JP2023067759A - 構造物の制振装置 - Google Patents

構造物の制振装置 Download PDF

Info

Publication number
JP2023067759A
JP2023067759A JP2022144929A JP2022144929A JP2023067759A JP 2023067759 A JP2023067759 A JP 2023067759A JP 2022144929 A JP2022144929 A JP 2022144929A JP 2022144929 A JP2022144929 A JP 2022144929A JP 2023067759 A JP2023067759 A JP 2023067759A
Authority
JP
Japan
Prior art keywords
support member
mass
tension spring
mass damper
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022144929A
Other languages
English (en)
Inventor
貴章 宇田川
Takaaki Utagawa
英範 木田
Hidenori Kida
直樹 尾家
Naoki Oie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sekkei Ltd
Aseismic Devices Co Ltd
Original Assignee
Nikken Sekkei Ltd
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sekkei Ltd, Aseismic Devices Co Ltd filed Critical Nikken Sekkei Ltd
Publication of JP2023067759A publication Critical patent/JP2023067759A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

【課題】支持部材への初期テンションの導入によって、支持部材の座屈防止機構を省略でき、初期テンションが導入されていない場合と同等の制振効果を得ることができる構造物の制振装置を提供する。【解決手段】本発明の構造物の制振装置は、構造物Bに連結され、上下方向に延びる支持部材2と、支持部材2に連結され、支持部材2とともに付加振動系Aを構成し、構造物Bが振動したときに、支持部材2を介して伝達される構造物Bの変位を回転マス16の回転運動に変換し、回転慣性質量効果及び粘性減衰効果を発揮するマスダンパ3と、支持部材2にマスダンパ3と並列に連結され、支持部材2に所定の大きさの初期テンションを付与するテンションバネ4を備え、マスダンパ3の回転慣性質量mdηdは、テンションバネ4が設置されていない条件で設定される回転慣性質量mdoに対し、テンションバネ4の剛性に応じて増大された値に設定されている。【選択図】図9

Description

本発明は、特に高層の構造物の振動を抑制するための構造物の制振装置に関する。
従来、この種の制振装置として、例えば本出願人によって特許文献1に開示されたものが知られている。この制振装置は、高層建物などの構造物を対象とするものであり、構造物の上端部と基礎の間に連結され、上下方向に延びる複数の支持部材と、各支持部材の下端部に直列に連結されたマスダンパと、支持部材の座屈を防止するための座屈防止機構を備える。
マスダンパ及び支持部材は、制振対象である構造物(主系)に対して付加振動系を構成する。支持部材は、中空の複数の柱材で構成され、ボルト・ナットで連結されている。マスダンパは、例えば、内筒、ボールねじ及び回転マスなどを有するボールねじ式のものであり、内筒が支持部材の下端部に連結され、ボールねじのねじ軸が基礎に連結されている。また、回転マスの回転慣性質量及び支持部材の剛性は、付加振動系の固有振動数が構造物の固有振動数に同調するように設定されている。
座屈防止機構は、支持部材の長さ方向に沿い、所定の間隔ごとに複数、配置されており、各々は、構造物と一体のスラブと、スラブに取り付けられた滑り板などで構成されている。スラブには、複数の矩形の拘束孔が形成され、各拘束孔に支持部材が挿入されている。滑り板は、滑性を有する材料で構成され、スラブの拘束孔の壁面に貼り付けられている。また、支持部材の外面には、拘束孔に対応する位置に、ステンレスなどで構成された当接板が貼り付けられている。
以上の構成では、地震時などに構造物が振動すると、構造物が高層の場合には特に、曲げ変形がせん断変形に優るため、構造物の上部側が横方向に大きく往復動(揺動)する。この揺動による大きな変位が、座屈防止機構の拘束孔を鉛直方向に摺動する支持部材を介してマスダンパに良好に伝達されることによって、回転マスが回転し、支持部材およびマスダンパから成る付加振動系が振動する。これにより、付加振動系の固有振動数が構造物の固有振動数に同調することによって、構造物の振動エネルギが付加振動系で吸収され、構造物の振動が抑制される。
一方、支持部材が座屈防止機構の拘束孔に挿入されていることで、支持部材の水平方向の移動が拘束される結果、圧縮荷重の作用時における支持部材の座屈が防止される。
特許第5399540号公報
上述した従来の制振装置では、座屈防止機構は、支持部材の水平方向の移動を拘束することで、支持部材の座屈を防止する一方、支持部材の鉛直方向の移動を許容することで、構造物の大きな変位が支持部材を介してマスダンパに良好に伝達され、マスダンパを大きく移動させることによって、マスダンパの回転慣性質量効果が十分に発揮される結果、大きな制振効果が得られる。しかし、座屈防止機構は、その機能上、支持部材の長さ方向に沿い、所定の間隔ごとに設置することが必要である。このため、構造物の高層化に伴って支持部材の長さが大きくなるほど、座屈防止機構の設置数が非常に多くなり、大きなコストアップの要因になる。
このような不具合を解消するために、例えば、マスダンパと並列にテンションバネを設け、このテンションバネで支持部材に初期テンションを導入することにより、地震時、支持部材に最大圧縮荷重が作用したタイミングにおいても、支持部材を引張状態に保持し、座屈を防止することが考えられる。
しかし、その場合、初期テンション効果を有効に得るために、テンションバネとして、マスダンパの反力よりも付勢力が大きい、剛性の高いものを用いたときには、テンションバネがマスダンパの動きを阻害することで、マスダンパの回転慣性質量効果が抑制される結果、マスダンパによる制振効果が適切に得られなくなってしまう。この場合、テンションバネの剛性が大きくなるほど、マスダンパの動きを阻害する度合いも大きくなり、マスダンパによる制振効果が小さくなる。
本発明は、以上のような課題を解決するためになされたものであり、支持部材への初期テンションの導入によって、支持部材の座屈を防止するための座屈防止機構を省略できるとともに、初期テンションが導入されていない場合と同等の制振効果を得ることができる構造物の制振装置を提供することを目的とする。
上記の目的を達成するために、請求項1に係る発明は、地盤上に立設された構造物の振動を抑制するための構造物の制振装置であって、一端部が構造物に連結され、上下方向に延びる支持部材と、支持部材に連結され、支持部材とともに付加振動系を構成するとともに、回転マスを有し、構造物が振動したときに、支持部材を介して伝達される構造物の変位を回転マスの回転運動に変換することによって、回転慣性質量効果及び粘性減衰効果を発揮するマスダンパと、支持部材にマスダンパと並列に連結され、支持部材に所定の大きさの初期テンションを付与するテンションバネと、を備え、マスダンパの回転慣性質量は、テンションバネが設置されていない条件で設定される回転慣性質量に対し、テンションバネの剛性に応じて増大された値に設定されていることを特徴とする。
地震時などに構造物が振動すると、構造物が高層の場合には特に、構造物の曲げ変形がせん断変形に優るため、構造物は、その上部側が横方向に大きく往復動するような態様で振動(揺動)する。上述した構成の構造物の制振装置によれば、構造物が揺動すると、構造物の変位が支持部材を介してマスダンパに伝達され、支持部材及びマスダンパから成る付加振動系が振動するとともに、構造物の変位が回転マスの回転運動に変換される。それにより、回転慣性質量効果及び粘性減衰効果が発揮されることによって、構造物の振動が抑制される。
また、テンションバネによって支持部材に所定の大きさの初期テンションが付与されているため、構造物の振動中、支持部材にマスダンパによる引張荷重と圧縮荷重が交互に作用しても、支持部材は常に引張状態に保持される。これにより、従来のような格別の座屈防止機構を必要とすることなく、支持部材の座屈を防止することができる。
また、マスダンパの回転慣性質量は、テンションバネが非設置の条件で設定される回転慣性質量に対し、テンションバネの剛性に応じて増大された値に設定されている。これにより、初期テンションの導入に伴うマスダンパの回転慣性質量効果の低下を防止し、初期テンションが導入されていない場合と同等の制振効果を得ることができる。
請求項2に係る発明は、請求項1に記載の構造物の制振装置において、テンションバネの剛性と支持部材の剛性との比をηdとするとともに、テンションバネが設置されていない条件で、付加振動系の固有振動数が構造物の固有振動数に同調するように設定される回転慣性質量をmdoとした場合、マスダンパの回転慣性質量mdηdは、mdηd=(1+ηd)・mdoに設定されていることを特徴とする。
後述するように、マスダンパの回転慣性質量mdηdを、上記のように定義される剛性比ηdとテンションバネの非設置時の回転慣性質量mdoに基づき、mdηd=(1+ηd)・mdoに設定したとき(回転慣性質量mdoの(1+ηd)倍に設定したとき)に、初期テンションが導入されていない場合と同じ制振効果が得られることが、理論的に証明されるとともに、シミュレーション解析の結果から確認された。したがって、この構成によれば、付加振動系の固有振動数が構造物の固有振動数に同調することによる制振効果を、初期テンションを導入した場合と同様に得ることができる。
請求項3に係る発明は、請求項1又は2に記載の構造物の制振装置において、マスダンパは、構造物の変位が支持部材を介して伝達されることによって発生する作動流体の流動を回転マスの回転運動に変換する圧力モータ式のマスダンパで構成されていることを特徴とする。
この構成によれば、マスダンパは、圧力モータ式であり、構造物の変位が支持部材を介して伝達されることにより発生する作動流体の流動を回転マスの回転運動に変換することによって、回転慣性質量効果を発揮する。また、圧力モータ式のマスダンパでは、ボールねじ式のものと異なり、ダンパ力と同時にトルク力が発生し、支持部材に作用することはない。このため、ボールねじ式の場合に必要な支持部材のねじれ防止機構を省略することができる。
請求項4に係る発明は、請求項1又は2に記載の構造物の制振装置において、支持部材は、構造物の外周部に設置された柱の内部を通って構造物の屋上部まで延び、マスダンパ及びテンションバネは、構造物の屋上部に配置され、支持部材に連結されていることを特徴とする。
構造物の屋上部は、構造物の最下部と比較して、広いスペースを有する。このため、この構成では、マスダンパ及びテンションバネを屋上部に余裕をもって配置することができる。また、支持部材は柱の内部に隠され、マスダンパなどは地表部から遠い屋上部に配置されるので、構造物の外観を良好に保つことができる。
請求項5に係る発明は、請求項4に記載の構造物の制振装置において、マスダンパを支持するために構造物の屋上部に設けられた門形の支持架構をさらに備え、支持部材の上端部は支持架構の構内に延び、マスダンパ及びテンションバネは、支持架構の構内に配置されており、支持架構には、マスダンパ及びテンションバネを覆うように、外装材が取り付けられていることを特徴とする。
この構成では、マスダンパとテンションバネを支持架構の構内にコンパクトに収容できるとともに、支持架構に取り付けた外装材によって、マスダンパなどを風雨に晒すことなく有効に保護することができる。
本発明による制振装置を、これを適用した構造物とともに概略的に示す(a)正面図、及び(b)平面図である。 支持部材とマスダンパ及びテンションバネを、(a)初期テンションの導入前、及び(b)初期テンションの導入後の状態で示す図である。 マスダンパの断面図である。 図1の構造物が揺動する様子を示す正面図である。 構造物及び制振装置のモデルを示す図である。 振動数比と変位応答倍率の関係を示す図である。 質量比及び剛性比と最適同調振動数比との関係を示す図である。 質量比及び剛性比と最適同調振動数比における定点の変位応答倍率との関係を示す図である。 剛性比と等価質量増大比率の関係の一例を示す図である。 質量比及び剛性比と最適減衰定数との関係を示す図である。 剛性比などと(a)等価質量増大比率、(b)剛性増大比率、及び(c)減衰係数増大比率との関係をそれぞれ示す図である。 図11を用いて(a)等価質量増大比率、(b)剛性増大比率、及び(c)減衰係数増大比率をそれぞれ求めた例を示す図である。 テンションバネが設けられていない場合、テンションバネが設けられている場合、及びマスダンパが設けられていない場合について、(a)(b)2種類の地震動をそれぞれ入力したときのシミュレーション解析の結果(OTM及び層間変形角)を示す図である。 (a)テンションバネが設けられていない場合、及び(b)テンションバネが設けられている場合について、支持部材の剛性を最適値と最適値からずらした値に設定したときのシミュレーション解析の結果(絶対加速度応答倍率)を示す図である。 構造物に対する制振装置の他の配置例を示す図である。 構造物に対する制振装置の別の配置例を示す図である。 構造物に対する制振装置のさらに別の配置例を示す図である。 支持部材とマスダンパ及び図2と異なる構成のテンションバネを、(a)初期テンションの導入前、及び(b)初期テンションの導入後の状態で示す図である。 マスダンパなどを構造物の屋上部に配置した場合の制振装置を概略的に示す正面図である。 図19に基づく制振装置の1つの実施形態を示す図である。 図19に基づく制振装置の他の実施形態を示す図である。 図19に基づく制振装置のさらに別の実施形態を示す図である。
以下、図面を参照しながら、本発明の好ましい実施形態を詳細に説明する。図1に示すように、制振装置1が設けられる構造物Bは、例えば38階建ての高層の建物であり、地盤上の基礎Fに立設されている。制振装置1は、支持部材2及びマスダンパ3で構成された複数の付加振動系Aと、支持部材2に初期テンションを導入するためのテンションバネ4を備える。制振装置1は、付加振動系Aの固有振動数を、地震時などに振動する構造物Bの固有振動数に同調させることによって、構造物Bの振動エネルギを付加振動系Aで吸収し、構造物Bの振動を抑制するものである。
構造物Bは、矩形の平面形状を有しており、そのサイズは例えば、長辺長さL=@7.2m×7=50.4m、短辺長さD=12.8+9.6=22.4m、高さH=@4m×38=152mである。付加振動系Aは、構造物Bの最上部と基礎Fの間に設けられ、構造物Bの短辺方向の両端外側に各7基(計14基)、長辺方向に等間隔に配置されている。
支持部材2は、構造物Bの外側に配置され、上下方向に延びており、その上端部が構造物Bの最上部に連結され、下端部にはマスダンパ3が連結されている。より具体的には、支持部材2は、上下方向に接合・固定された複数の鋼製の柱材で構成され、図2に示すように、下端部に鋼製の第1連結部材5が一体に設けられており、第1連結部材5を介して、マスダンパ3の一端部に直列に連結されている。マスダンパ3は、上下方向に配置されており、その他端部は、基礎Fに一体に設けられた鋼製の第2連結部材6に連結されている。
第2連結部材6には、マスダンパ3の両側に、一対のねじ棒7、7が固定ナット8などで固定されている。各ねじ棒7は、第2連結部材6から上方に延び、第1連結部材5を貫通し、その上方に突出している。このねじ棒7の突出部分に、上記テンションバネ4と調整ナット9が設けられている。テンションバネ4は、例えば、ねじ棒7に通されたコイルバネで構成されており、所定の剛性(軸剛性)kdを有する。調整ナット9は、テンションバネ4の上側に配置され、ねじ棒7に進退自在にねじ込まれている。
以上の構成により、図2(a)に示すように、調整ナット9がねじ棒7の上端側に離間しているときには、テンションバネ4はフリーな状態にあり、支持部材2に初期テンションは生じない。この状態から、同図(b)に示すように、調整ナット9を回して下方に移動させると、テンションバネ4が調整ナット9で圧縮され、第1連結部材5を下方に押圧することによって、支持部材2に初期テンションが導入される。この初期テンションの大きさは、調整ナット9によるテンションバネ4の圧縮量を調整することによって、無段階に調整することが可能である。本実施形態では、初期テンションは、地震時に支持部材2に作用すると想定されるマスダンパ3の最大圧縮荷重よりも若干大きな所定値に設定されている。
マスダンパ3は、作動流体HFを用いる歯車モータ式の粘性マスダンパであり、図3に示すように、周壁12aと第1及び第2端壁12b、12cを有し、作動流体HFが充填されたシリンダ12と、シリンダ12内に摺動自在に設けられ、シリンダ12内を第1及び第2流体室12d、12eに区画するピストン13と、ピストン13をバイパスし、第1及び第2流体室12d、12eに連通する連通路14と、連通路14に配置された歯車モータ15と、歯車モータ15に連結された回転マス16と、ピストン13に一体に設けられ、その両側に延び、第1及び第2端壁12b、12cからそれぞれ突出する第1及び第2ピストンロッド17a、17bを備える。
シリンダ12の第1端壁12bには、中空の凸部12fが一体に設けられており、この凸部12f内に第1ピストンロッド17aが収容されている。凸部12fの先端部には、自在継手BJを介して第1取付具FL1が設けられ、第2ピストンロッド17bの先端部には、自在継手BJを介して第2取付具FL2が設けられている。作動流体HFは、適度な粘性を有する流体、例えばシリコンオイルや作動油などで構成されている。
歯車モータ15は、例えば外接式のものであり、連通路14に連通するケーシング15a内に収容され、互いに噛み合う入力ギヤ15b及び出力ギヤ15cと、出力ギヤ15cに一体に連結された出力軸15dを有する。この出力軸15dに、円板状の回転マス16が一体に連結されている。なお、歯車モータ15として内接式のものを用いてもよいことは、もちろんである。
ピストン13には、軸線方向に貫通する複数の孔が形成されており(2つのみ図示)、これらの孔にそれぞれ、第1及び第2リリーフ弁18、19が設けられている。第1リリーフ弁18は、弁体と、弁体を閉弁側に付勢するばねで構成されており、ピストン13が図3の左方に移動することで、第1流体室12d内の作動流体HFの圧力が上昇し、所定のリリーフ荷重に達したときに、開弁する。第2リリーフ弁19は、同様に構成され、ピストン13が図3の右方に移動することで、第2流体室12e内の作動流体HFの圧力がリリーフ荷重に達したときに、開弁する。
以上の構成のマスダンパ3は、図2に示すように、第1取付具FL1を介して第2連結部材6の上面に取り付けられ、第2取付具FL2を介して第1連結部材5の下面に取り付けられている。
このマスダンパ3では、地震時などに、構造物Bが図4に示すように揺動すると、構造物Bの変位が支持部材2及び第1連結部材5を介して伝達されることによって、ピストン13がシリンダ12に対して往復動する。それに伴い、第1及び第2流体室12d、12eの一方の作動流体HFが、ピストン13で押し出され、連通路14に流入する。この作動流体HFの流動が歯車モータ15で回転運動に変換されることにより、回転マス16の回転による慣性質量効果が発揮されるとともに、作動流体HFの流動による慣性質量効果が発揮される。また、作動流体HFが連通路14内を流動することによる粘性減衰効果が得られる。
また、構造物Bが揺動するのに伴い、支持部材2にマスダンパ3の圧縮荷重と引張荷重が交互に繰り返し作用する。前述したように、支持部材2への初期テンションが地震時のマスダンパ3の最大圧縮荷重よりも大きな所定値に設定されているため、支持部材2は、地震時において常に引張状態に保持される。これにより、従来のような格別の座屈防止機構を必要とすることなく、支持部材2の座屈を防止することができる。
また、構造物Bの揺動に伴い、支持部材2及びマスダンパ3から成る付加振動系Aが振動する。これにより、構造物Bの振動エネルギが付加振動系Aで吸収されることによって、構造物Bの振動が抑制される。本実施形態では、テンションバネ4によって支持部材2に初期テンションを導入した場合においても、テンションバネ4の剛性の影響を考慮した付加振動系Aの固有振動数が構造物Bの固有振動数に最適に同調するよう、付加振動系Aの諸元(マスダンパ3の等価質量(回転慣性質量)md及び減衰係数cd、支持部材2の剛性kb)とテンションバネ4の剛性kdが設定される。以下、この設定方法について詳細に説明する。
まず、図1に示される構造物B及び制震装置1で構成される全体系は、図5のようにモデル化される。制振対象としての構造物B(以下、適宜「主系B」という)は、1つの質点(m)に内部バネ(k)及び内部減衰(c)が互いに並列に接続された1質点系モデルで表される。テンションバネ4の剛性の影響を考慮した付加振動系Aは、支持部材2から成るバネ要素(kb)に、マスダンパ3の回転マス16などから成る慣性接続要素(md)と作動流体HFから成る粘性要素(cd)が、互いに並列に接続され、さらにテンションバネ4から成るバネ要素(kd)が、慣性接続要素(md)及び粘性要素(cd)と並列に接続されたモデルになる。
以上の全体系において、地動入力を受けるときの主系Bの変位応答倍率を、定点理論に基づいて解析し、主系Bとテンションバネ4の剛性の影響を考慮した付加振動系Aとの最適同調振動数比やテンションバネ4の剛性の影響を考慮した付加振動系Aの最適減衰定数などを、以下のようにして求める。
まず、主系Bが地動入力を受けるときの運動方程式は、次式(1)及び(2)で表される。
Figure 2023067759000002
この運動方程式を解くために、以下の関係式(パラメータ)を定義する。
Figure 2023067759000003
以上の式(1)~(3)から、主系Bの変位応答倍率x/xo(主系の変位/入力変位)は、次式(4)のように算出される。ここで、式(4)の記号iは虚数単位√(-1)を示す。
Figure 2023067759000004
また、式(4)に、主系Bの減衰定数h=0及び付加振動系Aの減衰定数hd=0と、h=0及びhd=∞をそれぞれ代入することにより、h及びhdがこれらの条件のときの変位応答倍率|x/xo|を表す次式(5)及び(6)が得られる。
Figure 2023067759000005
次に、定点理論に基づき、絶対値の中の符号を考慮して式(5)(6)の右辺同士を等式で結ぶことで、次式(7)が得られるとともに、式(7)を振動数比γについて解くことによって、図6に示す2つの応答倍率曲線の交点である2つの定点P、Qの振動数比γ(P)、γ(Q)が、次式(8)のように得られる。
Figure 2023067759000006
次に、定点P、Qの高さ(変位応答倍率)が等しくなるときの固有円振動数比βを、最適同調振動数比βopt として算出する。具体的には、式(8)の振動数比γ(P)、γ(Q)を式(6)にそれぞれ代入することで得られた変位応答倍率|x/xo|が互いに等しいとして、次式(9)が導かれるとともに、式(9)を展開することによって、次式(10)が得られる。そして、式(10)に式(8)の振動数比γ(P)、γ(Q)を代入するとともに、固有円振動数比βについて解くことによって、次式(11)に示す最適同調振動数比βopt(S)、βopt(H)が得られる。なお、βopt(S)は、実施形態に該当する柔バネ解であり、βopt(H)は硬バネ解である。
Figure 2023067759000007
この式(11)の柔バネ解のβopt(S)を図示すると、図7のようにマップ化される。また、式(11)においてηd=0とすると、式(12)が得られる。この式(12)は、テンションバネが設けられていない場合の最適同調振動数比の柔バネ解として知られている式と完全に一致する。また、柔バネ解に関し、式(11)を整理すると、式(13)が得られる。この式(13)の平方根内の式=(1+ηd)-4μ≧0という条件から、剛性比ηdに対して質量比μが式(14)の条件を満たすときに、柔バネ解が存在することになる。
次に、剛性比ηdの考慮時(テンションバネ4が設けられている場合)の最適同調振動数比βopt(S)における定点P、Qの変位応答倍率を算出する。まず、式(6)から次式(15)が導かれる。この式(15)の最適振動数比γ(P)_opt(S)、γ(Q)_opt(S)に次式(16)を、最適同調振動数比βopt(S)に前記式(13)をそれぞれ代入し、整理することによって、次式(17)が得られる。
Figure 2023067759000008
一方、ηd=0の場合(テンションバネ4が設けられていない場合)の最適同調振動数比βopt(S)における定点P、Qの変位応答倍率|x/xo|βopt(S)は、式(15)に、式(12)の最適同調振動数比βopt(S)と式(16)を代入し、整理することによって、次式(18)で表される。以上の式(17)及び(18)で表される、質量比μ及び剛性比ηdと最適同調振動数比βopt(S)における定点P、Qの変位応答倍率|x/xo|βopt(S)との関係は、図8のようにマップ化される。
Figure 2023067759000009
また、式(17)と式(18)の比較から、最適同調振動数比βopt(S)における定点P、Qにおいて、ηd=0のときと同じ変位応答倍率をηd考慮時に得るための条件は、次式(19)で表される。すなわち、ηd考慮時の質量比μηd(等価質量mdηd)を、ηd=0のときの質量比μo(等価質量mdo)の(1+ηd)倍に設定することによって、等しい変位応答倍率|x/xo|βopt(S)が得られることが分かる。したがって、剛性比ηd=0のときと同じ制振効果を得るのに必要なηd考慮時の等価質量mdの増大比率(以下「等価質量増大比率」という)Rmdは、次式(20)のようにRmd=mdηd/mdo=(1+ηd)で表され、図9のように例示されるとともに、図11(a)のようにマップ化される。
Figure 2023067759000010
次に、最適同調振動数比βopt(S)における最適な減衰定数hdを、最適減衰定数hd_opt(S)として算出する。その基本式は次式(21)で表される。また、式(21)中の定点P、定点Qで応答倍率曲線が極大値となる条件の最適減衰定数h(P)_opt(S)、h(Q)_opt(S)は、次式(22)で与えられる。さらに、式(22)中の変位応答倍率|x/xo|βopt(S)は前記式(17)で、最適振動数比γ(P)_opt(S)、γ(Q)_opt(S)は前記式(16)で、最適同調振動数比βopt(S)は前記式(13)で、それぞれ与えられる。その結果、最適減衰定数hd_opt(S)は、質量比μ及び剛性比ηdの関数になり、その式は非常に複雑になるため表示しないが、図10のようにマップ化される。
Figure 2023067759000011
Figure 2023067759000012
また、この最適減衰定数hd_opt(S)を表す関数において、剛性比ηd=0とすると、次式(23)が得られる。この式(23)は、テンションバネが設けられていない場合の最適減衰定数の柔バネ解として知られている式と完全に一致する。
Figure 2023067759000013
最適減衰定数hd_opt(S)に対応する粘性係数cdは、次式(24)で表される。この式(24)に、式(21)の最適減衰定数hd_opt(S)と式(13)の最適同調振動数比βopt(S)を代入することで、ηd考慮時の粘性係数cdηdが、質量比μ及び剛性比ηdの関数として求められる。また、式(24)に、式(18)の最適減衰定数hd_opt(S)と式(12)の最適同調振動数比βopt(S)を代入することで、ηd=0のときの粘性係数cdoが、質量比μ及び剛性比ηdの関数として求められる。したがって、剛性比ηd=0のときと同じ制振効果を得るのに必要なηd考慮時の減衰係数cdの増大比率(以下「減衰係数増大比率」という)Rcdは、次式(25)のようにRcd=cdηd/cdoで表され、図11(c)のようにマップ化される。
Figure 2023067759000014
また、最適同調振動数比βopt(S)に対応する支持部材2の剛性(以下「支持部材剛性」という)kbは、次式(26)で表される。この式(26)に、式(13)の最適同調振動数比βopt(S)を代入することで、ηd考慮時の支持部材剛性kbηdが、式(12)の最適同調振動数比βopt(S)を代入することで、ηd=0のときの支持部材剛性kboが、いずれも質量比μ及び剛性比ηdの関数として求められる。したがって、剛性比ηd=0のときと同じ制振効果を得るのに必要なηd考慮時の支持部材剛性kbの増大比率(以下「剛性増大比率」という)Rkbは、次式(27)のようにRcd=kbηd/kboで表され、図11(b)のようにマップ化される。
Figure 2023067759000015
次に、上述した設定方法を用いた、テンションバネ4で支持部材2に初期テンションを導入した場合の付加振動系Aの諸元(マスダンパ3の等価質量md及び減衰係数cd、支持部材剛性kbなど)の具体的な設定方法について、詳細に説明する。
まず、図1に示すような高層の構造物B(主系)(L=@7.2m×7=50.4m、D=12.8+9.6=22.4m、H=@4m×38=152m)に対し、剛性比ηd=0の(テンションバネ4が設けられていない)ときの、付加振動系Aの固有振動数が構造物Bの1次固有振動数に最適に同調するよう、付加振動系Aの1基あたりの諸元が次のように設定されているものとする。
・等価質量mdo=20000ton(質量比μo=0.031)
・減衰係数cdo=4.7kNs/mm
・支持部材剛性kbo=36.4kN/mm
接続節点考慮剛性kbo’=30.7kN/mm
なお、上記の質量比μoは、高層の構造物B(主系)モデルの1次モードにおける刺激関数を考慮して算出したものである。
また、以上のように設定されたモデル、すなわち、図1に示す構造物Bに付加振動系A(支持部材2及びマスダンパ3)が設けられ、テンションバネ4が設けられていない(ηd=0)とともに、付加振動系Aの諸元が上記のように設定されたモデルを「ηd=0モデル」という。
次に、これらの諸元に基づき、テンションバネ4が設けられた場合において、設けられていない場合(ηd=0)と同じ制振効果を得るための付加振動系Aの諸元を、以下のように設定する。ここで、剛性比ηdは0.3とする。まず、等価質量mdηdについては、前記式(19)を用い、上記のηd=0のときの等価質量mdoと剛性比ηdの値を代入することで、
mdηd=(1+ηd)・mdo
=(1+0.3)×20000
=33800ton(質量比μηd=0.052)と算出される。
なお、等価質量増大比率Rmdに関する図9の表や図11(a)のマップが用意されている場合には、これらを利用し、ηd=0.3を適用することで、Rmd=約1.7を得た(図12(a)参照)後、等価質量mdoに乗算することによって、等価質量mdηdを求めてもよい。
次に、減衰係数cdηdについては、図11(c)のマップに、ηd=0.3、μ=0.031を適用することによって、図12(c)に示すように、減衰係数増大比率Rcd=約1.7を得た後、ηd=0のときの減衰係数cdoに乗算することによって、
cdηd=Rcd・cdo
=約1.7×4.7
=8.0kNs/mmと算出される。
次に、接続節点剛性を考慮した支持部材剛性kbηd’については、図11(b)のマップに、ηd=0.3、μ=0.031を適用することによって、図12(b)に示すように、剛性増大比率Rkb=約1.3を得た後、ηd=0のときの接続節点剛性を考慮した支持部材剛性kbo’に乗算することによって、
kbηd’=Rkb・kbo’
=約1.3×30.7
=40.1kN/mmと算出される。
ここで、接続節点剛性の影響を取り除いた支持部材剛性kbηdを算出すると、kbηd=50.5kN/mmとなる。
また、テンションバネ4の剛性kdは、
kd=0.3×kbηd’
=0.3×40.1
=12.03kN/mmと算出される。
また、以上のように設定されたモデル、すなわち、図1に示す構造物Bに付加振動系A及びテンションバネ4が設けられるとともに、付加振動系Aの諸元が上記のように設定され、剛性比ηdが0.3に設定されたモデルを「ηd=0.3モデル」という。
次に、図13及び図14を参照しながら、本実施形態の制振装置による制振効果を確認するために実施したシミュレーション解析とその結果について、説明する。このシミュレーション解析は、構造物Bの基礎Fに所定の地震動を入力した場合の構造物Bの応答について時刻歴応答解析を行ったものである。
シミュレーション解析の条件は、以下のとおりである。まず、解析の対象は、上述したテンションバネ4が設けられていない「ηd=0モデル」と、テンションバネ4が設けられた「ηd=0.3モデル」であり、さらに、比較用として、付加振動系A及びテンションバネ4が設けられていない「ダンパなしモデル」を加えた。
また、入力地震動として、想定関東地震「東京気象庁NS」と告示波「L2告示八戸位相」を用いた。そして、これらの地震動を構造物Bの基礎Fに入力したときの構造物Bの各階の応答加速度、速度及び変位を算出するとともに、OTM(転倒モーメント)及び層間変形角などを求めた。
解析の結果は、図13に示されている。まず、OTMについては、いずれの地震動においても、「ηd=0モデル」及び「ηd=0.3モデル」の場合には、「ダンパなしモデル」の場合と比較して大幅に低減されている。このことは、層間変形角についても同様である。以上から、付加振動系Aの固有振動数が構造物Bの1次固有振動数に最適に同調することによって、制振効果が十分に発揮されていると推定される。
また、「ηd=0モデル」と「ηd=0.3モデル」を比較すると、いずれの地震動においても、ほぼ同じOTMと層間変形角が得られており、そのため、図13(a)(b)では、両モデルの結果が1本の線で描かれている。このことから、テンションバネ4が設けられた場合には、前述した付加振動系Aの諸元の設定によって、テンションバネ4が設けられていない場合と同じ制振効果が得られることが確認された。
また、「ηd=0モデル」及び「ηd=0.3モデル」のそれぞれにおいて、支持部材剛性kbがロバスト性に及ぼす影響を確認するために、支持部材剛性kbを最適値(=kbo、kbηd)、最適値の1.2倍、及び最適値の0.8倍にそれぞれ設定したモデルを対象として、時刻歴応答解析を行い、地動に対する頂部の絶対加速度応答倍率を求めた。
この解析の結果は、図14に示されている。支持部材剛性kbが最適値に設定されている場合には、「ηd=0モデル」及び「ηd=0.3モデル」のいずれにおいても、絶対加速度応答倍率の最大値は約8.8である。これに対し、支持部材剛性kbが最適値の1.2倍や0.8倍にずれた場合、加速度応答倍率の最大値は、「ηd=0モデル」では約16又は約12.5まで増大するのに対し、「ηd=0.3モデル」では、より低い約14又は約11.5まで増大している。すなわち、テンションバネ4が設けられた「ηd=0.3モデル」は、テンションバネ4が設けられていない「ηd=0モデル」と比較して、支持部材剛性kbに対するロバスト性が高いことが判明した。
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、図1に示すように、複数の付加振動系Aを構造物Bの外周部の外側に配置するとともに、各々の支持部材2を構造物Bの最上部から最下部付近まで鉛直方向に延びるように設置し、マスダンパ3及びテンションバネ4(以下、適宜「マスダンパ3など」という)を構造物Bの最下部に設置しているが、これに限らない。
例えば、図19~図22は、マスダンパ3などを構造物Bの屋上部に設置した複数の例を示す。図19に示すように、これらの例では、複数の付加振動系Aは、構造物Bの外周部に配置され、各支持部材2は、図1の場合と同様、構造物Bの屋上部から最下部付近まで鉛直方向に延び、マスダンパ3及びテンションバネ4は、図1の場合と異なり、構造物Bの屋上部に設置されている。
具体的には、図20の実施形態では、構造物Bの外周部付近の複数の柱PEと屋上階の梁BUとの接合部に、支持架台31が一体に立設されており、支持架台31の上方に支持梁32が設けられている。例えば、柱PEは鉄骨柱(鋼管)で構成され、支持架台31及び支持梁32はH形鋼で構成されている。支持部材2は、例えば鋼棒で構成され、柱PEの内部に通されており、その上端側は、梁BU、支持架台31及び支持梁32を遊びをもって貫通し、支持梁32の上側に延びている。なお、構造物BがRC造の場合には、RC柱の中にシース管をあらかじめ設置し、シース管の中に支持部材2(鋼棒)を配置してもよい。
支持部材2の支持架台31よりも上側の部分はねじ部になっており、このねじ部に上下2つの調整ナット9、9が進退自在にねじ込まれている。上下の調整ナット9、9は支持梁32の上側及び下側にそれぞれ配置されている。テンションバネ4は、所定の剛性(軸剛性)kdを有する複数の皿バネで構成されており、支持部材2のねじ部に通されるとともに、下側の調整ナット9と支持架台31の間に配置されている。また、マスダンパ3は、上下方向に配置されており、その下端部は梁BUの上面に連結され、上端部は支持梁32の下面に連結されている。
以上の構成により、下側の調整ナット9を締め付け、下方に移動させると、テンションバネ4が圧縮され、その反力により調整ナット9を介して支持部材2を押し上げることによって、支持部材2に初期テンションが導入される。初期テンションの大きさは、調整ナット9によるテンションバネ4の圧縮量を調整することによって、無段階に調整される。
また、構造物Bの屋上部は、構造物Bの最下部と比較して、広いスペースを有するので、マスダンパ3やテンションバネ4などを余裕をもって配置することができる。さらに、支持部材2は柱PEの内部に隠され、マスダンパ3などは地表部から遠い屋上部に配置されるので、建物などの外観を良好に保つことができる。
図21の実施形態では、構造物Bの外周部付近の複数の柱PEと屋上階の梁BUとの接合部に、支持架構33が一体に立設されている。支持架構33は、複数のH形鋼を組み立てたものであり、左右の鉛直部33a、33aとその上端部をつなぐ水平部33bから門形に形成されている。支持部材2は、鋼棒で構成され、柱PEの内部に通され、上階の梁BUを遊びをもって貫通し、支持架構33の構内に延びている。
マスダンパ3は、支持架構33の構内に上下方向に配置されており、その上端部は支持架構33の水平部33bの下面に連結され、下端部は支持部材2に連結されている。また、マスダンパ3のピストンから上方に延びる第1ピストンロッドの表面にはねじ部が形成されており、このねじ部に調整ナット9が進退自在にねじ込まれている。テンションバネ4は、所定の剛性(軸剛性)kdを有するコイルバネや皿バネなどで構成されており、第1ピストンロッドとこれを収容するシリンダの凸部との間で、シリンダの第1端壁と調整ナット9の間に配置されている。さらに、支持架構33の頂部や外周部にはマスダンパ3を覆うための外装材として、屋根及び壁(いずれも図示せず)が取り付けられている。
以上の構成では、図20の実施形態と同様、調整ナット9を締め付け、下方に移動させると、テンションバネ4が圧縮され、その反力により調整ナット9を介して支持部材2を押し上げることで、支持部材2に初期テンションが導入される。初期テンションの大きさは、テンションバネ4の圧縮量によって、無段階に調整される。
また、図20の実施形態と同様、比較的広いスペースを有する構造物Bの屋上部に、マスダンパ3やテンションバネ4などを余裕をもって配置できるとともに、建物などの外観を良好に保つことができる。さらに、マスダンパ3やテンションバネ4などを支持架構33の構内にコンパクトに収容でできるとともに、支持架構33に取り付けた屋根や壁によって、マスダンパ3などを風雨に晒すことなく有効に保護することができる。なお、本実施形態は、テンションバネ4がマスダンパ3にコンパクトに内蔵されるという利点を有する一方で、テンションバネ4の所要の剛性を確保し難い傾向にある。
図22の実施形態は、より大きなテンションバネ4の剛性が得られるように構成されている。具体的には、図21の場合と同様、構造物Bの外周部付近の複数の柱PEと屋上階の梁BUとの接合部に、複数のH形鋼を組み立てた門形の支持架構33が一体に立設されている。支持部材2は、鋼棒で構成され、柱PEの内部に通され、最上階の梁BUを遊びをもって貫通し、支持架構33の構内に延びており、その上端部には連結部材34が一体に設けられている。マスダンパ3は、上下方向に配置されており、その下端部は連結部材34の上面に連結され、他端部は支持架構33の水平部の下面に連結されている。
連結部材34には、一対のねじ棒7、7が固定されている。各ねじ棒7は、マスダンパ3に対し、図22の紙面の奥行方向にオフセットした状態で配置され、上方に延びており、支持架構33の水平部33bを遊びをもって貫通し、その上方に突出している。このねじ棒7の突出部分に、テンションバネ4と調整ナット9が設けられている。テンションバネ4は、例えば複数の皿バネで構成されており、所定の剛性(軸剛性)kdを有する。調整ナット9は、テンションバネ4の上側に配置され、ねじ棒7に進退自在にねじ込まれている。さらに、図21の実施形態と同様、支持架構33の頂部や外周部にはマスダンパ3を覆うように屋根及び壁(いずれも図示せず)が取り付けられている。
以上の構成では、調整ナット9を締め付け、下方に移動させると、テンションバネ4が圧縮され、その反力により調整ナット9を介して支持部材2を押し上げることで、支持部材2に初期テンションが導入され、その大きさは、テンションバネ4の圧縮量によって、無段階に調整される。
また、比較的広いスペースを有する構造物Bの屋上部に、マスダンパ3やテンションバネ4などを余裕をもって配置できるとともに、建物などの外観を良好に保つことができる。さらに、支持架構33に取り付けた屋根及び壁によって、マスダンパ3を風雨に晒すことなく有効に保護することができる。また、図21の実施形態と異なり、テンションバネ4として大きな剛性を有する2つの皿バネを用いているので、所要の剛性を容易に確保することができる。
さらに、これまでの例では、支持部材2の上端部を構造物Bの最上部に接続しているが、例えば任意の中間層に接続してもよい。また、図1や図19の例では、複数の付加振動系Aを構造物Bの外周の両側に設置しているが、付加振動系Aを、構造物Bの外周の片側だけに配置してもよく、あるいは任意の一部の柱位置だけに配置してもよいことはもちろんである。
さらに、図15(a)に示すように、構造物BのPS(パイプ・スペース)などを利用して、支持部材2を斜めブレース状に上下方向に延びるように設置し、その下端部にマスダンパ3などを設置してもよい。また、同図(a)右部のように、支持部材2の上端部を、構造物Bの最上部ではなく任意の中間層に接続してもよい。
また、同図(b)左部のように、支持部材2を構造物Bの外側に斜めブレース状に設置してもよく、あるいは、(b)右部のように、マスダンパ3などを、支持部材2の下端部ではなく任意の中間部や上端部に設置してもよい。また、同図(c)に示すように、構造物Bがセットバックしている場合には、セットバック範囲の空いたスペースに、支持部材2を斜めブレース状に設置する((c)右部)とともに、構造物Bの外周部の外側に支持部材2を斜めブレース状に設置してもよい((c)左部)。
なお、断面2次モーメントの小さな支持部材を上記のように斜めブレース状に設置する場合、ダンパ反力によって初期テンションが減少方向に移行するときには、支持部材の自重によるたわみ(サグ)の影響により、想定する支持部材の軸剛性を確保できないおそれがある。このため、長尺の支持部材を斜めブレース状に設置する場合には、断面2次モーメントがある程度大きな支持部材を用いることが望ましい。
また、図16に示すような付加振動系Aの配置も可能である。この例では、構造物Bの吹き抜けSが設置スペースとして利用されており、19階から26階の間に、互いに連結された一対のロッドから成る山形状の支持部材2が設けられ、これと上下対称に、28階から35階の間に、互いに連結された一対のロッドから成る逆山形状の支持部材2が設けられている。また、26階と28階の間には、上下の支持部材2、2を接続するケーブルなどから成るテンションバネ4が設けられ、このテンションバネ4によって、上下の支持部材2、2に鉛直方向の初期テンションが導入されている。
また、26階と28階にはそれぞれ、4基のマスダンパ3が水平(横置き)に設置されている(図16(b)には各2基のみ図示)。これら4基のマスダンパ3は、吹き抜けSの中心から放射状に延びるように配置されており、それぞれ、支持部材2とテンションバネ4との接続部c1及び構造物Bの柱と梁との接続部c2に連結されている。なお、図16の例では、マスダンパ3が接続部c1と接続部c2の間に水平(横置き)に設置されているが、接続部c2の位置を26階と28階から27階に移動させ、マスダンパ3を水平ではなく斜め方向に設置してもよいことはもちろんである。
以上の構成によれば、地震時などに構造物Bが揺動すると、構造物Bの変位が支持部材2を介して、マスダンパ3に水平方向の変位として伝達され、マスダンパ3を作動させることによって、制振効果が発揮される。また、テンションバネ4により支持部材2に鉛直方向の初期テンションが導入される結果、格別の座屈防止機構を必要とすることなく、支持部材2の座屈を防止できる。さらに、マスダンパ3の等価質量mdなどの付加振動系Aの諸元を前述した実施形態の場合と同様に設定することによって、初期テンションが導入されていない場合と同じ制振効果を得ることができる。
図17は、付加振動系Aの別の配置を示す。この例では、構造物Bの左右の柱P、Pの間の上側及び下側にそれぞれ、左右一対の支持部材2、2が配置されている。上側の左支持部材2は、一端部が左柱Pに連結され、他端部が互いに連結された一対のロッドから山形状に形成され、右支持部材2は、一端部が右柱Pに連結され、他端部が互いに連結された一対のロッドから山形状に形成され、左支持部材2に対向している。これらの左右の支持部材2、2には、ケーブルなどから成るテンションバネ4が連結され、水平方向の初期テンションが導入されている。
一方、下側の左右の支持部材2、2は、上側の左右の支持部材2、2と同様に構成されるとともに、より鋭角的な山形状に形成され、互いに対向している。これらの左右の支持部材2、2には、ケーブルなどから成るテンションバネ4が連結され、水平方向の初期テンションが導入されている。また、上側の左右の支持部材2、2とテンションバネ4との接続部c3、c3に、鋼材などで構成されたU字状の連結部材CMが連結され、この連結部材CMと、下側の左右の支持部材2、2とテンションバネ4との接続部c4、c4との間にそれぞれ、マスダンパ3が鉛直(縦置き)に設置されている。なお、図17の例では、マスダンパ3が鉛直(縦置き)に設置されているが、接続部c4、c4などの位置を移動させ、マスダンパ3を斜め方向に設置してもよいことはもちろんである。
以上の構成によれば、地震時などに構造物Bが揺動すると、構造物Bの変位が支持部材2を介して、マスダンパ3に鉛直方向の変位として伝達され、マスダンパ3を作動させることによって、制振効果が発揮される。また、テンションバネ4により支持部材2に水平方向の初期テンションが導入される結果、格別の座屈防止機構を必要とすることなく、支持部材2の座屈を防止できるとともに、付加振動系Aの諸元を適切に設定することによって、初期テンションが導入されていない場合と同じ制振効果が得られるなど、前述した実施形態及び図16の制振装置による効果を同様に得ることができる。
また、実施形態では、支持部材2に初期テンションを導入するためのテンションバネ4として、コイルバネや皿バネを用いているが、これに限らず、適当な他の構成を採用することができる。図18は、そのようなテンションバネの一例を示す。この例では、テンションバネ24は、積層ゴムタイプのものであり、支持部材2と一体の第1連結部材5と基礎Fと一体の第2連結部材6との間で、マスダンパ3の両側に設置されている。
各テンションバネ24は、中央の可動板24aと、その両側のゴム板24b、24bと、さらにその両側の固定板24c、24cを積層した積層体で構成されている。可動板24a及び固定板24cは、例えば鋼板で構成され、ゴム板24bは、所定の弾性(剛性)を有する天然系ゴムで構成されている。固定板24c、24cはゴム板24bよりも上方に延び、上端部において第1連結部材5に連結されている。可動板24aはゴム板24bの下方に延び、その下端部に水平の連結板24dが一体に取り付けられている。連結板24dと第2連結部材6の間には所定の間隙が形成されている。また、第2連結部材6には、複数のねじ棒25が固定され、各ねじ棒25は、第2連結部材6から上方に延び、連結板24dを貫通し、その上方に突出している。このねじ棒25の突出部分に、調整ナット26が進退自在にねじ込まれている。
以上の構成により、図18(a)に示すように、調整ナット26がねじ棒25の上端側に位置し、連結板24dから離間しているときには、テンションバネ24はフリーな状態にあり、支持部材2に初期テンションは生じない。
この状態から、同図(b)に示すように、調整ナット26を回して下方に移動させると、調整ナット26で押圧された連結板24dを介して可動板24aが押し下げられる。これにより、ゴム板24bが下方に引っ張られ、伸びた状態で、固定板24c及び第1連結部材5を介して、支持部材2に初期テンションが導入される。この初期テンションの大きさは、ゴム板24bの剛性に応じるとともに、調整ナット26によるテンションバネ24の伸長量を調整することによって、無段階に調整することが可能である。以上のように、テンションバネ24を、図2のテンションバネ4と同様に用いることができる。
また、実施形態では、支持部材2として、鋼製の柱材が用いられている。前述したように、本発明では、初期テンションの導入により、支持部材は常に引張状態になるため、必要な軸剛性を有すればよい。したがって、支持部材として、断面2次モーメントが比較的小さな鋼材や、ケーブル、鋼棒などを用いることが可能である。また、支持部材2の弾性限耐力を大きくするために、高強度材料を用いてもよいことはもちろんである。
なお、前述した説明では、初期テンションは、マスダンパ3の最大圧縮荷重よりも大きな所定値に設定することを前提にしたが、支持部材が座屈しない範囲で、マスダンパ3の最大圧縮荷重よりも小さな値に設定してもよいことはもちろんである。
さらに、実施形態では、マスダンパ3は、作動流体HFを用いる歯車モータ式のものであるが、歯車モータ以外の圧力モータ、例えばピストンモータや、ベーンモータ、ねじモータを用いてもよい。また、圧力モータ式のマスダンパに代えて、ボールねじを用いて回転マスを駆動するボールねじ式のものを採用することも可能である。ただし、ボールねじ式のマスダンパの場合には、ダンパ力と同時にトルク力が発生する。このため、このトルク力が作用することによる支持部材のねじれを防止するためのねじれ防止機構を設ける必要がある。
さらに、実施形態では、付加振動系Aの固有振動数を、構造物Bの1次固有振動数に同調するように設定しているが、これに限らず、構造物Bの任意の次数の固有振動数に同調するように設定してもよいことは、もちろんである。
また、構造物Bの構造についても特に限定されず、鉄骨造(S造)や、鉄筋コンクリート造(RC造)、鉄骨鉄筋コンクリート造(SRC造)、コンクリート充填鋼管造(CFT造)などのいずれをも制振対象とすることが可能である。本発明は、鉄塔やアスペクト比の大きい構造物に特に有効に適用できる。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
1 制振装置
2 支持部材
3 マスダンパ
4 テンションバネ
15 歯車モータ(圧力モータ)
16 回転マス
24 テンションバネ
33 支持架構
A 付加振動系
B 構造物
PE 柱
mdηd マスダンパの等価質量(回転慣性質量)
ηd テンションバネと支持部材との剛性比
mdo テンションバネが設置されていない場合の等価質量(回転慣性質量)

Claims (5)

  1. 地盤上に立設された構造物の振動を抑制するための構造物の制振装置であって、
    一端部が前記構造物に連結され、上下方向に延びる支持部材と、
    当該支持部材に連結され、前記支持部材とともに付加振動系を構成するとともに、回転マスを有し、前記構造物が振動したときに、前記支持部材を介して伝達される前記構造物の変位を前記回転マスの回転運動に変換することによって、回転慣性質量効果及び粘性減衰効果を発揮するマスダンパと、
    前記支持部材に前記マスダンパと並列に連結され、前記支持部材に所定の大きさの初期テンションを付与するテンションバネと、を備え、
    前記マスダンパの回転慣性質量は、前記テンションバネが設置されていない条件で設定される回転慣性質量に対し、前記テンションバネの剛性に応じて増大された値に設定されていることを特徴とする構造物の制振装置。
  2. 前記テンションバネの剛性と前記支持部材の剛性との比をηdとするとともに、前記テンションバネが設置されていない条件で、前記付加振動系の固有振動数が前記構造物の固有振動数に同調するように設定される回転慣性質量をmdoとした場合、前記マスダンパの回転慣性質量mdηdは、mdηd=(1+ηd)・mdoに設定されていることを特徴とする、請求項1に記載の構造物の制振装置。
  3. 前記マスダンパは、前記構造物の変位が前記支持部材を介して伝達されることにより発生する作動流体の流動を前記回転マスの回転運動に変換する圧力モータ式のマスダンパで構成されていることを特徴とする、請求項1又は2に記載の構造物の制振装置。
  4. 前記支持部材は、前記構造物の外周部に設置された柱の内部を通って前記構造物の屋上部まで延び、前記マスダンパ及び前記テンションバネは、前記構造物の前記屋上部に配置され、前記支持部材に連結されていることを特徴とする、請求項1又は2に記載の構造物の制振装置。
  5. 前記マスダンパを支持するために前記構造物の屋上部に設けられた門形の支持架構をさらに備え、
    前記支持部材の上端部は前記支持架構の構内に延び、前記マスダンパ及び前記テンションバネは、前記支持架構の構内に配置されており、
    前記支持架構には、前記マスダンパ及び前記テンションバネを覆うように、外装材が取り付けられていることを特徴とする、請求項4に記載の構造物の制振装置。
JP2022144929A 2021-10-29 2022-09-12 構造物の制振装置 Pending JP2023067759A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177456 2021-10-29
JP2021177456 2021-10-29

Publications (1)

Publication Number Publication Date
JP2023067759A true JP2023067759A (ja) 2023-05-16

Family

ID=86326119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022144929A Pending JP2023067759A (ja) 2021-10-29 2022-09-12 構造物の制振装置

Country Status (1)

Country Link
JP (1) JP2023067759A (ja)

Similar Documents

Publication Publication Date Title
JP3646926B2 (ja) 長周期仮想振子によって建物及び物体を免震支持する地震対策
TWI472670B (zh) 減幅建築物移動之方法及結構
JP5337320B1 (ja) 振動抑制装置
CA2524547A1 (en) Fork configuration dampers and method of using same
JP2017517659A (ja) エネルギー吸収装置
JP2004068289A (ja) 耐震架構
JP5269245B1 (ja) 構造物の制振装置
JP4212610B2 (ja) 免震構造物
JPH1136657A (ja) 免振装置
JP3828695B2 (ja) 三階建て住宅の制震壁
JP2010270474A (ja) 制振構造
JP3843174B2 (ja) 免震構造物
JP2023067759A (ja) 構造物の制振装置
JP6599774B2 (ja) 構造物の振動抑制装置
JP2001336572A (ja) ダンパ及びこれを用いた建築物
JP2000129951A (ja) 制振壁
JP5191529B2 (ja) 振動抑制装置
JP2008240331A (ja) 塔状構造物の制振構造およびその諸元設定方法
JPH0853955A (ja) 外筒支持型鋼製煙突
JP2020002545A (ja) 振り子式制振装置
Pasala Seismic response control of structures using novel adaptive passive and semi-active variable stiffness and negative stiffness devices
JP2020186744A (ja) 制振装置及び制振構造
JP2021055333A (ja) 変位表示装置、制振ダンパー及び土木建築構造物
JP3138457U (ja) 小型建築物の減震装置
JP6605924B2 (ja) 構造物の振動抑制装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220913