JP2023094024A - 現像装置および画像形成装置 - Google Patents

現像装置および画像形成装置 Download PDF

Info

Publication number
JP2023094024A
JP2023094024A JP2021209221A JP2021209221A JP2023094024A JP 2023094024 A JP2023094024 A JP 2023094024A JP 2021209221 A JP2021209221 A JP 2021209221A JP 2021209221 A JP2021209221 A JP 2021209221A JP 2023094024 A JP2023094024 A JP 2023094024A
Authority
JP
Japan
Prior art keywords
developing roller
resistance value
roller
toner
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021209221A
Other languages
English (en)
Inventor
康平 城ヶ瀧
Kohei Jokegataki
淳一 川嶋
Junichi Kawashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2021209221A priority Critical patent/JP2023094024A/ja
Publication of JP2023094024A publication Critical patent/JP2023094024A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】カブリ等の印刷不良の発生を抑制することを目的とする。【解決手段】現像装置10は、静電潜像を担持する感光体ドラム11(像担持体)と、感光体ドラム11に当接し、静電潜像を現像剤により現像する現像ローラ12(現像剤担持体)とを備える。現像ローラ12は表層12cと内層12bとを有する。表層12cと内層12bとを合わせた全体の抵抗値RALL[LogΩ]と内層12bの抵抗値RIN[LogΩ]との差RALL―Rinは、0.56[LogΩ]以上である。【選択図】図1

Description

本開示は、静電潜像を現像する現像装置、および現像装置を備えた画像形成装置に関する。
電子プロセスを利用した画像形成装置では、感光体ドラム(像担持体)の表面に形成した潜像を、現像ローラ(現像剤担持体)に付着した現像剤で現像する。例えば特許文献1には、画像品質の向上のため、感光体ドラムと現像ローラとの間の圧力を調整する技術が提案されている。
特開2009-15111号公報(要約参照)
ここで、感光体ドラムと現像ローラとの間の圧力によっては、現像ローラ上で保持されるはずのトナーが感光体ドラムの表面に付着し、その結果、白地にトナーが散らばって印刷される印刷不良(カブリ)が発生する場合がある。
本開示は、上記の課題を解決するためになされたものであり、カブリ等の印刷不良の発生を抑制することを目的とする。
本開示の現像装置は、静電潜像を担持する像担持体と、像担持体に当接し、静電潜像を現像剤により現像する現像剤担持体とを備える。現像剤担持体は表層と内層とを有する。表層と内層とを合わせた全体の抵抗値RALL[LogΩ]と内層の抵抗値RIN[LogΩ]との差RALL―Rinは、0.56[LogΩ]以上である。
本開示によれば、現像剤担持体の表面電位の低下を抑制することができ、これによりカブリ等の印刷不良を低減することができる。
実施の形態の画像形成装置の構成を示す図である。 実施の形態の画像形成装置の制御系を示すブロック図である。 実施の形態の感光体ドラムの断面構造を示す図である。 実施の形態の現像ローラの断面構造を示す図である。 現像ローラおよび供給ローラの抵抗測定方法を示す模式図(A),(B)である。 実施の形態の供給ローラの断面構造を示す図である。 実施の形態の感光体ドラムおよび現像ローラの支持構造を示す斜視図である。 感光体ドラムと現像ローラとによる搬送力の測定方法を示す模式図(A),(B)である。 現像ローラの全体抵抗および内層抵抗の測定方法を示すフローチャートである。 図9のステップS12,S15で実施する抵抗測定方法を示す模式図である。 現像ローラの表層の切削方法を示す模式図(A),(B)である。 現像ローラの残留電位の測定方法を示す図である。 連続印刷に用いる印刷パターンを示す模式図である。 テスト印刷に用いる印刷パターンを示す模式図である。 テスト印刷に用いる印刷パターンを示す模式図(A),(B)である。 現像ローラの表層の切削の影響を評価する方法を示す図(A),(B),(C)である。 現像ローラの表層を切削した場合と切削しない場合とでRALL-RINの値を比較して示すグラフである。 実施の形態と比較例におけるRALL-RINおよびRALL対する印刷結果を示すグラフである。 現像ローラから感光体ドラムへのトナー移動状態を説明するための模式図(A),(B)である。 印刷画像の色相差ΔEと、現像ローラ上のトナーの初期Q/Mとの関係を示すグラフ(A)、および現像ローラ上のトナーの初期Q/Mと現像ローラの残留電位との関係を示すグラフ(B)である。 現像ローラの残留電位と抵抗値との関係を示すグラフである。
<画像形成装置の構成>
図1は、実施の形態の画像形成装置1を示す図である。画像形成装置1は、電子写真プロセスを利用して画像を形成するプリンタである。画像形成装置1は、媒体供給部40と、現像装置10と、定着装置50と、媒体排出部60と、これらを収容する筐体1Aとを備える。
媒体供給部40は、印刷用紙等の媒体Pを収容する媒体トレイ41と、媒体トレイ41の媒体Pを一枚ずつ搬送路に送り出す給紙ローラ42と、搬送路に送り出された媒体Pを現像装置10に搬送する搬送ローラ43と、搬送される媒体Pを案内する媒体ガイド44とを有する。
現像装置10の感光体ドラム11(後述)に対向するように、露光装置としての露光ヘッド30が配置されている。露光ヘッド30は、発光素子としてのLED(発光ダイオード)を配列したLEDアレイとレンズアレイとを有し、感光体ドラム11の表面に光を照射する。なお、露光ヘッド30は、筐体1Aの上部を覆うトップカバー1Bに懸架されて支持されている。
現像装置10は、像担持体としての感光体ドラム11と、帯電部材としての帯電ローラ15と、現像剤担持体としての現像ローラ12と、供給部材としての供給ローラ13と、層規制部材としての規制ブレード14と、現像剤収容体としてのトナーカートリッジ16と、クリーニング部材17と、廃トナー搬送部18と、これらを収容するユニット筐体20とを有する。
なお、現像装置10は、上記構成要素を全て有している必要はなく、少なくとも、像担持体としての感光体ドラム11と、現像剤担持体としての現像ローラ12とを有していればよい。加えて、帯電部材としての帯電ローラ15と、供給部材としての供給ローラ13と、層規制部材としての規制ブレード14とを有していてもよい。さらに、現像剤収容体としてのトナーカートリッジ16と、クリーニング部材17と、廃トナー搬送部18と、これらを収容するユニット筐体20とを有していても良い。
感光体ドラム11は、導電性支持体の表面に感光層を形成した円筒状の部材であり、図中時計回りに回転する。感光体ドラム11は、その表面に静電潜像を担持する。感光体ドラム11の構成の詳細については、後述する。
帯電ローラ15は、感光体ドラム11に当接するように配置され、感光体ドラム11に追従して回転する。帯電ローラ15は、帯電電圧電源105(図2)から帯電電圧を印加され、感光体ドラム11の表面を一様に帯電させる。
現像ローラ12は、感光体ドラム11の表面に当接するように配置され、感光体ドラム11とは逆方向(当接部での表面の移動方向が順方向となる方向)に回転する。現像ローラ12は、現像電圧電源106(図2)から現像電圧を印加され、感光体ドラム11の表面の静電潜像をトナー(現像剤)により現像する。
供給ローラ13は、現像ローラ12の表面に当接するように配置され、現像ローラ12と同方向(当接部での表面の移動方向が逆方向となる方向)に回転する。供給ローラ13は、供給電圧電源107(図2)から供給電圧を印加され、現像ローラ12にトナーを供給する。
規制ブレード14は、現像ローラ12の表面に当接するように配置されたブレードである。規制ブレード14は、ブレード電圧電源108(図2)からブレード電圧を印加され、現像ローラ12の表面のトナー層を一定の厚さに規制する。
トナーカートリッジ16は、現像剤としてのトナー(符号9で示す)を収容する容器である。トナー9は、例えばブラックトナーであるが、これに限定されるものではない。トナーカートリッジ16は、ユニット筐体20の上部に着脱可能に取り付けられ、現像ローラ12および供給ローラ13にトナー9を供給する。
ユニット筐体20内において現像ローラ12および供給ローラ13の上方には、トナーカートリッジ16から供給されたトナー9を貯蔵するスペースであるトナー貯蔵部が形成される。トナー貯蔵部には、クランク状の撹拌バー25,26,27が配置されている。撹拌バー25,26,27は矢印で示す方向に回転し、トナー9を撹拌・搬送する。現像ローラ12の下方には、トナー漏れを防止するためのシール部材28が設けられている。
クリーニング部材17は、感光体ドラム11の表面に当接するように配置されたブレードまたはローラであり、感光体ドラム11の表面に残存するトナー9を掻き取る。廃トナー搬送部18は図示しないスクリューを有し、クリーニング部材17によって掻き取られた廃トナーを廃トナー回収部に搬送する。
なお、現像装置10は、画像形成ユニット、プロセスユニットまたはイメージドラムユニット(IDユニット)とも称される。
感光体ドラム11の表面に当接するように、転写部材としての転写ローラ19が配置されている。転写ローラ19は、転写電圧電源109(図2)から転写電圧を印加される。この転写電圧により、感光体ドラム11の表面のトナー像が、感光体ドラム11と転写ローラ19との間を通過する媒体Pに転写される。
画像形成装置1は、現像装置10により単色画像を形成するが、このような例に限定されるものではない。イエロー、マゼンタ、シアン、ブラック等の複数の画像形成ユニットを媒体Pの搬送方向に配列し、カラー画像を形成するように構成してもよい。
定着装置(定着ユニットとも称する)50は、媒体Pの搬送方向において現像装置10の下流側に配置されている。定着装置50は、定着ローラ51と加圧ローラ52とを有する。定着ローラ51は、ハロゲンランプ等のヒータを内蔵する。加圧ローラ52は定着ローラ51に圧接され、定着ニップを形成する。定着ローラ51および加圧ローラ52は、定着ニップを通過する媒体Pに熱と圧力を加え、トナー像を媒体Pに定着させる。
媒体排出部60は、媒体Pの搬送方向において定着装置50の下流側に配置されている。媒体排出部60は、定着装置50を通過した媒体Pを排出口から排出する排出ローラ61と、定着装置50から排出口まで媒体Pを案内する媒体ガイド62と有する。トップカバー1Bには、排出された媒体Pを載置するスタッカ63が形成されている。
図1において、感光体ドラム11の軸方向を、X方向とする。X方向は、画像形成装置1内の各ローラの軸方向であり、搬送される媒体Pの幅方向でもある。媒体Pが現像装置10を通過するときの媒体Pの移動方向を、Y方向とする。X方向とY方向に直交する方向を、Z方向とする。ここでは、Z方向は上下方向である。
Y方向については、媒体Pが現像装置10を通過するときの搬送方向を+Y方向とし、その反対方向を-Y方向とする。X方向については、+Y方向を向いて右手方向を+X方向とし、左手方向を-X方向とする。Z方向については、図1の上方向を+Z方向とし、下方向を-Z方向とする。
<画像形成装置の制御系>
図2は、画像形成装置1の制御系を示すブロック図である。画像形成装置1は、主制御部100と、I/F(インタフェース)制御部101と、受信メモリ102と、画像データ編集メモリ103と、電圧制御部104と、ヘッド制御部110と、駆動制御部111と、定着制御部112と、定着駆動制御部113と、給紙搬送制御部114とを有する。これらの制御部およびメモリは、制御装置を構成する。
主制御部100は、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポート、タイマ等を有する。主制御部100は、上位装置からI/F制御部101を介して印刷データおよび制御コマンドを受信し、画像形成装置1の印刷動作を実行する。
主制御部100には、操作パネル(操作部)121からの操作信号、および画像形成装置1の状態を検知するセンサ群122からの検知信号が入力される。センサ群122は、例えば、媒体Pの搬送路上の位置を検知する媒体センサ、および温湿度を検出する温湿度センサ等である。
受信メモリ102は、上位装置からI/F制御部101を介して入力された印刷データを一時的に記憶する。画像データ編集メモリ103は、受信メモリ102に記憶した印刷データを受け取ると共に、その印刷データを編集処理することによって形成された画像データ、すなわちイメージデータを記録する。
電圧制御部104は、帯電電圧電源105から帯電ローラ15に印加される帯電電圧と、現像電圧電源106から現像ローラ12に印加される現像電圧と、供給電圧電源107から供給ローラ13に印加される供給電圧と、ブレード電圧電源108から規制ブレード14に印加されるブレード電圧と、転写電圧電源109から転写ローラ19に印加される転写電圧とを制御する。
ヘッド制御部110は、画像データ編集メモリ103に記録されたイメージデータに基づき、露光ヘッド30の各LEDを発光制御する。
駆動制御部111は、感光体ドラム11を回転駆動する駆動モータ(ドラムモータ)115の回転を制御する。なお、感光体ドラム11の回転は、現像ローラ12および供給ローラ13にも伝達される。
定着制御部112は温度調節回路を有し、定着装置50に設けられたサーミスタ等の温度センサの出力信号に基づき、定着ローラ51のヒータ53に電流を供給する。定着駆動制御部113は、定着ローラ51を回転駆動する定着モータ116の回転を制御する。なお、排出ローラ61は、定着モータ116からの回転伝達によって回転する。
給紙搬送制御部114は、給紙ローラ42を駆動する給紙モータ117、および搬送ローラ43を駆動する搬送モータ118の回転を制御する。
<画像形成装置の基本動作>
次に、画像形成装置1の印刷動作について、図1および図2を参照して説明する。主制御部100は、上位装置からI/F制御部101を介して印刷コマンドと印刷データを受信すると、印刷動作を開始する。
主制御部100は、上位装置から受信した印刷データを受信メモリ102に一時的に記録し、記録した印刷データを編集処理してイメージデータを生成し、画像データ編集メモリ103に記録する。
また、定着駆動制御部113が定着モータ116を駆動し、定着ローラ51および加圧ローラ52が回転を開始する。また、定着制御部112がヒータ53に通電し、定着ローラ51が所定の定着温度まで加熱される。
また、給紙搬送制御部114が給紙モータ117を駆動し、給紙ローラ42が媒体トレイ41内の媒体Pを矢印A1で示すように搬送路に送り出す。また、搬送モータ118により搬送ローラ43が回転し、媒体Pを矢印A2で示すように現像装置10に搬送する。
また、電圧制御部104が各電源105~108から帯電ローラ15、現像ローラ12、供給ローラ13、規制ブレード14に帯電電圧、現像電圧、供給電圧およびブレード電圧を印加する。
また、駆動制御部111が駆動モータ115を駆動し、感光体ドラム11が回転する。感光体ドラム11の回転に伴って、帯電ローラ15、現像ローラ12および供給ローラ13も回転する。帯電ローラ15は、感光体ドラム11の表面を一様に帯電させる。
また、ヘッド制御部110が露光ヘッド30を駆動し、感光体ドラム11の表面に光を照射する。これにより、感光体ドラム11の表面には静電潜像が形成される。
感光体ドラム11の表面に形成された静電潜像は、現像ローラ12に付着したトナーによって現像され、感光体ドラム11の表面にトナー像が形成される。さらに、電圧制御部104が転写電圧電源109から転写ローラ19に転写電圧を印加する。
この転写電圧により、感光体ドラム11の表面のトナー像が、感光体ドラム11と転写ローラ19との間を通過する媒体Pに転写される。媒体Pに転写されなかったトナーは、クリーニング部材17によって掻き取られる。
定着装置50では、定着ローラ51と加圧ローラ52との間の定着ニップを通過する媒体Pに熱および圧力が印加され、トナー像が媒体Pに定着される。トナー像が定着した媒体Pは、矢印A3で示すように媒体排出部60に送られる。
媒体排出部60では、排出ローラ61が媒体Pを矢印A4で示すように排出口から排出する。排出された媒体Pは、スタッカ63上に積載される。これにより、媒体Pへの画像の形成が完了する。
<現像装置の各構成要素の構成>
次に、現像装置10の各構成要素の構成について、詳細に説明する。
<トナー>
まず、トナー9について説明する。トナー9は、非磁性一成分の負帯電性トナーであり、少なくとも結着樹脂を含有するトナー母粒子に、無機微粉体または有機微粉体等の外部添加剤(外添剤)を添加したものである。なお、本実施の形態では一成分現像方式を用いているが、二成分現像方式を用いてもよい。また、負帯電性トナーに限らず、正帯電性トナーを用いても良い。
結着樹脂としては、ポリエステル系樹脂、スチレン-アクリル系樹脂、エポキシ系樹脂、またはスチレン-ブタジエン系樹脂が好ましい。結着樹脂には、離型剤、着色剤等を添加してもよく、さらに帯電制御剤、導電性調整剤、流動性向上剤またはクリーニング性向上剤等の添加剤を添加してもよい。また、複数種類の結着樹脂を混合してもよい。ここでは、二種類以上の非晶性ポリエステル樹脂と、結晶構造を持った結晶性ポリエステル樹脂とを混合したものを用いる。
トナー9の平均粒径は約7.0[μm]であり、円形度は約0.93である。平均粒径の測定には、コールター株式会社製「マルチサイザー3」を使用する。円形度の測定には、シスメックス株式会社製「フロー式粒子像分析装置FPIA-3000」を使用する。
外添剤にはシリカ(SiO)を用いる。本実施の形態では、外添剤の量を評価するため、トナー9におけるSi(ケイ素)の含有量(検出量)[重量%]を、エネルギー分散型X線分析法(EDX)による元素分析によって測定する。元素分析には、島津製作所株式会社製のエネルギー分散型蛍光X線分析装置「EDX-800HS」を用いる。測定環境はヘリウム(He)ガス雰囲気とし、X線管電圧は15[kV],50[kV]とする。本実施の形態のトナー9におけるSiの含有量は0.98~1.28[重量%]である。
一般に、X線を試料に照射すると、試料に含まれる原子固有のX線である蛍光X線が発生して試料から放出される。蛍光X線は各元素特有の波長(エネルギー)を有するため、蛍光X線の波長を調べることにより、定性分析を行うことができる。また、蛍光X線の強度は、濃度の関数となる。このため、元素特有の波長ごとにX線量を測定することにより、定量分析を行うことができる。
本実施の形態では、エネルギー分散型蛍光X線分析装置のX線管から放射されたX線をトナーに照射し、トナーの外添剤に含まれるSi原子から放出される蛍光X線に基づき、Siの含有量を測定する。なお、エネルギー分散型蛍光X線分析装置では、試料室内の雰囲気をヘリウム(He)ガスに置換し、電圧を15[kV]、電流を100[μA]としてX線を照射する。
また、トナー9のブローオフ帯電量は、-94.6[μC/g]以下である。すなわち、本実施の形態では、一般的なトナー(ブローオフ帯電量:-104.6[μC/g])よりも帯電性の低いトナーを用いる。トナーのブローオフ帯電量の測定方法は、以下の通りである。
すなわち、トナー0.5[g]とキャリア(パウダーテック株式会社製「EF96-35」)9.5[g]との混合物を容器に収容し、株式会社ヤヨイ製の振とう器「YS-LD」を用いて当該容器を振とうする。振とう回数は200[回/分]とし、振とう時間は600[秒間]とする。
振とう後、粉体帯電量測定装置(京セラケミカル株式会社製の「TB-203」)を用い、ブロー圧力を7.0[kPa]、吸引圧力を-4.5[kPa]として10[秒間]の吸引を行い、PC(パーソナルコンピュータ)に0.1[秒間]の電荷量と吸引量を出力させる。吸引時間(10[秒間])の最後の2[秒間]に出力された電荷量および吸引量の各平均値から、トナー粒子の単位重量当たりの電荷量Q/M(単位:μC/g)を算出する。測定環境は、温度25[℃]、相対湿度50[%]とする。
<感光体ドラム>
次に、感光体ドラム11について説明する。図3は、感光体ドラム11の断面構造を示す図である。感光体ドラム11は、円筒状の導電性支持体11bと、導電性支持体11bの表面に形成された感光層11cとを有する。導電性支持体11bと感光層11cとの間に、下引き層を形成してもよい。
感光層11cを構成する感光体としては、一般の電子写真感光体に適用可能な感光体が使用可能である。具体例としては、単層型感光体あるいは積層型感光体を用いることができる。単層型感光体は、光導電性材料をバインダ樹脂中に溶解または分散させた単層の感光層(すなわち単層型感光層)を有する。積層型感光体は、電荷発生物質を含有する電荷発生層と、電荷輸送物質を含有する電荷輸送層とを積層したものである。一般に、感光体は、単層型および積層型のいずれであっても同等の性能を発揮することが知られている。
本実施の形態の感光層11cは、機械的物性、電気特性、および製造安定性等を総合的に勘案して、積層型感光層が好ましい。その中でも、導電性支持体11b上に電荷発生層と電荷輸送層とをこの順に積層した順積層型感光体が特に好ましい。なお、積層型感光体は、電荷発生層と電荷輸送層が電荷の生成と輸送を分担しているため、機能分離型感光体とも称する。
機能分離型感光体の電荷輸送層を形成する際、および単層型感光体の感光層を形成する際には、膜強度確保のため、化合物(電荷輸送物質等)をバインダ樹脂(結着樹脂)に分散させるのが一般的である。機能分離型感光体の電荷輸送層は、電荷輸送物質とバインダ樹脂とを溶剤に溶解あるいは分散して得られる塗布液を、塗布し、乾燥することで形成される。また、単層型感光体は、電荷発生物質、電荷輸送物質および各種バインダ樹脂を溶剤に溶解あるいは分散して得られる塗布液を、塗布し、乾燥することで形成される。
機能分離型感光体の電荷発生層に一般に用いられるバインダ樹脂は、例えば、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールあるいはアセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼイン、塩化ビニル-酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル-酢酸ビニル共重合体、カルボキシル変性塩化ビニル-酢酸ビニル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体等の塩化ビニル-酢酸ビニル系共重合体、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、スチレン-アルキッド樹脂、シリコーン-アルキッド樹脂、フェノール-ホルムアルデヒド樹脂等の絶縁性樹脂、および、ポリ-N-ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性樹脂の中から選択することができる。但し、これらの樹脂に限定されるものではない。また、これらバインダ樹脂は1種を単独で用いてもよく、2種以上を任意の比率および組み合わせで用いてもよい。
電荷輸送層に用いられるバインダ樹脂は、例えば、ポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼイン、塩化ビニル-酢酸ビニル系共重合体、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、スチレン-アルキッド樹脂、シリコーン-アルキッド樹脂、フェノール-ホルムアルデヒド樹脂および有機光導電性樹脂等である。塩化ビニル-酢酸ビニル系共重合体は、例えば、塩化ビニル-酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル-酢酸ビニル共重合体、カルボキシル変性塩化ビニル-酢酸ビニル共重合体、および塩化ビニル-酢酸ビニル-無水マレイン酸共重合体等である。有機光導電性樹脂は、例えば、ポリ-N-ビニルカルバゾール、ポリビニルアントラセンおよびポリビニルペリレン等である。
電荷輸送層に含まれる化合物は、例えば、1種類または2種類以上の電荷輸送物質を含む。電荷輸送物質の種類は特に限定されないが、例えば、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、ヒドラゾン誘導体、カルバゾール誘導体、アニリン誘導体およびエナミン誘導体等である。電荷輸送物質は、例えば、上記した芳香族アミン誘導体のうちのいずれか1種類または2種類以上が結合された化合物でもよい。また、電荷輸送物質は、例えば、上記した芳香族アミン誘導体等からなる基を主鎖または側鎖として有する重合体(電子供与性材料)等でもよい。特に、電荷輸送物質は、芳香族アミン誘導体、スチルベン誘導体、ヒドラゾン誘導体、エナミン誘導体およびそれらのうちのいずれか1種類または2種類以上が結合された化合物であることが好ましく、芳香族アミン誘導体とエナミン誘導体とが結合された化合物であることがより好ましい。
感光体ドラム11の感光層11cは、一般に、各層を構成する材料を含有する塗布液を、導電性支持体11b上に公知の塗布方法を用いて塗布し、乾燥するという工程を各層毎に繰り返すことで形成される。塗布液の作製時にバインダ樹脂を溶解させる溶媒、分散媒としては、例えば、ペンタン、ヘキサン、オクタン、ノナン等の飽和脂肪族系溶媒、トルエン、キシレン、アニソール等の芳香族系溶媒、クロロベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族系溶媒、ジメチルホルムアミド、N-メチル-2-ピロリドン等のアミド系溶媒、メタノール、エタノール、イソプロパノール、n-ブタノール、ベンジルアルコール等のアルコール系溶媒、グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類、アセトン、シクロヘキサノン、メチルエチルケトン、4-メトキシ-4-メチル-2-ペンタノン等の鎖状、分岐および環状ケトン系溶媒、ギ酸メチル、酢酸エチル、酢酸n-ブチル等のエステル系溶媒、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、メチルセルソルブ、エチルセルソルブ等の鎖状および環状エーテル系溶媒、アセトニトリル、ジメチルスルホキシド、スルフォラン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒、n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン、トリエチルアミン等の含窒素化合物、リグロイン等の鉱油、または水等であり、上述した下引き層を溶解しないものが好ましい。なお、これらは1種を単独で用いてもよく、2種以上を任意の比率および組み合わせで用いてもよい。
塗布液の塗布方法としては、例えば浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他のコーティング法を用いてもよい。なお、これらの方法は、1種を単独で利用してもよく、2種以上を任意に組み合わせて利用してもよい。塗布液の乾燥は室温(通常25[℃])での指触乾燥後、30~190[℃]の温度範囲で、1[分]~2[時間]の乾燥時間に亘って、無風または送風下で加熱乾燥させるのが好ましい。また加熱温度は一定としてもよく、加熱温度を変更しながら乾燥してもよい。
順積層型感光体の電荷輸送層の膜厚の範囲は、一般に5~50[μm]であるが、長寿命化および画像安定性の観点からは、10~45[μm]であることが好ましい。さらに解像度向上の観点からは、10~30[μm]であることがより好ましい。また、本実施の形態の感光体ドラム11の外径は、30.0[mm]である。
<現像ローラ>
次に、現像ローラ12について説明する。図4は、現像ローラ12の断面構造を示す図である。現像ローラ12は、導電性の軸体(シャフト)12aと、軸体12aの表面を覆う内層(弾性層)12bと、内層12bの表面を覆う表層(被覆層)12cとを備える。
内層12bは、シリコーンゴム、ウレタン等の一般的なゴム材料で形成することができる。ゴム材料としてポリウレタンを用いる場合には、ポリエーテル系ポリオールを主体とするポリウレタン(エーテル系ポリウレタン)が好ましい。エーテル系ポリウレタンは、ポリエーテル系ポリオールを主体とするポリオールとポリイソシアネートとを反応することにより得られる、いわゆる注型タイプのポリウレタンである。これは、圧縮永久ひずみを小さくするためである。一方、エステル系ポリウレタンは、加水分解特性が低いため、長期に亘る安定した使用が難しい。
内層12bは、上述したゴム材料からなるゴム基材にカーボンブラックを添加し、カーボンブラックの分散状態を保持したまま加熱硬化させて形成する。
表層12cは、内層12bの表層部に表面処理液を含浸させることにより形成される。表面処理液は、有機溶媒にイソシアネートを溶解させ、さらにアクリル系樹脂およびウレタン系樹脂を一定比率で溶解させたものである。表面処理液におけるアクリル系樹脂とウレタン系樹脂との合計を100[%]とすると、アクリル系樹脂を40~60[%]含む(より望ましくは50[%]含む)ことが望ましい。表面処理液には、導電性付与剤として、例えば、アセチレンブラック等のカーボンブラックを添加する。
表面処理液に内層12bを浸漬することにより、表面処理液が内層12bの表層部に含浸される。その後、内層12bを乾燥し、硬化させることにより、内層12bの表層部が表層12cとなる。表層12cの厚さは、10[μm]~20[μm](すなわち0.01[mm]~0.02[mm])である。
現像ローラ12のローラ部分(後述する軸端部12eを除く部分)は、外径が一定のストレート形状であってもよく、外径が軸方向中央部と端部とで異なる形状(例えばクラウン形状)であってもよい。現像ローラ12と、感光体ドラム11、供給ローラ13および規制ブレード14との間の当接圧力がそれぞれ軸方向に均一になる形状が望ましい。ここでは、現像ローラ12のローラ部分はストレート形状を有し、外径は12.0[mm]である。
内層12bのゴム硬度(アスカーC硬度)は、55~85[度]であることが好ましい。内層12bのアスカーC硬度が55[度]より低い場合、現像装置10が長期間に亘って停止した場合に、現像ローラ12と感光体ドラム11あるいは規制ブレード14との当接部に凹みが発生し、画像に横スジが発生する可能性がある。内層12bのアスカーC硬度が85[度]より高い場合、現像ローラ12にかかる機械的負荷が増加し、現像ローラ12の表面でトナーの付着(フィルミングと称する)が発生し易くなる。ここでは、内層12bのアスカーC硬度は82[度]である。
現像ローラ12の表面粗さRz(十点平均粗さ:JIS_B0601-1994)は、2.0~7.0[μm]であることが望ましい。表面粗さRzが2.0[μm]未満の場合、現像ローラ12の表面のトナー層が薄くなり、トナーの粒子1個当たりに加わるストレスが大きくなる。そのため、トナーから離脱する外添剤が増加し、その外添剤が現像ローラ12と規制ブレード14との間に詰まり、規制ブレード14の表面でフィルミングが発生する可能性がある。また、表面粗さRzが7.0[μm]を超える場合、現像ローラ12の表面のトナー層が厚くなり、供給ローラ13によるトナーの掻き取りが不十分になって現像ローラ12の表面でフィルミングが発生し、また、必要量以上のトナーが感光体ドラム11に移動して画像の汚れが発生する可能性がある。
現像ローラ12の表面粗さRzは、株式会社小坂研究所製の表面粗さ測定機「サーフコーダSEF3500」を用いて測定される。表面粗さ測定機の触針半径は2[μm]、触針圧は0.7[mN]であり、触針を現像ローラ12の軸方向に速度0.1[mm/秒]で距離4.0[mm]だけ移動させて測定を行う。カットオフ値は0.8[mm]である。
現像ローラ12の抵抗値(後述する全体抵抗)は、6.15~8.45[logΩ]が望ましい。現像ローラ12の抵抗測定方法は、以下の通りである。
図5(A),(B)は、現像ローラ12の抵抗測定方法を示す模式図である。測定装置71としては、ヒューレット・パッカード株式会社製の「ハイレジスタンスメータ」(型番:4339B)を用いる。図5(A)に示すように、現像ローラ12の表面に、現像ローラ12の長手方向の6箇所で、接触子としての直径10.0[mm]のステンレス製のベアリング72を20±0.5[gf]の荷重W1で押し当てる。
図5(B)に示すように、現像ローラ12の軸端部12eとベアリング72とに測定装置71を接続し、現像ローラ12を速度50[rpm]で回転させ、ベアリング72に対して現像ローラ12の軸端部12eに-40[V]の直流電圧を印加する。この状態で現像ローラ12の軸端部12eとベアリング72との間を流れる電流から、現像ローラ12の抵抗値を求める。測定環境は温度20[℃]、相対湿度50[%]である。
<供給ローラ>
次に、供給ローラ13について説明する。図6は、供給ローラ13を示す断面図である。供給ローラ13は、導電性の軸体13a(シャフト)と、軸体13aの表面に形成された発泡弾性層13bとを有する。軸体13aは、良好な導電性を有するものであればよく、一般に、鉄、アルミニウム、ステンレス鋼等が用いられる。
発泡弾性層13bを形成するゴム組成物は、ゴムと発泡剤と導電性付与剤とを含有し、さらに必要に応じて添加剤を含有する。ゴムは、耐熱性および帯電特性に優れるシリコーンゴムもしくはシリコーン変性ゴムが好ましい。発泡剤は、発泡ゴムに用いられる発泡剤であればよい。無機系発泡剤としては、重炭酸ソーダ、炭酸アンモニウム等が挙げられる。有機系発泡剤としては、ジアゾアミノ誘導体、アゾニトリル誘導体、アゾジカルボン酸誘導体等の有機アゾ化合物が挙げられる。発泡弾性層13bに連続セルを形成する場合には無機系発泡剤が用いられ、独立セルを形成する場合には有機系発泡剤が用いられる。添加剤は、例えば、充填剤、着色剤、離型剤等である。
供給ローラ13のローラ部分は、外径が一定のストレート形状であってもよく、外径が軸方向中央部と端部とで異なる形状(例えばクラウン形状)であってもよい。供給ローラ13と現像ローラ12との間の当接圧力が軸方向に均一になる形状が望ましい。ここでは、供給ローラ13のローラ部分は、ローラ部分の軸方向中央部の外径が16.2[mm]、端部の外径が15.8[mm]となるクラウン形状を有する。
供給ローラ13の軸体13aの外径は、例えば6.0[mm]である。弾性発泡層の平均セル径は、200~500[μm]であることが好ましいが、この範囲に限定するものではない。弾性発泡層の硬度は、アスカーF硬度で53~63[度]程度であることが好ましく、ここでは58[度]のものを使用している。
供給ローラ13の抵抗値は、6.0~8.0[logΩ]であることが好ましい。ここでは、抵抗値が7.0[logΩ]の供給ローラ13を用いる。供給ローラ13の抵抗測定方法は、図5(A),(B)を参照して説明した抵抗測定方法と同様である。
図5(A)にしたすように、供給ローラ13の表面に、供給ローラ13の長手方向の6箇所で、直径10.0[mm]のステンレス製のベアリング72を10.5[gf]の荷重W1で押し当てる。
図5(B)に示したように、供給ローラ13の軸端部13eとベアリング72とに測定装置71を接続し、供給ローラ13を速度63[rpm]で回転させ、ベアリング72に対して供給ローラ13の軸端部13eに-300[V]の直流電圧を印加する。この状態で供給ローラ13の軸端部13eとベアリング72との間を流れる電流から、供給ローラ13の抵抗値を求める。測定環境は温度20[℃]、相対湿度50[%]である。
供給ローラ13は、有機溶剤等で洗浄して油分を除去した軸体13aと、導電性シリコーンゴム発泡体とを押し出し成形機で一体成形し、次いで赤外線オーブン等で発泡体を発泡させ、硬化させる。その後、約180~225[℃]の温度で5~10[時間]程度の2次加硫処理を行い、研磨機で発泡弾性体の表面を研磨して所望の外径を得る。
<規制ブレード>
図1に示す規制ブレード14は、ステンレス鋼で構成された板状部材であり、板厚は例えば0.08[mm]である。規制ブレード14は、現像ローラ12との当接部に曲げ加工が施されており、曲げ部の曲率半径は、約0.15~0.35[mm]である。規制ブレード14と現像ローラ12との間の圧力(線圧)は、約25~50[gf/cm]である。
<感光体ドラムと現像ローラの支持構造>
図7は、現像装置10における感光体ドラム11および現像ローラ12の支持構造を示す模式図である。感光体ドラム11および現像ローラ12の軸方向は、X方向である。
現像装置10のユニット筐体20は、感光体ドラム11および現像ローラ12のX方向両側に、サイドフレーム21,22を有する。感光体ドラム11および現像ローラ12は、サイドフレーム21,22によって支持されている。なお、供給ローラ13および規制ブレード14(図1)もサイドフレーム21,22によって支持されているが、図7では省略されている。
感光体ドラム11は、導電性支持体11b(図3)を軸方向に貫通するシャフト11aを有する。シャフト11aの両端部11eは、サイドフレーム21,22に形成された穴部21a,22aに嵌合している。これにより、シャフト11aはサイドフレーム21,22に固定される。なお、シャフト11aは、それ自体は回転しない。
感光体ドラム11の導電性支持体11b(図3)は、その内周側に設けられた図示しない軸受により、シャフト11aに対して回転可能に支持されている。感光体ドラム11の-X方向(サイドフレーム21側)の端部にはドラムフランジ11fが設けられ、+X方向(サイドフレーム22側)の端部にはドラムギア11gが設けられている。
ドラムフランジ11fおよびドラムギア11gは、感光層11cに対してX方向の両側に位置する。ドラムギア11gは、駆動モータ115(図2)からの回転が伝達される図示しないギアと噛み合っており、これにより感光体ドラム11が回転する。
現像ローラ12は、軸体12a(図4)のX方向両端の軸端部12eが、サイドフレーム21,22の穴部21b,22bに配置された軸受により支持されている。これにより、現像ローラ12はサイドフレーム21,22に回転可能に支持される。
現像ローラ12の+X方向の軸端部12eには、ドラムギア11gと噛み合うローラギア12gが固定されている。感光体ドラム11が回転すると、ドラムギア11gとローラギア12gとの噛み合いにより、現像ローラ12も回転する。
感光体ドラム11の感光層11cと、現像ローラ12の表層12cとは、互いに当接している。感光体ドラム11と現像ローラ12との中心間の距離L1は、サイドフレーム21の穴部21a,21bの中心間距離(すなわちサイドフレーム22の穴部22a,22bの中心間距離)で決まる。この距離L1によって、感光体ドラム11と現像ローラ12との間の当接圧力が決まる。
次に、感光体ドラム11と現像ローラ12とによる搬送力について説明する。搬送力とは、感光体ドラム11と現像ローラ12との間に挿入された物体(ここではフィルム)が、回転する感光体ドラム11および現像ローラ12に引っ張られる力である。搬送力は、引き抜き力、あるいはフィード力とも称する。
図8(A)は、感光体ドラム11と現像ローラ12とによる搬送力の測定方法を示す模式図である。図8(B)は、搬送力の測定に用いる測定治具80を示す模式図である。
図8(A)に示すように、感光体ドラム11と現像ローラ12との間にフィルム82を挿入し、感光体ドラム11および現像ローラ12を回転させ、フィルム82が引っ張られる力をフォースゲージ81で測定することによって、搬送力を測定する。
フィルム82の長手方向は、感光体ドラム11と現像ローラ12との当接部(符号Nで示す)における感光体ドラム11の表面の接線方向である。フィルム82の幅方向は、X方向である。
図8(B)に示すように、フィルム82の上端部(当接部Nから離れた側の端部)には、支持板83が固定されている。支持板83にはフック85の一端が取り付けられ、フック85の他端はフォースゲージ81に取り付けられている。
フィルム82は、例えばPET(ポリエチレンテレフタレート)で形成されている。フィルム82の長さは95[mm]であり、幅は5[mm]であり、厚さは1[mm]である。フィルム82の幅方向はX方向である。
支持板83は、例えばアクリル板であり、フィルム82の長手方向の一端部に固定されている。支持板83の長さは20[mm]であり、幅は12[mm]である。支持板83には、フック85の一端が引っ掛けられる穴部84が形成されている。
図8(A)に示すように、フィルム82を感光体ドラム11と現像ローラ12との間に挿入した状態で、感光体ドラム11および現像ローラ12をそれぞれ回転させる。感光体ドラム11の回転速度(周速)は、印刷速度49[ppm]に相当する234.0[mm/秒]である。また、現像ローラ12の周速は、感光体ドラム11の周速の1.26倍である。
なお、感光体ドラム11と現像ローラ12との周速比(ここでは1.26)は、感光体ドラム11と現像ローラ12との外径比と、図7に示したドラムギア11gとローラギア12gとの歯数比によって決まる。
感光体ドラム11および現像ローラ12を上記のように回転させた状態で、フォースゲージ81の値[N]を読み取る。フォースゲージ81は、ここではデジタルフォースゲージであり、測定値がパーソナルコンピュータに出力される。
搬送力は、現像ローラ12のX方向の中心と、そのX方向の両側の合計3個所で測定する。各箇所において、サンプリング間隔を10[m秒]としてフォースゲージ81の出力値を記録し、5[秒]間の平均値を算出する。これにより、各箇所における搬送力[N]を得る。そして、3個所における搬送力の最大値を、搬送力[N]とする。
なお、ここでは3個所の搬送力のうちの最大値を用いるが、これに限定されるものではなく、例えば3個所の搬送力の平均値を用いてもよい。あるいは、現像ローラ12の中心と比較してX方向両側の搬送力が高くなる傾向があるため、X方向両側(2箇所)の搬送力の平均値を用いても良い。
<現像ローラの全体抵抗および内層抵抗>
次に、現像ローラ12の全体抵抗および内層抵抗について説明する。図9は、現像ローラ12の全体抵抗および内層抵抗の測定方法を示すフローチャートである。まず、現像ローラ12の外径を測定する(ステップS11)。外径測定には、アポロ精工株式会社製のローラ自動測定機を用いる。
次に、現像ローラ12の全体の抵抗を測定する(ステップS12)。図10は、抵抗測定方法を示す模式図である。測定装置71としては、ヒューレット・パッカード株式会社製の「ハイレジスタンスメータ」(型番:4339B)を用いる。
抵抗測定方法は、図5(A),(B)を参照して説明した方向と略同様であるが、ベアリング72は1つのみ用いる。図10に示すように、現像ローラ12の軸方向の中央部Mに、接触子としての直径10.0[mm]のステンレス製のベアリング72を、20±0.5[gf]の荷重W1で押し当てる。
現像ローラ12の軸端部12eとベアリング72とに測定装置71を接続し、現像ローラ12を速度50[rpm]で回転させ、ベアリング72に対して現像ローラ12の軸端部12eに-40[V]の直流電圧を印加する。この状態でベアリング72と軸端部12eとの間を流れる電流から、現像ローラ12の抵抗を求める。現像ローラ12の2周分の抵抗の平均値を、全体の抵抗値RALL[LogΩ]とする。
次に、現像ローラ12の表面を切削する(ステップS13)。図11(A),(B)は、現像ローラ12の切削工程を示す模式図である。図11(A)に示すように、切削には、株式会社東邦社製の平刃90(刃物工具鋼製、幅20[mm]、刃長25[mm])を用いる。現像ローラ12の軸端部12eを軸保持部92で回転可能に支持し、現像ローラ12の中央部Mの表面に平刃90を押し当てる。
図11(B)に示すように、現像ローラ12を一方向(図中反時計回り)に回転速度150[rpm]以上で回転させる。平刃90の刃先部91を、現像ローラ12の表面において回転中心よりも下側に、現像ローラ12の表面の移動方向に対してカウンタ方向となるように押し当てる。平刃90の刃先部91の向きは、鉛直方向に対して45度である。
切削深さは、現像ローラ12の表層12cの厚さ(ここでは0.01~0.02[mm])より深ければよく、ここでは0.03[mm]とする。切削により、現像ローラ12の中央部M(幅20[mm])において表層12cが除去され、内層12bが露出する。
切削後、現像ローラ12の表面に残る削りカスをエアブローで飛散させ、さらに旭化成工業株式会社製の不織布ワイパー「ベンコット」(登録商標)を押し当てて除去する。
次に、切削後の現像ローラ12の中央部Mの外径を測定する(ステップS14)。外径測定には、アポロ精工株式会社製のローラ自動測定機を用いる。このとき、ステップS11で測定した外径とステップS14で測定した外径との差(すなわち現像ローラ12の中央部Mの切削深さ)が0.03mm以上であることを確認し、外径差が0.03mm未満であればステップS13の切削を繰り返す。なお、本実施の形態では現像ローラ12の中央部Mを切削しているが、表層12cが形成されていれば他の箇所を切削してもよい。
次に、切削後の現像ローラ12の中央部Mの抵抗を測定する(ステップS15)。抵抗測定方法はステップS12と同様である。すなわち、図10に示すように、現像ローラ12の中央部Mにベアリング72を押し当て、現像ローラ12を速度50[rpm]で回転させ、ベアリング72に対して現像ローラ12の軸端部12eに-40[V]の直流電圧を印加する。
この状態でベアリング72と軸端部12eとの間を流れる電流から、現像ローラ12の抵抗を求める。現像ローラ12の2周分の抵抗の平均値を、内層12bの抵抗値RIN[LogΩ]とする。現像ローラ12の中央部Mでは表層12cが除去されているため、内層12bの抵抗(すなわち内層12bの抵抗値RIN)を求めることができる。
次に、ステップS12で求めた全体の抵抗値RALL[LogΩ]から、ステップS15で求めた内層12bの抵抗値RIN[LogΩ]を減算し、RALL-RIN[LogΩ]の値を得る。
なお、抵抗値RALLおよび抵抗値RINは対数表記である。例えば、RALL=7.27[LogΩ]の場合、単位を[Ω]に変換すると、RALL=107.27[Ω]となる。このように対数表記を用いているため、RALL-RIN[LogΩ]の値は、抵抗比とも称する。
本実施の形態では、全体の抵抗値RALLおよび内層12bの抵抗値RINの異なる複数の現像ローラ12(実施例1~10および比較例1~10)を作成し、それぞれを用いてテスト印刷を行い、濃度ムラ、カブリおよびカスレ等の印刷不良の発生との関係を評価する。
<現像ローラの残留電位>
次に、現像ローラ12の残留電位の測定について説明する。図12は、現像ローラ12の残留電位の測定方法を示す模式図である。現像ローラ12の残留電位の測定に用いる測定装置300は、Quality Engineering Associates社製の誘電緩和測定装置「DRA2000」である。
測定装置300は、キャリア301と、コロナ放電電極302と、プローブ303と、表面電位計304とを有する。コロナ放電電極302とプローブ303とは、キャリア301に支持されている。キャリア301は、現像ローラ12の表面に沿って、現像ローラ12の軸方向に移動可能である。プローブ303は表面電位計304と接続されている。コロナ放電電極302とプローブ303との間隔は23[mm]である。
残留電位の測定時には、現像ローラ12の軸端部12eを、抵抗305を介して接地する。この状態で、キャリア301を所定位置(例えば現像ローラ12の軸方向の中心位置)に移動し、コロナ放電電極302によりコロナ放電を行う。コロナ放電の電圧は6.0[KV]とする。
その後、キャリア301を23[mm]だけ移動し、コロナ放電時のコロナ放電電極302の位置にプローブ303を位置させる。そして、コロナ放電から2.15[秒]が経過した時点での残留電位[-V]を測定する。2.15[秒]経過後の残留電位を測定する理由は、コロナ放電直後(特に0.2[秒]経過前)は現像ローラ12の残留電位のばらつきが大きいためである。残留電位の測定は、残留電位のばらつきが小さくなってからであればよく、例えば2.10[秒]経過後、あるいは2.30[秒]経過後に行ってもよい。
後述するように、複数種類の現像ローラ12(実施例1~10および比較例1~10)について、測定装置300を用いて残留電位を測定する。なお、現像ローラ12には負の現像電圧が印加されるため、残留電位の単位は[-V]としている。以下では、電位(残留電位、表面電位)の絶対値が大きいことを「電位が高い」と言い、電位の絶対値が小さいことを「電位が低い」と言う。
<テスト印刷>
次に、テスト印刷について説明する。近年、電子写真プロセスを利用した画像形成装置では、外添剤の少ないトナーを用いて印刷を行うことが検討されている。外添剤の少ないトナーを用いた場合、トナーの帯電性が低くなり易い。そのため、現像ローラ12の表面電位が低下した際に、トナーが現像ローラ12上で保持されず、露光ヘッド30で露光されていない感光体ドラム11の非露光部分に付着し易い。その結果、白紙上にトナーが散らばった状態で印刷される現象(カブリ)が発生する。
また、現像ローラ12から感光体ドラム11へのトナー移動が不十分な場合、画像濃度が部分的に低下する、カスレと呼ばれる印刷不良が発生する。また、現像ローラ12の電圧応答性が低い場合、現像ローラ12の表面電位が変動し、濃度ムラが発生する。
ここでは、画像形成装置1を用いて連続印刷とその後のテスト印刷とを行い、カブリ、カスレおよび濃度ムラの有無を判断した。画像形成装置1としては沖電気工業株式会社製のLEDプリンタ「B820」を用い、現像装置10には予め15gのトナーを補充した。
連続印刷およびテスト印刷ではブラックトナーを用いた。トナー中のSi含有量の望ましい範囲は0.98~1.28[重量%]であるが、ここでは0.98[重量%]とした。Si含有量は、上記の通り、エネルギー分散型X線分析法(EDX)による元素分析によって測定した。
図13は、連続印刷に用いた媒体P1を示す図である。媒体P1はA4サイズの普通紙である。搬送方向は横送りで、搬送速度(周速)は印刷速度45[ppm]に相当する202.5[mm/秒]とした。印刷環境は、温度28[℃]、相対湿度80[%]とした。
帯電ローラ15に印加する帯電電圧は-1050[V]とし、現像ローラ12に印加する現像電圧は-200[V]とし、供給ローラ13に印加する供給電圧は-350[V]とし、規制ブレード14に印加するブレード電圧は-350[V]とし、転写ローラ19に印加する転写電圧は+1500[V]とした。なお、感光体ドラム11の表面において、露光ヘッド30で露光された部分は電位が低下し、-30[V]~-50[V]となる。
連続印刷では、媒体P1に、デューティ比が1.25[%]の画像LPを印刷した。デューティ比が1.25[%](すなわち印刷画像密度1.25[%])の画像LPとは、図13に示すようなライン状のベタ画像である。
なお、デューティ比は、印刷画像密度とも呼ばれ、以下のように定義される。
印刷画像密度(デューティ比)=〔Cm(i)/(Cd×C0)〕×100
Cm(i)は、感光体ドラム11がCd回転する間に発光した露光ヘッド30のドットの数である。C0は、感光体ドラム11が1回転する間に発光可能な露光ヘッド30のドット数である。Cd×C0は、感光体ドラム11がCd回転する間に発光可能な露光ヘッド30のドット数である。
すなわち、媒体P1の印刷可能領域の全面にベタ画像を印刷した場合に、印刷画像密度が100[%]となる。この印刷画像密度100[%]に対して、面積が1[%]となる画像を印刷した場合には、印刷画像密度が1[%]となる。
10000枚の媒体P1に連続印刷を行い、2000枚の連続印刷毎に、以下で説明する3種類のテストパターンを印刷した。
図14は、テスト印刷に用いた媒体P2とテストパターンを示す図である。媒体P2はA3サイズの普通紙とした。搬送方向は縦送りで、搬送速度(周速)は印刷速度45[ppm]に相当する202.5[mm/秒]とした。媒体P2には、テストパターンとして、ハーフトーン画像HTを印刷した。ハーフトーン画像HTは、2×2パターンである。2×2パターンは、縦方向の4ドットおよび横方向の4ドットで形成される16マスのうち、縦方向の2ドットDおよび横方向の2ドットDで4マスのドットを形成するものである。
図15(A)は、テスト印刷に用いた媒体P3とテストパターンを示す図である。媒体P3は、図14に示した媒体P2と同じであり、搬送方向および搬送速度も同じである。媒体P3には、テストパターンとして、デューティ比が100[%]のベタ画像SDを印刷した。
図15(B)は、テスト印刷に用いた媒体P4とテストパターンを示す図である。媒体P4はA3サイズの光沢紙とした。搬送方向および搬送速度は図14に示した媒体P2と同じである。媒体P3には、テストパターンとして、デューティ比が0[%]の画像WHを印刷した。
後述するように抵抗値RALL,RINの異なる複数の現像ローラ12を作成したのち、各現像ローラ12を画像形成装置1の現像装置10に組み込み、上記の連続印刷を行った。2000枚の連続印刷の完了後、媒体P1,P2,P3にテストパターン(画像HT,SD,WH)をそれぞれ印刷し、印刷後の媒体P1,P2,P3の表面を目視で観察し、カブリ、カスレおよび濃度ムラの有無を評価した。
2000枚の連続印刷毎に行った計5回のテスト印刷において、目視によるカブリ判定の結果、1枚でも不良と判断された場合にはカブリの評価を「×」とし、5枚全てが良好と判断された場合にはカブリの評価を「〇」とした。
同様に、計5回のテスト印刷において、目視によるカスレ判定の結果、1枚でも不良と判断された場合にはカスレの評価を「×」とし、5枚全てが良好と判断された場合にはカスレの評価を「〇」とした。
同様に、計5回のテスト印刷において、目視による濃度ムラ判定の結果、1枚でも不良と判断された場合には濃度ムラの評価を「×」とし、5枚全てが良好と判断された場合には濃度ムラの評価を「〇」とした。
これにより、現像ローラ12の全体の抵抗値RALLおよび内層12bの抵抗値RINを含む抵抗特性と、濃度ムラ、カブリおよびカスレ等の印刷不良との相関関係を評価することができる。
<内層12bの抵抗値RINの補正>
現像ローラ12の抵抗特性と印刷品質との関係について説明する前に、内層12bの抵抗値RINの補正について説明する。内層12bの抵抗値RINを測定する際には(図9に示したステップS13~S15)、現像ローラ12の表層12cを切削して内層12bを露出させているため、内層12bの抵抗値RINへの切削の影響を考慮する必要がある。
ここでは、以下のようにして、内層12bの抵抗値RINから切削の影響を排除した。まず、図16(A)に示すように、軸体12a(図では省略)の表面に内層12bを形成し、表層12cを形成する前の状態で、図10を参照して説明した抵抗測定方法により、内層12b(点A)にベアリング72を接触させて内層12bの抵抗値RINを測定した。
次に、図16(B)に示すように、図16(A)の内層12bの表面に表層12cを形成し、図10を参照して説明した抵抗測定方法により、表層12c(点A)にベアリング72を押し当てて現像ローラ12の全体の抵抗値RALLを測定した。
さらに、図16(C)に示すように、図16(B)の表層12cを平刃90で切削して内層12bを露出させ、図10を参照して説明した抵抗測定方法により、内層12b(点A)にベアリング72を押し当てて内層12bの抵抗値RINを測定した。
図16(B)で測定した全体の抵抗値RALLから図16(A)で測定した内層12bの抵抗値RINを減算することで、表層12cを削らない場合のRALL-RINが求められる。一方、図16(B)で測定した全体の抵抗値RALLから図16(C)で測定した内層12bの抵抗値RINを減算することで、表層12cを削った場合のRALL-RINが求められる。
ここでは、現像ローラ12の表層12cを形成する際の表面処理液中のアクリル系樹脂およびウレタン系樹脂の含有量、並びにカーボンブラックの添加量を異ならせることで、12種類の現像ローラ12を作成した。それぞれの現像ローラ12について、表層12cを削らない場合のRALL-RINと、表層12cを削った場合のRALL-RINを求めた。
図17は、表層12cを削らない場合のRALL-RINと、表層12cを削った場合のRALL-RINとの関係を示すグラフである。縦軸は、表層12cを削らない場合のRALL-RIN(y)を示し、横軸は、表層12cを削った場合のRALL-RIN(x)を示す。
図17に示した12個のプロットは、y=0.998x+0.417の近似直線上にあり、決定係数Rは0.954である。直線の傾き0.998は、概ね1と考えることができ、相関性が高いことが分かる。
一方、上記の直線のy切片である0.417は、表層12cを切削による影響、より具体的には表層12cの切削によって内層12bの表面粗さが粗くなったことによるものである。
図16(A)の内層12bの表面粗さRzを上述した表面粗さ測定機(小坂製作所製「サーフコーダSEF3500」)を用いて測定したところ、Rz=6.3[μm]であった。これに対し、図16(C)の内層12bの表面粗さRzを測定したところ、Rz=20.3[μm]であった。
このことから、図17に示した直線のy切片である0.417は、表層12cの切削によって内層12bの表面粗さRzが粗くなり、内層12bとベアリング72(図10)との密着度が低下したことによることが分かる。
以上から、本実施の形態では、図9のステップS15で測定した内層12bの抵抗値RINの値から0.417を減算することで、内層12bの抵抗値RINを補正している。
<実施例>
次に、実施例1~10および比較例1~10について説明する。実施例1~10および比較例1~10の現像ローラ12は、内層12bのゴム材料に添加するカーボンブラックの添加量、および表層12cを形成する際の表面処理液に添加するカーボンブラックの添加量を調整し、全体の抵抗値RALLおよび内層12bの抵抗値RINを異ならせたものである。
実施例1の現像ローラ12は、内層12bのゴム材料に添加するカーボンブラックの添加量、および表層12cを形成する際の表面処理液に添加するカーボンブラックの添加量を調整し、全体の抵抗値RALLを7.27[LogΩ]とし、内層12bの抵抗値RINを6.45[LogΩ]としたものである。RALL-RINの値は0.82[LogΩ]であり、残留電位は3.66[-V]であった。
実施例2の現像ローラ12は、全体の抵抗値RALLを7.29[LogΩ]とし、内層12bの抵抗値RINを6.07[LogΩ]としたものである。RALL-RINの値は1.22[LogΩ]であり、残留電位は2.98[-V]であった。
実施例3の現像ローラ12は、全体の抵抗値RALLを7.84[LogΩ]とし、内層12bの抵抗値RINを6.34[LogΩ]としたものである。RALL-RINの値は1.50[LogΩ]であり、残留電位は9.33[-V]であった。
実施例4の現像ローラ12は、全体の抵抗値RALLを8.00[LogΩ]とし、内層12bの抵抗値RINを6.26[LogΩ]としたものである。RALL-RINの値は1.74[LogΩ]であり、残留電位は21.3[-V]であった。
実施例5の現像ローラ12は、全体の抵抗値RALLを6.69[LogΩ]とし、内層12bの抵抗値RINを6.13[LogΩ]としたものである。RALL-RINの値は0.56[LogΩ]であり、残留電位は3.83[-V]であった。
実施例6の現像ローラ12は、全体の抵抗値RALLを7.19[LogΩ]とし、内層12bの抵抗値RINを6.39[LogΩ]としたものである。RALL-RINの値は0.80[LogΩ]であり、残留電位は5.08[-V]であった。
実施例7の現像ローラ12は、全体の抵抗値RALLを6.15[LogΩ]とし、内層12bの抵抗値RINを4.89[LogΩ]としたものである。RALL-RINの値は1.26[LogΩ]であり、残留電位は3.02[-V]であった。
実施例8の現像ローラ12は、全体の抵抗値RALLを6.15[LogΩ]とし、内層12bの抵抗値RINを5.45[LogΩ]としたものである。RALL-RINの値は0.70[LogΩ]であり、残留電位は3.06[-V]であった。
実施例9の現像ローラ12は、全体の抵抗値RALLを8.45[LogΩ]とし、内層12bの抵抗値RINを7.34[LogΩ]としたものである。RALL-RINの値は1.11[LogΩ]であり、残留電位は8.01[-V]であった。
実施例10の現像ローラ12は、全体の抵抗値RALLを8.45[LogΩ]とし、内層12bの抵抗値RINを6.90[LogΩ]としたものである。RALL-RINの値は1.55[LogΩ]であり、残留電位は13.20[-V]であった。
これら実施例1~10の現像ローラ12では、表層12cにおけるアクリル系樹脂とウレタン系樹脂との重量比(A/U比率とも称する)を50:50とした。これは、内層12bを表面処理して表層12cを形成する際の表面処理液に含まれるアクリル系樹脂とウレタン系樹脂との重量比である。
比較例1の現像ローラ12は、全体の抵抗値RALLを6.26[LogΩ]とし、内層12bの抵抗値RINを7.05[LogΩ]としたものである。RALL-RINの値は-0.79[LogΩ]であり、残留電位は1.36[-V]であった。
比較例2の現像ローラ12は、全体の抵抗値RALLを6.52[LogΩ]とし、内層12bの抵抗値RINを6.61[LogΩ]としたものである。RALL-RINの値は-0.09[LogΩ]であり、残留電位は1.81[-V]であった。
比較例3の現像ローラ12は、全体の抵抗値RALLを6.49[LogΩ]とし、内層12bの抵抗値RINを6.99[LogΩ]としたものである。RALL-RINの値は-0.50[LogΩ]であり、残留電位は4.83[-V]であった。
比較例4の現像ローラ12は、全体の抵抗値RALLを7.69[LogΩ]とし、内層12bの抵抗値RINを8.63[LogΩ]としたものである。RALL-RINの値は-0.94[LogΩ]であり、残留電位は5.84[-V]であった。
比較例5の現像ローラ12は、全体の抵抗値RALLを7.52[LogΩ]とし、内層12bの抵抗値RINを8.89[LogΩ]としたものである。RALL-RINの値は-1.37[LogΩ]であり、残留電位は5.64[-V]であった。
比較例6の現像ローラ12は、全体の抵抗値RALLを5.70[LogΩ]とし、内層12bの抵抗値RINを5.45[LogΩ]としたものである。RALL-RINの値は0.25[LogΩ]であり、残留電位は3.05[-V]であった。
比較例7の現像ローラ12は、全体の抵抗値RALLを8.50[LogΩ]とし、内層12bの抵抗値RINを8.39[LogΩ]としたものである。RALL-RINの値は0.11[LogΩ]であり、残留電位は8.02[-V]であった。
比較例8の現像ローラ12は、全体の抵抗値RALLを7.20[LogΩ]とし、内層12bの抵抗値RINを4.73[LogΩ]としたものである。RALL-RINの値は2.47[LogΩ]であり、残留電位は5.43[-V]であった。
比較例9の現像ローラ12は、全体の抵抗値RALLを6.05[LogΩ]とし、内層12bの抵抗値RINを4.29[LogΩ]としたものである。RALL-RINの値は1.76[LogΩ]であり、残留電位は5.02[-V]であった。
比較例10の現像ローラ12は、全体の抵抗値RALLを9.08[LogΩ]とし、内層12bの抵抗値RINを7.78[LogΩ]としたものである。RALL-RINの値は1.30[LogΩ]であり、残留電位は16.28[-V]であった。
これらのうち比較例1の現像ローラ12では、表層12cにおけるアクリル系樹脂とウレタン系樹脂との重量比が20:80とした。比較例2~10の現像ローラ12では、表層12cにおけるアクリル系樹脂とウレタン系樹脂との重量比が50:50とした。
以上の実施例1~10および比較例1~10の現像ローラ12をそれぞれ画像形成装置1の現像装置10に組み込み、上述した条件で連続印刷およびテスト印刷を行い、濃淡ムラ、カスレ、カブリを評価した。結果を、表1および表2に示す。
Figure 2023094024000002
Figure 2023094024000003
表1,2には、現像ローラ12の表層12c中のアクリル系樹脂とウレタン系樹脂との比率(A/U比率)、全体の抵抗値RALL、内層12bの抵抗値RIN、これらの差(抵抗比)RALL-RIN、現像ローラ12の残留電位、画像判定結果(濃淡ムラ、カスレ、カブリ)を示す。
比較例1では、RALL-RINの値が-0.79[LogΩ]であり、カブリの発生が見られた。これは、以下の理由によるものである。すなわち、内層12bの抵抗値RINが全体の抵抗値RALLよりも高いため、現像ローラ12の表層12cに印加された電荷は、より高抵抗の内層12bに移動しにくい。そのため、表層12cに印加された電荷が大気中に散逸し易く、現像ローラ12の表面電位が低下したものである。
ここで、実施例1~10のように全体の抵抗値RALLが内層12bの抵抗値RIN以上である場合には、表層12cに印加された電荷は内層12bに移動し易いため、大気中には散逸しにくく、従って現像ローラ12の全体で電荷が保持されやすい。
一方、比較例1~10のように全体の抵抗値RALLが内層12bの抵抗値RINよりも低い場合には、表層12cに印加された電荷が大気中に散逸し易いため、現像ローラ12の全体で保持される電荷が少なくなる。その結果、カブリが発生し易くなる。
現像ローラ12の表面電位が低下すると、本来は現像ローラ12上で保持されるはずのトナー(例えば正帯電トナー)が、現像ローラ12上で保持されずに感光体ドラム11に付着する。このようなトナーは、感光体ドラム11の非露光部分にも付着し、印刷画像にカブリが発生する。現像ローラ12上の電荷が散逸し易いことは、比較例1における残留電位が低いこととも整合する。
比較例2では、RALL-RINの値が-0.09[LogΩ]であり、カブリの発生が見られた。これは、比較例1と同様の理由によるものである。すなわち、内層12bの抵抗値RINが全体の抵抗値RALLよりも高いため、現像ローラ12の表層12cに印加された電荷が高抵抗の内層12bに移動しにくく、大気中に散逸し易いことから、現像ローラ12の表面電位が低下したものである。現像ローラ12上の電荷が散逸し易いことは、比較例2における残留電位が低いこととも整合する。
比較例3~5では、RALL-RINの値がそれぞれ-0.50[LogΩ]、-0.94[LogΩ]、-1.37[LogΩ]であり、いずれもカブリの発生が見られた。これは、比較例1,2と同様の理由によるものである。すなわち、内層12bの抵抗値RINが全体の抵抗値RALLよりも高いため、現像ローラ12の表層12cに印加された電荷が高抵抗の内層12bに移動しにくく、大気中に散逸し易いことから、現像ローラ12の表面電位が低下したものである。
比較例6では、全体の抵抗値RALLが5.70[LogΩ]であり、カブリの発生が見られた。これは、全体の抵抗値RALLと内層12bの抵抗値RINが共に低く、従って導電性付与剤(カーボンブラック)の添加量が多いことによるものである。導電性付与剤の添加量が多いと、現像ローラ12に印加された現像電圧の減衰率が高くなり、その結果、現像ローラ12全体で電荷が軸体12a(シャフト)を介して散逸し易くなり、現像ローラ12の表面電位が低下する。
比較例7では、全体の抵抗値RALLが8.50[LogΩ]であり、カスレの発生が見られた。これは、全体の抵抗値RALLと内層12bの抵抗値RINが共に高いため、現像ローラ12の電圧応答性が低下したことによるものである。電圧応答性が低下すると、現像電圧を印加しても現像ローラ12の表面電位が十分に上昇せず、現像ローラ12上のトナー量が不十分になり、感光体ドラム11に付着するトナー量も不足してカスレが発生する。
比較例8では、RALL-RINの値が2.47[LogΩ]であり、濃度ムラの発生が見られた。これは、RALL-RINの値が大きく、従って表層12cの導電性付与剤(カーボンブラック)の含有量が少ないことによるものである。導電性付与剤の含有量が少ないと、表層12c内で導電性付与剤が疎らに分散し、現像ローラ12の表面の電荷にばらつきが生じることから、濃度ムラが発生する。
比較例9では、全体の抵抗値RALLが6.05[LogΩ]であり、カブリの発生が見られた。これは、比較例6と同様の理由によるものである。すなわち、全体の抵抗値RALLと内層12bの抵抗値RINが共に低く、従って導電性付与剤(カーボンブラック)の添加量が多いため、現像ローラ12に印加された現像電圧の減衰率が高くなり、その結果、現像ローラ12全体で電荷が軸体12aを介して散逸し易くなり、現像ローラ12の表面電位が低下したものである。
比較例10では、全体の抵抗値RALLが9.08[LogΩ]であり、カスレの発生が見られた。これは、比較例7と同様、全体の抵抗値RALLと内層12bの抵抗値RINが共に高いため、現像ローラ12の電圧応答性が低下したことによるものである。
これに対して、実施例1~10では、カブリ、カスレおよび濃淡ムラのいずれの判定結果も良好であった。実施例1~10ではRALL-RINの値が0.56~1.74[LogΩ]であるため、現像ローラ12の表面の電荷が散逸しにくく(従って表面電位が低下しにくく)、また、表層12cの導電性付与剤が少なすぎることによる電荷のばらつきも生じにくいため、カブリおよび濃淡ムラの発生が抑えられたと考えられる。
また、実施例1~10では、全体の抵抗値RALLが6.15~8.45[LogΩ]であるため、現像ローラ12全体として電荷が散逸しにくく、また現像ローラ12の電圧応答性も十分なため、カスレの発生が抑えられたと考えられる。
図18は、表1,2に示した評価結果をグラフで表したものである。縦軸はRALL-RIN[LogΩ]を示し、横軸は全体の抵抗値RALL[LogΩ]を示す。図18において、RALL-RINが0.56~1.74[LogΩ]で、全体の抵抗値RALLが6.15~8.45[LogΩ]である範囲は、カスレ、カブリおよび濃度ムラが発生しない範囲である。
一方、図18において、RALL-RINの値が1.74[LogΩ]を超える範囲R1は、表層12cにおける導電性付与剤(カーボンブラック)の含有量が少ないため、濃度ムラが発生する範囲である。
また、全体の抵抗値RALLが8.45[LogΩ]を超える範囲R2は、現像ローラ12の電圧応答性の低下により、カスレが発生する範囲である。
また、RALL-RINの値が0.56[LogΩ]を下回る範囲R3は、現像ローラ12の表面の電荷が散逸し易く、現像ローラ12の表面電位が低下してカブリが発生する範囲である。
また、全体の抵抗値RALLが6.15[LogΩ]を下回る範囲R4は、現像ローラ12全体の電荷が散逸し易く、現像ローラ12の表面電位が低下してカブリが発生する範囲である。
<検討>
ここで、現像ローラ12の表面電位とカブリとの関係について、さらに検討する。図19(A)は、現像ローラ12から感光体ドラム11へのトナーの移動状態を示す模式図である。図19(B)は、現像ローラ12の表面のトナーの保持状態を示す模式図である。本実施の形態では、外添剤の少ないトナーを用いており、ブローオフ帯電量が94.6[μC/g]以下である。
トナーの外添剤が少ない場合、トナーの帯電性が低くなりやすい。この場合も、図19(B)に示すように、現像ローラ12の表面電位が高ければ、現像ローラ12の表層12cに電荷が多く存在し、静電気力により現像ローラ12上でトナーを保持することができる。一方、現像ローラ12の表面電位が低下すると、現像ローラ12上でトナーを保持する能力が低下する。
図19(A)に示すように、現像ローラ12の表面電位は、規制ブレード14との当接部で最も高く、感光体ドラム11との当接部Nに近付くにつれて減少する。現像ローラ12上で規制ブレード14から感光体ドラム11までの周方向距離をL1とすると、現像ローラ12が距離L1だけ回転する時間は、約0.12[秒]である。
現像ローラ12が規制ブレード14から感光体ドラム11まで回転する間に、当該現像ローラ12の表面電位が低下すると、静電気力により現像ローラ12の表面で保持される(感光体ドラム11には移動しない)はずの正帯電トナーが、現像ローラ12から離れて感光体ドラム11に移動する可能性がある。このようなトナーは感光体ドラム11の非露光部にも付着するため、白字にトナーが散らばって印刷されるカブリの原因となる。
特に、感光体ドラム11と現像ローラ12とによる搬送力を大きく(例えば1.0[N]以上に)した場合には、感光体ドラム11と現像ローラ12との間の圧力が高いため、感光体ドラム11に付着するトナーが増加し、カブリがさらに発生しやすくなる。
ここで、現像ローラ12の残留電位と、現像ローラ12上のトナーの残留電荷と、カブリとの関係について説明する。まず、実施例1~10および比較例1~10とは別に、表層12cの組成(例えばカーボンブラックの添加量)の異なる複数種類の現像ローラ12を作成した。
現像ローラ12を画像形成装置1(沖電気工業株式会社製のLEDプリンタ「B820」)の現像装置10に搭載し、A4サイズの普通紙に図13で示したパターン(画像LP)を印刷した。搬送方向は横送りで、搬送速度(周速)は印刷速度45[ppm]に相当する202.5[mm/秒]とした。帯電電圧は-1050[V]、現像電圧は-200[V]、供給電圧は-300[V]、転写電圧は+1500[V]とした。印刷環境は、温度28[℃]、相対湿度80[%]とした。
この印刷動作中に画像形成装置1を停止させ、画像形成装置1から現像ローラ12を取り出して、現像ローラ12上のトナーの電荷Q/M[μC/g]を測定した。このようにして測定した電荷Q/Mを、「初期Q/M」と称する。
トナーの電荷Q/Mの測定には、図12に示した測定装置300を用いた。キャリア301を230[mm/s]の速度で移動させながらコロナ放電を行うことで、コロナ放電から0.1[秒]後の電荷を測定した。
また、上記の印刷動作(画像形成装置1の停止前)で印刷した画像について、カブリの指標である色相差ΔEを測定した。色相差ΔEは、以下のようにして測定した。
まず、現像ローラ12の表面に粘着テープ(住友スリーエム株式会社製「スコッチメンディングテープ」)を貼り付けてから剥がすことにより、カブリのトナーを採取した。この粘着テープを、採取粘着テープと称する。
この採取粘着テープを白い記録用紙(沖電気工業株式会社製「エクセレントホワイトA4」:秤量80[g/m])に貼り付けた。また、比較の基準となる粘着テープ(以下、基準粘着テープ)を同じ記録用紙の他の部分に貼り付けた。
そして、分光測色計(コニカミノルタ株式会社製「CM-2600d」)により、採取粘着テープおよび基準粘着テープの色相差ΔE(L*a*b表色系色度)を、以下の式(1)により求めた。
Figure 2023094024000004
一般に、色相差ΔEが1.5以下であれば、カブリの判定結果は良好とすることができる。
図20(A)は、上記のように測定した印刷画像の色相差ΔEと、現像ローラ12上のトナーの初期Q/Mとの関係を示すグラフである。縦軸は色相差ΔEを示し、横軸は現像ローラ12上のトナーの初期Q/M[μC/g]を示す。
図20(A)に示すように、印刷画像の色相差ΔE(y)と現像ローラ12上のトナーの初期Q/M(x)とは、y=-1.386Ln(x)+5.9571の曲線で近似される関係にあり、決定係数Rは0.88である。印刷画像の色相差ΔEを1.5以下にする(すなわちカブリを抑制する)ことができるのは、現像ローラ12上のトナーの初期Q/Mが30[μC/g]以上の場合である。
図20(B)は、現像ローラ12上のトナーの初期Q/Mと、現像ローラ12の残留電位との関係を示すグラフである。縦軸は現像ローラ12上のトナーの初期Q/M[μC/g]を示し、横軸は現像ローラ12の残留電位[V]を示す。
現像ローラ12の残留電位は、現像ローラ12を作成した後、現像装置10に組み込む前に、図12を参照して説明した方法で測定した電位である。
図20(B)に示すように、現像ローラ12上のトナーの初期Q/M(y)と、現像ローラ12の残留電位(x)とは、y=7.9155Ln(x)+17.697の曲線で近似される関係にあり、決定係数Rは0.834である。現像ローラ12上のトナーの初期Q/Mを上記の30[μC/g]以上にできるのは、現像ローラ12の残留電位が4.4[-V]以上の場合である。
図21は、現像ローラ12の残留電位と、現像ローラ12の抵抗値との関係を示すグラフである。縦軸は現像ローラ12の残留電位[-V]を示し、横軸は現像ローラ12の抵抗値[LogΩ]を示す。
現像ローラ12の残留電位は、図12を参照して説明した方法で測定した。現像ローラ12の抵抗値は、図10を参照して説明した方法で測定した。図21において、円形のプロットは、表層12cを有する9種類の現像ローラ12についての測定結果を示す。四角形のプロットは、表層12cを有さない8種類の現像ローラ12についての測定結果を示す。
図21から、現像ローラ12に内層12bを覆う表層12cを設け、全体の抵抗値RALL[LogΩ]を内層12bの抵抗値RIN[LogΩ]よりも高くすることで、現像ローラ12の残留電位[-V]が高くなり、現像ローラ12上のトナーの残留電荷が増加し、これがカブリの抑制につながることが分かる。
本実施の形態では、現像ローラ12が内層12bと表層12cとを有し、内層12bおよび表層12cを合わせた全体の抵抗値RALL[LogΩ]と内層12bの抵抗値RIN[LogΩ]との差RALL―Rinが0.56~1.76[LogΩ]であるため、現像ローラ12の表面電位の低下を抑制し、これによりカブリ等の印刷不良を低減することができる。
なお、ここではトナー中のSi含有量を0.98~1.28[重量%]の範囲としている。トナーの外添剤の量を1.28[重量%]よりも多くすると、感光体ドラム11と現像ローラ12との間でトナーに加わる圧力により、外添剤がトナー母粒子から脱落し、トナーの帯電不良の原因となる。
また、トナーの外添剤の量を0.98[重量%]未満にすると、トナー母粒子の表面の大半が外添剤に覆われずに露出するため、トナー母粒子同士が吸着し易くなる。その結果、トナーが現像ローラ12の表面から離れにくくなり、感光体ドラム11に移動するトナーが減少し、カスレが生じる。
上述した実施例1~10の現像ローラ12を用いたテスト印刷では、トナーのSi量を0.98[重量%]としてカスレを評価したが、いずれもカスレの判定結果は良好であった。トナーのSi量が少ないほどカスレが発生し易く、Si量が多いほどカスレが発生しにくいことから、少なくともSi含有量が0.98~1.28[重量%]の範囲ではカスレが生じないことが分かる。
また、上述した実施例1~10の現像ローラ12は、表層12cにおけるアクリル系樹脂とウレタン系樹脂との重量比が50:50であった。言い換えると、アクリル系樹脂とウレタン系樹脂との合計に対するアクリル系樹脂の重量割合が50[%]であった。しかしながら、アクリル系樹脂とウレタン系樹脂との合計に対するアクリル系樹脂の重量割合が40[%]~60[%]の範囲にあれば、上記と同様の結果が得られることが確認されている。
また、上述した実施例1~10の現像ローラ12を用いた場合、図8(A),(B)に示した方法で測定した感光体ドラム11と現像ローラ12とによる搬送力は1.0[N]以上であった。搬送力を1.0[N]以上とすることにより、感光体ドラム11と現像ローラ12との間の圧力を十分に高くし、ベタ画像を印刷した際の白抜けを抑制することができる。
なお、搬送力が大きすぎると、感光体ドラム11と現像ローラ12との摩擦のため、連続印刷時に温度が上昇し、カスレ等の印刷不良が発生する可能性がある。そのため、搬送力は1.4[N]以下であることが望ましい。
<実施の形態の効果>
以上説明したように、本実施の形態の現像装置10は、現像ローラ12が内層12bと表層12cとを有し、内層12bおよび表層12cを合わせた全体の抵抗値RALL[LogΩ]と内層12bの抵抗値RIN[LogΩ]との差RALL―Rinが0.56[LogΩ]以上であるため、現像ローラ12の表面電位の低下を抑制し、これによりカブリの発生を低減することができる。
また、現像ローラ12の全体の抵抗値RALL[LogΩ]と内層12bの抵抗値RIN[LogΩ]との差RALL―Rinが1.76[LogΩ]以下であるため、導電性付与剤が少なすぎる場合に生じる(すなわち導電性付与剤の偏在によって生じる)濃度ムラを抑制することができる。
また、現像ローラ12の全体の抵抗値RALLが6.15[LogΩ]以上であるため、現像ローラ12全体の電荷の散逸による表面電位の低下を抑制し、これによりカブリの発生を低減することができる。
また、現像ローラ12の全体の抵抗値RALLが8.45[LogΩ]以下であるため、現像ローラ12の電圧応答性の低下によるカスレの発生を抑制することができる。
また、表層12cがアクリル系樹脂とウレタン系樹脂とを含み、これらの合計に対してアクリル系樹脂の重量比が40[%]以上、60[%]以下であるため、現像ローラ12の表面電位の低下を抑制することができる。
また、エネルギー分散型X線分析法を用いた元素分析により測定されるトナーのSi含有量を0.98~1.28[重量%]とすることにより、Siを含む外添剤のトナー母粒子からの離脱を生じにくくし、トナーの帯電不良に伴う印刷不良を低減することができる。
本開示は、媒体に画像を形成するプリンタ、複写機、ファクシミリ装置、MFP(Multi Function Peripheral)等の画像形成装置に利用することができる。
1 画像形成装置、 10 現像装置、 11 感光体ドラム(像担持体)、 12 現像ローラ(現像剤担持体)、 12a 軸体(シャフト)、 12b 内層、 12c 表層、 13 供給ローラ(供給部材)、 14 規制ブレード(層規制部材)、 15 帯電ローラ(帯電部材)、 16 トナーカートリッジ(現像剤収容体)、 19 転写ローラ(転写部材)、 30 露光ヘッド(露光装置)、 40 媒体供給部、 50 定着装置、 60 媒体排出部、 80 測定治具、 90 平刃、 100 主制御部、 300 測定装置、 RALL 抵抗値(全体抵抗値)、 RALL-RIN 全体抵抗値と内層抵抗値との差(抵抗比)、 RIN 抵抗値(内層抵抗値)。

Claims (9)

  1. 静電潜像を担持する像担持体と、
    前記像担持体に当接し、前記静電潜像を現像剤により現像する現像剤担持体と
    を備え、
    前記現像剤担持体は表層と内層とを有し、
    前記表層と前記内層とを合わせた全体の抵抗値RALL[LogΩ]と前記内層の抵抗値RIN[LogΩ]との差RALL―Rinは、0.56[LogΩ]以上である
    ことを特徴とする現像装置。
  2. 前記現像剤担持体は、
    軸体と、
    前記軸体を被覆する、前記内層としての弾性層と、
    前記像担持体と当接する前記表層と
    を有することを特徴とする請求項1に記載の現像装置。
  3. 前記像担持体と前記現像剤担持体とによる搬送力は1.0[N]以上である
    ことを特徴とする請求項1または2に記載の現像装置。
  4. 前記全体の抵抗値RALL[LogΩ]と前記内層の抵抗値RIN[LogΩ]との差RALL―Rinは、1.74[LogΩ]以下である
    ことを特徴とする請求項1から3までのいずれか1項に記載の現像装置。
  5. 前記全体の抵抗値RALLは6.15[LogΩ]以上である
    ことを特徴とする請求項1から4までのいずれか1項に記載の現像装置。
  6. 前記全体の抵抗値RALLは8.45[LogΩ]以下である
    ことを特徴とする請求項1から5までのいずれか1項に記載の現像装置。
  7. 前記表層は、アクリル系樹脂とウレタン系樹脂とを含み、
    前記アクリル系樹脂と前記ウレタン系樹脂との合計に対し、前記アクリル系樹脂の重量割合が40[%]以上、60[%]以下である
    ことを特徴とする請求項1から6までのいずれか1項に記載の現像装置。
  8. エネルギー分散型X線分析法を用いた元素分析により測定される、前記現像剤におけるSiの含有量が、0.98~1.28[重量%]である
    ことを特徴とする請求項1から7までのいずれか1項に記載の現像装置。
  9. 請求項1から8までのいずれか1項に記載の現像装置と、
    前記現像剤で現像された現像剤像を媒体に定着する定着装置と
    を備えたことを特徴とする画像形成装置。
JP2021209221A 2021-12-23 2021-12-23 現像装置および画像形成装置 Pending JP2023094024A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021209221A JP2023094024A (ja) 2021-12-23 2021-12-23 現像装置および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021209221A JP2023094024A (ja) 2021-12-23 2021-12-23 現像装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2023094024A true JP2023094024A (ja) 2023-07-05

Family

ID=87001667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021209221A Pending JP2023094024A (ja) 2021-12-23 2021-12-23 現像装置および画像形成装置

Country Status (1)

Country Link
JP (1) JP2023094024A (ja)

Similar Documents

Publication Publication Date Title
EP3106924B1 (en) Image forming apparatus
EP2657787A2 (en) Development device, process cartridge, and image forming apparatus
JP2005309398A (ja) 導電性部材およびそれを用いたプロセスカートリッジ
US8913928B2 (en) Developing device and image forming apparatus having developer layer regulating member
JP2017120381A (ja) 画像形成装置
EP2871528B1 (en) Charging device, image forming unit and image forming apparatus
JP2023094024A (ja) 現像装置および画像形成装置
JP6663337B2 (ja) 画像形成装置
JP2013088672A (ja) 画像形成ユニット及び画像形成装置
JP2023050626A (ja) 画像形成ユニットおよび画像形成装置
JP2010002834A (ja) 電子写真感光体、現像装置及び画像形成装置
JP2023108094A (ja) 帯電装置および画像形成装置
JP5723252B2 (ja) 画像形成ユニット及び画像形成装置
JP2020106670A (ja) 帯電装置、画像形成ユニットおよび画像形成装置
US11782355B2 (en) Charging member, charging device, image forming apparatus, and process cartridge
JP4695998B2 (ja) 画像形成装置及び画像形成方法
JP6218143B2 (ja) 現像装置および画像形成装置
EP3037890A1 (en) Developing unit, process cartridge, and electrophotographic apparatus
JP7395989B2 (ja) 現像ユニットおよび画像形成装置
US8874001B2 (en) Image forming apparatus
JP2021071536A (ja) 像担持体ユニット、画像形成ユニットおよび画像形成装置
US20130051856A1 (en) Process unit and image formation apparatus
JP6932880B2 (ja) 画像形成装置
JP2023168931A (ja) 現像装置および画像形成装置
JP2021117236A (ja) ドラムユニット及び画像形成装置