JP2023123615A - 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス - Google Patents

偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス Download PDF

Info

Publication number
JP2023123615A
JP2023123615A JP2023100699A JP2023100699A JP2023123615A JP 2023123615 A JP2023123615 A JP 2023123615A JP 2023100699 A JP2023100699 A JP 2023100699A JP 2023100699 A JP2023100699 A JP 2023100699A JP 2023123615 A JP2023123615 A JP 2023123615A
Authority
JP
Japan
Prior art keywords
eccentric
mass
grinding
counterweight
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023100699A
Other languages
English (en)
Inventor
カンブロン,マシュー・ディ
D Cambronne Matthew
コーラー,ロバート・イー
E Kohler Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiovascular Systems Inc
Original Assignee
Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/075,979 external-priority patent/US10517631B2/en
Application filed by Cardiovascular Systems Inc filed Critical Cardiovascular Systems Inc
Publication of JP2023123615A publication Critical patent/JP2023123615A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320004Surgical cutting instruments abrasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • A61B2017/320766Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven eccentric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • A61B2017/320775Morcellators, impeller or propeller like means

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Harvester Elements (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】偏心研削ヘッドのシステムが取り付けられ、可撓性の細長い回転可能なドライブシャフトを有する回転式アテレクトミーデバイスを提供する。【解決手段】システムにおける偏心拡張研削ヘッド27の少なくとも一部は、典型的には研削面である組織除去面を有する。ある実施形態では、研削ヘッドは少なくとも部分的に中空であってもよい。好ましくは、偏心拡張研削ヘッドの質量中心は、ドライブシャフトの回転軸から径方向に離隔している。これにより、高速で動作する際に、偏心研削ヘッドのシステムが協働することにより、拡張研削ヘッドの外側静止直径よりも実質的に大きい直径にまで狭窄病変を広げることが容易になる。【選択図】図2

Description

関連出願の相互参照
2012年9月17日に出願された333ion 連続番号第13/621,398号の一部継続出願であり、この出願の内容を本明細書に引用により援用する。
発明の背景
発明の分野
本発明は、高速回転式アテレクトミーデバイスを用いた、身体通路からの組織の除去(たとえば、動脈からのアテローム性プラークの除去)のためのデバイスおよび方法に関する。
関連技術の説明
動脈および同様の身体通路における組織の除去または修復に用いるために、さまざまな手法および器具が開発されてきた。そのような手法および器具の一般的な目的は、患者の動脈におけるアテローム性プラークを除去することである。アテローム性動脈硬化は、患者の血管の血管内膜層(内皮の下)に脂肪性沈着物(アテローム)が蓄積するのが特徴である。非常に多くの場合、初めは比較的柔らかくコレステロールを多量に含んだアテローム性物質として沈着していたものが、時間の経過とともに硬化して石灰化アテローム性プラークとなる。このようなアテロームは血流を制限するため、しばしば狭窄病変または狭窄部と呼ばれ、閉塞物質は狭窄物質と呼ばれる。このような狭窄部は、治療せずに放置すると、狭心症、高血圧、心筋梗塞、および脳卒中などを引き起こす可能性がある。
回転式アテレクトミー処置は、そのような狭窄物質の除去のための一般的な手法となっている。そのような処置は、冠状動脈において石灰化した病変の開放を開始するために最もよく用いられる。多くの場合、回転式アテレクトミー処置は単独で用いられるのではなく、引き続きバルーン血管形成処置が行なわれる。さらにその後、広げられた動脈の開通性の維持を助けるためにステントを配置することがよくある。石灰化していない病変の場合には、多くの場合、バルーン血管形成術を単独で用いて動脈を広げ、当該広げられた動脈の開通性を維持するためにしばしばステントを配置する。しかしながら、バルーン血管形成を受けて動脈内にステントを配置した患者のうちの非常に多くの割合が、ステント再狭窄(すなわち、ステント内の瘢痕組織の過度の成長によって長年にわたってしばしば起こるステントの閉塞)を経験することが、研究によって示された。そのような状況において、アテレクトミー処置は、ステントから過大な瘢痕組織を除去することによって動脈の開通性を取り戻すための好ましい処置である(バルーン血管形成は、ステント内ではあまり効果的ではない)。
狭窄物質の除去を試みるために、いくつかの種類の回転式アテレクトミーデバイスが開発されてきた。米国特許第4,990,134号(Auth)に示されるような1種のデバイスでは、ダイヤモンド粒子などの研削材で覆われたバー(burr)が可撓性ドライブシャフトの遠位端に保持される。バーは、狭窄部の端から端まで前進しながら、高速(典型的には、たとえば約150,000rpm~190,000rpm)で回転する。しかしながら、バーは狭窄組織を除去する際に血流を遮断する。バーが狭窄部の端から端まで前進したとき、動脈は、バーの最大外径と同じか、それよりもわずかに大きい直径にまで広がっている。多くの場合、動脈を所望の直径にまで広げるためには、2つ以上のサイズのバーを使用しなければならない。
米国特許第5,314,438号(Shturman)は、直径が拡張したセクションを含むドライブシャフトを備える別のアテレクトミーデバイスを開示する。この拡張した表面のうちの少なくとも一部分は、研削材で覆われることによってドライブシャフトの研削セグメントを形成している。研削セグメントは、高速で回転する際に動脈から狭窄組織を除去することが可能である。米国特許第5,314,438号の開示は、その内容全体が引用により本明細書に援用される。
米国特許第5,681,336号(Clement)は、好適な接合剤によって外面の一部に研削粒子のコーティングを施した偏心組織除去バーを提供する。しかしながら、この構成には制約がある。なぜなら、Clementの第3欄、53行目~55行目で説明されているように、非対称バーは、「熱または不均衡を補償するために、高速切除デバイスで用いるよりも低速で」回転するからである。すなわち、この中実バーのサイズおよび質量の両方を考慮すると、アテレクトミー処置時に用いられる高速(すなわち、20,000rpm~200,000rpm)でバーを回転させることは不可能である。本質的には、この従来技術のデバイスでは、質量中心がドライブシャフトの回転軸からずれていることによって著しい遠心力が生み出され、その結果、動脈の壁に過度な圧力がかかり、過剰な熱および過大な粒子が生成される。
米国特許第5,584,843号(Wulfman)は、可撓性ドライブシャフトに取り付けられた1つ以上の楕円バーまたは楕円カフを開示する。ドライブシャフトは、予め形作られた成形ガイドワイヤ上に配置されている。そのため、ドライブシャフトおよびバーはガイドワイヤの形状および輪郭(すなわち、緩やかな「S」形状または「コルク抜き」形状)に従う。しかしながら、Wulfmanは、直線状でないドライブシャフトの成形、つまりデバイスが回転していないときに呈する変形成形状態を実現するために、予め形作られたガイドワイヤを必要とする。したがって、Wulfmanのバーの軌跡直径は、ガイドワイヤの形状に限定され、かつ、ガイドワイヤの形状によって限定される。さらに、Wulfmanの各バーは楕円形、かつ、ドライブシャフトの回転軸について対称であり、各バーの質量中心はドライブシャフトの回転軸上にある。したがって、Wulfmanの軌跡直径は回転速度に起因しないので、ガイドワイヤの形状以外によって制御することができない。また、患者の血管系を損傷することなく、成形された変形しないガイドワイヤを配置することの難しさもある。
本発明は、これらの欠点を克服する。
発明の概要
本発明は、偏心研削ヘッドのシステムが取り付けられ、さまざまな実施形態で可撓性の細長い回転可能なドライブシャフトを有する回転式アテレクトミーデバイスを提供する。システムにおける偏心拡張研削ヘッドの少なくとも一部は、典型的には研削面である組織除去面を有する。ある実施形態では、研削ヘッドは少なくとも部分的に中空であってもよい。好ましくは、偏心拡張研削ヘッドの質量中心は、ドライブシャフトの回転軸から径方向に離隔している。これにより、高速で動作する際に、偏心研削ヘッドのシステムが協働することにより、拡張研削ヘッドの外側静止直径よりも実質的に大きい直径にまで狭窄病変を広げることが容易になる。したがって、ある実施形態は、質量中心が不均衡なシステムを備えることによって、より大きい回転直径が促進されるだけでなく、破片除去のオーガー効果が生じるような態様で構成される。代替的には、他の実施形態は、質量中心の均衡が取れた研削ヘッドを有するシステムを備えてもよい。
下記の図面および詳細な説明は、本発明の上記および他の実施形態をより特定的に例示する。
図面の簡単な説明
本発明は、下記の本発明のさまざまな実施形態の詳細な説明を下記添付図面と関連して考慮することによって、より完全に理解され得る。
本発明の一実施形態の斜視図である。 本発明の一実施形態の部分切取側面図である。 本発明の一実施形態の端面図である。 本発明の一実施形態の端面図である。 本発明の可能な回転方向角度離隔を示す概略チャートである。 本発明の一実施形態の側面破断図である。 本発明の一実施形態の斜視破断図である。 本発明の一実施形態の側面破断図である。 本発明の一実施形態の側面破断図である。 本発明の一実施形態の斜視図である。 本発明の一実施形態の底面図である。 本発明の一実施形態の側面破断図である。 本発明の一実施形態の破断図である。 本発明の一実施形態を示す概略図である。 偏心研削要素、偏心近位カウンターウエイト、および偏心遠位カウンターウエイトの断面図である。 偏心研削要素、偏心近位カウンターウエイト、および同心遠位カウンターウエイトの断面図である。 偏心研削要素、同心近位カウンターウエイト、および偏心遠位カウンターウエイトの断面図である。 偏心研削要素、同心近位カウンターウエイト、および同心遠位カウンターウエイトの断面図である。 同心研削要素、偏心近位カウンターウエイト、および偏心遠位カウンターウエイトの断面図である。 同心研削要素、偏心近位カウンターウエイト、および同心遠位カウンターウエイトの断面図である。 同心研削要素、同心近位カウンターウエイト、および偏心遠位カウンターウエイトの断面図である。 同心研削要素、同心近位カウンターウエイト、および同心遠位カウンターウエイトの断面図である。 研削要素およびカウンターウエイトの概略図であって、近位カウンターウエイトおよび研削要素の質量中心間の距離がD1、かつ、遠位カウンターウエイトおよび研削要素の質量中心間の距離がD2である。
最良の形態を含む発明の詳細な説明
本発明はさまざまな変更形態および代替形態に適用可能であるが、その特定例を図面で例として示し、本明細書中で詳細に説明する。しかしながら、説明した特定の実施形態に本発明を限定する意図ではないことを理解すべきである。そうではなく、本発明の精神および範囲内にあるすべての変更物、均等物、および代替物をカバーすることが意図される。
図1は、本発明に係る回転式アテレクトミーデバイスの一実施形態を示す。デバイスは、ハンドル部10と、偏心研削ヘッド27のシステム(限定されるわけではないが、図示の実施形態では、近位偏心拡張研削ヘッド28と遠位偏心拡張研削ヘッドまたは研削要素29とを含む)を有する細長い可撓性ドライブシャフト20と、ハンドル部10から遠位方向に延在する細長いカテーテル13とを備える。ドライブシャフト20は、当該分野で公知のように螺旋状に巻き付けられたワイヤ、および、そこに固定的に取り付けられた近位研削ヘッド28と遠位研削ヘッド29とを備える例示的なシステム27から構成される。カテーテル13は穴(lumen)を有する。この穴の中には、拡張された近位および遠位
研削ヘッド28、29、ならびに遠位拡張研削ヘッド29の遠位の短いセクションを除いて、ドライブシャフト20の長さの大部分が入る。ドライブシャフト20は内側穴も含んでおり、この内側穴によってドライブシャフト20はガイドワイヤ15上で前進および回転することが可能になる。カテーテル13内に冷却および潤滑用の液剤(典型的には、生理食塩水または別の生体適合性液)を導入するための液体供給ライン17が設けられてもよい。
ハンドル10は、望ましくは、ドライブシャフト20を高速で回転させるためのタービン(または同様の回転駆動機構)を含む。ハンドル10は、典型的には、管16から送達される圧縮空気などの動力源に接続され得る。タービンおよびドライブシャフト20の回転速度を監視するために、1組の光ファイバーケーブル25(代替的には1本の光ファイバーケーブルが用いられてもよい)が設けられてもよい。このようなハンドルおよび関連器具類についての詳細は、当該産業において周知である。ハンドル10は、望ましくは、タービンおよびドライブシャフト20をカテーテル13およびハンドル本体に対して前進および後退させるための操作ノブ11も含む。
例示的なシステム27の近位偏心研削ヘッド28および遠位偏心研削ヘッド29は、ドライブシャフト上に取り付けられ、またはドライブシャフト上に他の方法で配置され、またはドライブシャフトと一体化され、またはドライブシャフトから形成されている。近位研削ヘッド28は、遠位研削ヘッド29よりも近位に位置している。すなわち、遠位研削ヘッド29はドライブシャフト20の遠位端に最も近い。近位および遠位研削ヘッド28、29は、ドライブシャフト20に沿って互いに距離または間隔を置いている。さらに、近位および遠位研削ヘッド28、29は、それぞれ静止直径DおよびD′を有する。本発明では、近位研削ヘッド28の静止直径Dが遠位研削ヘッド29の静止直径D′よりも大きいことが必要である。さらに、本発明は、システム27が2つの研削ヘッドを備えることに限定されるのではなく、2つ以上の研削ヘッドを備えてもよい。ただし、すべての場合において、最も遠位の研削ヘッド(たとえば29)の静止直径が最も小さい研削ヘッド直径であり、近位側の研削ヘッド(たとえば28)は隣接する遠位ヘッド(たとえば29)よりも順々に静止直径が大きくなる。言い方を変えれば、研削ヘッドの静止直径は、ドライブシャフト20の遠位端からドライブシャフト上の近位側の位置に向けて大きくなり、すべての研削ヘッドの中で最も遠位の研削ヘッドの静止直径が最も小さい。
図示のように、好ましい実施形態は2つの研削ヘッド(すなわち、28、29)を備える。近位研削ヘッドの例示的な静止直径Dは2mm~3mmであってもよく、遠位研削ヘッドの静止直径D′は1.25mm~5mmであってもよい。ただし、上述のように、各実施形態ではシステム27内で最も遠位の研削ヘッドの静止直径が最も小さく、近位側に行くほど研削ヘッドの静止直径は順々に大きくなる。
したがって、主な発明の目的の1つは、静止直径がより小さい遠位偏心研削ヘッド29とともに静止直径がより大きい少なくとも1つの近位偏心研削ヘッド28を備える研削ヘッド27のシステムを提供することである。これにより、小径の遠位偏心研削ヘッド29を、患者の血管系内で高速回転する前に、当該血管系内の閉塞物質内の小さな穴の中に配
置することができる。本明細書で詳述するように、ドライブシャフト20の回転を開始すると、研削ヘッド28、29が装着されたドライブシャフト20を含むシステムが遠心力を生じさせ始める。その結果、特に研削ヘッド28、29の軌道運動が起こる。この軌道運動において、研削ヘッド28、29は、それぞれの静止直径D、D′のたとえば2倍から3倍の作用直径を有する経路を描き出し始める。
図2、図3A、および図3Bは、ある実施形態のシステム27の配置を示す。例として、図2および図3Aは、ドライブシャフト20に取り付けられた近位研削ヘッド28および遠位研削ヘッド29を備える不均衡な研削ヘッド27のシステムを示す。近位研削ヘッド28および遠位研削ヘッド29は互いに距離を置いて配置され、図3Aにおいて点線で示すように、研削ヘッド28、29の質量中心はともに同一方向および同一平面でドライブシャフト20の回転軸Aから径方向にずれている。言い方を変えれば、研削ヘッド27のシステム全体の質量中心のずれは、1つの径方向のずれ方向に(たとえば、図3Aの点線に沿って)最大となる。均衡の取れた実施形態であれば、たとえば、近位研削ヘッド28および遠位研削ヘッド29の質量中心が回転方向に180度離れており、研削ヘッド28、29の質量中心は、ともに図3Aの点線上であるが互いにドライブシャフト20の回転軸の反対側に位置し得る。代替的には、偶数個(たとえば4つ)の偏心研削ヘッドが設けられてもよく、例示的な4つの偏心研削ヘッドの各々の間で、回転方向角度の回転方向間隔が同等である(たとえば、45度または90度など)。これによって、均衡の取れたシステムが実現される。このような均衡の取れた実施形態において、好ましい配置では、最も近位の偏心研削ヘッドから最も遠位の偏心研削ヘッドに向けて静止直径が順々に小さくなるが、偏心研削ヘッドの質量中心は全体として概ね均等である。
図3Bは、不均衡な研削ヘッド27のシステムの代替的な実施形態を示す。図2および図3Aの実施形態と同様に、この例示的な実施形態では、近位および遠位研削ヘッド28、29がドライブシャフト20上に固定もしくは装着されるか、またはドライブシャフト20から形成されており、互いに距離を置いて配置されている。しかしながら、図3Bの実施形態では、近位および遠位研削ヘッド28、29の質量中心が、異なる方向および異なる平面にドライブシャフトの回転軸から径方向にずれている。たとえば図示のように、遠位研削ヘッド29の質量中心は、縦方向の点線で示すように、ドライブシャフト20の回転軸と実質的に垂直方向に位置が合っている。しかしながら、近位研削ヘッド28の質量中心は上記縦方向の点線上にあるのではなく、実際は、遠位研削ヘッド29の質量中心を含む平面を表わす上記縦方向の点線からおよそ100度回転した位置にある。そのため、研削ヘッド27のシステムの重量は不均衡であり、その結果、図3Aのシステム27と同様に、ドライブシャフト20の高速回転時および研削ヘッド28、29の軌道運動時に遠心力が生じやすくなる。
図3Aの実施形態と図3Bの実施形態との間の主な差異は、ヘッド28、29の高速回転時および軌道運動時の、研削ヘッド27のシステム内でのドライブシャフト20に沿った遠位方向への液体の流れの影響である。図3Aは、周囲の液体(血液だけでなく、高速回転時に閉塞から削り取った破片も含む)の規則的なパターンの無い乱流を生じさせる。
これに対して、図3Bは、近位研削ヘッド28の近位の点から遠位研削ヘッド29の遠位の点までドライブシャフト20に沿って遠位方向に進む略螺旋状の断面形状を示す。この螺旋状断面形状は、研削ヘッド28、29の質量中心間の回転方向の離隔(図示の例では、およそ100度)によるものである。図示の例では、質量中心の径方向のずれは、幾何学的偏心によってもたらされる研削ヘッド28、29の偏心により実現される。言い方を変えれば、研削ヘッド28、29の幾何学的縦断面は偏心である。その結果、システム27の断面形状は上述のような螺旋状チャネルであり、それに沿って液体の流れが生じる。高速回転時の上記螺旋状断面形状によって、血液および破片を含む液体が螺旋状に沿っ
て遠位方向に移動しやすくなる。すなわち、直径の大きな近位研削ヘッド28から直径の小さな遠位研削ヘッド29に向かって、かつ遠位研削ヘッド29を超えて、遠位方向に移動しやすくなる。このように、システム27によるアテレクトミー処置によって生じた破片は、制御された方法で、システム27の螺旋状チャネルに沿って閉塞部から離れるように流される。
システム27の螺旋状チャネルが図4Aにさらに示される。図4Aは、回転軸Aを有するドライブシャフト20の長手方向断面図を回転方向角度グリッドと重ねた状態で示す。回転方向角度グリッドは、ドライブシャフト20を中心として、例示的に45度セクションに分割されている。螺旋状チャネルおよびその断面形状を形成することは、システム27の偏心研削ヘッドの幾何学的中心および質量中心を回転方向に離隔させることによって実現され得る。例として、偏心近位研削ヘッド28の幾何学的中心および質量中心は、図示の回転方向に0度~45度の回転セクション内に位置してもよい。その場合、遠位偏心研削ヘッド29は、その幾何学的中心および質量中心が回転方向に45度~90度の回転セクション内に位置するように配置されてもよい。ある実施形態においてシステム27が3つ以上の研削ヘッドを備える場合、図示のように、第3の偏心研削ヘッドは、その幾何学的中心および質量中心が回転方向に90度~135度の回転セクション内に位置するように配置されてもよい。さらに他の偏心研削ヘッド(たとえば、第4の偏心研削ヘッドなど)がシステム27に含まれる場合、それらの幾何学的中心および質量中心は、同じ論理的進行を用いて、135度よりも大きい回転セクション内に位置するのが好ましい。
図示の回転セクションは例示にすぎない。より大きな、および/または、より小さなセクションであってもよいことを、当業者ならば認識するであろう。さらに、たとえば近位偏心研削ヘッド28を遠位偏心研削ヘッド29から45度よりも大きく離してもよいことを、当業者ならば認識するであろう。
このようなシステム27内のドライブシャフト20に沿った長手方向の回転進行移動の最終的な効果として、図4Bに示すような螺旋状チャネルが提供される。図4Bでは、回転方向に互いに離隔した状態で連続的に設けられたシステム27の研削ヘッドのピーク間の液体流線に沿って、血液、冷却液剤、および破片を含む液体が流れる。研削ヘッドのピークが閉塞部に入ることによって、螺旋状の液体の流れが増進し、補助される。
研削ヘッド27のシステムの研削ヘッドは、1種類以上のの研削ヘッドを含んでもよい。
たとえば、図5および図6は、本発明の研削ヘッド(たとえば、近位および遠位研削ヘッド28、29)のうちの1つ以上に使用され得る研削ヘッドを示す。この実施形態は、ドライブシャフト20Aの偏心拡張直径研削セクション28Aを備える。なお、この実施形態では説明のために28Aという名称を付したに過ぎず、当該名称は、図示の実施形態をドライブシャフト上の近位研削ヘッド位置に限定するものではない。ドライブシャフト20Aは、拡張研削セクション28A内のガイドワイヤ穴19Aおよび空洞25Aを画定する、螺旋状に巻いた1つ以上のワイヤ18を含む。ガイドワイヤ15が空洞25Aを横切ることを除けば、空洞25Aは実質的に空である。偏心拡張直径研削セクション28Aは、狭窄部の位置に対して、近位部30A、中間部35A、および遠位部40Aを含む。偏心拡張直径セクション28Aの近位部30Aのワイヤ巻き31の直径は、好ましくは略一定の割合で遠位方向に向かって次第に増加し、それによって略円錐形状を形成する。遠位部40Aのワイヤ巻き41の直径は、好ましくは略一定の割合で遠位方向に向かって次第に減少し、それによって略円錐形状を形成する。中間部35Aのワイヤ巻き36は、徐々に変化する直径を有することにより、略凸状の外面を提供する。この外面は、ドライブシャフト20Aの拡張偏心直径セクション28Aの近位円錐部と遠位円錐部との間に滑ら
かな移行部を提供するように形作られている。この研削ヘッドの実施形態では、質量中心がドライブシャフト回転軸Aから径方向にずれて位置している。
さらに、ドライブシャフト28Aの偏心拡張直径研削セクションの少なくとも一部(好ましくは中間部35A)は、組織を除去することが可能な外面を有する。ドライブシャフト20Aの組織除去セグメントを画定する研削材24Aのコーティングを含む組織除去面37は、好適な接合剤26Aによってドライブシャフト20Aのワイヤ巻きに直接接着された状態で図示されている。
このように、図5および図6は、同一出願人による米国特許第6,494,890号(Shturman)に開示された拡張直径研削セクションの一実施形態を示す。この拡張セクションは、少なくとも一部分が研削材で覆われており、本発明のシステム27に使用され得る。研削セグメントは、高速回転時に動脈から狭窄組織を除去することが可能である。このデバイスは、一つには高速動作時の軌道回転運動によって、拡張偏心セクションの静止直径よりも大きい直径にまで動脈を広げることが可能である。拡張偏心セクションは、互いに束ねられていないドライブシャフトワイヤを有するので、狭窄部への配置時または高速動作時に拡張偏心セクションのドライブシャフトが屈曲し得る。この屈曲によって、高速動作時に直径をより大きく広げることが可能になる。米国特許第6,494,890号の開示は、その内容全体が引用により本明細書に援用される。
図7および図8A~図8Cを参照して、本発明の偏心研削ヘッド27のシステムを備える、実施可能な研削ヘッドの他の実施形態について述べる。図4および図5の実施形態と同様に、本実施形態は、偏心研削ヘッド27のシステムの研削ヘッドのうちの1つ以上に用いられ得る。非限定的な例では、本実施形態は、近位および/または遠位研削ヘッド28、29のうちの1つまたは両方を備えてもよい。代替的には、本実施形態を別の種類の研削ヘッド(たとえば、図5および図6に示した実施形態)と組み合わせてシステム27を構成してもよい。たとえば、本実施形態は近位研削ヘッド28を有し、図5および図6の実施形態は遠位研削ヘッド29を有してシステム27を構成してもよい。当業者ならば容易に思い付く他の多くの同等の変形例および組み合わせもすべて本発明の範囲内である。
上述のように、ドライブシャフト20は、当該ドライブシャフト20の穴19内に配置されたガイドワイヤ15と同軸の回転軸Aを有する。特に図7および図8A~図8Cを参照して、偏心拡張研削ヘッド28Sの近位部30Sは、円錐(比較的浅い角度βでドライブシャフト20の回転軸21と交差する軸32を有する円錐)の円錐台の外側面によって実質的に画定される外面を有する。同様に、拡張研削ヘッド28Sの遠位部40Sは、円錐(比較的浅い角度βでドライブシャフト20の回転軸21と交差する軸42を有する円錐)の円錐台の外側面によって実質的に画定される外面を有する。近位部30Sの円錐軸32および遠位部40Sの円錐軸42は、互いに交差し、かつ、ドライブシャフトの長手方向回転軸Aと同一平面上にある。
円錐の対向側面は互いに対して概ね約10°~約30°の角度αをなすべきである。角度αは好ましくは約20°~約24°であり、最も好ましくは約22°である。また、近位部30Sの円錐軸32と遠位部40Sの円錐軸42は、通常、ドライブシャフト20の回転軸21と約20°~約8°の角度βで交差する。好ましくは、角度βは約3°~約6°である。図示された好ましい実施形態では拡張研削ヘッド28Sの遠位部の角度αと近位部の角度αとは略等しいが、それらは等しくなくてもよい。同じことが角度βについても当てはまる。
代替的な実施形態では、中間部35Sの直径が遠位部40との交差点から近位部30と
の交差点まで徐々に増加してもよい。この実施形態では、図7に示す角度αは、遠位部40Sよりも近位部30Sの方が大きくてもよく、またはその逆であってもよい。他の代替的な実施形態では中間部35Sの表面が凸状であり、この中間部外面は、近位部および遠位部の近位外面および遠位外面の間に滑らかな移行部を提供するように形作られてもよい。
研削ヘッド28Sは、中間部35S、遠位部40S、および/または近位部30Sの外面上に少なくとも1つの組織除去面37を有してもよい。これにより、高速回転時に狭窄部の研削が容易になる。組織除去面37は、研削ヘッド28Sの中間部35S、遠位部40S、および/または近位部30Sの外面に接合された研削材24のコーティングを含んでもよい。研削材は、ダイヤモンド粉末、溶融石英、窒化チタン、炭化タングステン、酸化アルミニウム、炭化ホウ素、または他のセラミック材料など、如何なる好適な材料であってもよい。好ましくは、研削材は、好適な接合剤によって組織除去面に直接接着されたダイヤモンドチップ(またはダイヤモンドダスト粒子)からなる。そのような接着は、たとえば、従来の電気めっき技術または融解技術(たとえば、米国特許第4,018,576号参照)などの周知の手法を用いて実現されてもよい。代替的には、好適な研削組織除去面37を提供するために、外側の組織除去面は、中間部35S、遠位部40S、および/または近位部30Sの外面を機械的または化学的に粗面化したものであってもよい。さらに別の変形例では、小さいが効果的な研削表面を提供するために、外面を(たとえば、レーザによって)エッチングまたは切削してもよい。好適な組織除去面37を提供するために他の同様の手法を用いてもよい。
図8A~図8Cに最もよく示されているように、少なくとも部分的に囲まれた穴またはスロット23が、ドライブシャフト20の回転軸21に沿って拡張研削ヘッド28S内を長手方向に通るように設けられてもよい。この穴またはスロット23は、当業者にとって周知の方法で研削ヘッド28をドライブシャフト20に取り付けるためのものである。図示の実施形態では、中空セクション26が設けられることによって研削ヘッド28Sが軽量化される。これにより、組織を傷つけずに研削すること容易になるとともに、高速動作時(すなわち、20,000rpm~200,000rpm)の研削ヘッド28Sの軌道経路の制御の予測可能性が向上する。この実施形態では、研削ヘッド28Sが固定的に取り付けられるドライブシャフト20は、単一のユニットからなってもよい。代替的には、ドライブシャフト20は2つの別々のピースからなり、互いの間に隙間を有するドライブシャフト20のピースの両方に、拡張偏心研削ヘッド28Sが固定的に取り付けられてもよい。この2ピースドライブシャフト構造の手法を中空セクション26と組み合わせることにより、研削ヘッド28Sの質量中心の位置をさらに操作することが可能になり得る。特に所望する回転速度を得るために、すべての実施形態において、研削ヘッド28Sの軌道回転経路を最適化するように中空セクション26のサイズおよび形状を変更してもよい。図示の中空セクション26はすべての平面において対称であることが理解される。ただし、当然ながらこれは限定的な例ではない。研削ヘッド28Sの質量中心を所望の位置に移動させるために、中空セクション26は長手方向および/または径方向に非対称であってもよい。当業者ならば、さまざまな実施可能な構成を容易に認識するであろう。それらの構成はすべて本発明の範囲内である。
また、図7および図8A~図8Cの実施形態は、形状および長さが対称である近位部30Sおよび遠位部40Sを示す。代替的な実施形態では、近位部30Sまたは遠位部40Sの長さを増加させることによって、非対称的な断面形状を形成してもよい。
円錐軸32および42はドライブシャフト20の回転軸21と角度βで交差するため、偏心拡張研削ヘッド28Sの質量中心は、ドライブシャフト20の長手方向回転軸21から径方向に離隔している。以下で詳述するように、質量中心をドライブシャフトの回転軸
21からずらすことにより、拡張研削ヘッド28Sが偏心となる。この偏心によって、拡張研削ヘッド28Sは、当該拡張偏心研削ヘッド28Sの公称直径よりも実質的に大きい直径にまで動脈を広げることが可能になる。広げられた直径は、拡張偏心研削ヘッド28Sの公称静止直径の少なくとも2倍であることが好ましい。
本明細書で使用される「偏心」という単語は、拡張研削ヘッド28Sの幾何学的中心とドライブシャフト20の回転軸21との間の位置の相違、または、システム27の部品である例示的な拡張研削ヘッド28Sおよび/または偏心研削ヘッド28Aの質量中心とドライブシャフト20の回転軸21との間の位置の相違を意味するように定義され、使用されることが理解される。これらの相違のうちのいずれであっても、システム27の部品である偏心拡張研削ヘッド28S、28Aは、適切な回転速度で、当該偏心拡張研削ヘッド28S、28Aの公称直径よりも実質的に大きい直径にまで狭窄部を広げることが可能である。また、規則的な幾何学形状ではない形状の偏心拡張研削ヘッド28S、28Aに関して、「幾何学的中心」という概念は、ドライブシャフト28の回転軸21を通って引かれ、かつ偏心拡張研削ヘッド28S、28Aの周長が最大となる位置で切り取った横断面の外周上の2点を結ぶ最も長い弦の中点を特定することによって近似され得る。
本発明の回転式アテレクトミーデバイスの研削ヘッド28Sおよび/または28Aは、ステンレス鋼、タングステン、または同様の材料で構成されてもよい。本発明の目的を達成するためには、研削ヘッド28は、単一ピースの一体構造であってもよいし、代替的には、互いに嵌合および固定された2つ以上の研削ヘッド部品の組立品であってもよい。
本発明の偏心拡張研削ヘッドの公称直径よりも大きい直径にまで動脈の狭窄部を広げることが可能な程度は、いくつかのパラメータによって決まる。パラメータは、偏心拡張研削ヘッドの形状、偏心拡張研削ヘッドの質量、その質量の分布、つまりドライブシャフトの回転軸に対する研削ヘッドの質量中心の位置、および回転速度が含まれる。
拡張研削ヘッドの組織除去面を狭窄組織に押し当てる遠心力を決定し、それによって操作者による組織除去の割合を制御する際に、回転速度は重要な要因である。また、回転速度の制御によって、デバイスによって広げられる狭窄部の最大直径の制御がある程度可能になる。また、出願人は、組織除去面を狭窄組織に押し当てる力が確実に制御可能であれば、操作者が組織除去の割合をより的確に制御できるだけでなく、除去する粒子のサイズをより的確に制御できるということも見出した。
図9は、本発明の例示的なシステム27の偏心研削ヘッド(28Sおよび/または28Aを含む)のさまざまな実施形態で取られる略螺旋状の軌道経路を示す。研削ヘッド28は、ガイドワイヤ15(当該ガイドワイヤ15上で研削ヘッド28Aおよび/または28Sは前進している)との関係で示されている。図9における螺旋状経路のピッチは、説明のために拡大されている。しかし実際は、偏心拡張研削ヘッド28Aおよび/または28Sを備えるシステム27の各螺旋状経路で、組織除去面37によって非常に薄い組織の層が除去されるにすぎない。狭窄部を完全に広げるためにデバイスが狭窄部の端から端まで繰り返し前後に移動する際に、このような螺旋状経路がシステム27によって非常に多数形成される。図10は、本発明の回転式アテレクトミーデバイスの偏心拡張研削ヘッド28Sおよび/または28Aの3つの異なる回転方向位置を概略的に示す。各位置において、偏心拡張研削ヘッド28Sおよび/または28Aの研削面が除去すべきプラーク「P」に接触する。つまり、3つの位置は、プラーク「P」と接触する3つの異なる点によって特定される。図中でそれらの点は点B1、B2、およびB3として表わされる。なお、各点において組織に接触するのは、偏心拡張研削ヘッド28Sおよび/または28Aの研削面の略同じ部分である。すなわち、ドライブシャフトの回転軸から径方向に最も遠い組織除去面37の部分である。
何らかの特定の動作原理に限定することを望むわけではないが、質量中心を回転軸からずらすことによって拡張研削ヘッドの「軌道」運動が生じ、「軌道」直径は、特にドライブシャフトの回転速度を変化させることによって制御できるものであると出願人は考えている。偏心拡張研削ヘッド28Sおよび/または28Aの組織除去面を狭窄部の表面に押し当てる遠心力は、ドライブシャフトの回転速度を変化させることによって制御可能であることを、出願人は実験によって証明した。この遠心力は、下記の式に従って決定することができる。
=mΔx(πn/30)
ここで、Fcは遠心力であり、mは偏心拡張研削ヘッドの質量であり、Δxは偏心拡張研削ヘッドの質量中心とドライブシャフトの回転軸との間の距離であり、nは1分間当た
りの回転数(rpm)で表わした回転速度である。この力Fcを制御することによって、組織を除去する速度の制御、デバイスによって広げられる狭窄部の最大直径の制御、および、除去される組織の粒子サイズの制御の向上が可能になる。
本発明の研削ヘッド28Sおよび/または28Aは、従来技術の高速アテレクトミー研削デバイスよりも質量が大きい。その結果、より大きな軌道が高速回転時に実現され、ひいては従来技術のデバイスよりも小型の研削ヘッドの使用が可能になり得る。より小型の研削ヘッドを使用することにより、完全または実質的に閉塞した動脈などにパイロット穴をあけることが可能になるだけでなく、挿入時のアクセスが容易になるとともに、組織損傷が少なくなる。
操作としては、本発明の回転式アテレクトミーデバイスを使用する際に、偏心拡張研削ヘッド28Sおよび/または28Aは、狭窄部内で遠位方向および近位方向に繰り返し動く。デバイスの回転速度を変化させることにより、操作者は、組織除去面を狭窄組織に押し当てる力を制御することができ、それによって、プラーク除去の速度および除去される組織の粒子サイズをより的確に制御することができる。さらに、システム27の2つ以上の偏心研削ヘッドの静止直径が(遠位側から近位側に向けて)順々に大きくなることによって、拡張偏心研削ヘッド(たとえば、28Sおよび/または28A)の静止直径よりも大きい直径にまで狭窄部を広げることが可能になる。さらに、螺旋状チャネルがシステム27の偏心研削ヘッドの周りに形成される上述の不均衡な実施形態では、冷却溶液および血液は拡張研削ヘッドの周りを絶え間なく流れることができる。研削ヘッドが病変を通過すると、除去された組織粒子がこのような絶え間ない血液および冷却溶液の流れによって螺旋状チャネルの下流へ絶え間なく流されることにより、除去された粒子が均一に放出される。
偏心拡張研削ヘッド28Sおよび/または28Aの最大断面直径は約1.0mm~約3.0mmであってもよい。したがって、偏心拡張研削ヘッドの断面直径は1.0mm、1.25mm、1.50mm、1.75mm、2.0mm、2.25mm、2.50mm、2.75mm、および3.0mmを含み得るが、これらに限定されない。上記列挙された断面直径における0.25mmという増加量は例示に過ぎず、本発明は当該例示の列挙に限定されないこと、したがって断面直径の他の増加量も可能であり本発明の範囲内であることを、当業者ならば容易に認識するであろう。
上述のように拡張研削ヘッド28Sおよび/または28Aの偏心率は多数のパラメータによって決まるため、ドライブシャフト20の回転軸21と、偏心拡張研削ヘッドの最大断面直径の位置で切り取った横断面の幾何学的中心との間の距離に関して、以下の設計パラメータが考慮され得ることを出願人は見出した。最大断面直径が約1.0mm~約1.5mmである偏心拡張研削ヘッドを有するデバイスの場合、幾何学的中心はドライブシャ
フトの回転軸から少なくとも約0.02mm、好ましくは少なくとも約0.035mmの距離だけ離隔することが望ましい。最大断面直径が約1.5mm~約1.75mmである偏心拡張研削ヘッドを有するデバイスの場合、幾何学的中心はドライブシャフトの回転軸から少なくとも約0.05mm、好ましくは少なくとも約0.07mm、最も好ましくは少なくとも約0.09mmの距離だけ離隔することが望ましい。最大断面直径が約1.75mm~約2.0mmである偏心拡張研削ヘッドを有するデバイスの場合、幾何学的中心はドライブシャフトの回転軸から少なくとも約0.1mm、好ましくは少なくとも約0.15mm、最も好ましくは少なくとも約0.2mmの距離だけ離隔することが望ましい。最大断面直径が2.0mmよりも大きい偏心拡張研削ヘッドを有するデバイスの場合、幾何学的中心はドライブシャフトの回転軸から少なくとも約0.15mm、好ましくは少なくとも約0.25mm、最も好ましくは少なくとも約0.3mmの距離だけ離隔することが望ましい。
また、設計パラメータは質量中心の位置に基づいてもよい。最大断面直径が約1.0mm~約1.5mmである偏心拡張研削ヘッド28Sおよび/または28Aを有するデバイスの場合、質量中心はドライブシャフトの回転軸から少なくとも約0.013mm、好ましくは少なくとも約0.02mmの距離だけ離隔することが望ましい。最大断面直径が約1.5mm~約1.75mmである偏心拡張研削ヘッド28Sおよび/または28Aを有するデバイスの場合、質量中心はドライブシャフトの回転軸から少なくとも約0.03mm、好ましくは少なくとも約0.05mmの距離だけ離隔することが望ましい。最大断面直径が約1.75mm~約2.0mmである偏心拡張研削ヘッドを有するデバイスの場合、質量中心はドライブシャフトの回転軸から少なくとも約0.06mm、好ましくは少なくとも約0.1mmの距離だけ離隔することが望ましい。最大断面直径が2.0mmよりも大きい偏心拡張研削ヘッドを有するデバイスの場合、質量中心はドライブシャフトの回転軸から少なくとも約0.1mm、好ましくは少なくとも約0.16mmの距離だけ離隔することが望ましい。
さらに、この適用例は、研削要素(同心であっても偏心であってもよい)の軌道運動を促進するために、ドライブシャフト上に位置付けられ固定的に取り付けられた少なくとも1つのカウンターウエイトを備えてもよい。上記少なくとも1つのカウンターウエイトのうちの1つは研削セクションの近位に位置してもよく、上記少なくとも1つのカウンターウエイトのうちの別のカウンターウエイトは研削セクションの遠位に位置してもよい。上記少なくとも1つのカウンターウエイトは、その上にさらに研削部を含んでもよい。これにより、少なくとも1つの研削カウンターウエイトが形成される。
本明細書において、カウンターウエイトは、ドライブシャフト上で研削要素の近位または遠位に位置する要素として定義される。研削要素は、同心(すなわち、質量中心がドライブシャフトの回転軸上に位置する)であってもよいし、代替的には、偏心(すなわち、質量中心がドライブシャフトの回転軸から径方向にずれている)であってもよい。カウンターウエイトもまた、偏心であってもよいし、または同心であってもよい。このように、カウンターウエイトはさらに、質量中心が研削要素の質量中心の位置から径方向にずれているものとして定義される。当業者ならば多種多様な可能性を容易に思い付くであろう。各々の場合において、少なくとも1つのカウンターウエイトのうちの少なくとも1つのカウンターウエイトの質量中心の位置が研削要素の質量中心から径方向にずれた不均衡なシステムが考えられる。カウンターウエイトはさらに、各カウンターウエイトと研削要素との間の距離が等しくない2つ以上のカウンターウエイトを有する研削要素のシステムにおいて定義される。このように、研削要素および少なくとも1つのカウンターウエイトの質量中心がドライブシャフトの回転軸上に位置していたとしても、近位カウンターウエイトを研削要素から距離D1だけ離して配置し、遠位カウンターウエイトを研削要素から距離D2だけ離れて配置することによって(D1はD2よりも大きい)、カウンターウエイト
の効果が発揮される。
たとえば、図11~図17は、研削部122が設けられた研削要素121C、121Eと、近位カウンターウエイト123C、123Eと、遠位カウンターウエイト124C、124Eとを含むドライブシャフト120の部分の断面概略図である。回転軸125はドライブシャフト120の中心を通って延在する。分かり易くするために、ドライブシャフト120の個々のコイルは図示しない。要素121C、121E、123C、123E、124Cおよび124Eは、これらの図では単に円形で表されているが、これらの要素のうちのいずれかまたはすべては研削バー(任意の形状の塊)であってもよいことが理解されるであろう。さらに、限定されるわけではないが、それらはドライブシャフトコイルのサイズおよび/または形状が変化したもの、または、ほぼ特徴のないドライブシャフト120から区別可能な他のものが含まれることも理解されるであろう。図10~図18の各要素の質量中心には「x」の印が付され、さらに、ドライブシャフト120の回転軸125からの径方向のずれがある場合にそのずれを示すために、ドライブシャフト120の回転軸125が表わされている。
図11は、回転ドライブシャフト120に装着された偏心研削要素121E、偏心近位カウンターウエイト123E、および偏心遠位カウンターウエイト124Eを示す。図12は、偏心研削要素121E、偏心近位カウンターウエイト123E、および同心遠位カウンターウエイト124Cを示す。図13は、偏心研削要素121E、同心近位カウンターウエイト123C、および偏心遠位カウンターウエイト124Eを示す。図14は、偏心研削要素121E、同心近位カウンターウエイト123C、および同心遠位カウンターウエイト124Cを示す。図15は、同心研削要素121C、偏心近位カウンターウエイト123E、および偏心遠位カウンターウエイト124Eを示す。図16は、同心研削要素121C、偏心近位カウンターウエイト123E、および同心遠位カウンターウエイト124Cを示す。図17は、同心研削要素121C、同心近位カウンターウエイト123C、および偏心遠位カウンターウエイト124Eを示す。図18は、同心研削要素121C、同心近位カウンターウエイト123C、および同心遠位カウンターウエイト124Cを示す。
なお、図11~図17はすべて近位カウンターウエイトおよび遠位カウンターウエイトを示しているが、1つのカウンターウエイトの質量中心が関連研削要素の質量中心の位置から径方向にずれて位置しているならば、カウンターウエイトが1つの場合も本明細書に記載の本発明の範囲内であることが理解される。
図19は、研削要素121ならびにカウンターウエイト123および124の概略図である。近位カウンターウエイト123および研削要素121の質量中心間の距離は距離D1であり、遠位カウンターウエイト124および研削要素121の質量中心間の距離は距離D2である。D1とD2とが等しい場合もあるし、異なる場合もある。なお、図18において、D1およびD2は異なる要素の質量中心間の距離として示されているが、代替的には、D1およびD2はドライブシャフトの回転軸に沿った長手方向距離を表わしてもよい。
たとえば、近位および遠位カウンターウエイト100、102のうちの一方または両方が、拡張偏心直径研削セクション28Aと同様の態様で形成されたドライブシャフトの拡張直径セクションを含んでもよい。この適用例では、カウンターウエイト100、102は、本質的には、ワイヤ巻き工程の際にマンドレルを用いて形成されたドライブシャフト20の中空拡張ワイヤ巻きである。ドライブシャフト20の拡張偏心直径研削セクションであるカウンターウエイトが1つだけ(近位カウンターウエイト102または遠位カウンターウエイト100のいずれか)の場合には、残りのカウンターウエイトは同心(すなわ
ち、質量中心がドライブシャフトの回転軸と同一線上)であって、かつ、ドライブシャフトの拡張直径セクション、中実クラウン、または少なくとも部分的に中空のクラウンであってもよい。または、残りのカウンターウエイトは、偏心であって、かつ、中実バー、または少なくとも部分的に中空のクラウンもしくは研削ヘッドであってもよい。
代替的には、近位および遠位カウンターウエイト100、102のうちの一方または両方は中実であってもよく、当業者に周知の手段によってドライブシャフト20のワイヤ巻きに取り付けられてもよい(図6)。さらに代替的には、近位および遠位カウンターウエイトは、少なくとも部分的に中空であってもよい。
また、さらに代替的には、少なくとも1つのカウンターウエイトのうちの一方または両方は差異のある材料の組み合わせを含み、カウンターウエイト100、102のうちの少なくとも1つの一方側が他方側よりも重いか、または高密度の材料からなってもよい。これにより、本明細書で規定される偏心が生じる。当業者ならば認識するであろうが、少なくとも1つのカウンターウエイトにおいて差異のある材料を用いることよって偏心を生じさせること、つまり、ドライブシャフトの回転軸から質量中心をずらすことは、カウンターウエイトの如何なる構成にも適用可能である。つまり、同心または偏心の、中実バー、部分的に中空のクラウンもしくは研削ヘッド、またはドライブシャフトの拡張セクション、またはそれらの均等物のいずれにも適用可能である。
さらに、一適用例では、近位および遠位カウンターウエイトは全体質量が実質的に等しく、各カウンターウエイトは、研削要素の全体質量の略2分の1である。近位および遠位カウンターウエイトは研削セクションから等距離であり、近位および遠位カウンターウエイトの質量中心はドライブシャフトの回転軸から等距離であり、近位および遠位カウンターウエイトの質量中心は研削要素の質量中心から等距離である。高速回転時における研削要素の軌道回転直径を操作するために用いられる、研削要素とカウンターウエイトとの間の質量分布の代替例および均等例を、当業者ならば容易に思い付くであろう。
代替的には、少なくとも1つのカウンターウエイトのうちの1つは偏心であってもよい。すなわち、1つの構成において、カウンターウエイト(近位および/または遠位)の質量中心がドライブシャフトの回転軸から径方向に離隔しており、かつ、偏心研削要素の質量中心と同一の長手方向平面内に並んでもよい。カウンターウエイトの質量中心を径方向に離隔させることは、各カウンターウエイトの幾何学的中心をドライブシャフトの回転軸から離隔させることによって実現され得る。近位カウンターウエイトおよび遠位カウンターウエイトの各々の質量中心は、研削要素の質量中心から180度の回転方向角度だけ離れていてもよい。本明細書で述べる近位および/または遠位カウンターウエイトの質量中心によって、研削要素の軌道運動が促進(すなわち、回転直径が増加)されてもよいし、または抑制(すなわち、回転直径が減少)されてもよい。
重要なことには、本適用例では、近位および/または遠位カウンターウエイトと併用して小径の研削要素を使用しながら、本明細書に記載のカウンターウエイトを含まない公知文献の大径の研削要素と同等の軌跡直径の穴を開けることが可能である。
当業者ならば、ドライブシャフトの所与の回転速度に対して、これらのパラメータの如何なる数の組み合わせおよび変更も認識するであろう。これらのパラメータのうちのいずれかの変更は、研削セクションが取る軌道経路の直径を増加するものであってもよいし、減少(抑制)するものであってもよいことを、当業者ならば認識するであろう。このように、軌道経路の直径は個々の穴についてカスタマイズされ得る。
研削セクション28が同心である一適用例では、近位および遠位カウンターウエイト1
00、102は全体質量が実質的に等しく、各カウンターウエイト100、102は、同心研削セクション28の全体質量の略2分の1である。近位カウンターウエイト102および遠位カウンターウエイト100は同心研削セクション100から等距離であり、近位および遠位の質量中心はドライブシャフト20の回転軸から等距離であり、近位および遠位の質量中心は同心研削セクション28の質量中心から等距離である。
近位および/または遠位カウンターウエイトは、同心(すなわち、断面形状が球形状もしくは楕円形状または他の同心形状)であってもよく、カウンターウエイトの質量中心が実質的にドライブシャフトの回転軸上にあってもよい。
同心研削要素を備える適用例では、好ましくは、近位および/または遠位カウンターウエイトが偏心である。すなわち、たとえば、図15に示すように、近位および/または遠位カウンターウエイトの質量中心がドライブシャフトの回転軸から径方向に離隔してもよい。各カウンターウエイトの質量中心は同一長手方向平面でずれており、かつ、回転軸と同一線上の同心研削セクションの質量中心と同一長手方向平面でずれている。また、近位および/または遠位カウンターウエイトの質量中心は、両方ともドライブシャフトの回転軸の上方にあってもよいし下方にあってもよいが、これらの質量中心は両方とも同一長手方向平面内に並んでいる。したがって、研削要素の質量中心と近位および/または遠位カウンターウエイトの質量中心との間の「ずれ」が形成される。図4Aの参照によって分かるように、近位および/または遠位カウンターウエイトの質量中心は、当業者によって容易に認識されるようにドライブシャフトの回転軸を中心として180度または他のずれ角度だけ互いからずれていてもよい。
偏心研削セクションの場合と同様に、同心研削セクションの場合にも、偏心近位および/または偏心遠位カウンターウエイトの場合の質量中心の径方向離隔は、各カウンターウエイトの幾何学的中心をドライブシャフトの回転軸から離隔することによって実現することができる。近位カウンターウエイトおよび遠位カウンターウエイトの各々の質量中心は同心研削セクションの質量中心から離れており、かつ同一長手方向平面内にある。このようなカウンターウエイト構成の場合、研削要素による軌道運動が促進されることにより、研削要素が弧を描いて動き、狭窄病変を静止同心研削要素の外径よりも実質的に大きい直径にまで広げることが容易になる。上述のように、本適用例では、近位および/または遠位カウンターウエイトと併用して小径の研削要素を使用しながら、公知文献の大径の同心研削要素と同等の軌跡直径の穴を開けることが可能である。
本明細書で使用される「偏心」という単語は、ドライブシャフトの偏心拡張直径セクション、または偏心中実バー、または少なくとも部分的に中空の偏心クラウンもしくは偏心研削ヘッド、または偏心カウンターウエイトを備える研削要素の幾何学的中心と、ドライブシャフトの回転軸との間の位置の相違を意味するか、または、偏心拡張直径セクション、偏心中実バー、少なくとも部分的に中空の偏心クラウンもしくは偏心研削ヘッド28C、または近位および/または遠位の偏心カウンターウエイトを備える偏心研削要素の質量中心と、ドライブシャフトの回転軸との間の位置の相違を意味するものとして定義されるということを理解すべきである。これらの相違のうちのいずれであっても、研削要素は、適切な回転速度で当該研削要素の公称直径よりも実質的に大きい直径にまで狭窄部を広げることが可能である。また、規則的な幾何学形状ではない形状の偏心研削要素に関して、「幾何学的中心」という概念は、ドライブシャフトの回転軸を通って引かれ、かつ偏心拡張直径セクションの周長が最大となる位置で切り取った横断面の外周上の2点を結ぶ最も長い弦の中点を特定することによって近似され得る。さらに、規定される偏心は、研削要素が実質的に同心断面形状を有するものの、たとえば、研削要素の一方側の部分をくり抜くことによって断面形状の一部分が残りの部分よりも重くなるように設計したものであってもよいということを、当業者ならば認識するであろう。
さらに、本明細書で使用される同心という用語は、図18に示すように、研削要素、および/または、近位および/または遠位カウンターウエイトがドライブシャフトの回転軸上(すなわち、ドライブシャフトの回転軸と同一線上)に質量中心を有し、かつ、実質的に対称の断面形状を有することを意味するものとして定義されるということも理解すべきである。
本明細書で使用される「要素」という用語は、ドライブシャフトに沿った任意の特徴、たとえば、研削バー、塊、錘、カウンターウエイト、ドライブシャフトコイルのサイズおよび/または形状が変化したもの、または、ほぼ特徴のないドライブシャフトから区別可能な他の任意のものを示すために使用され得る。
一般的に、ドライブシャフトは、少なくとも1つの螺旋状に巻かれたコイルを含み得る。このコイルは、ガイドワイヤがドライブシャフトに対して長手方向に平行移動するようにガイドワイヤを囲んでいる。言い換えると、ガイドワイヤはドライブシャフトに対して長手方向に前進および後退し、および/または、ドライブシャフトはガイドワイヤに対して長手方向に前進および後退し得る。この前進および/または後退は、狭窄部除去の前、最中、および/または後の如何なる好適なタイミングで行なわれてもよい。
アテレクトミーデバイスが含む要素がただ1つである場合(たとえば、研削バーが1つだけ、または、拡張コイルを有するドライブシャフトの部分が1つだけの場合など)、動作時の不安定さが引き起こされる可能性がある。たとえば、ただ1つの要素をドライブシャフトの回転軸周りで高速回転させた場合、この1つの要素はかなり偏向しやすいため、この要素の軌道運動が不規則となって、除去処理中の血管内部に損傷を与える可能性がある。
安定性を増すためには、ただ1つの要素の質量を単に増加させたくなるかもしれない。そのように質量を増加させることによって偏向への抗力は増大し得るが、当該要素が偏心である場合(その質量中心がドライブシャフトの回転軸から横方向にずれている場合)には、質量が増加すると、単純に軸から大きく離れたところに大きすぎる質量を有することにより、軌道運動自体の安定性が低下する可能性がある。このように、偏心の質量を増加させることにより、高速回転時にドライブシャフトおよび/またはガイドワイヤが損傷する可能性がある。
ただ1つの要素の質量を単に増加させるよりも優れた改善策は、ドライブシャフトに沿って当該要素から長手方向に離れた位置に1つ以上のカウンターウエイトを設けることである。全体として、質量の増加は確かに動作時の安定性を向上させるが、当該ただ1つの要素よりも近位および/または遠位の位置の質量を増加することによって、当該ただ1つの要素の軌道運動を損なわずに安定性を向上することができる。
いくつかの場合には、質量の増加は、ドライブシャフトに沿って長手方向に、研削要素の両側に配置された近位カウンターウエイトおよび遠位カウンターウエイトであってもよい。下記の段落では、これらのカウンターウエイトのさまざまな構成について説明する。
いくつかの場合には、研削要素は、近位および遠位カウンターウエイトの中間に位置してもよい。他の適用例では、研削要素は他方のカウンターウエイトよりも一方のカウンターウエイトの近くに位置してもよい。
いくつかの場合には、近位および遠位カウンターウエイトの質量が等しくてもよい。いくつかの場合には、近位および遠位カウンターウエイトの質量がともに研削要素の質量の
2分の1に等しくてもよい。いくつかの場合には、近位および遠位カウンターウエイトの質量がともに研削要素の質量の2分の1に等しく、かつ、研削要素がそれらのカウンターウエイトの長手方向中間点に位置してもよい。
いくつかの場合には、研削要素は偏心であってもよい。いくつかの場合には、研削要素は偏心であり、両方のカウンターウエイトは偏心であってもよい。他の適用例では、研削要素は偏心であり、一方のカウンターウエイトは偏心であり、他方のカウンターウエイトは同心であってもよい。これらの適用例のうちのいくつかでは、カウンターウエイトおよび研削要素は、ドライブシャフトの回転軸と一致する合成質量中心を有してもよい。これらの適用例のうちの他の例では、カウンターウエイトおよび研削要素は、ドライブシャフトの回転軸から横にずれた合成質量中心を有してもよい。
いくつかの場合には、研削要素は同心であってもよい。いくつかの場合には、研削要素は同心であり、両方のカウンターウエイトは同心であってもよい。他の適用例では、研削要素は同心であり、両方のカウンターウエイトは同心であるが、それらの合成質量中心がドライブシャフトの回転軸と略一致するように、互いにドライブシャフトの反対側にあってもよい。さらに他の適用例では、研削要素は同心であり、両方のカウンターウエイトは同心であるが、それらの合成質量中心がドライブシャフトの回転軸から略横方向にずれるように、ともにドライブシャフトの同じ側にあってもよい。
いくつかの場合には、2つ以上の近位カウンターウエイト、および/または2つ以上の遠位カウンターウエイトが存在してもよい。いくつかの場合には、隣り合うカウンターウエイトが偏心であり、それらの合成質量中心がドライブシャフトの回転軸と略一致するように、横方向のずれが互いにドライブシャフトの反対側であってもよい。
いくつかの場合には、少なくとも1つのカウンターウエイトは、略平滑な外面を有する略丸型であってもよい。これは、使用中の血管内部への望ましくない損傷を抑制するのに役立ち得る。
いくつかの場合には、ガイドワイヤは使用中にドライブシャフト内部の全体にわたって延在したままであってもよく、さらに、ドライブシャフトの遠位端まで、またはそれを超えて延在してもよい。これにより、アテレクトミーデバイス全体の安定性が向上し得る。なぜなら、ガイドワイヤの局部剛性はドライブシャフトの局部剛性よりも大きいかもしれないが、ドライブシャフト上のいずれかの偏心要素の軌道運動の幅を減少させる可能性があるからである。ただし、ガイドワイヤは、これらの条件の下で望ましくない屈曲応力を受ける可能性がある。
他の適用例では、ガイドワイヤは、使用前(または使用中)にドライブシャフトの遠位端から部分的または完全に後退してもよい。ドライブシャフトは、局部剛性ガイドワイヤが内部にない場合には、ガイドワイヤが内部に留まっている場合よりも、遠心力の影響の下で回転する際に大きく自由に屈曲できる。結果として、ガイドワイヤが内部を通っていない偏心要素は、所与の回転速度および要素サイズに対して高速回転時に回転軸からより遠くに及ぶことができるので、望ましいことに、より大きな切断直径を作り出すことができる。関係する材料の剛性、屈曲性、および/または可撓性次第で、切断直径の増加は4倍以上にまでなり得る。
このようにガイドワイヤを後退させることは、いくつかの点で有利であり得る。たとえば、設計の目的のうちの1つが、所与の回転速度に対して特定の切断直径を実現することであれば、使用中にガイドワイヤがドライブシャフト全体にわたって延在したままである場合と比較して、ガイドワイヤを後退させた場合には偏心研削要素の静止直径を減少させ
ることができる。言い換えると、他の全ての条件が同じならば、使用前(または使用中)にガイドワイヤを後退させた場合には、小型化した研削要素で所望の切断直径を実現することができる。小型化した要素は患者の血管系内に入れるのが容易である点、および、そのような要素は詰まりにくく、操作が容易であり、使用の前後で付随的な血管内部への損傷を起こしにくい点において、小型化した研削要素を備えることは有利であり得る。
さらに、ガイドワイヤは後退することによって屈曲応力を受けにくくなるため、破損しにくくなり得る。これにより、除去処理中の血管内部への損傷のリスクがさらに低減される。
いくつかの場合には、ガイドワイヤは、使用中にドライブシャフトの遠位端まで、または当該遠位端を超えて延在する。いくつかの場合には、ガイドワイヤは、使用前または使用中に遠位カウンターウエイトまで後退してもよい。いくつかの場合には、ガイドワイヤは、使用前または使用中に研削要素まで後退してもよい。いくつかの場合には、ガイドワイヤは、使用前または使用中に近位カウンターウエイトまで後退してもよい。いくつかの場合には、ガイドワイヤは、使用前または使用中に近位カウンターウエイトを超えて後退してもよい。
本発明は、上述の特定的な例に限定して考慮されるべきではなく、本発明のすべての局面をカバーするものとして理解されるべきである。本明細書を検討すれば、本発明を適用可能なさまざまな変更、同等の方法、および多数の構造が、本発明が向けられる技術分野の当業者に容易に明らかになるであろう。

Claims (35)

  1. 高速回転式アテレクトミーデバイスであって、
    ガイドワイヤと、
    前記ガイドワイヤ上で前進することができる、可撓性の細長い回転可能なドライブシャフトとを備え、前記ドライブシャフトは回転軸を有し、前記デバイスはさらに、
    前記ドライブシャフト上に配置された偏心研削要素を備え、前記偏心研削要素は質量を有し、前記偏心研削要素の質量中心は長手方向平面に沿った方向において前記ドライブシャフトの回転軸から径方向に離隔しており、前記デバイスはさらに、
    前記ドライブシャフト上に配置された偏心近位研削カウンターウエイトを備え、前記偏心近位研削カウンターウエイトは質量を有し、前記偏心近位研削カウンターウエイトの質量中心は、前記長手方向平面に沿って、かつ、前記長手方向平面に沿って前記回転軸から径方向に離隔した前記偏心研削要素の質量中心の離隔とは反対方向に、前記回転軸から径方向に離隔しており、前記偏心近位研削カウンターウエイトの質量中心は前記偏心研削要素の質量中心から離隔しており、前記デバイスはさらに、
    前記ドライブシャフト上に配置された偏心遠位研削カウンターウエイトを備え、前記偏心遠位研削カウンターウエイトは質量を有し、前記偏心遠位研削カウンターウエイトの質量中心は前記長手方向平面に沿って前記ドライブシャフトの回転軸から径方向に離隔しており、前記偏心遠位研削カウンターウエイトの質量中心は前記偏心研削要素の質量中心から離隔している、高速回転式アテレクトミーデバイス。
  2. 前記偏心遠位研削カウンターウエイトの質量中心はさらに、前記偏心研削要素の質量中心および前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔と同一方向に、前記回転軸から径方向に離隔している、請求項1に記載のデバイス。
  3. 前記偏心遠位研削カウンターウエイトの質量中心はさらに、前記偏心近位研削要素の反対方向に、前記ドライブシャフトの回転軸から径方向に離隔している、請求項1に記載のデバイス。
  4. 前記研削要素は拡張偏心研削ヘッドをさらに含む、請求項1に記載のデバイス。
  5. 前記偏心近位研削カウンターウエイトの質量と前記偏心遠位研削カウンターウエイトの質量とは等しく、各質量は前記偏心研削要素の質量の1/2である、請求項1に記載のデバイス。
  6. 前記偏心近位研削カウンターウエイトの質量と前記偏心遠位研削カウンターウエイトの質量とは互いに等しくない、請求項1に記載のデバイス。
  7. 前記偏心近位研削カウンターウエイトの質量と前記偏心遠位研削カウンターウエイトの質量との合計は、前記偏心研削要素の質量に等しい、請求項6に記載のデバイス。
  8. 前記偏心近位研削カウンターウエイトの質量と前記偏心遠位研削カウンターウエイトの質量との合計は、前記偏心研削要素の質量とは異なる、請求項6に記載のデバイス。
  9. 前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔距離と前記偏心遠位研削カウンターウエイトの質量中心の前記径方向の離隔距離とは等しく、各研削カウンターウエイトの径方向距離は、前記偏心研削ヘッドの前記径方向の離隔距離の1/2である、請求項1に記載のデバイス。
  10. 前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔距離と前記偏心遠
    位研削カウンターウエイトの質量中心の前記径方向の離隔距離とは互いに等しくない、請求項1に記載のデバイス。
  11. 前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔距離と、前記偏心遠位研削カウンターウエイトの質量中心の前記径方向の離隔距離との合計は、前記偏心研削要素の質量中心の前記径方向の離隔距離に等しい、請求項1に記載のデバイス。
  12. 前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔距離と、前記偏心遠位研削カウンターウエイトの質量中心の前記径方向の離隔距離との合計は、前記偏心研削要素の質量中心の前記径方向の離隔距離に等しい、請求項1に記載のデバイス。
  13. 前記偏心研削要素の質量中心からの前記偏心近位研削カウンターウエイトの質量中心の離隔は、前記偏心研削要素の質量中心からの前記偏心遠位カウンターウエイトの質量中心の離隔に等しい、請求項1に記載のデバイス。
  14. 前記偏心研削要素の質量中心からの前記偏心近位研削カウンターウエイトの質量中心の離隔は、前記偏心研削要素の質量中心からの前記偏心遠位研削カウンターウエイトの質量中心の離隔と等しくない、請求項1に記載のデバイス。
  15. 前記近位研削カウンターウエイトおよび前記遠位研削カウンターウエイトのうちの少なくとも1つは、少なくとも部分的に中空である、請求項1に記載のデバイス。
  16. 高速回転式アテレクトミーデバイスであって、
    ガイドワイヤと、
    前記ガイドワイヤ上で前進することができる、可撓性の細長い回転可能なドライブシャフトとを備え、前記ドライブシャフトは回転軸を有し、前記デバイスはさらに、
    前記ドライブシャフト上に配置された偏心研削要素を備え、前記偏心研削要素は質量を有し、前記偏心研削要素の質量中心は前記ドライブシャフトの回転軸から径方向に離隔しており、前記デバイスはさらに、
    前記ドライブシャフト上に配置された同心近位研削カウンターウエイトを備え、前記同心近位研削カウンターウエイトは質量を有し、前記同心近位研削カウンターウエイトの質量中心は、前記ドライブシャフトの回転軸上に位置し、かつ、前記偏心研削要素の質量中心から離隔しており、前記デバイスはさらに、
    前記ドライブシャフト上に配置された同心遠位研削カウンターウエイトを備え、前記同心遠位研削カウンターウエイトは質量を有し、前記同心遠位研削カウンターウエイトの質量中心は、前記ドライブシャフトの回転軸上に位置し、かつ、前記偏心研削要素の質量中心から離隔している、高速回転式アテレクトミーデバイス。
  17. 高速回転式アテレクトミーデバイスであって、
    ガイドワイヤと、
    前記ガイドワイヤ上で前進することができる、可撓性の細長い回転可能なドライブシャフトとを備え、前記ドライブシャフトは回転軸を有し、前記デバイスはさらに、
    前記ドライブシャフト上に配置された偏心研削要素を備え、前記偏心研削要素は質量を有し、前記偏心研削要素の質量中心は長手方向平面に沿った方向において前記ドライブシャフトの回転軸から径方向に離隔しており、前記デバイスはさらに、
    前記ドライブシャフト上に配置された偏心近位研削カウンターウエイトを備え、前記偏心近位研削カウンターウエイトは質量を有し、前記偏心近位研削カウンターウエイトの質量中心は、前記長手方向平面に沿って、かつ、前記回転軸から径方向に離隔した前記偏心研削要素の質量中心の離隔とは反対方向に、前記偏心研削要素の質量中心の前記径方向の離隔とは異なる長手方向平面に沿って、前記回転軸から径方向に離隔しており、前記デバ
    イスはさらに、
    前記ドライブシャフト上に配置された偏心遠位研削カウンターウエイトを備え、前記偏心遠位研削カウンターウエイトは質量を有し、前記偏心遠位研削カウンターウエイトの質量中心は長手方向平面に沿って前記ドライブシャフトの回転軸から径方向に離隔している、高速回転式アテレクトミーデバイス。
  18. 前記偏心遠位研削カウンターウエイトの質量中心はさらに、前記偏心研削要素の質量中心および前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔と同一方向に前記回転軸から径方向に離隔しており、かつ同一長手方向平面にある、請求項17に記載のデバイス。
  19. 前記偏心遠位研削カウンターウエイトの質量中心はさらに、前記偏心近位研削要素の反対方向に前記ドライブシャフトの回転軸から径方向に離隔しており、かつ同一長手方向平面にある、請求項17に記載のデバイス。
  20. 前記偏心遠位研削カウンターウエイトの質量中心はさらに、前記偏心研削ヘッドの質量中心とは異なる長手方向平面で前記回転軸から径方向に離隔している、請求項17に記載のデバイス。
  21. 前記偏心遠位研削カウンターウエイトの質量中心はさらに、前記偏心近位研削カウンターウエイトの質量中心とは異なる長手方向平面で前記回転軸から径方向に離隔している、請求項20に記載のデバイス。
  22. 前記研削要素は拡張偏心研削ヘッドをさらに含む、請求項17に記載のデバイス。
  23. 前記偏心近位研削カウンターウエイトの質量と前記偏心遠位研削カウンターウエイトの質量とは等しく、各質量は前記偏心研削要素の質量の1/2である、請求項17に記載のデバイス。
  24. 前記偏心近位研削カウンターウエイトの質量と前記偏心遠位研削カウンターウエイトの質量とは互いに等しくない、請求項17に記載のデバイス。
  25. 前記偏心近位研削カウンターウエイトの質量と前記偏心遠位研削カウンターウエイトの質量との合計は、前記偏心研削要素の質量に等しい、請求項23に記載のデバイス。
  26. 前記偏心近位研削カウンターウエイトの質量と前記偏心遠位研削カウンターウエイトの質量との合計は、前記偏心研削要素の質量とは異なる、請求項23に記載のデバイス。
  27. 前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔距離と前記偏心遠位研削カウンターウエイトの質量中心の前記径方向の離隔距離とは等しく、各研削カウンターウエイトの径方向距離は、前記偏心研削ヘッドの前記径方向の離隔距離の1/2である、請求項17に記載のデバイス。
  28. 前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔距離と前記偏心遠位研削カウンターウエイトの質量中心の前記径方向の離隔距離とは互いに等しくない、請求項17に記載のデバイス。
  29. 前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔距離と、前記偏心遠位研削カウンターウエイトの質量中心の前記径方向の離隔距離との合計は、前記偏心研削要素の質量中心の前記径方向の離隔距離に等しい、請求項17に記載のデバイス。
  30. 前記偏心近位研削カウンターウエイトの質量中心の前記径方向の離隔距離と、前記偏心遠位研削カウンターウエイトの質量中心の前記径方向の離隔距離との合計は、前記偏心研削要素の質量中心の前記径方向の離隔距離に等しい、請求項17に記載のデバイス。
  31. 前記偏心研削要素の質量中心からの前記偏心近位研削カウンターウエイトの質量中心の離隔は、前記偏心研削要素の質量中心からの前記偏心遠位研削カウンターウエイトの質量中心の離隔に等しい、請求項17に記載のデバイス。
  32. 前記偏心研削要素の質量中心からの前記偏心近位研削カウンターウエイトの質量中心の離隔は、前記偏心研削要素の質量中心からの前記偏心遠位研削カウンターウエイトの質量中心の離隔と等しくない、請求項17に記載のデバイス。
  33. 前記偏心研削要素の質量中心、前記偏心近位研削カウンターウエイトの質量中心、および前記偏心遠位カウンターウエイトの質量中心を含む長手方向平面間の、隣り合う長手方向平面間の回転方向の離隔は0度~90度である、請求項21に記載のデバイス。
  34. 前記偏心研削要素の質量中心、前記偏心近位研削カウンターウエイトの質量中心、および前記偏心遠位カウンターウエイトの質量中心を含む長手方向平面間の、隣り合う長手方向平面間の回転方向の離隔は約45度である、請求項33に記載のデバイス。
  35. 前記近位研削カウンターウエイトおよび前記遠位研削カウンターウエイトのうちの少なくとも1つは、少なくとも部分的に中空である、請求項17に記載のデバイス。
JP2023100699A 2016-03-21 2023-06-20 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス Pending JP2023123615A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/075,979 2016-03-21
US15/075,979 US10517631B2 (en) 2012-09-17 2016-03-21 Rotational atherectomy device with a system of eccentric abrading heads
JP2020190975A JP7365994B2 (ja) 2016-03-21 2020-11-17 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020190975A Division JP7365994B2 (ja) 2016-03-21 2020-11-17 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス

Publications (1)

Publication Number Publication Date
JP2023123615A true JP2023123615A (ja) 2023-09-05

Family

ID=59899666

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018549517A Pending JP2019511297A (ja) 2016-03-21 2017-02-14 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス
JP2020190975A Active JP7365994B2 (ja) 2016-03-21 2020-11-17 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス
JP2023100699A Pending JP2023123615A (ja) 2016-03-21 2023-06-20 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018549517A Pending JP2019511297A (ja) 2016-03-21 2017-02-14 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス
JP2020190975A Active JP7365994B2 (ja) 2016-03-21 2020-11-17 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス

Country Status (11)

Country Link
EP (1) EP3432813A4 (ja)
JP (3) JP2019511297A (ja)
KR (1) KR20180125479A (ja)
CN (1) CN108882947B (ja)
AU (1) AU2017237714A1 (ja)
BR (1) BR112018069307A2 (ja)
CA (1) CA3017881A1 (ja)
MX (1) MX2018011459A (ja)
RU (1) RU2018131953A (ja)
SG (1) SG11201807481UA (ja)
WO (1) WO2017165013A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111012448A (zh) * 2019-08-20 2020-04-17 上海微创医疗器械(集团)有限公司 旋磨装置
CN117064493B (zh) * 2023-10-17 2024-01-26 广东博迈医疗科技股份有限公司 偏心血栓旋磨组件及旋磨系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360432A (en) 1992-10-16 1994-11-01 Shturman Cardiology Systems, Inc. Abrasive drive shaft device for directional rotational atherectomy
US5584843A (en) 1994-12-20 1996-12-17 Boston Scientific Corporation Shaped wire multi-burr rotational ablation device
US5681336A (en) 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US7666202B2 (en) * 2004-01-07 2010-02-23 Cardiovascular Systems, Inc. Orbital atherectomy device guide wire design
US20050149083A1 (en) * 2004-01-07 2005-07-07 Dmitriy Prudnikov Terminal guide for rotational atherectomy device and method of using same
GB2426456B (en) * 2005-05-26 2010-10-27 Leonid Shturman Rotational device with eccentric abrasive element and method of use
GB2426458A (en) * 2005-05-26 2006-11-29 Leonid Shturman Atherectomy device
GB0613979D0 (en) * 2006-07-13 2006-08-23 Shturman Leonid Rotational atherectomy device with solid support elements supported by fluid bearings
GB0623369D0 (en) * 2006-11-23 2007-01-03 Shturman Leonid Handle for a rotational atherectomy device
US8177801B2 (en) * 2008-04-18 2012-05-15 Cardiovascular Systems, Inc. Method and apparatus for increasing rotational amplitude of abrasive element on high-speed rotational atherectomy device
US9055966B2 (en) 2008-05-30 2015-06-16 Cardiovascular Systems, Inc. Eccentric abrading and cutting head for high-speed rotational atherectomy devices
GB0905748D0 (en) * 2009-04-03 2009-05-20 Shturman Leonid Rotational atherectomy device with eccentric abrasive element and method of use
US10517631B2 (en) * 2012-09-17 2019-12-31 Cardiovascular Systems, Inc. Rotational atherectomy device with a system of eccentric abrading heads
US9289230B2 (en) * 2012-09-17 2016-03-22 Cardiovascular Systems, Inc. Rotational atherectomy device with a system of eccentric abrading heads

Also Published As

Publication number Publication date
RU2018131953A (ru) 2020-04-22
CN108882947B (zh) 2022-02-25
EP3432813A1 (en) 2019-01-30
EP3432813A4 (en) 2019-08-14
MX2018011459A (es) 2019-03-28
CA3017881A1 (en) 2017-09-28
JP2021041197A (ja) 2021-03-18
AU2017237714A1 (en) 2018-09-20
CN108882947A (zh) 2018-11-23
KR20180125479A (ko) 2018-11-23
JP7365994B2 (ja) 2023-10-20
SG11201807481UA (en) 2018-09-27
JP2019511297A (ja) 2019-04-25
BR112018069307A2 (pt) 2019-01-22
WO2017165013A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6556917B2 (ja) 偏心削摩ヘッドのシステムを伴う回転式アテレクトミー装置
JP5301552B2 (ja) カウンタウェイトを有する回転式アテローム切除術用デバイス
US10517631B2 (en) Rotational atherectomy device with a system of eccentric abrading heads
JP5435821B2 (ja) 高速回転式アテレクトミーデバイス上の研磨要素の回転振幅を増大させる方法および装置
JP5307127B2 (ja) 高速回転式アテレクトミー装置のための偏心研磨ヘッド
JP5654574B2 (ja) 研削効率を改善する回転式アテローム切除術デバイスおよびシステム
JP6342473B2 (ja) 回転式アテレクトミー用の案内先端ブッシングのための装置、システム、および方法
JP2010528817A5 (ja)
JP2011521712A (ja) 高速回転式アテローム切除術用デバイスのための偏心研磨要素
JP2023123615A (ja) 偏心研削ヘッドのシステムを備える回転式アテレクトミーデバイス
JP2017536944A (ja) 回転式アテレクトミー切除用のパイロットチップブッシングのための装置、システムおよび方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230718

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240610