とする、タイヤ。
JP2022097630A 2022-06-16 2022-06-16 タイヤ用加硫ゴム組成物及びタイヤ Pending JP2023183856A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022097630A JP2023183856A (ja) 2022-06-16 2022-06-16 タイヤ用加硫ゴム組成物及びタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022097630A JP2023183856A (ja) 2022-06-16 2022-06-16 タイヤ用加硫ゴム組成物及びタイヤ

Publications (1)

Publication Number Publication Date
JP2023183856A true JP2023183856A (ja) 2023-12-28

Family

ID=89333916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022097630A Pending JP2023183856A (ja) 2022-06-16 2022-06-16 タイヤ用加硫ゴム組成物及びタイヤ

Country Status (1)

Country Link
JP (1) JP2023183856A (ja)

Similar Documents

Publication Publication Date Title
JP5571921B2 (ja) スノータイヤトレッド用ゴム組成物及び空気入りスノータイヤ
CN113015629B (zh) 橡胶组合物、硫化橡胶以及轮胎
JP7398387B2 (ja) ゴム組成物、加硫ゴム及びタイヤ
EP3725837A1 (en) Rubber composition, vulcanized rubber and tire
JP2006274051A (ja) ゴム組成物及びそれを用いたスタッドレスタイヤ
JP6097750B2 (ja) タイヤ
CN113939559A (zh) 轮胎
JP6544495B1 (ja) スタッドレスタイヤ用トレッドゴム組成物
JP5259049B2 (ja) ゴム組成物及びそれを用いたスタッドレスタイヤ
JP2020019862A (ja) ゴム組成物、加硫ゴム及び空気入りタイヤ
JP6339586B2 (ja) 熱発泡性ゴム組成物を含むトレッドを有する車両用タイヤ
JP2005023219A (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP2023183856A (ja) タイヤ用加硫ゴム組成物及びタイヤ
WO2023243129A1 (ja) タイヤ用ゴム組成物及びタイヤ
WO2024005029A1 (ja) タイヤ用加硫ゴム組成物及びタイヤ
JP6540923B1 (ja) スタッドレスタイヤ用トレッドゴム組成物
EP4360905A1 (en) Vulcanized rubber composition and tire
EP4349902A1 (en) Rubber composition and tire
WO2022254749A1 (ja) 加硫ゴム組成物及びタイヤ
JP6911285B2 (ja) 空気入りタイヤ
WO2022254750A1 (ja) ゴム組成物及びタイヤ
RU2781874C2 (ru) Резиновая композиция, вулканизированная резина и шина
JP7483587B2 (ja) タイヤ用ゴム組成物、トレッドゴム及び冬用タイヤ
CN117355568A (zh) 橡胶组合物和轮胎
JP7180662B2 (ja) ゴム組成物及びタイヤ