JP2020061495A - ウェーハの加工方法 - Google Patents

ウェーハの加工方法 Download PDF

Info

Publication number
JP2020061495A
JP2020061495A JP2018192855A JP2018192855A JP2020061495A JP 2020061495 A JP2020061495 A JP 2020061495A JP 2018192855 A JP2018192855 A JP 2018192855A JP 2018192855 A JP2018192855 A JP 2018192855A JP 2020061495 A JP2020061495 A JP 2020061495A
Authority
JP
Japan
Prior art keywords
wafer
functional layer
laser processing
plasma etching
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018192855A
Other languages
English (en)
Inventor
美玲 樋田
Yoshitama Toida
美玲 樋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2018192855A priority Critical patent/JP2020061495A/ja
Publication of JP2020061495A publication Critical patent/JP2020061495A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Laser Beam Processing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】コストを抑制しながらもプラズマエッチングを行うことができるウェーハの加工方法を提供すること。【解決手段】ウェーハの加工方法は、デバイスが形成されたデバイス領域とデバイス領域を囲む外周余剰領域とを備えるウェーハを分割する方法である。ウェーハの加工方法は、ウェーハの表面に粘着テープを配設する保護部材配設ステップST1と、基板に対して吸収性を有する波長のレーザー光線を分割予定ラインに沿って照射し、デバイス領域に対応した裏面側に機能層に至らない深さのレーザー加工溝を形成するレーザー加工溝形成ステップST3と、ウェーハの裏面側にプラズマ化したエッチングガスを供給し、基板を分割するプラズマエッチングステップST4と、ウェーハの裏面側からレーザー光線をレーザー加工溝に露出する機能層に照射し切断する機能層切断ステップST5と、を備える。【選択図】図2

Description

本発明は、ウェーハの加工方法、特にプラズマダイシングに関する。
シリコン基板等からなる半導体ウェーハは、個々のデバイスチップに分割するため、切削ブレードやレーザー光線を用いた加工方法が適用されることが知られている。これらの加工方法は、分割予定ライン(ストリート)を1本ずつ加工してウェーハをデバイスチップに分割する。近年の電子機器の小型化からデバイスチップの軽薄短小化、コスト削減が進み、サイズが従来のように10mmを超えるようなデバイスチップから2mm以下のようなサイズの小さなデバイスチップが数多く生産されている。サイズの小さなデバイスチップを製造する場合、1枚のウェーハに対する分割予定ラインの数が激増し、1ラインずつの加工では加工時間も長くなってしまう。
そこで、ウェーハの分割予定ライン全てを一括で加工するプラズマダイシングという手法が開発されている(例えば、特許文献1参照)。特許文献1に示されたプラズマダイシングは、マスクによって遮蔽された領域以外をプラズマエッチングによって除去し、ウェーハ単位で加工を実施するため、分割予定ラインの本数が多くなっても加工時間が劇的に長くなることがないという効果がある。
しかしながら、特許文献1に示されたプラズマダイシングは、エッチングによって除去する領域のみを正確に露出させるために、それぞれのウェーハの分割予定ラインにあった精密なマスクを準備する必要がある(例えば、特許文献2及び特許文献3参照)。
特開2006−114825号公報 特開2013−055120号公報 特開2014−199833号公報
しかしながら、特に、特許文献2及び特許文献3に示されたマスクは、製造コスト及び製造工数の抑制、マスクを位置合わせする技術の確立など、切削加工等に比べてコストが高く難易度の高い課題が残されていた。
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、コストを抑制しながらもプラズマエッチングを行うことができるウェーハの加工方法を提供することである。
上述した課題を解決し、目的を達成するために、本発明のウェーハの加工方法は、基板の表面に機能層が積層され複数のデバイスが形成されたデバイス領域と該デバイス領域を囲む外周余剰領域とを備えるウェーハを、該複数のデバイスを区画する分割予定ラインに沿って分割するウェーハの加工方法であって、ウェーハの表面に保護部材を配設する、保護部材配設ステップと、該ウェーハの該保護部材側を研削装置のチャックテーブルで保持し、ウェーハの裏面側の該デバイス領域を研削し、ウェーハの裏面に円形凹部を形成する円形凹部形成ステップと、該ウェーハの該保護部材側をレーザー加工装置のチャックテーブルで保持し、該基板に対して吸収性を有する波長のレーザー光線を、該分割予定ラインに沿って該ウェーハの該円形凹部の領域に照射し、該円形凹部の領域に該機能層に至らない深さのレーザー加工溝を形成するレーザー加工溝形成ステップと、該ウェーハの該保護部材側をプラズマ装置のチャックテーブルで保持し、該ウェーハの裏面側にプラズマ化したガスを供給し、該レーザー加工溝の底に残存する基板をエッチングして除去し、該基板を該分割予定ラインに沿ってチップに分割するプラズマエッチングステップと、プラズマエッチングで分割された該ウェーハの裏面側から、レーザー光線の集光点をレーザー加工溝の底で露出する該機能層に照射し、該機能層を切断する機能層切断ステップと、を備えることを特徴とする。
前記ウェーハの加工方法において、該プラズマエッチングステップを実施した該ウェーハ裏面側の基板にプラズマ化した不活性ガスを供給し、基板の裏面に歪み層を形成する歪み層形成ステップを備えても良い。
本願発明のウェーハの加工方法は、コストを抑制しながらもプラズマエッチングを行うことができるという効果を奏する。
図1は、実施形態1に係るウェーハの加工方法の加工対象のウェーハの一例を示す斜視図である。 図2は、実施形態1に係るウェーハの加工方法の流れを示すフローチャートである。 図3は、図2に示されたウェーハの加工方法の円形凹部形成ステップを示す側断面図である。 図4は、図2に示されたウェーハの加工方法のレーザー加工溝形成ステップを一部断面で示す側面図である。 図5は、図2に示されたウェーハの加工方法のレーザー加工溝形成ステップ後のウェーハの要部の断面図である。 図6は、図2に示されたウェーハの加工方法のプラズマエッチングステップで用いられるプラズマ装置の構成を示す断面図である。 図7は、図2に示されたウェーハの加工方法のプラズマエッチングステップ後のウェーハの断面図である。 図8は、図2に示されたウェーハの加工方法のプラズマエッチングステップ後のウェーハの要部の断面図である。 図9は、図2に示されたウェーハの加工方法の機能層切断ステップを示す断面図である。 図10は、図2に示されたウェーハの加工方法の機能層切断ステップ後のウェーハの要部の断面図である。 図11は、実施形態2に係るウェーハの加工方法の流れを示すフローチャートである。 図12は、図11に示されたウェーハの加工方法のプラズマエッチングステップ及び歪み層形成ステップで用いられるプラズマ装置の構成を示す断面図である。 図13は、図11に示されたウェーハの加工方法の歪み層形成ステップ後のウェーハの要部の断面図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。
〔実施形態1〕
本発明の実施形態1に係るウェーハの加工方法を図面に基づいて説明する。図1は、実施形態1に係るウェーハの加工方法の加工対象のウェーハの一例を示す斜視図である。図2は、実施形態1に係るウェーハの加工方法の流れを示すフローチャートである。
実施形態1に係るウェーハの加工方法は、図1に示すウェーハ1の加工方法である。実施形態1では、ウェーハ1は、シリコン、サファイア、又はガリウムヒ素などを基板2とする円板状の半導体ウェーハや光デバイスウェーハである。ウェーハ1は、図1に示すように、基板2の表面3に機能層4が積層され、デバイス領域110と、デバイス領域110を囲む外周余剰領域120とを備える。デバイス領域110は、基板2の表面3に積層された機能層4によって複数のデバイス5が形成されている。機能層4は、SiOF、BSG(SiOB)等の無機物系の膜やポリイミド系、パリレン系等のポリマー膜である有機物系の膜からなる低誘電率絶縁体被膜(Low−k膜)を含む。機能層4は、基板2の表面3に積層されている。なお、本明細書は、以下、基板2の裏面7をウェーハ1の裏面とし、機能層4の表面8をウェーハ1の表面とする。
デバイス5は、表面3の交差する複数の分割予定ライン6で区画された各領域にそれぞれ形成されている。即ち、分割予定ライン6は、複数のデバイス5を区画するものである。デバイス5を構成する回路は、機能層4により形成されている。なお、実施形態1において、デバイス5は、切削加工によりウェーハ1から分割されるデバイスよりも小型であり、例えば、1mm×1mm程度の大きさであり、プラズマエッチング(プラズマダイシングともいう)により個々に分割されるのに好適なものである。また、ウェーハ1は、分割予定ライン6の少なくとも一部において、機能層4側に図示しない金属膜とTEG(Test Element Group)とのうち少なくとも一方が形成されている。TEGは、デバイス5に発生する設計上や製造上の問題を見つけ出すための評価用の素子である。外周余剰領域120は、デバイス領域110の全周に亘ってデバイス領域110を囲繞するとともに、デバイス5が未形成の領域である。
実施形態1に係るウェーハの加工方法は、ウェーハ1を分割予定ライン6に沿ってデバイス5を含む個々のチップ9(図1に示す)に分割する方法である。ウェーハの加工方法は、図2に示すように、保護部材配設ステップST1と、円形凹部形成ステップST2と、レーザー加工溝形成ステップST3と、プラズマエッチングステップST4と、機能層切断ステップST5とを備える。
(保護部材配設ステップ)
保護部材配設ステップST1は、ウェーハ1の表面8に保護部材である粘着テープ200を配設するステップである。実施形態1において、保護部材配設ステップST1は、図1に示すように、ウェーハ1よりも大径な粘着テープ200をウェーハ1の表面8に貼着し、粘着テープ200の外周縁に環状フレーム201を貼着する。実施形態1では、保護部材として粘着テープ200を用いるが、本発明では、保護部材は、粘着テープ200に限定されない。ウェーハの加工方法は、ウェーハ1の表面8に粘着テープ200を貼着すると、円形凹部形成ステップST2に進む。
(円形凹部形成ステップ)
図3は、図2に示されたウェーハの加工方法の円形凹部形成ステップを示す側断面図である。円形凹部形成ステップST2は、ウェーハ1の粘着テープ200側を図3に示す研削装置60のチャックテーブル61で保持し、ウェーハ1の裏面7側のデバイス領域110を研削し、ウェーハ1の裏面7に円形凹部300を形成するステップである。
円形凹部形成ステップST2では、研削装置60が、チャックテーブル61の保持面62に粘着テープ200を介してウェーハ1の機能層4側を吸引保持する。円形凹部形成ステップST2では、研削装置60が、図3に示すように、スピンドル63により研削ホイール64を回転しかつチャックテーブル61を軸心回りに回転しながら研削水を供給するとともに、研削ホイール64の研削用砥石65をチャックテーブル61に保持されたウェーハ1の裏面7のデバイス領域110に対応する位置に当接させて、研削ホイール64を所定の送り速度でチャックテーブル61に近づける。研削ホイール64の研削用砥石656は環状に固定され、環状の研削用砥石65の輪がなす直径は、デバイス領域110の直径より小さく、デバイス領域110の半径より大きい。
円形凹部形成ステップST2では、研削装置60が、研削用砥石65を裏面7のデバイス領域110に対応する位置に当接させ、かつ外周余剰領域120に対応する位置には当接させないことによって、デバイス領域110を研削して薄化し、外周余剰領域120を薄化しない。なお、裏面7のデバイス領域110に対応する位置とは、裏面7のデバイス領域110と基板2の厚さ方向に重なる位置を示し、裏面7の外周余剰領域120に対応する位置とは、裏面7の外周余剰領域120と基板2の厚さ方向に重なる位置を示している。
円形凹部形成ステップST2では、研削装置60が、デバイス領域110が所定の厚さになるまでウェーハ1を研削して、裏面7のデバイス領域110に対応する位置に円形凹部300を形成する。ウェーハの加工方法は、裏面7に円形凹部300を形成して、所定の厚さまでウェーハ1のデバイス領域110を薄化するとレーザー加工溝形成ステップST3に進む。
(レーザー加工溝形成ステップ)
図4は、図2に示されたウェーハの加工方法のレーザー加工溝形成ステップを一部断面で示す側面図である。図5は、図2に示されたウェーハの加工方法のレーザー加工溝形成ステップ後のウェーハの要部の断面図である。
レーザー加工溝形成ステップST3は、ウェーハ1の粘着テープ200を図4に示すレーザー加工装置10のチャックテーブル13で吸引保持し、基板2に対して吸収性を有する波長のレーザー光線11を分割予定ライン6に沿ってウェーハ1の円形凹部300の領域である底301に照射し、円形凹部300の底301に機能層4に至らない深さのレーザー加工溝302を基板2に形成するステップである。実施形態1において、レーザー加工溝形成ステップST3では、図4に示すように、レーザー加工装置10のチャックテーブル13の保持面14に粘着テープ200を介してウェーハ1の機能層4側を吸引保持する。レーザー加工溝形成ステップST3では、レーザー加工装置10の図示しない赤外線カメラがウェーハ1の裏面7を撮像して分割予定ライン6を検出し、ウェーハ1とレーザー光線照射ユニット12との位置合わせを行なうアライメントを遂行する。
レーザー加工溝形成ステップST3では、レーザー加工装置10は、例えば、図4に示す点線で示す位置から実線で示す位置に向かってチャックテーブル13に対してレーザー光線照射ユニット12を分割予定ライン6に沿って相対的に移動させながら基板2に対して吸収性を有する波長のレーザー光線11をデバイス領域110の各分割予定ライン6に向かって照射する。即ち、レーザー加工溝形成ステップST3では、レーザー加工装置10は、チャックテーブル13に対してレーザー光線照射ユニット12を分割予定ライン6に沿って相対的に移動させながらレーザー光線照射ユニット12がデバイス領域110即ち円形凹部300の上方に位置すると、レーザー光線照射ユニット12からレーザー光線11を各分割予定ライン6に向かって照射する。また、レーザー加工溝形成ステップST3では、レーザー加工装置10は、チャックテーブル13に対してレーザー光線照射ユニット12を分割予定ライン6に沿って相対的に移動させながらレーザー光線照射ユニット12がデバイス領域110即ち円形凹部300の上方から離れて例えば外周余剰領域120の上方に位置すると、レーザー光線照射ユニット12からのレーザー光線11の照射を停止する。
レーザー加工溝形成ステップST3では、レーザー加工装置10は、図4に示すように、ウェーハ1の円形凹部300の底301のうちのデバイス領域110の分割予定ライン6に対応した位置にアブレーション加工を保施して、ウェーハ1の円形凹部300の底301の分割予定ライン6に対応した位置に分割予定ライン6に沿ってレーザー加工溝302を形成する。なお、本発明では、ウェーハ1の円形凹部300の底301のうちのデバイス領域110の分割予定ライン6に対応した位置は、ウェーハ1の円形凹部300の底301のうちのデバイス領域110の各分割予定ライン6と基板2の厚さ方向に重なる位置を示している。
レーザー加工溝形成ステップST3において形成されるレーザー加工溝302は、図5に示すように、ウェーハ1の円形凹部300の底301から凹に形成され、機能層4に至らない深さに形成されるとともに、デバイス領域110の分割予定ライン6に沿って直線状に延びている。
レーザー加工溝形成ステップST3では、レーザー加工装置10は、ウェーハ1の円形凹部300の底301のうちのデバイス領域110の分割予定ライン6に対応する位置にレーザー加工溝302を形成するとともに、外周余剰領域120に対応する位置にはレーザー加工溝302を形成することが規制されている。即ち、レーザー加工溝形成ステップST3では、レーザー加工装置10は、図5に示すように、外周余剰領域120に対応した位置にはレーザー加工溝302を形成しない。
レーザー加工溝形成ステップST3では、レーザー加工装置10は、ウェーハ1の円形凹部300の底301に機能層4に至らない深さのレーザー加工溝302を形成して、レーザー加工溝302の底303に基板2の母材を残存させる。ウェーハの加工方法は、図5に示すように、ウェーハ1の円形凹部300のデバイス領域110の全ての分割予定ライン6と対応する位置にレーザー加工溝302を形成すると、プラズマエッチングステップST4に進む。なお、レーザー加工溝形成ステップST3では、レーザー加工装置10は、チャックテーブル13に対してレーザー光線照射ユニット12を分割予定ライン6に沿って相対的に複数回移動させる場合、レーザー光線11の集光点の位置を回数を重ねるにつれ高い位置(裏面7に近い位置)に設定し複数層のレーザー加工溝302を形成するのが好ましい。
(プラズマエッチングステップ)
図6は、図2に示されたウェーハの加工方法のプラズマエッチングステップで用いられるプラズマ装置の構成を示す断面図である。図7は、図2に示されたウェーハの加工方法のプラズマエッチングステップ後のウェーハの断面図である。図8は、図2に示されたウェーハの加工方法のプラズマエッチングステップ後のウェーハの要部の断面図である。
プラズマエッチングステップST4は、ウェーハ1の粘着テープ200側を図6に示すプラズマ装置20のプラズマエッチングチャンバー25内のチャックテーブル21で保持し、ウェーハ1の裏面7側にプラズマ化したエッチングガスを供給し、レーザー加工溝302の底303(図5に示す)に残存する基板2をエッチングして除去し、基板2を分割予定ライン6に沿って分割するステップである。プラズマエッチングステップST4は、ウェーハ1の基板2をプラズマダイシングするステップである。
プラズマエッチングステップST4では、プラズマ装置20の制御ユニット22が、ゲート作動ユニット23を作動してゲート24を図6中の下方に移動させ、プラズマエッチングチャンバー25の開口26を開ける。次に、図示しない搬出入手段によってレーザー加工溝形成ステップST3が実施されたウェーハ1を開口26を通してプラズマエッチングチャンバー25内の密閉空間27に搬送し、下部電極28を構成する被加工物保持部29のチャックテーブル21(静電チャック、ESC:Electrostatic chuck)上に粘着テープ200を介してウェーハ1の機能層4側を載置する。このとき、制御ユニット22は、昇降駆動ユニット30を作動して上部電極31を上昇させておく。制御ユニット22は、被加工物保持部29内に設けられた電極32,33に電力を印加してチャックテーブル21上にウェーハ1を吸着保持する。
制御ユニット22は、ゲート作動ユニット23を作動してゲート24を上方に移動させ、プラズマエッチングチャンバー25の開口26を閉じる。制御ユニット22は、昇降駆動ユニット30を作動して上部電極31を下降させ、上部電極31を構成するガス噴出部34の下面と下部電極28を構成するチャックテーブル21に保持されたウェーハ1との間の距離をプラズマエッチング処理に適した所定の電極間距離に位置付ける。
制御ユニット22は、ガス排出ユニット35を作動してプラズマエッチングチャンバー25内の密閉空間27を真空排気して、密閉空間27の圧力を所定の圧力に維持するとともに、冷媒供給ユニット36を作動させて下部電極28内に設けられた冷媒導入通路37、冷却通路38及び冷媒排出通路39に冷媒であるヘリウムガスを循環させて、下部電極28の異常昇温を抑制する。
次に、制御ユニット22は、ガス供給ユニット40を作動しエッチングガスを上部電極31の複数の噴出口41から下部電極28のチャックテーブル21上に保持されたウェーハ1に向けて噴出するとともに、エッチングガスを供給した状態で、高周波電源42から上部電極31にプラズマを作り維持する高周波電力を印加し、高周波電源42から下部電極28にイオンを引き込むための高周波電力を印加する。これにより、下部電極28と上部電極31との間の空間にプラズマ化されたエッチングガスが発生し、このプラズマ化されたエッチングガスがウェーハ1側に引き込まれて、ウェーハ1の裏面7、円形凹部300の底301、レーザー加工溝302の内面及び底303等をエッチングして、レーザー加工溝302を基板2の表面3に向かって進行させる。
なお、実施形態1では、基板2がシリコンで構成される場合、エッチングガスとして、SF、C又はCF等を用いるが、エッチングガスは、これらに限定されない。
プラズマエッチングステップST4では、制御ユニット22は、レーザー加工溝302の深さ即ち円形凹部300の厚さに応じて、ウェーハ1をプラズマエッチングする所定時間が予め設定されている。プラズマエッチングステップST4において、所定時間、プラズマエッチングされたウェーハ1は、図7及び図8に示すように、裏面7及び円形凹部300の底301全体がエッチングされて、厚さ101分薄化されている。また、所定時間、プラズマエッチングされたウェーハ1は、図8に示すように、レーザー加工溝302の底303に残存する基板2がエッチングされ除去され、レーザー加工溝302が機能層4に到達している。ウェーハ1は、デバイス領域110おいて、基板2のデバイス領域110がレーザー加工溝302により分割され、レーザー加工溝302内に機能層4が露出して、レーザー加工溝302の底に機能層4が残っている。
また、所定時間、プラズマエッチングされたウェーハ1は、レーザー加工溝形成ステップST3において外周余剰領域120にはレーザー加工溝302が形成されていないために、外周余剰領域120が分割されずに、デバイス領域110を囲繞するリング形状を維持している。また、実施形態1において、プラズマエッチングステップST4において形成されるレーザー加工溝302は、裏面7から表面3に向かうにしたがって幅が徐々に狭く形成されている。
ウェーハの加工方法は、プラズマエッチングステップST4において、所定時間、プラズマエッチングを行うと、機能層切断ステップST5に進む。なお、図7及び図8は、プラズマエッチングステップST4後のウェーハ1がレーザー加工溝302の底の基板2が除去されている例を示しているが、本発明では、レーザー加工溝302の底303に僅かに基板2が残っていても良い。また、本発明のウェーハの加工方法は、プラズマエッチングステップST4において、ウェーハ1の裏面7全体をエッチングするとともにレーザー加工溝302を基板2の表面3に向かって進行させるエッチングステップと、エッチングステップに次いでウェーハ1の裏面7、レーザー加工溝302の内面及び底303に被膜を堆積させる被膜堆積ステップとを交互に繰り返す、所謂ボッシュ法でウェーハ1をプラズマエッチングしても良い。
(機能層切断ステップ)
図9は、図2に示されたウェーハの加工方法の機能層切断ステップを示す断面図である。図10は、図2に示されたウェーハの加工方法の機能層切断ステップ後のウェーハの要部の断面図である。
機能層切断ステップST5は、プラズマエッチングステップST4のプラズマエッチングで機能層4に到達したレーザー加工溝302で分割されたウェーハ1の裏面7側から図9に示すレーザー加工装置50が機能層4に対して吸収性を有する波長のレーザー光線51の集光点51−1をレーザー加工溝302の底で露出する機能層4に位置づけて照射し、機能層4をレーザー加工溝302に沿って切断するステップである。
機能層切断ステップST5では、レーザー加工装置50が、チャックテーブルに粘着テープ200を介してウェーハ1の機能層4側を保持し、図9に示すように、レーザー光線照射ユニット52とチャックテーブルとを分割予定ライン6に沿って相対的に移動させながらレーザー光線照射ユニット52から機能層4に対して吸収性を有する波長(例えば、355nm)のレーザー光線51の集光点51−1をレーザー加工溝302の底に露出した機能層4に設定して、レーザー光線51を機能層4に照射する。機能層切断ステップST5では、各分割予定ライン6において、レーザー加工溝302の底で露出した機能層4にアブレーション加工を施して、レーザー加工溝302の底で露出した機能層4を切断して、ウェーハ1のデバイス領域110を個々のチップ9に分割する。
なお、機能層切断ステップST5では、図示しない分割予定ライン6に形成された金属膜やTEGも分割する。ウェーハの加工方法は、図10に示すように、全ての分割予定ライン6においてレーザー加工溝302の底で露出した機能層4を分割すると、終了する。その後、チップ9は、図示しないピックアップにより粘着テープ200からピックアップされる。また、実施形態1では、レーザー加工溝形成ステップST3をレーザー加工装置10が行い、機能層切断ステップST5をレーザー加工装置10とは別のレーザー加工装置50が行っていたが、本発明は、レーザー加工溝形成ステップST3及び機能層切断ステップST5を一つのレーザー加工装置で行っても良い。
実施形態1に係るウェーハの加工方法は、レーザー加工溝形成ステップST3において裏面7から分割予定ライン6に沿ってレーザー加工溝302を形成した後、プラズマエッチングステップST4において裏面7側からプラズマエッチングすることで、レーザー加工溝302を基板2の表面3に向かって進行させて、ウェーハ1を分割するため、マスクを不要としたプラズマダイシングを実現することができる。このために、ウェーハの加工方法は、切削加工により分割するデバイスよりも小型であるためにプラズマエッチングで分割するのに好適なデバイス5を備えるウェーハ1の加工方法において、高価なマスクが不要となる。その結果、ウェーハの加工方法は、コストを抑制しながらもウェーハ1にプラズマエッチングを行ってウェーハ1を個々のデバイス5即ちチップ9に分割することができる。
また、ウェーハの加工方法は、レーザー加工溝形成ステップST3及び円形凹部形成ステップST2前の保護部材配設ステップST1において、機能層4側に粘着テープ200が貼着されている。このために、レーザー加工溝形成ステップST3及び研削ステップST5時に発生するデブリ及びコンタミがデバイス5に付着することを抑制することができる。
また、ウェーハの加工方法は、機能層切断ステップST5において、レーザー加工溝302の溝底に残った機能層4にレーザー光線51を照射して分割するので、プラズマエッチングステップST4後に、レーザー加工溝302の底にLow−k膜等の樹脂を含む機能層4が残ったとしても、Low−k膜等の機能層4が積層されたウェーハ1を個々のデバイス5に分割することができる。また、ウェーハの加工方法は、機能層切断ステップST5前の保護部材配設ステップST1において、機能層4側に粘着テープ200が貼着され、機能層切断ステップST5において、裏面7側からレーザー光線51をレーザー加工溝302の底の機能層4に照射するので、アブレーション加工時に発生するデブリがデバイス5に付着することを抑制することができる。
また、ウェーハの加工方法は、円形凹部形成ステップST2において、ウェーハ1の裏面7に円形凹部300が形成されて、デバイス領域110を薄化しているために、プラズマエッチングステップST4において、レーザー加工溝302を機能層4に到達させるのに要する所要時間を抑制することができるとともに、アウトガスの量を抑制することができる。
また、ウェーハの加工方法は、円形凹部形成ステップST2において、ウェーハ1の裏面7に円形凹部300が形成されて、デバイス領域110を薄化しているために、レーザー加工溝形成ステップST3において形成するレーザー加工溝302の深さを抑制でき、発生するデブリの量及びレーザー加工溝302の形成にかかる所要時間を抑制することができる。
また、ウェーハの加工方法は、レーザー加工溝形成ステップST3において、外周余剰領域120にはレーザー加工溝302を形成しないために、プラズマエッチングステップST4後のウェーハ1の外周余剰領域120を分割せずに、デバイス領域110を囲繞するリング形状に維持している。その結果、ウェーハの加工方法は、レーザー加工装置10からプラズマ装置20のプラズマエッチングチャンバー25にウェーハ1を搬送する際のウェーハ1の割れを抑制することが出来る。また、ウェーハの加工方法は、プラズマ装置20のプラズマエッチングチャンバー25外にウェーハ1を搬出する際も、外周余剰領域120がリング形状を維持しているため、ウェーハ1の撓みによるデバイス5同士の擦れが発生しにくいという効果もある。
また、ウェーハの加工方法は、プラズマエッチングステップST4において、基板2を分割予定ライン6に沿って分割するために、個々に分割されたチップ9の側面がプラズマエッチングによって除去された面である。このために、ウェーハの加工方法は、切削加工による欠けが個々に分割されたチップ9の側面に残らず、抗折強度が高いチップ9を製造できる、という効果も奏する。
また、実施形態1に係るウェーハの加工方法は、レーザー加工溝形成ステップST3の前に円形凹部形成ステップST2を実施してウェーハ1の裏面7側のデバイス領域110を研削するので、レーザー加工溝形成ステップST3の前においてウェーハ1の裏面7が梨地面(細かい凹凸を有する面)であっても、レーザー加工溝形成ステップST3の前に円形凹部300の底301を平坦化することができる。その結果、実施形態1に係るウェーハの加工方法は、レーザー加工溝形成ステップST3において、赤外線カメラが撮像した画像に基づいてアライメントを遂行した際のレーザー光線照射ユニット12と分割予定ライン6との位置ずれを抑制することができる。
〔実施形態2〕
本発明の実施形態2に係るウェーハの加工方法を図面に基づいて説明する。図11は、実施形態2に係るウェーハの加工方法の流れを示すフローチャートである。図12は、図11に示されたウェーハの加工方法のプラズマエッチングステップ及び歪み層形成ステップで用いられるプラズマ装置の構成を示す断面図である。図13は、図11に示されたウェーハの加工方法の歪み層形成ステップ後のウェーハの要部の断面図である。なお、図11、図12及び図13は、実施形態1と同一部分に同一符号を付して説明を省略する。
実施形態2に係るウェーハの加工方法は、図13に示すように、歪み層形成ステップST11を備え、プラズマ装置20−3(図12に示す)がプラズマエッチングステップST4及び歪み層形成ステップST11との双方で用いられること以外、実施形態1と同じである。プラズマ装置20−3は、図12に示すように、プラズマエッチングチャンバー25内の密閉空間27に不活性ガスを供給する不活性ガス供給ユニット43を備えている。なお、不活性ガス供給ユニット43が供給する不活性ガスは、アルゴンガス(Ar)、ヘリウムガス(He)等の希ガス、希ガスに窒素ガス(N)又は水素ガス(H)等を混合した混合ガス等で構成することができる。
歪み層形成ステップST11は、プラズマエッチングステップST4を実施したウェーハ1の裏面7側の基板2にプラズマ化した不活性ガスを供給し、基板2の裏面7及びレーザー加工溝302の内面に歪み層130を形成するステップである。歪み層形成ステップST11では、プラズマ装置20−3が、プラズマエッチングステップST4から引き続き、チャックテーブル21上にウェーハ1を吸着保持し、密閉空間27の圧力を所定の圧力に維持するとともに、下部電極28の異常昇温を抑制した状態で、不活性ガス供給ユニット43を作動して不活性ガスを上部電極31の複数の噴出口41から下部電極28のチャックテーブル21上に保持されたウェーハ1に向けて噴出する。そして、歪み層形成ステップST11では、制御ユニット22は、不活性ガスを供給した状態で、高周波電源42から上部電極31にプラズマを作り維持する高周波電力を印加し、高周波電源42から下部電極28にイオンを引き込むための高周波電力を印加する。これにより、下部電極28と上部電極31との間の空間に等方性を有するプラズマ化した不活性ガスが発生し、このプラズマ化した不活性ガスがウェーハ1の裏面7側の基板2に衝突する。
歪み層形成ステップST11では、プラズマ装置20−3は、所定時間、プラズマ化した不活性ガスをウェーハ1の裏面7、レーザー加工溝302の内面に衝突させて、裏面7及びレーザー加工溝302の内面の表層に結晶欠陥、歪みを付与して、図13に示すように、歪み層130を形成する。即ち、歪み層130は、ウェーハ1の裏面7及びレーザー加工溝302の内面の表層に結晶欠陥、歪みが形成された層であり、ウェーハ1に含有される銅(Cu)などの金属を主とする不純物を捕捉して、デバイス5の不純物による金属汚染を抑制する所謂ゲッタリング層としての機能を発揮する層である。実施形態2において、ウェーハの加工方法は、所定時間、プラズマ化した不活性ガスをウェーハ1の裏面7、レーザー加工溝302の内面に衝突させると、機能層切断ステップST5に進む。
実施形態2に係るウェーハの加工方法は、レーザー加工溝形成ステップST3において裏面7から分割予定ライン6に沿ってレーザー加工溝302を形成した後、プラズマエッチングステップST4において裏面7側からプラズマエッチングするので、マスクを不要としたプラズマダイシングを実現することができる。その結果、ウェーハの加工方法は、実施形態1と同様に、コストを抑制しながらもウェーハ1にプラズマエッチングを行ってウェーハ1を個々のデバイス5即ちチップ9に分割することができる。
また、実施形態2に係るウェーハの加工方法は、プラズマエッチングステップST4後に、歪み層形成ステップST11において、ウェーハ1の裏面7にプラズマ化した不活性ガスを供給して、歪み層130を形成する。その結果、ウェーハの加工方法は、プラズマエッチングステップST4後に分割されたウェーハ1の裏面7がプラズマエッチングによって歪み層が無くなりゲッタリング層としての機能を喪失しているが、歪み層形成ステップST11において、ゲッタリング層としての機能を発揮する歪み層130を形成するので、デバイス5即ちチップ9にゲッタリング効果を付与することが出来る。また、ウェーハの加工方法は、歪み層形成ステップST11をプラズマエッチングステップST4に引き続き実施して、プラズマエッチングステップST4と歪み層形成ステップST11とを同一のプラズマ装置20−3のプラズマエッチングチャンバー25内で実施出来るので、効率的な加工となる。
〔実施形態3〕
本発明の実施形態3に係るウェーハの加工方法を説明する。実施形態4に係るウェーハの加工方法は、プラズマエッチングステップST4において、電極に高周波電力を印加して密閉空間内でエッチングガスなどをプラズマするものではなく、プラズマ状態にしたエッチングガスなどをプラズマエッチングチャンバー内の密閉空間に導入するリモートプラズマ方式のプラズマエッチング装置を用いる。
実施形態3に係るウェーハの加工方法は、プラズマエッチングステップST4において、リモートプラズマ方式のプラズマ装置を用いるので、プラズマ装置ではプラズマ化したエッチングガスに混入するイオンが供給管の内面に衝突してプラズマエッチングチャンバー内の密閉空間に到達することを抑制でき、ラジカルが高濃度なエッチングガスを供給できるので、より幅の狭いレーザー加工溝302であっても基板2をデバイス5毎に分割することができる。
なお、実施形態3に係るウェーハの加工方法は、実施形態2と同様に、歪み層形成ステップST11を実施しても良い。なお、歪み層形成ステップST11を実施する場合、実施形態2と同様に、プラズマ装置は、プラズマエッチングチャンバー内の密閉空間に不活性ガスを供給する不活性ガス供給ユニットを備えるのが望ましい。
なお、本発明は、上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。例えば、本発明では、分割予定ライン6に形成される機能層4、金属膜及びTEGをレーザー加工溝形成ステップST3の前に、表面からレーザー光線を照射して、アブレーションで除去しても良い。また、本発明は、ウェーハ1の裏面7に予め酸化被膜が形成されている場合、プラズマエッチングステップST4において、この酸化被膜をマスクとしてプラズマエッチングを行っても良い。また、本発明は、デバイス5のサイズが上記実施形態に記載されたものに限定されない。
また、本発明のウェーハの加工方法は、レーザー加工溝形成ステップST3の前に、ウェーハ1の裏面、円形凹部300の内面及び底301に水溶性樹脂からな水溶性保護膜を被覆する水溶性保護膜形成ステップを実施して、レーザー加工溝形成ステップST3の後に、ウェーハ1の裏面7側を洗浄して、水溶性保護膜をデブリとともに除去する洗浄ステップを実施しても良い。
1 ウェーハ
2 基板
3 表面
4 機能層
5 デバイス
6 分割予定ライン
7 裏面
8 表面
9 チップ
10 レーザー加工装置
11 レーザー光線
13 チャックテーブル
20,20−3 プラズマ装置
21 チャックテーブル
51 レーザー光線
51−1 集光点
60 研削装置
61 チャックテーブル
110 デバイス領域
120 外周余剰領域
130 歪み層
200 粘着テープ(保護部材)
300 円形凹部
301 底(円形凹部の領域)
302 レーザー加工溝
303 底
ST1 保護部材配設ステップ
ST2 円形凹部形成ステップ
ST3 レーザー加工溝形成ステップ
ST4 プラズマエッチングステップ
ST5 機能層切断ステップ
ST11 歪み層形成ステップ

Claims (2)

  1. 基板の表面に機能層が積層され複数のデバイスが形成されたデバイス領域と該デバイス領域を囲む外周余剰領域とを備えるウェーハを、該複数のデバイスを区画する分割予定ラインに沿って分割するウェーハの加工方法であって、
    ウェーハの表面に保護部材を配設する、保護部材配設ステップと、
    該ウェーハの該保護部材側を研削装置のチャックテーブルで保持し、ウェーハの裏面側の該デバイス領域を研削し、ウェーハの裏面に円形凹部を形成する円形凹部形成ステップと、
    該ウェーハの該保護部材側をレーザー加工装置のチャックテーブルで保持し、該基板に対して吸収性を有する波長のレーザー光線を、該分割予定ラインに沿って該ウェーハの該円形凹部の領域に照射し、該円形凹部の領域に該機能層に至らない深さのレーザー加工溝を形成するレーザー加工溝形成ステップと、
    該ウェーハの該保護部材側をプラズマ装置のチャックテーブルで保持し、該ウェーハの裏面側にプラズマ化したガスを供給し、該レーザー加工溝の底に残存する基板をエッチングして除去し、該基板を該分割予定ラインに沿ってチップに分割するプラズマエッチングステップと、
    プラズマエッチングで分割された該ウェーハの裏面側から、レーザー光線の集光点をレーザー加工溝の底で露出する該機能層に照射し、該機能層を切断する機能層切断ステップと、を備えるウェーハの加工方法。
  2. 該プラズマエッチングステップを実施した該ウェーハ裏面側の基板にプラズマ化した不活性ガスを供給し、基板の裏面に歪み層を形成する歪み層形成ステップを備える請求項1に記載のウェーハの加工方法。
JP2018192855A 2018-10-11 2018-10-11 ウェーハの加工方法 Pending JP2020061495A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192855A JP2020061495A (ja) 2018-10-11 2018-10-11 ウェーハの加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192855A JP2020061495A (ja) 2018-10-11 2018-10-11 ウェーハの加工方法

Publications (1)

Publication Number Publication Date
JP2020061495A true JP2020061495A (ja) 2020-04-16

Family

ID=70220888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192855A Pending JP2020061495A (ja) 2018-10-11 2018-10-11 ウェーハの加工方法

Country Status (1)

Country Link
JP (1) JP2020061495A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197569A (ja) * 2001-12-28 2003-07-11 Disco Abrasive Syst Ltd 半導体チップの製造方法
JP2007027675A (ja) * 2005-06-17 2007-02-01 Seiko Epson Corp 半導体装置の製造方法、半導体装置、回路基板及び電子機器
JP2010177430A (ja) * 2009-01-29 2010-08-12 Disco Abrasive Syst Ltd ウエーハの処理方法
JP2011049431A (ja) * 2009-08-28 2011-03-10 Disco Abrasive Syst Ltd ウエーハの加工方法
JP2015153770A (ja) * 2014-02-10 2015-08-24 株式会社ディスコ ウエーハの加工方法および加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197569A (ja) * 2001-12-28 2003-07-11 Disco Abrasive Syst Ltd 半導体チップの製造方法
JP2007027675A (ja) * 2005-06-17 2007-02-01 Seiko Epson Corp 半導体装置の製造方法、半導体装置、回路基板及び電子機器
JP2010177430A (ja) * 2009-01-29 2010-08-12 Disco Abrasive Syst Ltd ウエーハの処理方法
JP2011049431A (ja) * 2009-08-28 2011-03-10 Disco Abrasive Syst Ltd ウエーハの加工方法
JP2015153770A (ja) * 2014-02-10 2015-08-24 株式会社ディスコ ウエーハの加工方法および加工装置

Similar Documents

Publication Publication Date Title
US9379015B2 (en) Wafer processing method
TWI641075B (zh) 改善晶圓塗覆
US11114342B2 (en) Wafer processing method
CN108015650B (zh) 晶片的加工方法
JP2018041765A (ja) ウエーハの加工方法
JP2020061499A (ja) ウェーハの加工方法
JP2020013927A (ja) ウェーハの加工方法
US11456213B2 (en) Processing method of wafer
JP7061022B2 (ja) ウェーハの加工方法
JP2020061494A (ja) ウェーハの加工方法
JP2020061495A (ja) ウェーハの加工方法
JP2020061459A (ja) ウェーハの加工方法
JP7146555B2 (ja) ウェーハの加工方法
JP2019212772A (ja) ウェーハの加工方法
JP7083716B2 (ja) ウェーハの加工方法
JP7138534B2 (ja) ウェーハの加工方法
JP2020061463A (ja) ウェーハの加工方法
JP2020092191A (ja) デバイスチップの製造方法
JP2020017677A (ja) ウェーハの加工方法
JP2020061440A (ja) ウェーハの加工方法
JP2020061496A (ja) ウェーハの加工方法
JP2020061500A (ja) ウェーハの加工方法
JP2023172142A (ja) チップの製造方法
JP2019212771A (ja) ウェーハの加工方法
JP2020017676A (ja) ウェーハの加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230228