JP2023172142A - チップの製造方法 - Google Patents

チップの製造方法 Download PDF

Info

Publication number
JP2023172142A
JP2023172142A JP2022083750A JP2022083750A JP2023172142A JP 2023172142 A JP2023172142 A JP 2023172142A JP 2022083750 A JP2022083750 A JP 2022083750A JP 2022083750 A JP2022083750 A JP 2022083750A JP 2023172142 A JP2023172142 A JP 2023172142A
Authority
JP
Japan
Prior art keywords
wafer
groove
protective film
plasma etching
dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022083750A
Other languages
English (en)
Inventor
ユウ チョウ
Yu Zhao
晋 田畑
Shin Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2022083750A priority Critical patent/JP2023172142A/ja
Priority to US18/321,411 priority patent/US20230377940A1/en
Publication of JP2023172142A publication Critical patent/JP2023172142A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer

Abstract

【課題】コストを削減して加工効率を向上させることが可能なチップの製造方法を提供する。【解決手段】格子状に設定された複数の分割予定ラインによって複数の領域に区画されたウェーハを分割してチップを製造するチップの製造方法であって、第1の面及び第2の面を含むウェーハを保持テーブルで保持し、ウェーハの第1の面側に深さがウェーハの厚さ未満の溝を分割予定ラインに沿って形成する溝形成ステップと、溝形成ステップの後、ウェーハの第1の面と溝の側面とを第1の保護膜で被覆する第1の保護膜被覆ステップと、第1の保護膜被覆ステップの後、ウェーハを分割予定ラインに沿って分割する分割ステップと、を含み、分割ステップでは、ウェーハに対して第1の面側からプラズマエッチングを施す。【選択図】図3

Description

本発明は、ウェーハを分割してチップを製造するチップの製造方法に関する。
デバイスチップの製造プロセスでは、格子状に配列された複数の分割予定ライン(ストリート)によって区画された複数の領域にそれぞれデバイスが形成されたウェーハが用いられる。このウェーハを分割予定ラインに沿って分割することにより、デバイスをそれぞれ備える複数のデバイスチップが得られる。デバイスチップは、携帯電話、パーソナルコンピュータ等の様々な電子機器に組み込まれる。
ウェーハの分割には、環状の切削ブレードで被加工物を切削する切削装置や、被加工物にレーザー加工を施すレーザー加工装置等が用いられる。また、近年では、ウェーハにプラズマエッチングを施すことによってウェーハを分割する、プラズマダイシングと称されるプロセスの開発も進められている。プラズマダイシングでは、まず、分割予定ラインが露出するようにパターニングされたマスクがウェーハに形成される。その後、マスクを介してウェーハにプラズマ状態のエッチングガスが供給される。これにより、分割予定ラインに沿ってプラズマエッチングが施され、ウェーハが分割される。
しかしながら、マスクの形成には手間と時間がかかり、工程数の増加やコスト増大の要因となる。そこで、ウェーハの裏面側に所定の深さの溝を分割予定ラインに沿って形成した後、ウェーハの裏面側にプラズマエッチングを施してウェーハの全体を薄化することにより、溝をウェーハの表面に到達させてウェーハを分割する手法が提案されている(特許文献1参照)。この手法を用いると、パターニングされたマスクを用いることなくウェーハを分割することが可能になるため、プラズマダイシングの工程数及びコストが削減される。
特開2019-79884号公報
上記のように、分割予定ラインに沿って溝が形成されたウェーハにプラズマエッチングを施すことにより、マスクを形成することなくウェーハを分割できる。しかしながら、この手法を用いる場合には、ウェーハの溝が形成された面側の全体にプラズマエッチングを施してウェーハを薄化する必要がある。その結果、プラズマエッチングに大量のエッチングガスが消費され、コストが増大する。また、プラズマエッチングの処理時間が長くなり、ウェーハの加工効率が低下する。
本発明は、かかる問題に鑑みてなされたものであり、コストを削減して加工効率を向上させることが可能なチップの製造方法の提供を目的とする。
本発明の一態様によれば、格子状に設定された複数の分割予定ラインによって複数の領域に区画されたウェーハを分割してチップを製造するチップの製造方法であって、第1の面及び第2の面を含む該ウェーハを保持テーブルで保持し、該ウェーハの該第1の面側に深さが該ウェーハの厚さ未満の溝を該分割予定ラインに沿って形成する溝形成ステップと、該溝形成ステップの後、該ウェーハの該第1の面と該溝の側面とを第1の保護膜で被覆する第1の保護膜被覆ステップと、該第1の保護膜被覆ステップの後、該ウェーハを該分割予定ラインに沿って分割する分割ステップと、を含み、該分割ステップでは、該ウェーハに対して該第1の面側からプラズマエッチングを施すチップの製造方法が提供される。
好ましくは、該分割ステップは、該溝の該側面及び底面を、該第1の保護膜よりも薄い第2の保護膜で被覆する第2の保護膜被覆ステップと、該ウェーハに対して該第1の面側から異方性のプラズマエッチングを施すことにより、該溝の該底面を露出させる異方性プラズマエッチングステップと、該ウェーハに対して該第1の面側から等方性のプラズマエッチングを施すことにより、該溝の該底面をエッチングする等方性プラズマエッチングステップと、を含む。
なお、該チップの製造方法は、該第1の保護膜被覆ステップの後、且つ、該分割ステップの前に、該ウェーハに対して該第1の面側からプラズマエッチングを施すことにより、該第1の保護膜のうち該溝の底面を被覆している部分を除去して該溝の該底面を露出させる保護膜除去ステップを更に含んでいてもよい。また、該チップの製造方法は、該溝形成ステップの後、且つ、該第1の保護膜被覆ステップの前に、該溝が露出した状態で該ウェーハに対して該第1の面側からプラズマエッチングを施すプラズマエッチングステップを更に含んでいてもよい。
また、該溝形成ステップでは、該溝の幅Aと該溝の深さBとのアスペクト比B/Aが1以上となるように該溝を形成してもよい。
該分割ステップでは、該溝が該ウェーハの該第2の面に到達するまで該ウェーハにプラズマエッチングを施すことにより、該ウェーハを該分割予定ラインに沿って分割してもよい。また、該分割ステップでは、該ウェーハにプラズマエッチングを施した後、該ウェーハの該第2の面側を研削して該溝を該ウェーハの該第2の面で露出させることにより、該ウェーハを該分割予定ラインに沿って分割してもよい。
該溝形成ステップでは、環状の切削ブレードを該ウェーハに切り込ませることによって該溝を形成してもよい。また、該溝形成ステップでは、該ウェーハに対して吸収性を有するレーザービームを該ウェーハに照射することによって該溝を形成してもよい。
本発明の一態様に係るチップの製造方法では、分割予定ラインに沿って溝が形成されたウェーハの第1の面側に第1の保護膜を形成した後、ウェーハの第1の面側にプラズマエッチングを施す。これにより、第1の保護膜がマスクとして機能し、ウェーハが分割予定ラインに沿って選択的にエッチングされる。
上記のチップの製造方法を用いると、ウェーハの第1の面側が第1の保護膜によって被覆された状態で、溝の内部にプラズマエッチングが施される。これにより、溝にエッチングガスが効率的に供給されるため、エッチングガスの消費量が抑えられ、コストが削減される。また、エッチング時間が短縮され、ウェーハの加工効率が向上する。
図1(A)はウェーハを示す斜視図であり、図1(B)はウェーハの一部を示す断面図である。 保護シートが固定されるウェーハを示す斜視図である。 チップの製造方法を示すフローチャートである。 図4(A)は切削装置によって溝が形成されるウェーハを示す一部断面正面図であり、図4(B)はレーザー加工装置によって溝が形成されるウェーハを示す一部断面正面図である。 プラズマ処理装置を示す一部断面正面図である。 プラズマエッチングステップにおけるウェーハを示す一部断面正面図である。 図7(A)は第1の保護膜被覆ステップにおけるウェーハを示す一部断面正面図であり、図7(B)は溝の側面及び底面が第1の保護膜で被覆されたウェーハの一部を示す断面図であり、図7(C)は溝の側面が第1の保護膜で被覆されたウェーハの一部を示す断面図である。 保護膜除去ステップにおけるウェーハの一部を示す断面図である。 分割ステップの例を示すフローチャートである。 図10(A)は第2の保護膜被覆ステップにおけるウェーハの一部を示す断面図であり、図10(B)は異方性プラズマエッチングステップにおけるウェーハの一部を示す断面図であり、図10(C)は等方性プラズマエッチングステップにおけるウェーハの一部を示す断面図である。 分割ステップ後のウェーハの一部を示す断面図である。 分割ステップの他の例を示すフローチャートである。 研削ステップにおけるウェーハを示す正面図である。
以下、添付図面を参照して本発明の一態様に係る実施形態を説明する。まず、本実施形態に係るチップの製造方法に用いることが可能なウェーハの構成例について説明する。図1(A)はウェーハ11を示す斜視図であり、図1(B)はウェーハ11の一部を示す断面図である。
例えばウェーハ11は、単結晶シリコン等の半導体材料でなる円盤状のウェーハであり、互いに概ね平行な表面11a及び裏面11bを含む。ウェーハ11は、互いに交差するように格子状に配列、設定された複数の分割予定ライン(ストリート)13によって、複数の矩形状の領域に区画されている。分割予定ライン13によって区画された複数の領域の表面11a側にはそれぞれ、IC(Integrated Circuit)、LSI(Large Scale Integration)、LED(Light Emitting Diode)、MEMS(Micro Electro Mechanical Systems)デバイス等のデバイス15が形成されている。
ただし、ウェーハ11の材質、形状、構造、大きさ等に制限はない。例えばウェーハ11は、シリコン以外の半導体(GaAs、InP、GaN、SiC等)、サファイア、ガラス、セラミックス、樹脂、金属等でなるウェーハ(基板)であってもよい。また、デバイス15の種類、数、形状、構造、大きさ、配置等にも制限はない。
ウェーハ11を分割予定ライン13に沿って分割することにより、デバイス15をそれぞれ備える複数のチップ(デバイスチップ)が製造される。例えばウェーハ11は、切削装置、レーザー加工装置、プラズマ処理装置等の加工装置を用いて加工され、複数のチップに分割される。
加工装置でウェーハ11を加工する際には、ウェーハ11に保護シートが固定されてもよい。図2は、保護シート17が固定されるウェーハ11を示す斜視図である。
例えば保護シート17は、ウェーハ11と概ね同径に形成された円形のテープであり、フィルム状の基材と、基材上に設けられた粘着剤(糊層)とを含む。基材は、ポリオレフィン、ポリ塩化ビニル、ポリエチレンテレフタラート等の樹脂でなる。また、粘着剤は、エポキシ系、アクリル系、又はゴム系の接着剤や、紫外線硬化型樹脂等でなる。
保護シート17は、ウェーハ11の表面11a側に貼付される。これにより、ウェーハ11の表面11a側の全体が保護シート17によって覆われ、複数のデバイス15が保護される。
なお、ウェーハ11の取り扱い(搬送、保持等)の便宜のため、ウェーハ11は環状のフレーム(不図示)によって支持されてもよい。この場合には、SUS(ステンレス鋼)等の金属でなる環状のフレームと、ウェーハ11よりも径が大きい円形の保護シート17とが用いられる。
環状のフレームの中央部には、フレームを厚さ方向に貫通する円形の開口部が設けられている。そして、ウェーハ11がフレームの開口部の内側に配置された状態で、保護シート17の中央部がウェーハ11の表面11a側に貼付され、保護シート17の外周部がフレームに貼付される。これにより、ウェーハ11が保護シート17を介してフレームによって支持される。
また、保護シート17は、ウェーハ11に熱圧着可能なシート(熱圧着シート)であってもよい。熱圧着シートは、ウェーハ11よりも融点が低い熱可塑性樹脂でなり、粘着剤(糊層)を含まない。例えば熱圧着シートとして、オレフィン系シート、スチレン系シート、ポリエステル系シート等が用いられる。オレフィン系シートの例としては、ポリエチレンシート、ポリプロピレンシート等が挙げられる。スチレン系シートの例としては、ポリスチレンシート等が挙げられる。ポリエステル系シートの例としては、ポリエチレンテレフタレートシート、ポリエチレンナフタレートシート等が挙げられる。
熱圧着シートは、ウェーハ11の表面11a側に配置される。そして、例えば内部に熱源を備えるローラ(ヒートローラ)が、所定の温度に加熱された状態で熱圧着シートに押し当てられる。これにより、熱圧着シートが加熱されつつウェーハ11の表面11a側に押し付けられる。その結果、熱圧着シートが軟化してウェーハ11の表面11a側の形状に沿って変形し、ウェーハ11の表面11a側に密着する。このようにして、熱圧着シートがウェーハ11の表面11a側に熱圧着され、固定される。
熱圧着シートは、熱圧着シートの温度が熱圧着シートの軟化点以上、且つ、熱圧着シートの融点以下となるように加熱される。ただし、熱圧着シートは明確な軟化点を有しないことがある。この場合には、熱圧着シートは、熱圧着シートの温度が熱圧着シートの融点よりも所定の温度(例えば20℃)低い温度以上、且つ、熱圧着シートの融点以下となるように加熱される。
例えば、熱圧着シートがポリエチレンシートである場合には加熱温度は120℃以上140℃以下に設定でき、熱圧着シートがポリプロピレンシートである場合には加熱温度は160℃以上180℃以下に設定できる。また、熱圧着シートがポリスチレンシートである場合には、加熱温度は220℃以上240℃以下に設定できる。さらに、熱圧着シートがポリエチレンテレフタレートシートである場合には加熱温度は250℃以上270℃以下に設定でき、熱圧着シートがポリエチレンナフタレートシートである場合には加熱温度は160℃以上180℃以下に設定できる。
次に、ウェーハ11を分割してチップを製造する方法の具体例について説明する。図3は、チップの製造方法を示すフローチャートである。
ウェーハ11を分割する際は、まず、ウェーハ11の第1の面側に溝を分割予定ライン13に沿って形成する(溝形成ステップS1)。溝形成ステップS1におけるウェーハ11を、図4(A)及び図4(B)に示す。例えば溝形成ステップS1では、切削装置2又はレーザー加工装置14を用いてウェーハ11の第1の面側に溝11cを形成する。
なお、以下では、ウェーハ11の溝11cが形成される面を第1の面と称し、第1の面と反対側の面を第2の面と称することがある。具体的には、ウェーハ11の裏面11b側に溝11cが形成される場合は、裏面11bが第1の面に相当し、表面11aが第2の面に相当する。一方、ウェーハ11の表面11a側に溝11cが形成される場合は、表面11aが第1の面に相当し、裏面11bが第2の面に相当する。
図4(A)は、切削装置2によって溝11cが形成されるウェーハ11を示す一部断面正面図である。なお、図4(A)において、X軸方向(加工送り方向、第1水平方向)とY軸方向(割り出し送り方向、第2水平方向)とは、互いに垂直な方向である。また、Z軸方向(鉛直方向、高さ方向、上下方向)は、X軸方向及びY軸方向と垂直な方向である。
切削装置2は、ウェーハ11を保持する保持テーブル(チャックテーブル)4を備える。保持テーブル4の上面は、水平面(X平面)と概ね平行な平坦面であり、ウェーハ11を保持する円形の保持面4aを構成している。保持面4aは、保持テーブル4の内部に形成された流路(不図示)、バルブ(不図示)等を介して、エジェクタ等の吸引源(不図示)に接続されている。
保持テーブル4には、ボールねじ式の移動機構(不図示)と、モータ等の回転駆動源(不図示)とが連結されている。移動機構は、保持テーブル4をX軸方向に沿って移動させる。また、回転駆動源は、保持テーブル4をZ軸方向と概ね平行な回転軸の周りで回転させる。
また、切削装置2は、ウェーハ11を切削する切削ユニット6を備える。切削ユニット6は、保持テーブル4の上方に配置されており、Y軸方向に沿って配置された円柱状のスピンドル8を備える。スピンドル8の先端部(一端部)には、環状の切削ブレード10が装着される。また、スピンドル8の基端部(他端部)には、モータ等の回転駆動源(不図示)が連結されている。切削ブレード10は、回転駆動源からスピンドル8を介して伝達される動力によって、Y軸方向と概ね平行な回転軸の周りを回転する。
切削ブレード10としては、例えばハブタイプの切削ブレード(ハブブレード)が用いられる。ハブブレードは、金属等でなる環状のハブ基台と、ハブ基台の外周縁に沿って形成された環状の切刃とを備える。ハブブレードの切刃は、ダイヤモンド等でなる砥粒と、砥粒を固定するニッケルめっき層等の結合材とを含む電鋳砥石によって構成される。ただし、切削ブレード10としてワッシャータイプの切削ブレード(ワッシャーブレード)を用いることもできる。ワッシャーブレードは、ダイヤモンド等でなる砥粒と、金属、セラミックス、樹脂等でなり砥粒を固定する結合材とを含む環状の切刃のみによって構成される。
切削ユニット6には、切削ユニット6をY軸方向及びZ軸方向に沿って移動させるボールねじ式の移動機構(不図示)が連結されている。移動機構によって、切削ブレード10の割り出し送り方向における位置や、切削ブレード10のウェーハ11への切り込み深さ等が調節される。
また、切削装置2は、撮像ユニット12を備える。撮像ユニット12は、CCD(Charged-Coupled Devices)センサ、CMOS(Complementary Metal-Oxide-Semiconductor)センサ等のイメージセンサを備え、保持テーブル4によって保持されたウェーハ11を撮像する。
例えば撮像ユニット12は、赤外線を受光して電気信号に変換する撮像素子を備える赤外線カメラである。そして、撮像ユニット12は、ウェーハ11を介して、ウェーハ11の表面11a側に形成されているパターン(デバイス15等)を撮像する。撮像ユニット12によって取得されたパターン画像に基づいて、分割予定ライン13の位置が特定され、ウェーハ11と切削ブレード10との位置合わせが行われる。
切削装置2でウェーハ11を切削する際には、まず、ウェーハ11が保持テーブル4で保持される。例えば、ウェーハ11の裏面11b側を切削する場合には、裏面11b側が上方を向き表面11a側(保護シート17側)が保持面4aと対面するように、ウェーハ11が保持テーブル4上に配置される。この状態で、保持面4aに吸引源の吸引力(負圧)を作用させると、ウェーハ11が保護シート17を介して保持テーブル4によって吸引保持される。
次に、保持テーブル4を回転させ、所定の分割予定ライン13の長さ方向をX軸方向に合わせる。また、切削ブレード10が所定の分割予定ライン13の延長線と重なるように、切削ユニット6のY軸方向における位置を調整する。さらに、切削ブレード10の下端が裏面11bよりも下方、且つ、表面11aよりも上方に配置されるように、切削ユニット6の高さ(Z軸方向における位置)を調整する。
そして、切削ブレード10を回転させつつ、保持テーブル4をX軸方向に沿って移動させる。これにより、保持テーブル4と切削ブレード10とがX軸方向に沿って相対的に移動し、切削ブレード10が分割予定ライン13に沿ってウェーハ11の裏面11b側に切り込む。その結果、ウェーハ11の裏面11b側に、深さがウェーハ11の厚さ未満の溝11c(切削溝)が分割予定ライン13に沿って形成される。その後、同様の手順を繰り返すことにより、全ての分割予定ライン13に沿ってウェーハ11が切削され、複数の溝11cが格子状に形成される。
図4(B)は、レーザー加工装置14によって溝11cが形成されるウェーハ11を示す一部断面正面図である。溝形成ステップS1では、切削装置2の代わりにレーザー加工装置14を用いてウェーハ11に溝11cを形成することもできる。なお、図4(B)において、X軸方向(加工送り方向、第1水平方向)とY軸方向(割り出し送り方向、第2水平方向)とは、互いに垂直な方向である。また、Z軸方向(鉛直方向、高さ方向、上下方向)は、X軸方向及びY軸方向と垂直な方向である。
レーザー加工装置14は、ウェーハ11を保持する保持テーブル(チャックテーブル)16を備える。保持テーブル16は、ウェーハ11を保持する保持面16aを備える。なお、保持テーブル16の構成及び機能は、切削装置2の保持テーブル4(図4(A)参照)と同様である。
保持テーブル16には、ボールねじ式の移動機構(不図示)と、モータ等の回転駆動源(不図示)とが連結されている。移動機構は、保持テーブル16をX軸方向及びY軸方向に沿って移動させる。また、回転駆動源は、保持テーブル16をZ軸方向と概ね平行な回転軸の周りで回転させる。
また、レーザー加工装置14は、レーザービームを照射するレーザー照射ユニット18を備える。レーザー照射ユニット18は、YAGレーザー、YVOレーザー、YLFレーザー等のレーザー発振器(不図示)と、保持テーブル4の上方に配置されたレーザー加工ヘッド20とを備える。レーザー加工ヘッド20には、レーザー発振器から出射したパルス発振のレーザービームをウェーハ11へと導く光学系(不図示)が収容されている。光学系は、集光レンズ、ミラー等の光学素子を含んで構成される。レーザー照射ユニット18からウェーハ11にレーザービーム22が照射されることにより、ウェーハ11にレーザー加工が施される。
また、レーザー加工装置14は、撮像ユニット24を備える。撮像ユニット24の構成及び機能は、切削装置2の撮像ユニット12(図4(A)参照)と同様である。撮像ユニット24によって取得されたパターン画像に基づいて、分割予定ライン13の位置が特定され、ウェーハ11とレーザービーム22との位置合わせが行われる。
レーザー加工装置14でウェーハ11を加工する際には、まず、ウェーハ11が保持テーブル16で保持される。例えば、ウェーハ11の裏面11b側にレーザー加工を施す場合には、裏面11b側が上方を向き表面11a側(保護シート17側)が保持面16aと対面するように、ウェーハ11が保持テーブル16上に配置される。この状態で、保持面16aに吸引源の吸引力(負圧)を作用させると、ウェーハ11が保護シート17を介して保持テーブル16によって吸引保持される。
次に、保持テーブル16を回転させ、所定の分割予定ライン13の長さ方向をX軸方向に合わせる。また、レーザービーム22が照射される領域が所定の分割予定ライン13の延長線と重なるように、保持テーブル16のY軸方向における位置を調節する。さらに、レーザービーム22の集光点がウェーハ11の表面11a又は内部と同じ高さ(Z軸方向における位置)に位置付けられるように、レーザー加工ヘッド20の位置や光学系に含まれる光学素子の配置を調節する。
そして、レーザー加工ヘッド20からレーザービーム22を照射しつつ、保持テーブル16をX軸方向に沿って移動させる。これにより、保持テーブル16とレーザービーム22とがX軸方向に沿って相対的に移動し、レーザービーム22が分割予定ライン13に沿ってウェーハ11の裏面11b側に照射される。
例えば、レーザービーム22の照射条件は、ウェーハ11にアブレーション加工が施されるように設定される。具体的には、レーザービーム22の波長は、少なくともレーザービーム22の一部がウェーハ11に吸収されるように設定される。すなわち、レーザービーム22は、ウェーハ11に対して吸収性を有するレーザービームである。また、レーザービーム22の他の照射条件も、ウェーハ11にアブレーション加工が適切に施されるように適宜設定される。例えば、ウェーハ11が単結晶シリコンウェーハである場合には、レーザービーム22の照射条件を以下のように設定できる。
波長 :355nm
平均出力 :2W
繰り返し周波数:200kHz
加工送り速度 :400mm/s
ウェーハ11にレーザービーム22が分割予定ライン13に沿って照射されると、ウェーハ11のうちレーザービーム22が照射された領域がアブレーションによって除去される。その結果、ウェーハ11の裏面11b側に、深さがウェーハ11の厚さ未満の溝11c(レーザー加工溝)が分割予定ライン13に沿って形成される。その後、同様の手順を繰り返すことにより、全ての分割予定ライン13に沿ってウェーハ11が加工され、複数の溝11cが格子状に形成される。なお、1回のレーザービーム22の走査によってウェーハ11に所望の深さの溝11cを形成することが難しいには、各分割予定ライン13に沿ってレーザービーム22を複数回ずつ照射してもよい。
上記のようにウェーハ11を加工装置で加工することにより、ウェーハ11の裏面11b側に格子状の溝11cが分割予定ライン13に沿って形成される。なお、溝11cの寸法は、後述の分割ステップS5においてウェーハ11が適切に分割されるように適宜設定される。
具体的には、溝11cの幅は、100μm以下、好ましくは50μm以下、より好ましくは20μm以下に設定できる。例えば、切削装置2(図4(A)参照)を用いて幅が15μm以上20μm以下の溝11cを形成してもよいし、レーザー加工装置14(図4(B)参照)を用いて幅が10μm以下の溝11cを形成してもよい。また、例えば溝形成ステップS1では、溝11cの幅Aと溝11cの深さBとのアスペクト比B/Aが1以上、好ましくは2以上となるように、溝11cが形成される。
次に、溝11cが露出した状態でウェーハ11に対して第1の面側からプラズマエッチングを施す(プラズマエッチングステップS2)。プラズマエッチングステップS2では、例えばプラズマ処理装置が用いられる。
図5は、プラズマ処理装置30を示す一部断面正面図である。プラズマ処理装置30は、ウェーハ11が収容されるチャンバー32を備える。チャンバー32は、金属等の導電性材料でなり、接地されている。チャンバー32の内部は、ウェーハ11に対するプラズマ処理が実施される処理空間34に相当する。
チャンバー32の側壁には、ウェーハ11の搬送のための開口32aが設けられている。開口32aの外側には、開口32aを開閉するゲート(開閉扉)36が設けられている。ゲート36にはエアシリンダ等の移動機構(不図示)が連結されており、移動機構はゲート36をチャンバー32の側壁に沿って昇降させる。
ゲート36を下降させて開口32aを露出させることにより、開口32aを介してウェーハ11を処理空間34に搬入し、又は、開口32aを介してウェーハ11を処理空間34から搬出することが可能となる。また、ゲート36を上昇させて開口32aを閉塞することにより、処理空間34が密閉される。
チャンバー32の底壁には、チャンバー32の内部と外部とを接続する開口32bが設けられている。開口32bは、配管38を介して真空ポンプ等の排気装置40に接続されている。処理空間34が密閉された状態で排気装置40を作動させると、処理空間34が排気、減圧される。
処理空間34には、ウェーハ11を保持する保持テーブル(チャックテーブル)42が設けられている。保持テーブル42の上面は、水平面と概ね平行な平坦面であり、ウェーハ11を保持する保持面42aを構成している。
保持テーブル42としては、ウェーハ11を電気的な力で保持する静電チャックを用いることができる。例えば、保持テーブル42はセラミックス等の誘電体でなり、保持テーブル42の内部には円盤状の電極44が設けられている。電極44は、保持面42aと概ね平行に配置され、整合器46を介して高周波電源48に接続されている。なお、保持テーブル42の内部には、水等の冷却液が流れる冷却路(不図示)が設けられていてもよい。冷却路に冷却液を流すことにより、保持テーブル42が冷却される。
保持テーブル42の上方には、ガス噴出ヘッド50が設けられている。ガス噴出ヘッド50は、金属等の導電性材料でなり、チャンバー32の上壁に設けられた開口32cに挿入されている。なお、チャンバー32とガス噴出ヘッド50との間には、絶縁性材料でなる環状の軸受け52が設けられている。軸受け52は、ガス噴出ヘッド50を囲むように設けられ、チャンバー32とガス噴出ヘッド50とを絶縁している。
ガス噴出ヘッド50は、整合器54を介して高周波電源56に接続されている。また、ガス噴出ヘッド50には、ガス噴出ヘッド50を鉛直方向に沿って昇降させる昇降機構(不図示)が連結されている。昇降機構でガス噴出ヘッド50を昇降させることにより、保持テーブル42とガス噴出ヘッド50との間隔が調節される。
ガス噴出ヘッド50の内部には、プラズマ処理用のガスが供給されるガス拡散空間50aが設けられている。また、ガス噴出ヘッド50の下面側には、チャンバー32の処理空間34とガス拡散空間50aとを連結させる複数のガス供給路50bが設けられている。さらに、ガス噴出ヘッド50の上面側には、一対のガス供給路50c,50dが設けられている。ガス供給路50cは配管58aを介してガス供給源60aに接続され、ガス供給路50dは配管58bを介してガス供給源60bに接続されている。
ガス供給源60aは、配管58a及びガス供給路50cを介してガス拡散空間50aにプラズマ処理用のガスを供給する。同様に、ガス供給源60bは、配管58b及びガス供給路50dを介してガス拡散空間50aにプラズマ処理用のガスを供給する。これにより、2種類のガスがガス拡散空間50aにおいて混合される。なお、図5には2つのガス供給源60a,60bからガス噴出ヘッド50にガスが供給される形態を図示しているが、ガス噴出ヘッド50に接続されるガス供給源の数は1個であってもよいし、3個以上であってもよい。
プラズマ処理装置30を用いてウェーハ11にプラズマ処理を施す際には、まず、ゲート36が下降し、開口32aが露出する。そして、搬送機構(不図示)によってウェーハ11が開口32aを介して処理空間34に搬入され、保持テーブル42の保持面42a上に配置される。なお、ウェーハ11の搬入時には、ガス噴出ヘッド50を上昇させ、保持テーブル42とガス噴出ヘッド50との間隔を広げておくことが好ましい。
次に、ゲート36が上昇して開口32aが閉塞され、処理空間34が密閉される。そして、高周波電源48によって電極44に所定の電圧が印加される。これにより、保持テーブル42の保持面42a側で誘電分極が生じ、保持面42aとウェーハ11との間に静電吸着力が作用する。その結果、ウェーハ11が保持面42aで吸着保持される。
また、保持テーブル42とガス噴出ヘッド50とがプラズマ処理に適した間隔で配置されるように、ガス噴出ヘッド50の高さが調節される。さらに、排気装置40が作動し、処理空間34が減圧される。
次に、ガス供給源60a及び/又はガス供給源60bからガス拡散空間50aに、プラズマ処理用のガスが供給される。また、高周波電源56によってガス噴出ヘッド50に高周波電圧が印加される。その結果、ガス拡散空間50a内のガスがプラズマ化し、プラズマ状態のガスが複数のガス供給路50bを介して処理空間34に供給、分散される。これにより、プラズマ状態のガスが保持テーブル42上のウェーハ11に供給され、ウェーハ11に所定のプラズマ処理(成膜処理、エッチング処理等)が施される。
プラズマエッチングステップS2では、プラズマ処理装置30を用いてウェーハ11にプラズマエッチングを施すことにより、ウェーハ11に形成されている溝11cを修復する。図6は、プラズマエッチングステップS2におけるウェーハ11を示す一部断面正面図である。
ウェーハ11は、溝11cが形成されている裏面11b側(第1の面側)が上方に露出し、表面11a側(保護シート17側、第2の面側)が保持面42aに対面するように、保持テーブル42で保持される。また、ガス噴出ヘッド50のガス拡散空間50a(図5参照)にエッチング用のガスが供給されるとともに、ガス噴出ヘッド50に高周波電圧が印加される。これにより、ガス拡散空間50a内のガスがプラズマ化し、イオンやラジカルを含むプラズマ状態のエッチングガスが生成される。
例えば、ウェーハ11が単結晶シリコンウェーハである場合には、ガス供給源60aから供給されたフッ素系ガス(CF、SF等)と、ガス供給源60bから供給された不活性ガス(He、Ar等)とが、ガス拡散空間50aで混合される。そして、混合ガスがプラズマ化され、プラズマ状態のガス62(図6参照)がウェーハ11の裏面11b側に供給される。その結果、ウェーハ11に対して裏面11b側からプラズマエッチングが施される。このとき、ガス62の一部が溝11cに入り込んで溝11cの側面及び底面に作用し、溝11cの側面及び底面にプラズマエッチングが施される。
前述の溝形成ステップS1(図4(A)及び図4(B)参照)を実施すると、溝11cの側面や底面には微細な凹凸等の加工痕が残存することがある。しかしながら、上記のように溝11cの内部にプラズマエッチングを施すことにより、溝11cの側面及び底面に残存する加工痕が除去される。これにより、ウェーハ11の分割によって得られるチップの強度の低下が抑制される。
なお、プラズマエッチングステップS2においてウェーハ11に施されるプラズマエッチングは、等方性のプラズマエッチングであってもよいし、異方性のプラズマエッチングであってもよい。プラズマエッチングの種類は、ウェーハ11の材質、溝11cの形状、寸法等に応じて適宜選択される。
ウェーハ11に等方性のプラズマエッチングを施す場合には、電極44(図5参照)に高周波電圧が印加されていない状態で、ガス噴出ヘッド50(図5参照)に高周波電圧が印加される。これにより、ガス噴出ヘッド50内で生成されたプラズマ状態のガス62が処理空間34に均一に分散され、ウェーハ11が等方的にエッチングされる。
一方、ウェーハ11に異方性のプラズマエッチングを施す場合には、電極44に高周波電圧が印加された状態で、ガス噴出ヘッド50に高周波電圧が印加される。これにより、ガス噴出ヘッド50内で生成されたプラズマ状態のガス62が保持テーブル42に向かって加速し、ウェーハ11がウェーハ11の厚さ方向に沿って異方的にエッチングされる。
なお、溝11cの修復が不要な場合には、プラズマエッチングステップS2を実施しなくてもよい。例えば、溝形成ステップS1において加工痕が形成されにくい加工条件でウェーハ11が加工される場合や、加工痕の残存がチップの品質に影響を与えない場合には、プラズマエッチングステップS2を省略できる。
次に、ウェーハ11の第1の面と溝11cの側面とを第1の保護膜で被覆する(第1の保護膜被覆ステップS3)。図7(A)は、第1の保護膜被覆ステップS3におけるウェーハ11を示す一部断面正面図である。
例えば第1の保護膜被覆ステップS3では、図5に示すプラズマ処理装置30を用いて第1の保護膜19が形成される。具体的には、まず、ウェーハ11が、溝11cが形成されている裏面11b側(第1の面側)が上方に露出し、表面11a側(保護シート17側、第2の面側)が保持面42aに対面するように、保持テーブル42で保持される。
また、ガス噴出ヘッド50のガス拡散空間50aに保護膜形成用のガスが供給されるとともに、ガス噴出ヘッド50に高周波電圧が印加される。これにより、ガス拡散空間50a内のガスがプラズマ化し、イオンやラジカルを含むプラズマ状態の成膜用ガスが生成される。そして、プラズマ状態のガス64(図7(A)参照)がウェーハ11の裏面11b側に供給され、ガス64に含まれるイオンやラジカルがウェーハ11の裏面11b側に堆積する。これにより、ウェーハ11の裏面11b側に第1の保護膜19が形成される。
例えば、ガス供給源60aからCを含むガスが供給され、ガス供給源60bからArガスが供給される。この場合、ガス64に含まれるCFラジカルがウェーハ11の裏面11b側に堆積し、ウェーハ11の裏面11b側にフッ化炭素を含む絶縁性の第1の保護膜19が形成される。
図7(B)は、溝11cの側面及び底面が第1の保護膜19で被覆されたウェーハ11の一部を示す断面図である。第1の保護膜19を形成する際、ガス64に含まれるイオンやラジカルは、ウェーハ11の裏面11b側に堆積されるのみでなく、溝11cに入り込んで溝11cの側面及び底面にも堆積される。その結果、ウェーハ11の裏面11bと溝11cの側面及び底面とが第1の保護膜19によって被覆される。
ただし、ウェーハ11の裏面11bと比較して溝11cの内部にはガス64が供給されにくい。また、溝11cの底面に近い領域ほどガス64が供給されにくい。そのため、溝11cの内部に形成される第1の保護膜19は、ウェーハ11の裏面11b側に形成される第1の保護膜19よりも薄くなる。また、溝11cの底面に形成される第1の保護膜19は、溝11cの側面に形成される第1の保護膜19よりも薄くなる。特に、溝11cの幅Aと溝11cの深さBとのアスペクト比B/Aが1以上(好ましくは2以上)である場合には、溝11cの底面にイオンやラジカルが堆積しにくく、溝11cの底面には薄い第1の保護膜19が形成される。
また、低温下でガス64をウェーハ11に供給すると、ガス64に含まれるイオンやラジカルが主にウェーハ11の裏面11bに堆積され、溝11cに入り込みにくくなることが確認されている。そのため、第1の保護膜19のうち溝11cの内部を被覆する部分をウェーハ11の裏面11bを被覆する部分よりも薄く形成する場合には、第1の保護膜19を低温の環境下で成膜することが好ましい。例えば、第1の保護膜19の成膜が行われる間、チャンバー32の処理空間34(図5参照)の温度が0℃以下、好ましくは-10℃以下、より好ましくは-20℃以下に維持される。又は、第1の保護膜19の成膜が行われる間、ウェーハ11の温度が0℃以下、好ましくは-10℃以下、より好ましくは-20℃以下に維持される。
第1の保護膜被覆ステップS3の後は、ウェーハ11に対して第1の面側からプラズマエッチングを施すことにより、第1の保護膜19のうち溝11cの底面を被覆している部分を除去して、溝11cの底面を露出させてもよい(保護膜除去ステップS4)。図8は、保護膜除去ステップS4におけるウェーハ11の一部を示す断面図である。
保護膜除去ステップS4では、前述のプラズマエッチングステップS2(図6参照)と同様の手順で、ウェーハ11の裏面11b側にプラズマエッチングを施す。具体的には、ガス噴出ヘッド50のガス拡散空間50a(図5参照)内でプラズマ化されたガス66をウェーハ11の裏面11b側に供給して、ウェーハ11に等方性又は異方性のプラズマエッチングを施す。これにより、第1の保護膜19が薄化される。
なお、第1の保護膜19は、溝11cの底面を被覆する部分が最も薄くなるように形成されている。そして、保護膜除去ステップS4では、第1の保護膜19のうち溝11cの底面に堆積している部分が除去されるまでエッチングが継続される。その結果、ウェーハ11の裏面11b及び溝11cの側面が第1の保護膜19で被覆された状態のまま、溝11cの底面が露出する。
ただし、溝11cの幅Aと溝11cの深さBとのアスペクト比B/Aが大きい場合には、第1の保護膜被覆ステップS3(図7(A)参照)においてガス64が溝11cの底面に特に供給されにくい。そのため、第1の保護膜被覆ステップS3が完了した時点で、溝11cの底面に第1の保護膜19が形成されておらず、溝11cの底面が露出していることがある。
図7(C)は、溝11cの側面が第1の保護膜19で被覆されたウェーハ11の一部を示す断面図である。図7(C)に示すように、第1の保護膜被覆ステップS3が完了した時点で既に溝11cの底面が露出している場合には、保護膜除去ステップS4を省略することができる。また、第1の保護膜被覆ステップS3が完了した時点で溝11cの底面が第1の保護膜19で覆われていても、第1の保護膜19のうち溝11cの底面を被覆している部分の厚さが所定の値以下(例えば10nm以下)である場合には、保護膜除去ステップS4を省略してもよい。
次に、ウェーハ11を分割予定ライン13に沿って分割する(分割ステップS5)。分割ステップS5では、ウェーハ11に対して第1の面側からプラズマエッチングを施す。図9は、分割ステップS5の例を示すフローチャートである。
例えば分割ステップS5では、Boschプロセスを用いて溝11cをウェーハ11の第2の面(表面11a)まで伸長させることにより、ウェーハ11を分割する。具体的には、第2の保護膜被覆ステップS11、異方性プラズマエッチングステップS12、等方性プラズマエッチングステップS13を順に実施して溝11cの底面をエッチングする作業を繰り返すことにより、溝11cをウェーハ11の表面11aに到達させる。なお、プラズマエッチングには、図5に示すプラズマ処理装置30を用いることができる。
図10(A)は、第2の保護膜被覆ステップS11におけるウェーハ11の一部を示す断面図である。第2の保護膜被覆ステップS11では、溝11cの側面及び底面を、第1の保護膜19よりも薄い第2の保護膜21で被覆する。
具体的には、まず、ウェーハ11が、裏面11b側(第1の面側)が上方に露出し、表面11a側(第2の面側)が保持面42aに対面するように、保持テーブル42(図5参照)で保持される。また、ガス噴出ヘッド50のガス拡散空間50a(図5参照)に保護膜形成用のガスが供給されるとともに、ガス噴出ヘッド50に高周波電圧が印加される。これにより、プラズマ状態の成膜用ガスがウェーハ11の裏面11b側に供給され、ウェーハ11の裏面11b側と溝11cの内部とに第2の保護膜21が形成される。
第2の保護膜21の具体的な形成方法は、第1の保護膜19(図7(A)参照)の形成方法と同様である。ただし、第2の保護膜21の厚さは、第1の保護膜19の厚さ未満に設定される。例えば、Cを含むガスとArガスとの混合ガスがプラズマ化され、ウェーハ11の裏面11b側に一定時間(例えば6秒以上8秒以下)供給される。これにより、フッ化炭素を含む絶縁性の第2の保護膜21が所定の厚さ(例えば10nm以下)で形成される。その結果、図10(A)に示すように、ウェーハ11の裏面11b及び溝11cの側面(第1の保護膜19の上面及び側面)と、露出している溝11cの底面とが、第1の保護膜19よりも薄い第2の保護膜21によって被覆される。
図10(B)は、異方性プラズマエッチングステップS12におけるウェーハ11の一部を示す断面図である。異方性プラズマエッチングステップS12では、第2の保護膜21が形成されたウェーハ11に対して、第1の面側(裏面11b側)から異方性のプラズマエッチングを施すことにより、溝11cの底面を露出させる。
具体的には、ガス噴出ヘッド50のガス拡散空間50a(図5参照)にエッチング用のガスが供給される。例えば、ウェーハ11が単結晶シリコンウェーハである場合には、ガス供給源60aからフッ素系ガス(CF、SF等)が供給され、ガス供給源60bから不活性ガス(He、Ar等)が供給される。
そして、電極44(図5参照)とガス噴出ヘッド50とに、それぞれ高周波電圧が印加される。これにより、ガス拡散空間50a内のガスがプラズマ化されるとともに保持テーブル42に向かって加速され、ウェーハ11に異方性のプラズマエッチングが施される。異方性のプラズマエッチングを一定時間(例えば3秒程度)継続すると、第2の保護膜21のうち溝11cの側面(第1の保護膜19の側面)を覆う部分が残存したまま、第2の保護膜21のうち溝11cの底面を覆う部分が除去され、溝11cの底面が露出する。
図10(C)は、等方性プラズマエッチングステップS13におけるウェーハ11の一部を示す断面図である。等方性プラズマエッチングステップS13では、異方性のプラズマエッチングが施されたウェーハ11に対して、第1の面側(裏面11b側)から等方性のプラズマエッチングを施すことにより、溝11cの底面をエッチングする。
具体的には、ガス噴出ヘッド50のガス拡散空間50a(図5参照)にエッチング用のガスが供給される。エッチング用のガスの例は、異方性プラズマエッチングステップS12と同様である。そして、ガス噴出ヘッド50に高周波電圧が印加される。これにより、ガス拡散空間50aに供給されたガスがプラズマ化され、プラズマ状態のガスがウェーハ11の裏面11b側に一定時間(例えば5秒以上7秒以下)供給される。
なお、電極44(図5参照)には高周波電圧が印加されない。そのため、ウェーハ11には等方性のプラズマエッチングが施される。その結果、溝11cの底面及びその近傍が除去され、溝11cがウェーハ11の表面11a側に向かって伸長される。また、溝11cの側面(第1の保護膜19の側面)を被覆している第2の保護膜21の一部又は全体が除去される。
その後、上記の第2の保護膜被覆ステップS11、異方性プラズマエッチングステップS12、及び等方性プラズマエッチングステップS13が、溝11cがウェーハ11の表面11aに到達するまで繰り返される(図9参照)。これにより、ウェーハ11が分割予定ライン13に沿って分割される。
ここで、仮に分割ステップS5においてウェーハ11の裏面11bが露出していると、ウェーハ11にプラズマエッチングを施す際、プラズマ状態のガスに含まれるイオンやラジカルの大部分がウェーハ11の裏面11bで消費され、溝11cの内部に入り込みにくくなる。その結果、溝11cの底面をエッチングするために必要なガスの総供給量が増大する。また、エッチングレートが低下し、溝11cの底面のエッチングに要する処理時間が長くなる。
一方、本実施形態においては、ウェーハ11の裏面11bが第1の保護膜19によって被覆された状態で、ウェーハ11にプラズマエッチングが施される。これにより、イオンやラジカルがウェーハ11の裏面11bに作用せずに溝11cの内部に供給されやすくなり、プラズマエッチング中に消費されるエッチングガスの量が削減される。また、溝11cの底面が効率的にエッチングされるため、エッチング時間が短縮される。
なお、前述の第1の保護膜被覆ステップS3(図7(A)参照)では、分割ステップS5におけるプラズマエッチング中にウェーハ11の裏面11b側が第1の保護膜19によって被覆された状態が維持されるように、第1の保護膜19の厚さが調節される。例えば、分割ステップS5において上記のBoschプロセスが採用される場合、第1の保護膜19の厚さは、第2の保護膜21の厚さの50倍以上であることが好ましく、100倍であることがより好ましい。具体的には、第2の保護膜21の厚さが10nm以下である場合には、第1の保護膜19の厚さは500nm以上、好ましくは1000nm以上に設定できる。
図11は、分割ステップS5後のウェーハ11の一部を示す断面図である。溝11cがウェーハ11の表面11aに到達すると、ウェーハ11が分割予定ライン13に沿って分割される。そして、第1の保護膜19及び第2の保護膜21がアッシング処理によって除去される。これにより、デバイス15(図1参照)をそれぞれ備える複数のチップ(デバイスチップ)が製造される。
以上の通り、本実施形態に係るチップの製造方法では、分割予定ライン13に沿って溝11cが形成されたウェーハ11の第1の面側に第1の保護膜19を形成した後、ウェーハ11の第1の面側にプラズマエッチングを施す。これにより、第1の保護膜19がマスクとして機能し、ウェーハ11が分割予定ライン13に沿って選択的にエッチングされる。
上記のチップの製造方法を用いると、ウェーハ11の第1の面側が第1の保護膜19によって被覆された状態で、溝11cの内部にプラズマエッチングが施される。これにより、溝11cにエッチングガスが効率的に供給されるため、エッチングガスの消費量が抑えられ、コストが削減される。また、エッチング時間が短縮され、ウェーハ11の加工効率が向上する。
なお、上記実施形態では、ウェーハ11の裏面11b側に形成された溝11cをプラズマエッチングでウェーハ11の表面11aに到達させることによってウェーハ11を分割する例について説明した。ただし、分割ステップS5の態様は上記に限定されない。図12は、分割ステップS5の他の例を示すフローチャートである。
例えば分割ステップS5では、ウェーハ11の表面11a側に溝11cを形成した後、ウェーハ11の裏面11b側を研削することによって、ウェーハ11を分割することもできる。この場合、ウェーハ11の表面11aが第1の面に相当し、ウェーハ11の裏面11bが第2の面に相当する。
具体的には、まず、溝形成ステップS1、第1の保護膜被覆ステップS3、及び保護膜除去ステップS4(図3参照)を実施して、ウェーハ11の表面11a側に溝11cを分割予定ライン13に沿って形成する。その後、ウェーハ11の表面11a側にプラズマエッチングを施し(第2の保護膜被覆ステップS11、異方性プラズマエッチングステップS12、及び等方性プラズマエッチングステップS13)、溝11cをウェーハ11の裏面11b側に伸長させる。なお、プラズマエッチングは、溝11cの深さがウェーハ11の厚さ未満、且つ、ウェーハ11の最終的な厚さの目標値(仕上げ厚さ)以上になるまで継続される。
次に、ウェーハ11の裏面11b側を研削して、溝11cをウェーハ11の裏面11bで露出させる(研削ステップS14)。図13は、研削ステップS14におけるウェーハ11を示す正面図である。ウェーハ11の研削には、例えば研削装置が用いられる。
研削装置70は、ウェーハ11を保持する保持テーブル(チャックテーブル)72を備える。保持テーブル72の上面は、水平面と概ね平行な平坦面であり、ウェーハ11を保持する保持面72aを構成している。保持面72aは、保持テーブル72の内部に形成された流路(不図示)、バルブ(不図示)等を介して、エジェクタ等の吸引源(不図示)に接続されている。
保持テーブル72には、保持テーブル72を水平方向に沿って移動させる移動機構(不図示)が連結されている。移動機構としては、ボールねじ式の移動機構や、保持テーブル72を支持して回転するターンテーブル等が用いられる。さらに、保持テーブル72には、保持テーブル72を鉛直方向と概ね平行な回転軸の周りで回転させるモータ等の回転駆動源(不図示)が連結されている。
また、研削装置70は、ウェーハ11を研削する研削ユニット74を備える。研削ユニット74は、保持テーブル72の上方に設けられ、鉛直方向に沿って配置された円柱状のスピンドル76を備える。スピンドル76の先端部(下端部)には、金属等でなる円盤状のマウント78が固定されている。また、スピンドル76の基端部(上端部)には、スピンドル76を回転させるモータ等の回転駆動源(不図示)が接続されている。
マウント78の下面側には、ウェーハ11を研削する研削ホイール80が装着される。研削ホイール80は、環状のホイール基台82を備える。ホイール基台82は、ステンレス、アルミニウム等の金属でなり、マウント78と概ね同径に形成されている。また、ホイール基台82の下面側には、複数の研削砥石84が固定されている。複数の研削砥石84は、ホイール基台82の外周縁に沿って概ね等間隔で環状に配列されている。
研削砥石84は、例えば直方体状に形成され、ダイヤモンド、cBN(cubic Boron Nitride)等でなる砥粒と、砥粒を固定する結合材(ボンド材)とを含む。結合材としては、メタルボンド、レジンボンド、ビトリファイドボンド等を用いることができる。ただし、研削砥石84の数、形状、材質、サイズ等に制限はない。
研削ホイール80は、回転駆動源からスピンドル76及びマウント78を介して伝達される動力により、鉛直方向と概ね平行な回転軸の周りを回転する。また、研削ユニット74には、研削ユニット74を鉛直方向に沿って昇降させるボールねじ式の移動機構(不図示)が連結されている。さらに、研削ユニット74の近傍には、ウェーハ11及び研削砥石84に純水等の研削液88を供給するノズル86が設けられている。
研削装置70でウェーハ11を研削する際には、まず、ウェーハ11が保持テーブル72で保持される。具体的には、表面11a側が保持面72aに対面し、裏面11b側が上方に露出するように、ウェーハ11が保持テーブル72上に配置される。この状態で、保持面72aに吸引源の吸引力(負圧)を作用させると、ウェーハ11の表面11a側が保持テーブル72によって吸引保持される。
なお、保持テーブル72でウェーハ11を保持する際、ウェーハ11の表面11a側にはウェーハ11を保護する保護シート23が貼付されてもよい。保護シート23の形状、材質等は、保護シート17(図2参照)と同様である。
次に、保持テーブル72を研削ユニット74の下方に位置付ける。そして、保持テーブル72及び研削ホイール80をそれぞれ所定の方向に所定の回転数で回転させつつ、研削ホイール80を保持テーブル72に向かって下降させる。このときの研削ホイール80の下降速度は、研削砥石84が適切な力でウェーハ11に押し当てられるように調節される。
研削砥石84がウェーハ11の裏面11b側に接触すると、ウェーハ11の裏面11b側が削り取られる。これにより、ウェーハ11の裏面11b側が研削され、ウェーハ11が薄化される。これにより、溝11cが裏面11bで露出し、ウェーハ11が分割予定ライン13に沿って分割される。そして、ウェーハ11の厚さが仕上げ厚さになると、ウェーハ11の研削が停止され、研削ステップS14が完了する。
その他、上記実施形態に係る構造、方法等は、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施できる。
11 ウェーハ
11a 表面
11b 裏面
11c 溝
13 分割予定ライン(ストリート)
15 デバイス
17 保護シート
19 第1の保護膜
21 第2の保護膜
23 保護シート
2 切削装置
4 保持テーブル(チャックテーブル)
4a 保持面
6 切削ユニット
8 スピンドル
10 切削ブレード
12 撮像ユニット
14 レーザー加工装置
16 保持テーブル(チャックテーブル)
16a 保持面
18 レーザー照射ユニット
20 レーザー加工ヘッド
22 レーザービーム
24 撮像ユニット
30 プラズマ処理装置
32 チャンバー
32a,32b,32c 開口
34 処理空間
36 ゲート(開閉扉)
38 配管
40 排気装置
42 保持テーブル(チャックテーブル)
42a 保持面
44 電極
46 整合器
48 高周波電源
50 ガス噴出ヘッド
50a ガス拡散空間
50b,50c,50d ガス供給路
52 軸受け
54 整合器
56 高周波電源
58a,58b 配管
60a,60b ガス供給源
62,64,66 ガス
70 研削装置
72 保持テーブル(チャックテーブル)
72a 保持面
74 研削ユニット
76 スピンドル
78 マウント
80 研削ホイール
82 ホイール基台
84 研削砥石
86 ノズル
88 研削液

Claims (9)

  1. 格子状に設定された複数の分割予定ラインによって複数の領域に区画されたウェーハを分割してチップを製造するチップの製造方法であって、
    第1の面及び第2の面を含む該ウェーハを保持テーブルで保持し、該ウェーハの該第1の面側に深さが該ウェーハの厚さ未満の溝を該分割予定ラインに沿って形成する溝形成ステップと、
    該溝形成ステップの後、該ウェーハの該第1の面と該溝の側面とを第1の保護膜で被覆する第1の保護膜被覆ステップと、
    該第1の保護膜被覆ステップの後、該ウェーハを該分割予定ラインに沿って分割する分割ステップと、を含み、
    該分割ステップでは、該ウェーハに対して該第1の面側からプラズマエッチングを施すことを特徴とするチップの製造方法。
  2. 該分割ステップは、
    該溝の該側面及び底面を、該第1の保護膜よりも薄い第2の保護膜で被覆する第2の保護膜被覆ステップと、
    該ウェーハに対して該第1の面側から異方性のプラズマエッチングを施すことにより、該溝の該底面を露出させる異方性プラズマエッチングステップと、
    該ウェーハに対して該第1の面側から等方性のプラズマエッチングを施すことにより、該溝の該底面をエッチングする等方性プラズマエッチングステップと、を含むことを特徴とする請求項1に記載のチップの製造方法。
  3. 該第1の保護膜被覆ステップの後、且つ、該分割ステップの前に、該ウェーハに対して該第1の面側からプラズマエッチングを施すことにより、該第1の保護膜のうち該溝の底面を被覆している部分を除去して該溝の該底面を露出させる保護膜除去ステップを更に含むことを特徴とする請求項1又は請求項2に記載のチップの製造方法。
  4. 該溝形成ステップの後、且つ、該第1の保護膜被覆ステップの前に、該溝が露出した状態で該ウェーハに対して該第1の面側からプラズマエッチングを施すプラズマエッチングステップを更に含むことを特徴とする請求項1又は請求項2に記載のチップの製造方法。
  5. 該溝形成ステップでは、該溝の幅Aと該溝の深さBとのアスペクト比B/Aが1以上となるように該溝を形成することを特徴とする請求項1又は請求項2に記載のチップの製造方法。
  6. 該分割ステップでは、該溝が該ウェーハの該第2の面に到達するまで該ウェーハにプラズマエッチングを施すことにより、該ウェーハを該分割予定ラインに沿って分割することを特徴とする請求項1又は請求項2に記載のチップの製造方法。
  7. 該分割ステップでは、該ウェーハにプラズマエッチングを施した後、該ウェーハの該第2の面側を研削して該溝を該ウェーハの該第2の面で露出させることにより、該ウェーハを該分割予定ラインに沿って分割することを特徴とする請求項1又は請求項2に記載のチップの製造方法。
  8. 該溝形成ステップでは、環状の切削ブレードを該ウェーハに切り込ませることによって該溝を形成することを特徴とする請求項1又は請求項2に記載のチップの製造方法。
  9. 該溝形成ステップでは、該ウェーハに対して吸収性を有するレーザービームを該ウェーハに照射することによって該溝を形成することを特徴とする請求項1又は請求項2に記載のチップの製造方法。
JP2022083750A 2022-05-23 2022-05-23 チップの製造方法 Pending JP2023172142A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022083750A JP2023172142A (ja) 2022-05-23 2022-05-23 チップの製造方法
US18/321,411 US20230377940A1 (en) 2022-05-23 2023-05-22 Manufacturing method of chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022083750A JP2023172142A (ja) 2022-05-23 2022-05-23 チップの製造方法

Publications (1)

Publication Number Publication Date
JP2023172142A true JP2023172142A (ja) 2023-12-06

Family

ID=88792005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022083750A Pending JP2023172142A (ja) 2022-05-23 2022-05-23 チップの製造方法

Country Status (2)

Country Link
US (1) US20230377940A1 (ja)
JP (1) JP2023172142A (ja)

Also Published As

Publication number Publication date
US20230377940A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
US9379015B2 (en) Wafer processing method
KR20180105571A (ko) 웨이퍼의 가공 방법
US20220375755A1 (en) Substrate processing system and substrate processing method
TW201643957A (zh) 晶圓的分割方法
US20190122928A1 (en) Wafer processing method
JP2023172142A (ja) チップの製造方法
JP7292803B2 (ja) ウェーハの加工方法
JP2020061494A (ja) ウェーハの加工方法
JP7214309B2 (ja) ウェーハの加工方法
US11056346B2 (en) Wafer processing method
US11894271B2 (en) Method of processing wafer
JP7463035B2 (ja) 積層ウェーハの加工方法
JP2023091896A (ja) デバイスチップの製造方法
JP2023056102A (ja) デバイスチップの製造方法
JP2020061495A (ja) ウェーハの加工方法
JP2023056101A (ja) デバイスチップの製造方法
JP2020061501A (ja) ウェーハの加工方法
KR20220157882A (ko) 웨이퍼의 가공 방법
JP2020017677A (ja) ウェーハの加工方法
JP2023038555A (ja) 基板の分割方法
KR20220108719A (ko) 칩의 제조 방법
JP2020061463A (ja) ウェーハの加工方法
JP2020061459A (ja) ウェーハの加工方法
JP2019212771A (ja) ウェーハの加工方法
JP2020102588A (ja) ウェーハの加工方法