JP2023060138A - 光学系、光学機器、および光学系の製造方法 - Google Patents

光学系、光学機器、および光学系の製造方法 Download PDF

Info

Publication number
JP2023060138A
JP2023060138A JP2023032734A JP2023032734A JP2023060138A JP 2023060138 A JP2023060138 A JP 2023060138A JP 2023032734 A JP2023032734 A JP 2023032734A JP 2023032734 A JP2023032734 A JP 2023032734A JP 2023060138 A JP2023060138 A JP 2023060138A
Authority
JP
Japan
Prior art keywords
lens
conditional expression
optical system
object side
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2023032734A
Other languages
English (en)
Inventor
雅史 山下
Masafumi Yamashita
智希 伊藤
Tomoki Ito
洋 籔本
Hiroshi Yabumoto
浩史 山本
Hiroshi Yamamoto
哲史 三輪
Tetsushi Miwa
啓介 坪野谷
Keisuke Tsubonoya
歩 槇田
Ayumi Makita
健 上原
Takeshi Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66819166&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2023060138(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2023032734A priority Critical patent/JP2023060138A/ja
Publication of JP2023060138A publication Critical patent/JP2023060138A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Abstract

Figure 2023060138000001
【課題】諸収差が良好に補正された光学系を提供する。
【解決手段】光学系LSは、開口絞りSと、開口絞りSより像側に配置された以下の条件式を満足する正レンズ(L22)とを有している。
ndP2+(0.01425×νdP2)<2.12
18.0<νdP2<35.0
0.702<θgFP2+(0.00316×νdP2)
但し、ndP2:正レンズのd線に対する屈折率
νdP2:正レンズのd線を基準とするアッベ数
θgFP2:正レンズの部分分散比であり、正レンズのg線に対する屈折率をngP2とし、正レンズのF線に対する屈折率をnFP2とし、正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
θgFP2=(ngP2-nFP2)/(nFP2-nCP2)
【選択図】図1

Description

本発明は、光学系、光学機器、および光学系の製造方法に関する。
近年、デジタルカメラやビデオカメラ等の撮像装置に用いられる撮像素子は、高画素化が進んでいる。このような撮像素子を用いた撮像装置に設けられる撮影レンズは、球面収差、コマ収差等の基準収差(単一波長の収差)に加え、白色光源において像の色にじみがないように色収差も良好に補正された、高い解像力を有するレンズであることが望まれている。特に、色収差の補正においては、1次の色消しに加え、2次スペクトルが良好に補正されていることが望ましい。色収差の補正の手段として、例えば、異常分散性を有する樹脂材料を用いる方法(例えば、特許文献1を参照)が知られている。このように、近年の撮像素子の高画素化に伴い、諸収差が良好に補正された撮影レンズが望まれている。
特開2016-194609号公報
第1の態様に係る光学系は、開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する正レンズとを有する。
ndP2+(0.01425×νdP2)<2.12
18.0<νdP2<35.0
0.702<θgFP2+(0.00316×νdP2)
但し、ndP2:前記正レンズのd線に対する屈折率
νdP2:前記正レンズのd線を基準とするアッベ数
θgFP2:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP2とし、前記正レンズのF線に対する屈折率をnFP2とし、前記正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
θgFP2=(ngP2-nFP2)/(nFP2-nCP2)
第2の態様に係る光学機器は、上記光学系を備えて構成される。
第3の態様に係る光学系の製造方法は、開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する正レンズとを有するように、レンズ鏡筒内に各レンズを配置する。
ndP2+(0.01425×νdP2)<2.12
18.0<νdP2<35.0
0.702<θgFP2+(0.00316×νdP2)
但し、ndP2:前記正レンズのd線に対する屈折率
νdP2:前記正レンズのd線を基準とするアッベ数
θgFP2:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP2とし、前記正レンズのF線に対する屈折率をnFP2とし、前記正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
θgFP2=(ngP2-nFP2)/(nFP2-nCP2)
第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第1実施例に係る光学系の無限遠合焦状態における諸収差図である。 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第2実施例に係る光学系の無限遠合焦状態における諸収差図である。 第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図6(A)、図6(B)、および図6(C)はそれぞれ、第3実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第7実施例に係る光学系の無限遠合焦状態における諸収差図である。 第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第8実施例に係る光学系の無限遠合焦状態における諸収差図である。 本実施形態に係る光学系を備えたカメラの構成を示す図である。 本実施形態に係る光学系の製造方法を示すフローチャートである。
以下、本実施形態に係る光学系および光学機器について図を参照して説明する。まず、本実施形態に係る光学系を備えたカメラ(光学機器)を図17に基づいて説明する。このカメラ1は、図17に示すように撮影レンズ2として本実施形態に係る光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
本実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(1)は、図1に示すように、開口絞りSと、開口絞りSより像側に配置された以下の条件式(1)~(3)を満足する正レンズ(L22)とを有している。
ndP2+(0.01425×νdP2)<2.12 ・・・(1)
18.0<νdP2<35.0 ・・・(2)
0.702<θgFP2+(0.00316×νdP2) ・・・(3)
但し、ndP2:正レンズのd線に対する屈折率
νdP2:正レンズのd線を基準とするアッベ数
θgFP2:正レンズの部分分散比であり、正レンズのg線に対する屈折率をngP2とし、正レンズのF線に対する屈折率をnFP2とし、正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
θgFP2=(ngP2-nFP2)/(nFP2-nCP2)
なお、正レンズのd線を基準とするアッベ数νdP2は、次式で定義される
νdP2=(ndP2-1)/(nFP2-nCP2)
本実施形態によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系、およびこの光学系を備えた光学機器を得ることが可能になる。本実施形態に係る光学系LSは、図3に示す光学系LS(2)でも良く、図5に示す光学系LS(3)でも良く、図7に示す光学系LS(4)でも良く、図9に示す光学系LS(5)でも良い。また、本実施形態に係る光学系LSは、図11に示す光学系LS(6)でも良く、図13に示す光学系LS(7)でも良く、図15に示す光学系LS(8)でも良い。
条件式(1)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(1)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
条件式(1)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(1)の上限値を2.11に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を、2.10、2.09、2.08、2.07、さらに2.06とすることが好ましい。
条件式(2)は、正レンズのd線を基準とするアッベ数の適切な範囲を規定するものである。条件式(2)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
条件式(2)の対応値が上限値を上回ると、例えば、開口絞りSより像側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(2)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の上限値を、32.0、31.5、31.0、30.5、30.0、さらに29.5とすることが好ましい。
条件式(2)の対応値が下限値を下回ると、例えば、開口絞りSより像側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(2)の下限値を20.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を、23.0、23.5、24.0、24.5、25.0、25.5、26.0、26.5、27.0、27.5、さらに27.7とすることが好ましい。
条件式(3)は、正レンズの異常分散性を適切に規定するものである。条件式(3)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。
条件式(3)の対応値が下限値を下回ると、正レンズの異常分散性が小さくなるため、色収差の補正が困難となる。条件式(3)の下限値を0.704に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を、0.708、0.710、0.712、さらに0.715とすることが好ましい。
本実施形態の光学系において、正レンズは、以下の条件式(4)を満足することが望ましい。
1.83<ndP2+(0.00787×νdP2) ・・・(4)
条件式(4)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(4)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
条件式(4)の対応値が下限値を下回ると、例えば正レンズの屈折率が小さくなることで、基準収差、特に球面収差の補正が困難になるため、好ましくない。条件式(4)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を、1.85、さらに1.86とすることが好ましい。
本実施形態の光学系において、正レンズは、以下の条件式(2-1)および条件式(4-1)を満足してもよい。
18.0<νdP2<26.5 ・・・(2-1)
1.83<ndP2+(0.00787×νdP2) ・・・(4-1)
条件式(2-1)は、条件式(2)と同様の式であり、条件式(2)と同様の効果を得ることができる。条件式(2-1)の上限値を26.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-1)の上限値を、25.5、さらに25.0とすることが好ましい。一方、条件式(2-1)の下限値を23.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-1)の下限値を、24.0、さらに24.5とすることが好ましい。
条件式(4-1)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4-1)の下限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4-1)の下限値を、1.92、さらに1.94とすることが好ましい。
本実施形態の光学系において、正レンズは、以下の条件式(2-2)および条件式(4-2)を満足してもよい。
25.0<νdP2<35.0 ・・・(2-2)
1.83<ndP2+(0.00787×νdP2) ・・・(4-2)
条件式(2-2)は、条件式(2)と同様の式であり、条件式(2)と同様の効果を得ることができる。条件式(2-2)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-2)の上限値を、31.5、さらに29.5とすることが好ましい。一方、条件式(2-2)の下限値を26.2に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-2)の下限値を、26.7、さらに27.7とすることが好ましい。
条件式(4-2)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4-2)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4-2)の下限値を1.85とすることが好ましい。
本実施形態の光学系において、正レンズは、以下の条件式(5)を満足することが望ましい。
DP2>0.80 ・・・(5)
但し、DP2:正レンズの光軸上の厚さ[mm]
条件式(5)は、正レンズの光軸上の厚さの適切な範囲を規定するものである。条件式(5)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
条件式(5)の対応値が下限値を下回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(5)の下限値を0.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を、1.00、1.10、1.20、さらに1.30とすることが好ましい。
本実施形態の光学系は、最も像側に配置された像側レンズを有し、開口絞りSが像側レンズより物体側に配置され、像側レンズより物体側で、正レンズが開口絞りSより像側に配置されることが望ましい。これにより、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
本実施形態の光学系において、正レンズは、ガラスレンズであることが望ましい。これにより、材料が樹脂である場合と比較して、経年変化に強く、温度変化等の環境変化に強いレンズを得ることができる。
本実施形態の光学系において、正レンズは、以下の条件式(6)~(7)を満足することが望ましい。
ndP2<1.63 ・・・(6)
ndP2-(0.040×νdP2-2.470)×νdP2<39.809・・・(7)
条件式(6)は、正レンズのd線に対する屈折率の適切な範囲を規定するものである。条件式(6)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
条件式(6)の対応値が上限値を上回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(6)の上限値を1.62に設定することで、本実施形態の効果をより確実なものとすることができる。
条件式(7)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(7)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
条件式(7)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(7)の上限値を39.800に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の上限値を、39.500、39.000、38.500、38.000、37.500、さらに36.800とすることが好ましい。
本実施形態の光学系において、正レンズは、以下の条件式(8)を満足することが望ましい。
ndP2-(0.020×νdP2-1.080)×νdP2<16.260・・・(
8)
条件式(8)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(8)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
条件式(8)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(8)の上限値を16.240に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の上限値を、16.000、15.800、15.500、15.300、15.000、14.800、14.500、14.000、さらに13.500とすることが好ましい。
続いて、図18を参照しながら、上述の光学系LSの製造方法について概説する。まず、開口絞りSと、少なくとも開口絞りSより像側に正レンズを配置する(ステップST1)。このとき、開口絞りSより像側に配置された正レンズのうち少なくとも1枚が上記条件式(1)~(3)等を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST2)。このような製造方法によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を製造することが可能になる。
以下、本実施形態の実施例に係る光学系LSを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13、図15は、第1~第8実施例に係る光学系LS{LS(1)~LS(8)}の構成及び屈折力配分を示す断面図である。第1~第2実施例に係る光学系LS(1)~LS(2)および第7~第8実施例に係る光学系LS(7)~LS(8)の断面図では、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。第3~第6実施例に係る光学系LS(3)~LS(6)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
これら図1、図3、図5、図7、図9、図11、図13、図15において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
以下に表1~表8を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例、表8は第8実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)、C線(波長λ=656.3nm)、F線(波長λ=486.1nm)を選んでいる。
[全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、光学系が変倍光学系である場合、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
[レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数を、θgFは光学部材の材料の部分分散比をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の
記載は省略している。光学面が非球面である場合には面番号に*a印を付して、曲率半径Rの欄には近軸曲率半径を示している。
光学部材の材料のg線(波長λ=435.8nm)に対する屈折率をngとし、光学部材の材料のF線(波長λ=486.1nm)に対する屈折率をnFとし、光学部材の材料のC線(波長λ=656.3nm)に対する屈折率をnCとする。このとき、光学部材の材料の部分分散比θgFは次式(A)で定義される。
θgF=(ng-nF)/(nF-nC) …(A)
[非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(B)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(B)
光学系が変倍光学系でない場合、[近距離撮影時可変間隔データ]として、fはレンズ全系の焦点距離を、βは撮影倍率をそれぞれ示す。また、[近距離撮影時可変間隔データ]の表には、各焦点距離および撮影倍率に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。
光学系が変倍光学系である場合、[変倍撮影時可変間隔データ]として、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。また、[レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
[条件式対応値]の表には、各条件式に対応する値を示す。
以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
(第1実施例)
第1実施例について、図1~図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第1実施例に係る光学系LS(1)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成されている。無限遠物体から近
距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動する。開口絞りSは、第2レンズ群G2内に配設されている。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14および両凹形状の負レンズL15からなる接合レンズと、から構成される。負レンズL13は、像側のレンズ面が非球面である。
第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21と、物体側に凸面を向けた正メニスカスレンズL22および物体側に凸面を向けた負メニスカスレンズL23からなる接合レンズと、両凹形状の負レンズL24および両凸形状の正レンズL25からなる接合レンズと、像側に凸面を向けた片平形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27と、から構成される。第2レンズ群G2の像側に、像面Iが配置される。第2レンズ群G2における正レンズL21と正メニスカスレンズL22との間に、開口絞りSが配置される。本実施例では、第2レンズ群G2の正メニスカスレンズL27が像側レンズに該当し、第2レンズ群G2の正メニスカスレンズL22が条件式(1)~(3)等を満足する正レンズに該当する。正レンズL26は、像側のレンズ面が非球面である。
以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
(表1)
[全体諸元]
f 28.773
FNO 1.8796
2ω 75.3311
Y 21.60
TL 131.9655
BF 36.457
[レンズ諸元]
面番号 R D nd νd θgF
1 57.6700 1.7000 1.713000 53.94 0.5441
2 23.6385 10.630
3 360.0000 3.4200 1.846660 23.78
4 -149.5844 2.1000
5 -91.6110 1.7000 1.487490 70.31
6 34.8169 0.1000 1.520500 51.02
7*a 31.0734 7.4700
8 54.5000 8.5700 1.834000 37.18
9 -43.5000 1.7000 1.749714 24.66 0.6272
10 475.5646 D10(可変)
11 41.6500 6.2000 1.589130 61.24
12 -79.7342 8.8800
13 ∞ 1.0000 (絞りS)
14 71.7000 1.3000 1.659398 26.87 0.6323
15 165.1470 1.0000 1.672700 32.19
16 41.0000 6.0900
17 -19.3844 1.5200 1.805180 25.46
18 400.0000 2.4200 1.772500 49.65
19 -67.0000 0.6000
20 ∞ 3.0800 1.729160 54.66
21 -50.8920 0.2000 1.520500 51.02
22*a -37.6986 1.1400
23 -98.0000 5.2100 1.834810 42.72 0.5651
24 -26.8452 2.3629
25 ∞ BF
[非球面データ]
第7面
κ=0.0000
A4=-2.99E-06,A6=-2.39E-08,A8=1.13E-10,A10=-3.69E-13
第22面
κ=0.0000
A4=2.03E-05,A6=4.37E-09,A8=1.85E-10,A10=-1.33E-12
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=28.7734 β=-0.2174
D10 9.5660 2.3031
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2-1),(2-2)
νdP2=26.87
条件式(3)
θgFP2+(0.00316×νdP2)=0.7172
条件式(4),(4-1),(4-2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=1.3000
条件式(6)
ndP2=1.659398
条件式(7)
ndP2-(0.040×νdP2-2.470)×νdP2=35.830
条件式(8)
ndP2-(0.020×νdP2-1.080)×νdP2=12.920
図2は、第1実施例に係る光学系の無限遠合焦状態における諸収差図である。各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587
.6nm)、gはg線(波長λ=435.8nm)、CはC線(波長λ=656.3nm
)、FはF線(波長λ=486.1nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
各諸収差図より、第1実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
第2実施例について、図3~図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第2実施例に係る光学系LS(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
第1レンズ群G1は、物体側から順に並んだ、極めて弱い屈折力を有する保護ガラスHGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14および物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、から構成される。
第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。
第3レンズ群G3は、物体側から順に並んだ、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32と、正の屈折力を有する第3部分群G33とを有している。第1部分群G31は、物体側から順に並んだ、両凸形状の正レンズL31および物体側に凹面を向けた負メニスカスレンズL32からなる接合レンズ、から構成される。第2部分群G32は、物体側から順に並んだ、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凹形状の負レンズL35と、から構成される。第3部分群G33は、物体側から順に並んだ、両凸形状の正レンズL36と、両凸形状の正レンズL37および両凹形状の負レンズL38からなる接合レンズと、から構成される。本実施例では、第3レンズ群G3の負レンズL38が像側レンズに該当し、第3レンズ群G3の正レンズL33が条件式(1)~(3)等を満足する正レンズに該当する。第3レンズ群G3の第2部分群G33は、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。なお、第3レンズ群G3における第2部分群G32と第3部分群G33との間に、固定絞り(フレアカット絞り)Saが配置される。
第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。
以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。
(表2)
[全体諸元]
f 392.000
FNO 2.881
2ω 6.245
Y 21.63
TL 396.319
BF 74.502
[レンズ諸元]
面番号 R D nd νd θgF
1 1200.37020 5.000 1.51680 63.88 0.536
2 1199.78950 1.000
3 250.71590 16.414 1.43385 95.25 0.540
4 -766.97150 45.000
5 158.99440 18.720 1.43385 95.25 0.540
6 -400.00000 2.261
7 -377.29180 6.000 1.61266 44.46 0.564
8 461.79700 95.451
9 70.05760 4.000 1.79500 45.31 0.560
10 47.57190 11.944 1.49782 82.57 0.539
11 1223.84820 D11(可変)
12 -546.41280 2.500 1.80610 40.97 0.569
13 76.73180 6.996
14 -241.81680 4.500 1.65940 26.87 0.633
15 -56.62280 2.500 1.48749 70.32 0.529
16 234.80990 D16(可変)
17 ∞ 5.100 (絞りS)
18 95.57020 6.000 1.75500 52.33 0.548
19 -75.36620 1.800 1.80809 22.74 0.629
20 -757.80810 4.500
21 279.80870 4.700 1.74971 24.66 0.627
22 -82.76070 1.800 1.59319 67.90 0.544
23 50.04470 3.390
24 -226.07440 1.800 1.83481 42.73 0.565
25 105.63280 4.250
26 ∞ 0.250
27 105.07290 3.700 1.69680 55.52 0.543
28 -158.46840 0.100
29 92.25180 4.000 1.72047 34.71 0.583
30 -129.17240 1.800 1.92119 23.96 0.620
31 404.52160 7.500
32 ∞ 1.500 1.51680 63.88 0.536
33 ∞ BF
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=392.000 β=-0.173
D11 13.847 29.047
D16 33.495 18.295
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.101
条件式(2),(2-1),(2-2)
νdP2=24.66
条件式(3)
θgFP2+(0.00316×νdP2)=0.7049
条件式(4),(4-1),(4-2)
ndP2+(0.00787×νdP2)=1.944
条件式(5)
DP2=4.700
条件式(6)
ndP2=1.74971
条件式(7)
ndP2-(0.040×νdP2-2.470)×νdP2=34.836
条件式(8)
ndP2-(0.020×νdP2-1.080)×νdP2=12.721
図4は、第2実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第2実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
第3実施例について、図5~図6並びに表3を用いて説明する。図5は、本実施形態の第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第3実施例に係る光学系LS(3)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ図5の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設され、変倍の際、第3レンズ群G3とともに光軸に沿って移動する。
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14と、から構成される。負メニスカスレンズL11は、両側のレンズ面が非球面である。負レンズL13は、像側のレンズ面が非球面である。
第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、両凸形状の正レンズL23と、から構成される。
第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31および両凹形状の負レンズL32からなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL33と、両凸形状の正レンズL34と、から構成される。本実施例では、第3レンズ群G3の正レンズL34が条件式(1)~(3)等を満足する正レンズに該当する。また、本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第3レンズ群G3の負メニスカスレンズL33および正レンズL34が光軸に沿って像側に移動する。
第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および両凹形状の負レンズL42からなる接合レンズと、両凸形状の正レンズL43と、物体側に凹面を向けた正メニスカスレンズL44および物体側に凹面を向けた負レンズL45からなる接合レンズと、から構成される。第4レンズ群G4の像側に、像面Iが配置される。本実施例では、第4レンズ群G4の負レンズL45が像側レンズに該当する。負レンズL45は、像側のレンズ面が非球面である。
以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
(表3)
[全体諸元]
変倍比 2.07
W M T
f 16.65 24.00 34.43
FNO 4.12 4.12 4.18
2ω 107.58 83.63 63.19
Y 21.60 21.60 21.60
TL 168.91 162.86 167.14
BF 39.00 48.62 65.18
[レンズ諸元]
面番号 R D nd νd θgF
1*a 145.31700 3.000 1.76684 46.78 0.5576
2*a 18.85670 9.851
3 -326.23140 1.550 1.88300 40.66 0.5668
4 85.38900 4.225
5 -53.70640 1.500 1.88300 40.66 0.5668
6 51.34430 0.400 1.55389 38.09 0.5928
7*a 63.00250 2.357
8 53.19070 6.801 1.69895 30.13 0.6021
9 -42.56470 D9(可変)
10 36.83870 1.050 1.84666 23.80 0.6215
11 18.12050 4.250 1.62004 36.40 0.5833
12 63.71820 0.100
13 32.00210 4.533 1.51696 52.40 0.5544
14 -68.04600 D14(可変)
15 ∞ 3.263 (絞りS)
16 745.37430 2.545 1.62004 36.40 0.5833
17 -30.65950 1.000 1.88300 40.66 0.5668
18 69.53870 2.388
19 -23.28320 0.800 1.88300 40.66 0.5668
20 -69.51460 0.150
21 86.42750 4.549 1.65940 26.87 0.6327
22 -29.47240 D22(可変)
23 35.16640 10.376 1.49782 82.57 0.5386
24 -24.74900 1.100 1.83400 37.18 0.5778
25 1215.04870 0.100
26 38.11360 9.425 1.49782 82.57 0.5386
27 -36.58240 0.100
28 -136.80970 8.294 1.67221 54.76 0.5503
29 -20.68170 1.600 1.80610 40.97 0.5688
30*a -654.08670 BF
[非球面データ]
第1面
κ=1.0000
A4=3.82E-06,A6=3.24E-09,A8=0.00E+00,A10=0.00E+00
第2面
κ=1.0000
A4=-2.08E-05,A6=0.00E+00,A8=0.00E+00,A10=0.00E+00
第7面
κ=1.0000
A4=1.57E-05,A6=-3.97E-08,A8=3.99E-11,A10=0.00E+00
第30面
κ=1.0000
A4=1.77E-05,A6=1.40E-08,A8=0.00E+00,A10=0.00E+00
[変倍撮影時可変間隔データ]
W M T
D9 31.875 14.203 2.000
D14 3.000 8.901 13.460
D22 9.727 5.825 1.200
[レンズ群データ]
群 始面 焦点距離
G1 1 -23.700
G2 10 42.200
G3 15 -84.900
G4 23 60.900
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2-1),(2-2)
νdP2=26.87
条件式(3)
θgFP2+(0.00316×νdP2)=0.7176
条件式(4),(4-1),(4-2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=4.549
条件式(6)
ndP2=1.65940
条件式(7)
ndP2-(0.040×νdP2-2.470)×νdP2=35.830
条件式(8)
ndP2-(0.020×νdP2-1.080)×νdP2=12.920
図6(A)、図6(B)、および図6(C)はそれぞれ、第3実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第3実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
第4実施例について、図7~図8および表4を用いて説明する。図7は、本実施形態の第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第4実施例に係る光学系LS(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ図7の矢印で示す方向に移動する。開口絞りSは、第3レンズ群G3の最も物体側に配設され、変倍の際、第3レンズ群G3とともに光軸に沿って移動する。
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および物体側に凸面を向けた正メニスカスレンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、物体側に凹面を向けた正メニスカスレンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。負メニスカスレンズL24は、像側のレンズ面が非球面である。
第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた正メニスカスレンズL32および物体側に凹面を向けた負メニスカスレンズL33からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合レンズと、から構成される。本実施例では、第3レンズ群G3の正レンズL31が条件式(1)~(3)等を満足する正レンズに該当する。正レンズL35は、像側のレンズ面が非球面である。
第4レンズ群G4は、物体側から順に並んだ、両凹形状の負レンズL41および両凸形状の正レンズL42からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL43と、から構成される。本実施例では、第4レンズ群G4の負メニスカスレンズL43を光軸に沿って移動させることにより、合焦を行う。
第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。本実施例では、第5レンズ群G5の負メニスカスレンズL52が像側レンズに該当する。
以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
(表4)
[全体諸元]
変倍比 7.85
W M T
f 24.720 58.064 194.000
FNO 3.6 5.5 6.5
2ω 85.516 38.972 12.120
Y 21.60 21.60 21.60
TL 149.034 171.725 204.028
BF 40.17156 40.17154 40.17152
[レンズ諸元]
面番号 R D nd νd θgF
1 92.15372 1.50000 1.893278 29.92 0.5973
2 50.45119 5.86351 1.49782 82.57 0.5386
3 287.2377 0.50000
4 52.85439 5.29710 1.754987 52.34 0.5545
5 179.2157 D5(可変)
6*a 192.5648 1.50000 1.76684 46.78 0.5576
7 14.39735 9.14834
8 -53.9422 1.50000 1.804 46.6 0.5575
9 -159.834 0.50004
10 -458.262 3.37612 1.80809 22.74 0.6287
11 -32.7306 1.09499
12 -25.8208 1.50010 1.76818 49.12 0.5602
13*a -71.2139 D13(可変)
14 ∞ 0.50251 (絞りS)
15 25.10727 4.79424 1.659398 26.87 0.6327
16 -47.2953 0.53134
17 -63.4845 2.79326 1.754941 52.34 0.5546
18 -22.633 1.50000 1.949938 29.37 0.5987
19 -1891.64 0.50000
20 22.49872 2.24749 1.949963 29.37 0.5987
21 12.7943 8.00000 1.519269 65.98 0.5332
22*a -31.4383 D22(可変)
23 -31.6877 3.00000 1.78738 34.67 0.5867
24 25.83264 6.67641 1.765346 49.1 0.5602
25 -37.7488 0.50640
26 95.74988 1.50570 1.755164 52.29 0.5546
27 27.40248 D27(可変)
28 43.74094 5.00269 1.615395 37.55 0.5811
29 -91.144 0.50000
30 83.67357 1.50000 1.755 52.34 0.5545
31 26.73611 BF
[非球面データ]
第6面
κ=2.0000
A4=2.65541E-06,A6=-2.66829E-09,A8=2.26904E-12,A10=-1.11750E-14
第13面
κ=0.0000
A4=-1.11022E-05,A6=-3.09432E-08,A8=1.57986E-10,A10=-9.22034E-13
第22面
κ=0.0427
A4=2.11546E-05,A6=-8.86580E-09,A8=-7.04018E-10,A10=2.78728E-12
[変倍撮影時可変間隔データ]
W M T
D5 0.50226 15.6917 48.17765
D13 34.74901 15.99244 0.50004
D22 0.55612 4.10818 8.61444
D27 1.71514 24.42039 35.22397
[レンズ群データ]
群 始面 焦点距離
G1 1 97.0173
G2 6 -17.8186
G3 14 24.5561
G4 23 -38.3045
G5 28 328.1997
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2-1),(2-2)
νdP2=26.87
条件式(3)
θgFP2+(0.00316×νdP2)=0.7176
条件式(4),(4-1),(4-2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=4.79424
条件式(6)
ndP2=1.659398
条件式(7)
ndP2-(0.040×νdP2-2.470)×νdP2=35.830
条件式(8)
ndP2-(0.020×νdP2-1.080)×νdP2=12.920
図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
第5実施例について、図9~図10および表5を用いて説明する。図9は、本実施形態の第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第5実施例に係る光学系LS(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第2レンズ群G2と第4レンズ群G4とがそれぞれ図9の矢印で示す方向に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、変倍の際、第1レンズ群G1と、第3レンズ群G3と、第5レンズ群G5と同様に、像面Iに対して固定される。
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24と、から構成される。
第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた片平形状の正レンズL32と、物体側に凸面を向けた正メニスカスレンズL33と、両凹形状の負レンズL34と、両凸形状の正レンズL35および両凹形状の負レンズL36からなる接合レンズと、から構成される。
第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42および物体側に凸面を向けた正メニスカスレンズL43からなる接合レンズと、から構成される。本実施例では、第4レンズ群G4の全体を光軸に沿って移動させることにより、合焦を行う。
第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52および両凹形状の負レンズL53からなる接合レンズと、像側に凹面を向けた片平形状の負レンズL54と、両凸形状の正レンズL55と、物体側に凸面を向けた正メニスカスレンズL56と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。本実施例では、第5レンズ群G5の正メニスカスレンズL56が像側レンズに該当し、第5レンズ群G5の正レンズL52が条件式(1)~(3)等を満足する正レンズに該当する。
以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
(表5)
[全体諸元]
変倍比 2.74
W M T
f 71.413619 139.954134 195.992207
FNO 2.9 2.9 2.9
2ω 33.679 17.10734 12.20834
Y 21.60 21.60 21.60
TL 245.2 245.2 245.2
BF 53.3 53.3 53.3
[レンズ諸元]
面番号 R D nd νd θgF
1 126.7377 2.8000 1.950000 29.37 0.600
2 89.1138 9.9000 1.497820 82.57 0.539
3 -1020.1958 0.1000
4 92.2410 7.7000 1.433852 95.25 0.540
5 697.5997 D5(可変)
6 67.2071 2.4000 1.719990 50.27 0.553
7 33.2108 10.2500
8 -131.8697 2.0000 1.618000 63.34 0.541
9 100.8703 2.0000
10 53.8723 4.4000 1.846660 23.78 0.619
11 192.4940 3.5500
12 -73.3376 2.2000 1.603000 65.44 0.539
13 293.3428 D13(可変)
14 ∞ 2.5000 (絞りS)
15 581.3263 3.7000 1.834810 42.73 0.565
16 -130.4486 0.2000
17 90.5655 3.8500 1.593190 67.90 0.544
18 ∞ 0.2000
19 52.6779 4.9000 1.497820 82.57 0.539
20 450.4224 2.0436
21 -118.6005 2.2000 2.001000 29.14 0.600
22 173.2673 4.5500
23 114.6393 5.7500 1.902650 35.73 0.580
24 -66.6756 2.2000 1.581440 40.98 0.576
25 41.9887 D25(可変)
26 57.8460 4.8000 1.497820 82.57 0.539
27 -191.5275 0.1000
28 44.2622 2.0000 1.950000 29.37 0.600
29 28.5009 5.5500 1.593190 67.90 0.544
30 169.0503 D30(可変)
31 47.8018 1.8000 1.804000 46.60 0.557
32 30.1942 5.1500
33 105.9950 3.3500 1.659398 26.84 0.632
34 -69.1861 1.6000 1.593190 67.90 0.544
35 40.7640 2.5830
36 ∞ 1.6000 1.953750 32.31 0.590
37 57.1830 3.7500
38 71.6966 3.4000 1.593190 67.90 0.544
39 -551.0952 0.1500
40 55.3080 4.2000 1.719990 50.27 0.553
41 445.3842 BF
[変倍撮影時可変間隔データ]
W M T
D5 2.94202 20.03940 50.94204
D13 50.63064 33.53326 2.63063
D25 16.90451 14.80744 16.89216
D30 2.01033 4.10740 2.02269
[レンズ群データ]
群 始面 焦点距離
G1 1 143.97421
G2 6 -45.57214
G3 14 94.45728
G4 26 58.18894
G5 31 -109.05105
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2-1),(2-2)
νdP2=26.84
条件式(3)
θgFP2+(0.00316×νdP2)=0.7168
条件式(4),(4-1),(4-2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=3.3500
条件式(6)
ndP2=1.659398
条件式(7)
ndP2-(0.040×νdP2-2.470)×νdP2=35.820
条件式(8)
ndP2-(0.020×νdP2-1.080)×νdP2=12.920
図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第6実施例)
第6実施例について、図11~図12および表6を用いて説明する。図11は、本実施形態の第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第6実施例に係る光学系LS(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図11の矢印で示す方向に移動する。なお、変倍の際
、第3レンズ群G3と第5レンズ群G5とが同じ移動量で光軸に沿って移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、変倍の際、第3レンズ群G3とともに光軸に沿って移動する。
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および物体側に凸面を向けた片平形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2の全体が光軸に沿って物体側に移動する。
第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、物体側に凸面を向けた負メニスカスレンズL32および両凸形状の正レンズL33からなる接合レンズと、両凸形状の正レンズL34と、から構成される。正レンズL34は、物体側のレンズ面が非球面である。
第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL43および両凹形状の負レンズL44からなる接合レンズと、から構成される。本実施例では、第4レンズ群G4の正メニスカスレンズL43が条件式(1)~(3)等を満足する正レンズに該当する。
第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凹面を向けた正メニスカスレンズL52および物体側に凹面を向けた負メニスカスレンズL53からなる接合レンズと、から構成される。第5レンズ群G5の像側に、像面Iが配置される。本実施例では、第5レンズ群G5の負メニスカスレンズL53が像側レンズに該当する。正レンズL51は、物体側のレンズ面が非球面である。
以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
(表6)
[全体諸元]
変倍比 4.09
W M T
f 24.900 50.000 101.900
FNO 4.100 4.100 4.100
2ω 84.743 45.523 23.261
Y 21.60 21.60 21.60
TL 149.910 162.620 182.430
BF 40.185 48.193 58.850
[レンズ諸元]
面番号 R D nd νd θgF
1 163.16770 1.800 1.84666 23.80 0.622
2 63.11640 8.700 1.60311 60.69 0.541
3 ∞ 0.100
4 47.77580 6.150 1.80400 46.60 0.557
5 108.85110 D5(可変)
6*a 137.31600 0.100 1.55389 38.09 0.593
7 78.84000 1.200 1.83481 42.71 0.564
8 13.88400 6.500
9 -29.19600 1.000 1.88300 40.76 0.567
10 57.78220 0.100
11 36.31400 5.300 1.80518 25.42 0.616
12 -26.80660 0.670
13 -19.89480 1.300 1.77250 49.60 0.552
14 -45.63920 D14(可変)
15 ∞ 0.000 (絞りS)
16 31.50170 3.500 1.43700 95.00 0.533
17 412.56440 1.200
18 28.92410 1.300 1.78470 26.27 0.613
19 16.85630 7.800 1.48749 70.31 0.529
20 -68.28050 0.150
21* 50.53390 4.010 1.58313 59.42 0.543
22 -63.50130 D22(可変)
23 -60.07050 3.200 1.84666 23.80 0.622
24 -16.94620 1.000 1.76200 40.10 0.576
25 61.07170 2.900
26 -104.05170 2.300 1.65940 26.87 0.633
27 -44.45510 1.000 1.83481 42.73 0.565
28 586.44930 D28(可変)
29*a 140.20100 0.080 1.55389 38.09 0.593
30 198.01300 6.300 1.58913 61.14 0.541
31 -26.62820 0.150
32 -285.71710 6.700 1.48749 70.23 0.530
33 -21.67090 1.900 1.84666 23.88 0.616
34 -69.60370 BF
第6面
κ=1.0000
A4=1.70949E-05,A6=-2.16050E-08,A8=-4.68699E-11,A10=4.42797E-13
第21面
κ=1.0000
A4=-1.20879E-05,A6=-4.99039E-09,A8=1.50865E-11,A10=-4.88260E-14
第29面
κ=1.0000
A4=-8.63929E-06,A6=2.78090E-09,A8=1.43178E-11,A10=-3.56187E-14
[変倍撮影時可変間隔データ]
W M T
D5 2.442 18.432 34.512
D14 19.113 7.823 0.903
D22 1.993 7.103 10.783
D28 9.767 4.657 0.977
[レンズ群データ]
群 始面 焦点距離
G1 1 89.877
G2 6 -14.548
G3 15 22.802
G4 23 -28.690
G5 29 49.373
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2-1),(2-2)
νdP2=26.87
条件式(3)
θgFP2+(0.00316×νdP2)=0.7179
条件式(4),(4-1),(4-2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=2.300
条件式(6)
ndP2=1.65940
条件式(7)
ndP2-(0.040×νdP2-2.470)×νdP2=35.830
条件式(8)
ndP2-(0.020×νdP2-1.080)×νdP2=12.920
図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第6実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第7実施例)
第7実施例について、図13~図14および表7を用いて説明する。図13は、本実施形態の第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第7実施例に係る光学系LS(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
第1レンズ群G1は、物体側から順に並んだ、極めて弱い屈折力を有する保護ガラスHGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14および物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、から構成される。
第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。
第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凹形状の負レンズL35と、両凸形状の正レンズL36と、両凸形状の正レンズL37および両凹形状の負レンズL38からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL39および物体側に凹面を向けた負メニスカスレンズL40からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL41および物体側に凸面を向けた正メニスカスレンズL42からなる接合レンズと、
両凹形状の負レンズL43と、両凸形状の正レンズL44および物体側に凹面を向けた負メニスカスレンズL45からなる接合レンズと、から構成される。本実施例では、第3レンズ群G3の負メニスカスレンズL45が像側レンズに該当し、第3レンズ群G3の正メニスカスレンズL39が条件式(1)~(3)等を満足する正レンズに該当する。
第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3における負レンズL38と正メニスカスレンズL39との間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。
以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。
(表7)
[全体諸元]
f 548.897246
FNO 4.028
2ω 4.529
Y 21.60
TL 421.51451
BF 41.79450
[レンズ諸元]
面番号 R D nd νd θgF
1 1200.3704 5.0000 1.516800 63.88 0.536
2 1199.7897
3 207.5249 17.5000 1.433843 95.26 0.540
4 -1086.1158 44.9000
5 176.7586 18.0000 1.433843 95.26 0.540
6 -399.9688 3.0700
7 -360.7137 6.0000 1.612660 44.46 0.564
8 360.6858 90.0000
9 66.6831 4.0000 1.794997 45.32 0.560
10 46.0960 15.0000 1.497820 82.54 0.539
11 1030.2823 D11(可変)
12 -1579.9519 2.5000 1.772499 49.68 0.552
13 115.8247 3.3500
14 -274.6805 3.5000 1.846679 23.83 0.620
15 -87.1354 2.4000 1.518229 58.84 0.546
16 65.0724 D16(可変)
17 ∞ 1.5000 (絞りS)
18 89.0765 7.6000 1.487490 70.43 0.530
19 -64.1681 1.2000
20 -66.2092 1.9000 1.846679 23.83 0.620
21 -113.6112 5.0000
22 309.3141 3.5000 1.846679 23.83 0.620
23 -136.2550 1.9000 1.593190 67.94 0.544
24 53.6104 3.1000
25 -343.3953 1.9000 1.754999 52.33 0.548
26 94.6723 4.1900
27 117.8519 3.5000 1.772499 49.68 0.552
28 -385.7489 0.1000
29 67.6179 4.5000 1.639999 60.14 0.537
30 -410.4180 1.9000 1.846679 23.83 0.620
31 247.6487 6.5000
32 ∞ 1.5000 1.516800 63.88 0.536
33 ∞ 25.3277
34 -212.6904 6.2000 1.659398 26.84 0.632
35 -34.5457 1.6000 1.850000 27.03 0.609
36 -57.9415 0.1000
37 171.5239 1.7000 1.729160 54.61 0.544
38 20.3538 7.1000 1.581440 40.98 0.576
39 199.2504 3.7000
40 -61.4914 1.7000 1.772500 49.62 0.552
41 80.1566 0.1000
42 39.9229 7.8000 1.581440 40.98 0.576
43 -38.2861 1.7000 1.808090 22.74 0.629
44 -171.6744 BF
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=548.89725 β=-0.24282
D11 18.50291 33.77284
D16 38.17937 22.90945
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2-1),(2-2)
νdP2=26.84
条件式(3)
θgFP2+(0.00316×νdP2)=0.7168
条件式(4),(4-1),(4-2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=6.2000
条件式(6)
ndP2=1.659398
条件式(7)
ndP2-(0.040×νdP2-2.470)×νdP2=35.820
条件式(8)
ndP2-(0.020×νdP2-1.080)×νdP2=12.920
図14は、第7実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第7実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第8実施例)
第8実施例について、図15~図16および表8を用いて説明する。図15は、本実施形態の第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第8実施例に係る光学系LS(8)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ
群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
第1レンズ群G1は、物体側から順に並んだ、凸面を向けた正メニスカスレンズL11と、両凸形状の正レンズL12および両凹形状の負レンズL13からなる接合レンズと、両凸形状の正レンズL14と、物体側に凸面を向けた負メニスカスレンズL15および物体側に凸面を向けた正メニスカスレンズL16からなる接合レンズと、から構成される。
第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL21および両凹形状の負レンズL22からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL23および両凹形状の負レンズL24からなる接合レンズと、から構成される。
第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、物体側に凹面を向けた正メニスカスレンズL33と、両凸形状の正レンズL34と、物体側に凸面を向けた負メニスカスレンズL35と、両凸形状の正レンズL36、両凹形状の負レンズL37、および両凸形状の正レンズL38からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL39と、物体側に凹面を向けた負メニスカスレンズL40と、から構成される。本実施例では、第3レンズ群G3の負メニスカスレンズL40が像側レンズに該当し、第3レンズ群G3の正レンズL34が条件式(1)~(3)等を満足する正レンズに該当する。正メニスカスレンズL39は、物体側のレンズ面が非球面である。
第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3における正メニスカスレンズL33と正レンズL34との間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。
以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。
(表8)
[全体諸元]
f 388.032537
FNO 4.038
2ω 6.416
Y 21.60
TL 283.53069
BF 53.66784
[レンズ諸元]
面番号 R D nd νd θgF
1 167.3500 10.6000 1.497820 82.52 0.539
2 2361.5509 0.3000
3 98.4074 20.8000 1.497820 82.52 0.539
4 -306.6320 5.0000 1.772499 49.61 0.552
5 165.4047 20.0000
6 135.6601 9.6000 1.446791 91.03 0.534
7 -731.2064 0.3000
8 71.2883 4.0000 1.754999 52.31 0.547
9 42.3960 16.5000 1.497820 82.52 0.539
10 435.6465 D10(可変)
11 -1745.8851 5.0000 1.850260 32.35 0.594
12 -78.6510 3.0000 1.639999 60.09 0.538
13 55.9799 6.0000
14 -79.8113 4.2000 1.766840 46.80 0.558
15 -45.8300 2.8000 1.516800 64.10 0.536
16 51.2954 D16(可変)
17 ∞ 3.2000 (絞りS)
18 126.0707 5.0000 1.729157 54.66 0.544
19 -81.3057 2.1000
20 -43.1962 3.4000 1.795040 28.54 0.607
21 -104.9670 7.0000
22 -827.9284 5.3000 1.603001 65.47 0.541
23 -52.9313 5.3151
24 ∞ 2.0000 1.516800 64.12 0.536
25 ∞ 9.4440
26 64.5713 5.0000 1.611553 31.26 0.618
27 -280.9473 0.8000
28 350.7347 1.5000 1.804000 46.58 0.557
29 24.0250 5.4000
30 33.9853 9.0000 1.620040 36.30 0.587
31 -23.4510 2.0000 1.882997 40.76 0.567
32 36.4535 8.2000 1.575010 41.49 0.576
33 -45.3865 2.9000
34*a -91.9573 6.4000 1.589130 61.18 0.539
35 -28.9225 0.5000
36 -33.4300 2.5000 1.882997 40.76 0.567
37 -192.4648 BF
[非球面データ]
第34面
κ=1.0000
A4=8.36373E-06,A6=2.40160E-09,A8=0.00000E+00,A10=0.00000E+00
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=388.03254 β=-0.25415
D10 19.01315 27.19783
D16 15.10916 6.92448
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.057
条件式(2),(2-1),(2-2)
νdP2=31.26
条件式(3)
θgFP2+(0.00316×νdP2)=0.7168
条件式(4),(4-1),(4-2)
ndP2+(0.00787×νdP2)=1.858
条件式(5)
DP2=5.0000
条件式(6)
ndP2=1.611553
条件式(7)
ndP2-(0.040×νdP2-2.470)×νdP2=36.513
条件式(8)
ndP2-(0.020×νdP2-1.080)×νdP2=12.605
図16は、第8実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第8実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
上記各実施例によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を実現することができる。
ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
合焦レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すものとする。すなわち、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
本実施形態の光学系の第2実施例において、防振機能を有する構成のものを示したが、本願はこれに限られず、防振機能を有していない構成とすることもできる。また、防振機能を有していない他の実施例についても、防振機能を有する構成とすることができる。
レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
G1 第1レンズ群 G2 第2レンズ群
G3 第3レンズ群 G4 第4レンズ群
G5 第5レンズ群
I 像面 S 開口絞り

Claims (1)

  1. 開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する正レンズとを有する光学系。
    ndP2+(0.01425×νdP2)<2.12
    18.0<νdP2<35.0
    0.702<θgFP2+(0.00316×νdP2)
    但し、ndP2:前記正レンズのd線に対する屈折率
    νdP2:前記正レンズのd線を基準とするアッベ数
    θgFP2:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP2とし、前記正レンズのF線に対する屈折率をnFP2とし、前記正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
    θgFP2=(ngP2-nFP2)/(nFP2-nCP2)
JP2023032734A 2017-12-15 2023-03-03 光学系、光学機器、および光学系の製造方法 Withdrawn JP2023060138A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023032734A JP2023060138A (ja) 2017-12-15 2023-03-03 光学系、光学機器、および光学系の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019558855A JP6881604B2 (ja) 2017-12-15 2017-12-15 光学系および光学機器
PCT/JP2017/045185 WO2019116565A1 (ja) 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法
JP2021073057A JP2021105746A (ja) 2017-12-15 2021-04-23 光学系および光学機器
JP2023032734A JP2023060138A (ja) 2017-12-15 2023-03-03 光学系、光学機器、および光学系の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021073057A Division JP2021105746A (ja) 2017-12-15 2021-04-23 光学系および光学機器

Publications (1)

Publication Number Publication Date
JP2023060138A true JP2023060138A (ja) 2023-04-27

Family

ID=66819166

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019558855A Active JP6881604B2 (ja) 2017-12-15 2017-12-15 光学系および光学機器
JP2021073057A Pending JP2021105746A (ja) 2017-12-15 2021-04-23 光学系および光学機器
JP2023032734A Withdrawn JP2023060138A (ja) 2017-12-15 2023-03-03 光学系、光学機器、および光学系の製造方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019558855A Active JP6881604B2 (ja) 2017-12-15 2017-12-15 光学系および光学機器
JP2021073057A Pending JP2021105746A (ja) 2017-12-15 2021-04-23 光学系および光学機器

Country Status (2)

Country Link
JP (3) JP6881604B2 (ja)
WO (1) WO2019116565A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334812A (zh) * 2019-08-20 2021-02-05 深圳市大疆创新科技有限公司 透镜系统、摄像装置及移动体
CN111897115B (zh) * 2020-07-31 2021-07-27 中国科学院西安光学精密机械研究所 一种具有消热和宽压适应能力的连续变焦光学系统
CN113777765B (zh) * 2021-08-25 2023-04-07 浙江大华技术股份有限公司 一种镜头
CN115268020B (zh) * 2022-07-18 2023-06-06 福建福光股份有限公司 一种大光圈高清无热化交通镜头及其成像方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756901B2 (ja) * 2005-04-25 2011-08-24 キヤノン株式会社 接眼レンズ及びそれを用いた光学機器
JP4956062B2 (ja) * 2005-06-15 2012-06-20 キヤノン株式会社 光学系
JP4898307B2 (ja) * 2006-06-05 2012-03-14 キヤノン株式会社 光学系及びそれを有する光学機器
JP5084283B2 (ja) * 2007-02-02 2012-11-28 オリンパス株式会社 結像光学系及びそれを有する電子撮像装置
JP2009249591A (ja) * 2008-04-10 2009-10-29 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2009280724A (ja) * 2008-05-23 2009-12-03 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2010054668A (ja) * 2008-08-27 2010-03-11 Canon Inc 光学系及びそれを有する光学機器
JP5197242B2 (ja) * 2008-09-01 2013-05-15 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5932444B2 (ja) * 2012-04-05 2016-06-08 キヤノン株式会社 光学系及びそれを用いた撮像装置
JP2017090710A (ja) * 2015-11-11 2017-05-25 キヤノン株式会社 光学素子、それを有する光学系及び光学機器
JP2017190280A (ja) * 2016-04-15 2017-10-19 株式会社オハラ 光学ガラス

Also Published As

Publication number Publication date
JPWO2019116565A1 (ja) 2020-12-03
JP6881604B2 (ja) 2021-06-02
WO2019116565A1 (ja) 2019-06-20
JP2021105746A (ja) 2021-07-26

Similar Documents

Publication Publication Date Title
JP5581730B2 (ja) 変倍光学系、光学装置
JP5135723B2 (ja) 防振機能を有するズームレンズ、撮像装置、ズームレンズの防振方法、ズームレンズの変倍方法
JP5641680B2 (ja) ズームレンズ、これを有する光学機器
JP5176410B2 (ja) 変倍光学系、光学装置、変倍光学系の変倍方法
JP2023060138A (ja) 光学系、光学機器、および光学系の製造方法
JP6645531B2 (ja) ズームレンズおよび光学機器
JP2007108398A (ja) ズームレンズ及びそれを有する撮像装置
JP4971632B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5344291B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2023065618A (ja) 光学系、光学機器、および光学系の製造方法
JP2023060139A (ja) 光学系、光学機器、および光学系の製造方法
JP2015022182A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2023060137A (ja) 光学系、光学機器、および光学系の製造方法
JP2023072037A (ja) 光学系および光学機器、並びに、変倍光学系および光学機器
JP2023091028A (ja) 光学系、光学機器、および光学系の製造方法
JP2023052982A (ja) 光学系、光学機器、および光学系の製造方法
JP6981478B2 (ja) 光学系および光学機器
JP2022060546A (ja) 光学系、光学機器、および光学系の製造方法
JP7240631B2 (ja) 変倍光学系及び光学機器
JP6981477B2 (ja) 光学系および光学機器
JP7218814B2 (ja) 変倍光学系および光学機器
JP7243841B2 (ja) 変倍光学系および光学機器
JP7420200B2 (ja) 変倍光学系および光学機器
JP7227572B2 (ja) 変倍光学系及び光学機器
JP7214078B2 (ja) 変倍光学系及び光学機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230303

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20230619