JP2023041204A - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP2023041204A
JP2023041204A JP2021148429A JP2021148429A JP2023041204A JP 2023041204 A JP2023041204 A JP 2023041204A JP 2021148429 A JP2021148429 A JP 2021148429A JP 2021148429 A JP2021148429 A JP 2021148429A JP 2023041204 A JP2023041204 A JP 2023041204A
Authority
JP
Japan
Prior art keywords
vehicle
collision
gain
section
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021148429A
Other languages
English (en)
Inventor
大貴 加藤
Hirotaka Kato
聡 柏村
Satoshi Kashiwamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2021148429A priority Critical patent/JP2023041204A/ja
Priority to DE112022001209.9T priority patent/DE112022001209T5/de
Priority to CN202280020942.9A priority patent/CN116981607A/zh
Priority to PCT/JP2022/010224 priority patent/WO2023037601A1/ja
Publication of JP2023041204A publication Critical patent/JP2023041204A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】安全性を確保しつつ高度運転支援システムの誤作動を防止することができる車両制御装置を提供する。【解決手段】車両制御装置110は、進路予測部F1と、衝突予測部F3と、車両制御部F5と、制御介入調整部F4とを備えている。進路予測部F1は、車両の転回進路を舵角θに基づく定常円旋回進路として予測する。衝突予測部F3は、車両の外界センサによって検出された物標と定常円旋回進路を走行する車両との衝突余裕時間(TTC)および車両の車幅中央位置に対する物標の予測衝突横位置CLLを算出する。車両制御部F5は、衝突余裕時間が制御介入閾値THよりも短い場合に車両100の衝突回避制御を実行する。制御介入調整部F4は、制御介入閾値THを調整する。制御介入調整部F4は、車両の車幅中央位置に対する予測衝突横位置CLLが、舵角θの時間変化率である舵角速度の方向と逆方向である場合に、制御介入閾値を短縮する。【選択図】図2

Description

本開示は、車両制御装置に関する。
従来から自車の進路を算出し、その自車の進路と自車周囲の物体との衝突の有無を判定する運転支援装置が知られている。下記特許文献1に記載された運転支援装置は、自車のヨーレートに基づいて自車進路を算出し、その自車進路を含む対象領域における物体との衝突可能性に基づいて、前記物体との衝突を回避または緩和する運転支援処理を実施する(要約、請求項1、第0007段落)。
この従来の運転支援装置は、信頼度算出部と、制限部と、を備える。信頼度算出部は、前記ヨーレートの時間変化率であるヨーレート変化率および操舵速度の少なくともいずれかを含む操舵パラメータに基づいて、前記自車進路の確からしさを示す信頼度を算出する。制限部は、前記信頼度に基づいて、前記運転支援処理の実施を制限する。この従来の運転支援装置によれば、自車進路の確からしさに応じて、運転支援処理に制限が加えられるため、運転支援処理の不要作動を抑制することができる(特許文献1、第0008段落)。
特開2020-100230号公報
前述のように、特許文献1に記載された運転支援装置(ECU)は、算出した信頼度に応じて、プリクラッシュセイフティー(PCS)制御の作動を制限する。より具体的には、ECUは、PCS制御の作動制限として、警報装置、ブレーキ装置、およびシートベルト装置の各装置を作動させるための物体の位置条件である作動エリアを縮小する(特許文献1、第0039段落、図1および図5(a))。
このように、作動エリアを左右均等に縮小する場合、車両の進行方向が変化していく方向においても作動エリアが縮小され、自車に衝突するリスクのある物体が作動エリアから除外され、PCS制御が作動せず、安全性が低下するおそれがある。
また、この従来の運転支援装置は、自車に旋回状態変化が生じていない期間では、時間の経過に応じて自車進路の確からしさを示す信頼度を大きくする(特許文献1、第0032段落)。この場合、たとえば、自車の右左折の途中で、自車進路の信頼度が高いにも係わらず、算出された自車進路が自車の実際の走行経路から外れて、PCS制御の誤作動を起こすおそれがある。
本開示は、安全性を確保しつつ高度運転支援システムの誤作動を防止することができる車両制御装置を提供する。
本開示の一態様は、車両に搭載される車両制御装置であって、前記車両の左折時また右折時の転回進路を前記車両の舵角センサによって検出される舵角に基づく定常円旋回進路として予測する進路予測部と、前記車両の外界センサによって検出された物標と前記定常円旋回進路を走行する前記車両との衝突余裕時間および前記車両の車幅中央位置に対する前記物標の予測衝突横位置を算出する衝突予測部と、前記衝突余裕時間が制御介入閾値よりも短い場合に前記車両の衝突回避制御を実行する車両制御部と、前記制御介入閾値を調整する制御介入調整部と、を備え、前記制御介入調整部は、前記車両の前記車幅中央位置に対する前記予測衝突横位置が、前記舵角の時間変化率である舵角速度の方向と逆方向である場合に、前記制御介入閾値を短縮することを特徴とする車両制御装置である。
本開示の上記一態様によれば、安全性を確保しつつ高度運転支援システムの誤作動を防止することができる車両制御装置を提供することができる。
本開示に係る車両制御装置の実施形態を示す車両の概略構成図。 図1に示す車両制御装置の機能ブロック図。 図1および図2の車両制御装置の動作を示すフロー図。 図1の車両が交差点の右折を開始したときの平面図。 図3の制御介入閾値を調整する処理の詳細を示すフロー図。 図5の進入区間の制御介入閾値の調整で使用される補正テーブルの一例。 図5の進入区間の制御介入閾値の調整で使用される補正テーブルの一例。 図1の車両が右折時の転回進路の旋回区間を走行中の状態を示す平面図。 図5の旋回区間の制御介入閾値の調整で使用される補正テーブルの一例。 図1の車両が右折時の転回進路の退出区間を走行中の状態を示す平面図。 図5の退出区間の制御介入閾値の調整で使用される補正テーブルの一例。 図5の退出区間の制御介入閾値の調整で使用される補正テーブルの一例。 車両の制御介入に用いる制御介入閾値の決定方法の一例を示すグラフ。
以下、図面を参照して本開示に係る車両制御装置の実施形態を説明する。図1は、本開示に係る車両制御装置の実施形態を示す車両100の概略構成図である。
本実施形態の車両制御装置110は、たとえば、先進運転支援システム(ADAS)を備えた車両100に搭載される電子制御装置(ECU)である。車両制御装置110は、たとえば、ROMやRAMなどのメモリ111、中央処理装置(CPU)112、タイマ113、および入出力部114などを備え、一つ以上のマイクロコントローラによって構成することができる。
車両100は、車両制御装置110の他に、たとえば、外界センサ120と、車両センサ130と、制御対象140とを備えている。これら車両100の各部によって、車両100のADASが構成される。車両100のADASは、たとえば、アダプティブクルーズコントロール(ACC)、前方衝突警告(FCW)、衝突軽減制動(AEB)など、各種の運転支援機能を実現する。
外界センサ120は、たとえば、車両100の周囲の物体を検出し、検出した物体の情報を車両制御装置110へ出力する。外界センサ120が検出する物体は、たとえば、道路、車両、歩行者、道路標示、道路標識、交通信号機、縁石、建造物、障害物などを含む。外界センサ120は、たとえば、撮像装置121、レーダ122、ソナー123を含む。撮像装置121は、たとえば、ステレオカメラや単眼カメラを含む。レーダ122は、たとえば、レーザレーダやミリ波レーダを含む。
車両センサ130は、たとえば、車両100に係る物理量を検出し、検出した物理量の情報を車両制御装置110へ出力する。車両センサ130が検出する物理量は、たとえば、車両100の速度、加速度、ヨーレート、舵角などを含む。車両センサ130は、たとえば、車輪速センサなどの速度センサ131と、舵角センサ132と、ヨーレートセンサ133とを含む。
制御対象140は、たとえば、車両制御装置110から出力される制御信号によって制御される各種の装置である。制御対象140は、画像表示装置141と、音声出力装置142と、アクチュエータ143とを含む。制御対象140は、さらに、車両100に搭載されたエンジン、モータ、トランスミッションなどを含んでもよい。
画像表示装置141は、たとえば、ヘッドアップディスプレイ、液晶表示装置、有機EL表示装置などを含む。音声出力装置142は、たとえば、スピーカやブザーを含む。アクチュエータ143は、たとえば、アクセルアクチュエータ、ブレーキアクチュエータ、ステアリングアクチュエータ、ギアボックスアクチュエータを含む。
図2は、図1に示す車両制御装置110の機能ブロック図である。車両制御装置110は、進路予測部F1と、衝突予測部F3と、制御介入調整部F4と、車両制御部F5とを備えている。また、図2に示す例において、車両制御装置110は、物標進路予測部F2を備えている。図2に示す車両制御装置110の各部は、図1に示す車両制御装置110のメモリ111に記憶されたプログラムをCPU112によって実行することで実現される車両制御装置110の機能を表している。
図3は、図1および図2の車両制御装置110の動作を示すフロー図である。図4は、左側通行の道路を走行する車両100がT字路の右折を開始したときの平面図である。以下では、車両100が左側通行の道路の交差点を右折するときの車両制御装置110の動作を説明する。
なお、車両100の左折時の車両制御装置110の動作については、左右が逆になるだけで、車両100の右折時の車両制御装置110の動作と同様であるため、説明を省略する。また、車両100が右側通行の道路を走行する場合の車両制御装置110の動作についても、基本的には車両100が左側通行の道路を走行する場合と同様であるため、説明を省略する。
車両制御装置110は、たとえば、図3に示す処理フローを、車両100の走行中に所定の周期で繰り返し実行する。車両100の走行中は、車両センサ130によって検出された車両100の速度V、舵角θ、およびヨーレートωを含む車両情報が、図2に示す車両制御装置110の進路予測部F1に入力される。車両制御装置110は、図3に示す処理を開始すると、まず、車両100の進路を予測する処理P1を実行する。
図4に示すように、車両100が左側通行の道路の交差点を右折している場合、進路予測部F1は、車両100の右折時の転回進路TRを、車両100の舵角センサ132によって検出される舵角θに基づく定常円旋回進路として予測する。ここで、定常円旋回進路とは、たとえば、車両100の速度Vや舵角θなどの条件が一定である場合の車両100の円弧形の予測進路である。進路予測部F1が予測する車両100の転回進路TRは、たとえば、車両100の車幅と等しい幅を有する円弧状の領域である。
図4に示すように、車両100が右折を開始してから暫くの間は、車両100の運転者がステアリングを切り増して舵角θが増加する。そのため、車両制御装置110が制御周期を重ねる度に、図4に示すように、処理P1において進路予測部F1が予測する定常円旋回進路としての転回進路TRの半径が減少していく。進路予測部F1による車両100の転回進路TRの予測処理P1が終了すると、車両制御装置110は、物標の進路を予測する処理P2を実行する。
この処理P2において、車両制御装置110は、たとえば、物標進路予測部F2によって、図4に示すように、物標Oの進路Rを予測する。具体的には、物標進路予測部F2は、たとえば、撮像装置121によって検出された車両100の前方の物体の情報D1や、レーダ122によって検出された車両100の前方の物体の情報D2を取得する。物標進路予測部F2は、これらの情報D1,D2に基づいて、たとえば、歩行者などの物体を物標Oとして認識する。
さらに、物標進路予測部F2は、たとえば、取得した情報D1,D2に含まれる物標Oの距離、方向、相対速度、種別などの情報に基づいて、物標Oの進路Rを予測する。ここで、物標進路予測部F2が予測する物標Oの進路Rは、物標Oの幅と同じ幅を有する帯状の領域である。なお、車両制御装置110は、衝突予測部F3によって物標Oの進路Rを予測してもよい。この場合、図2に示す物標進路予測部F2を省略することができる。
車両制御装置110は、図3に示す物標Oの進路Rを予測する処理P2の終了後、車両100と物標Oとの衝突を予測する処理P3を実行する。この処理P3において、車両制御装置110の衝突予測部F3は、進路予測部F1によって予測された車両100の転回進路TRと、物標進路予測部F2によって予測された物標Oの進路Rに基づいて、車両100と物標Oとの将来の衝突の有無を予測する。
より具体的には、衝突予測部F3は、たとえば、図4に示すように、車両100の転回進路TRと物標Oの進路Rとが重なっている領域に、車両100と物標Oとが将来の同時刻に位置することが予測されると、車両100と物標Oとが衝突することを予測する。衝突予測部F3は、たとえば、車両100と物標Oとが衝突することを予測した場合、衝突までの時間である衝突余裕時間(TTC)と、車両100の車幅中央位置に対する物標Oの予測衝突横位置CLLとを算出する。
車両制御装置110は、図3に示す車両100と物標Oとの衝突を予測する処理P3が終了すると、ADASの制御介入閾値を調整する処理P4を実行する。この処理P4において、車両制御装置110の制御介入調整部F4は、衝突予測部F3によって算出された車両100の車幅中央位置に対する物標Oの予測衝突横位置CLLに基づいて、ADASの制御介入閾値THを調整する。
図5は、図3の制御介入閾値を調整する処理P4の詳細を示すフロー図である。車両制御装置110の制御介入調整部F4は、図5に示す処理P4を開始すると、まず、ADASの制御介入閾値THの基準値を設定する処理P41を実行する。この処理P41で設定する制御介入閾値T0は、たとえば、前述の処理P3において算出された衝突余裕時間の閾値であり、図3に示す後述の処理P5において、車両制御部F5が制御対象140の制御を実行するか否かを判定するための制御介入閾値THの基準値である。
この処理P41において、制御介入調整部F4は、たとえば、車両100の速度に応じた制御介入閾値T0を設定する。より具体的には、車両制御装置110のメモリ111には、たとえば、車両100の速度Vが上昇するほど、衝突余裕時間の閾値である制御介入閾値T0が延長されるように規定されたテーブルが記録されている。なお、車両制御装置110は、物標Oの種別や移動状態ごとに規定された複数のテーブルを有してもよい。この場合、制御介入調整部F4は、たとえば、車両100の速度Vと、物標Oの種別、速度、および移動方向を含む情報D1と、メモリ111に記憶されたテーブルに基づいて、制御介入閾値T0を設定する。
次に、車両制御装置110は、車両100が、図4に示すような右折時の転回進路TRの進入区間TR1を走行中であるか否かを判定する処理P42を実行する。ここで、進入区間TR1は、たとえば、転回進路TRの序盤の区間であり、車両100が交差点に進入して運転者がステアリングホイールを右折時の転回方向である右方向に切ることで舵角θが増加する区間である。処理P42において、進路予測部F1は、たとえば、舵角θの時間変化率である舵角速度の方向が右折時の転回方向すなわち右方向である場合に、車両制御装置110が進入区間TR1を走行中であること(YES)を判定する。
また、処理P42において、進路予測部F1は、たとえば、外界センサ120から得られた交通信号機までの距離が所定の範囲内である場合に、車両制御装置110が進入区間TR1を走行中であること(YES)を判定する。また、進路予測部F1は、たとえば、高精度3次元地図データ(HDマップ)や、全球測位衛星システム(GNSS)を利用して、車両100が進入区間TR1を走行中か否かを判定してもよい。
この処理P42において、進路予測部F1は、たとえば、車両100が進入区間TR1を走行中ではないこと(NO)を判定すると、車両100が旋回区間TR2を走行中であるか否かを判定する後述の処理P44を実行する。一方、この処理P42において、進路予測部F1が、車両100が進入区間TR1を走行中であること(YES)を判定すると、車両100は、進入区間TR1における制御介入閾値T1を調整する処理P43を実行する。
図6および図7は、それぞれ、進入区間TR1における制御介入閾値T1を調整する処理P43で使用される補正テーブルCT1の一例を示すグラフである。本実施形態において車両制御装置110の制御介入調整部F4は、たとえば、転回進路TRの進入区間TR1において、制御介入閾値T1を短縮するためのゲインG11,G12を規定した補正テーブルCT1を有している。これらの補正テーブルCT1は、たとえば、車両制御装置110のメモリ111に格納されている。
進入区間TR1の補正テーブルCT1は、たとえば、図6に示す転舵方向ゲインテーブルCT11と、図7に示す舵角速度ゲインテーブルCT12とを含む。転舵方向ゲインテーブルCT11および舵角速度ゲインテーブルCT12は、それぞれ、予測衝突横位置CLLを横軸、ゲインG11,G12を縦軸とするグラフである。ここで、予測衝突横位置CLLは、車両100の前端に対する物標Oの衝突予測位置であり、車両100の車幅方向における物標Oの衝突予測位置である。
図5に示す処理P43において、制御介入調整部F4は、たとえば、以下の式(1)によって進入区間TR1の制御介入閾値T1を算出する。式(1)において、G11,G12は、それぞれ、図6の転舵方向ゲインテーブルCT11と、図7の舵角速度ゲインテーブルCT12に基づいて決定されるゲインG11,G12であり、T0は、前述の処理P41で車両100の速度Vに基づいて設定された制御介入閾値T0である。
T1=G11×G12×T0 ・・・(1)
図6に示すように、進入区間TR1の転舵方向ゲインテーブルCT11は、予測衝突横位置CLLが、車両100の車幅中央位置に対して車両100の転舵方向と同じ側である場合に、ゲインが1となる。たとえば、図6の実線で示すように、舵角センサ132によって検出された舵角θに基づく車両100の転舵方向が右方向(右転舵)であり、かつ、予測衝突横位置CLLが車両100の車幅方向の中央または中央よりも右側である場合、ゲインG11は1になる。
また、図6に示す進入区間TR1の転舵方向ゲインテーブルCT11は、予測衝突横位置CLLが、車両100の車幅中央位置から、車両100の転舵方向と反対方向に離れるほど、ゲインG11が減少する。たとえば、図6の実線で示すように、車両100の転舵方向が右方向(右転舵)である場合、予測衝突横位置CLLが車両100の車幅方向の中央から左方向に離れるほど、ゲインG11が1から0へ近づくように漸減する。
ゲインG11が1よりも小さくなることで、上記式(1)のように、ADASによる制御介入を判断するための衝突余裕時間の閾値である進入区間TR1の制御介入閾値T1が短縮され、ADASによる制御介入が抑制される。すなわち、制御介入調整部F4は、転回進路TRの進入区間TR1において、物標Oの予測衝突横位置CLLが、車両100の車幅方向の中央に対して、転舵方向と反対方向に離れるほど、進入区間TR1の制御介入閾値T1を短縮して、ADASによる制御介入を抑制する。
また、図7に示すように、進入区間TR1の舵角速度ゲインテーブルCT12は、予測衝突横位置CLLが車両100の車幅中央位置に対して舵角速度αの方向と同じ側である場合にゲインG12が1となる。たとえば、図7の実線で示すように、車両100の舵角速度αの方向が右向きであり、かつ、予測衝突横位置CLLが車両100の車幅方向の中央または中央よりも右側である場合、ゲインG12は1になる。
また、図7に示す進入区間TR1の舵角速度ゲインテーブルCT12は、予測衝突横位置CLLが、車両100の車幅中央位置から、車両100の舵角速度αの方向と反対方向に離れるほど、ゲインG12が減少する。たとえば、図7の実線で示すように、車両100の舵角速度αの方向が右向きである場合、予測衝突横位置CLLが車両100の車幅方向の中央から左方向に離れるほど、ゲインG12が1から0へ近づくように漸減する。
さらに、図7に示す進入区間TR1の舵角速度ゲインテーブルCT12は、舵角速度αが高いほど予測衝突横位置CLLに対するゲインG12の変化率が大きくなる。より具体的には、舵角速度ゲインテーブルCT12は、たとえば、右向きの舵角速度αを正、左向きの舵角速度αを負とした場合に、舵角速度αの絶対値が大きくなるほど、図7に示す実線または点線の傾きが大きくなる。
ゲインG12が1よりも小さくなることで、上記式(1)のように、ADASによる制御介入を判断するための衝突余裕時間の閾値である進入区間TR1の制御介入閾値T1が短縮され、ADASによる制御介入が抑制される。このように、制御介入調整部F4は、転回進路TRの進入区間TR1において、車両100の車幅中央位置に対する予測衝突横位置CLLが、舵角θの時間変化率である舵角速度αの方向と逆方向である場合に、進入区間TR1の制御介入閾値T1を短縮して、ADASによる制御介入を抑制する。
次に、車両制御装置110は、図5に示す旋回区間TR2を走行中であるか否かを判定する処理P44を実行する。図8は、車両100が右折時の転回進路TRの旋回区間TR2を走行している状態を示す平面図である。旋回区間TR2は、たとえば、図4に示す転回進路TRの序盤の進入区間TR1の次の区間であり、運転者が一定の舵角θを維持することで、舵角速度αが略ゼロになる転回進路TRの中盤の区間である。
前述のように、進路予測部F1は、車両100の左折時また右折時の転回進路TRを車両100の舵角センサ132によって検出される舵角θに基づく定常円旋回進路として予測する。処理P44において、進路予測部F1は、たとえば、図8に示す衝突予測ヨー角δと、転回終了ヨー角γとを算出し、衝突予測ヨー角δが転回終了ヨー角γより大である場合に、車両100が転回進路TRの旋回区間TR2を走行していること(YES)を判定する。
ここで、図8に示す衝突予測ヨー角δは、たとえば、現在の車両100の前後軸と、物標Oに対する衝突余裕時間が経過した時点の車両100の予測位置における前後軸との成す角である。また、図8に示す転回終了ヨー角γは、たとえば、現在の車両100の前後軸と、撮像装置121などから取得した転回終了後の道路の道路端との成す角である。
なお、進路予測部F1による旋回区間TR2の判定方法は、上記の方法に限定されない。進路予測部F1は、たとえば、舵角速度αが、舵角速度αを略ゼロとみなせる所定の範囲内である場合に、車両100が転回進路TRの旋回区間TR2を走行していること(YES)を判定してもよい。
この処理P44において、進路予測部F1は、たとえば、車両100が旋回区間TR2を走行中ではないこと(NO)を判定すると、車両100が退出区間TR3を走行中であるか否かを判定する後述の処理P46を実行する。一方、この処理P44において、進路予測部F1が、車両100が旋回区間TR2を走行中であること(YES)を判定すると、車両100は、旋回区間TR2における制御介入閾値T2を調整する処理P45を実行する。
図9は、旋回区間TR2における制御介入閾値T2を調整する処理P45で使用される補正テーブルCT2の一例を示すグラフである。本実施形態において車両制御装置110の制御介入調整部F4は、たとえば、転回進路TRの旋回区間TR2において、制御介入閾値T2を短縮するためのゲインG2を規定した補正テーブルCT2を有している。この補正テーブルCT2は、たとえば、車両制御装置110のメモリ111に格納されている。
旋回区間TR2の補正テーブルCT2は、たとえば、図9に示す超過ヨー角ゲインテーブルCT21を含む。超過ヨー角ゲインテーブルCT21は、超過ヨー角εを横軸、ゲインG2を縦軸とするグラフである。ここで、制御介入調整部F4は、たとえば、図8に示す旋回区間TR2において、車両100の現在の前後軸と衝突余裕時間の経過後の前後軸との成す角である衝突予測ヨー角δを算出する。
また、制御介入調整部F4は、車両100の現在の前後軸と退出区間TR3の通過時の前後軸とのなす角である転回終了ヨー角γを算出する。さらに、制御介入調整部F4は、衝突予測ヨー角δと転回終了ヨー角γとの差分(δ-γ)である超過ヨー角εを算出する。そして、制御介入調整部F4は、算出した超過ヨー角εと、図9に示す超過ヨー角ゲインテーブルCT21とに基づいて、ゲインG2を算出し、以下の式(2)によって旋回区間TR2の制御介入閾値T2を算出する。
T2=G2×T0 ・・・(2)
上記式(2)において、T0は、前述の処理P41で車両100の速度Vに基づいて設定された制御介入閾値T0である。図9に示すように、旋回区間TR2の超過ヨー角ゲインテーブルCT21は、超過ヨー角εが正である場合に超過ヨー角εが増加するほどゲインG2が減少する。より詳細には、旋回区間TR2の超過ヨー角ゲインテーブルCT21は、超過ヨー角εが0度以下の場合にゲインG2が1となり、超過ヨー角εが0度よりも大である場合に、超過ヨー角εが増加するほどゲインG2が1から0へ近づくように漸減する。
ゲインG2が1よりも小さくなることで、上記式(2)のように、ADASによる制御介入を判断するための衝突余裕時間の閾値である旋回区間TR2の制御介入閾値T2が短縮され、ADASによる制御介入が抑制される。すなわち、制御介入調整部F4は、転回進路TRの旋回区間TR2において、超過ヨー角εが増加するほど、旋回区間TR2の制御介入閾値T2を短縮して、ADASによる制御介入を抑制する。
次に、車両制御装置110は、図5に示す退出区間TR3を走行中であるか否かを判定する処理P46を実行する。図10は、車両100が右折時の転回進路TRの退出区間TR3を走行している状態を示す平面図である。退出区間TR3は、たとえば、図8に示す転回進路TRの中盤の旋回区間TR2の次の区間であり、運転者が舵角θを0度に戻そうとすることで、舵角速度αの方向が車両100の転回方向と逆になる転回進路TRの終盤の区間である。
処理P46において、進路予測部F1は、たとえば、現在の車両100の前後軸と転回終了後の道路の道路端との成す角である転回終了ヨー角γが所定の角度以下である場合に、車両100が退出区間TR3を走行中であること(YES)を判定する。また、進路予測部F1は、たとえば、舵角速度αが、車両100の転回方向と反対方向に所定の値以上となった場合に、車両100が退出区間TR3を走行中であること(YES)を判定する。
また、進路予測部F1は、たとえば、転回終了ヨー角γおよび舵角θが略ゼロになり、車両100が直進している場合に、車両100が退出区間TR3を通過して転回進路TRの走行が終了したことを判定する。また、進路予測部F1は、HDマップやGNSSを用いて、退出区間TR3の通過と右左折時の転回進路TRの終了を判定してもよい。
この処理P46において、進路予測部F1は、たとえば、車両100が退出区間TR3を走行中ではないこと(NO)を判定すると、制御介入閾値T1,T2のいずれかを選択する後述の処理P48を実行する。一方、この処理P46において、進路予測部F1が、車両100が退出区間TR3を走行中であること(YES)を判定すると、車両100は、退出区間TR3における制御介入閾値T3を調整する処理P47を実行する。
図11および図12は、それぞれ、退出区間TR3における制御介入閾値T3を調整する処理P46で使用される補正テーブルCT3の一例を示すグラフである。本実施形態において車両制御装置110の制御介入調整部F4は、たとえば、転回進路TRの退出区間TR3において、制御介入閾値T3を短縮するためのゲインG31,G32を規定した補正テーブルCT3を有している。これらの補正テーブルCT3は、たとえば、車両制御装置110のメモリ111に格納されている。
退出区間TR3の補正テーブルCT3は、たとえば、図11に示す転舵方向ゲインテーブルCT31と、図12に示す舵角速度ゲインテーブルCT32とを含む。転舵方向ゲインテーブルCT31および舵角速度ゲインテーブルCT32は、それぞれ、予測衝突横位置CLLを横軸、ゲインG31,G32を縦軸とするグラフである。ここで、予測衝突横位置CLLは、車両100の前端に対する物標Oの衝突予測位置であり、車両100の車幅方向における物標Oの衝突予測位置である。
図5に示す処理P47において、制御介入調整部F4は、たとえば、以下の式(3)によって退出区間TR3の制御介入閾値T3を算出する。式(3)において、G31,G32は、それぞれ、図11の転舵方向ゲインテーブルCT31と、図12の舵角速度ゲインテーブルCT32に基づいて決定されるゲインG31,G32であり、T0は、前述の処理P41で車両100の速度Vに基づいて設定された制御介入閾値T0である。
T3=G31×G32×T0 ・・・(3)
図11に示すように、退出区間TR3の転舵方向ゲインテーブルCT31は、予測衝突横位置CLLが、車両100の車幅中央位置に対して車両100の転舵方向と反対側である場合に、ゲインが1となる。たとえば、図11の実線で示すように、舵角センサ132によって検出された舵角θに基づく車両100の転舵方向が右方向(右転舵)であり、かつ、予測衝突横位置CLLが車両100の車幅方向の中央または中央よりも左側である場合、ゲインG31は1になる。
また、図11に示す退出区間TR3の転舵方向ゲインテーブルCT31は、予測衝突横位置CLLが車両100の車幅中央位置から車両100の転舵方向に離れるほど、ゲインG31が減少する。たとえば、図11の実線で示すように、車両100の転舵方向が右方向(右転舵)である場合、予測衝突横位置CLLが車両100の車幅方向の中央から右方向に離れるほど、ゲインG31が1から0へ近づくように漸減する。
ゲインG31が1よりも小さくなることで、上記式(3)のように、ADASによる制御介入を判断するための衝突余裕時間の閾値である退出区間TR3の制御介入閾値T3が短縮され、ADASによる制御介入が抑制される。すなわち、制御介入調整部F4は、転回進路TRの退出区間TR3において、物標Oの予測衝突横位置CLLが、車両100の車幅方向の中央に対して、転舵方向に離れるほど、退出区間TR3の制御介入閾値T3を短縮して、ADASによる制御介入を抑制する。
また、図12に示すように、退出区間TR3の舵角速度ゲインテーブルCT32は、予測衝突横位置CLLが車両100の車幅中央位置に対して舵角速度αの方向と同じ側である場合にゲインG32が1となる。たとえば、図12の実線で示すように、車両100の舵角速度αの方向が右向きであり、かつ、予測衝突横位置CLLが車両100の車幅方向の中央または中央よりも右側である場合、ゲインG32は1になる。
また、図12に示す退出区間TR3の舵角速度ゲインテーブルCT32は、予測衝突横位置CLLが、車両100の車幅中央位置から、車両100の舵角速度αの方向と反対方向に離れるほど、ゲインG12が減少する。たとえば、図12の実線で示すように、車両100の舵角速度αの方向が右向きである場合、予測衝突横位置CLLが車両100の車幅方向の中央から左方向に離れるほど、ゲインG32が1から0へ近づくように漸減する。
さらに、図12に示す退出区間TR3の舵角速度ゲインテーブルCT32は、舵角速度αが高いほど予測衝突横位置CLLに対するゲインG32の変化率が大きくなる。より具体的には、舵角速度ゲインテーブルCT32は、たとえば、右向きの舵角速度αを正、左向きの舵角速度αを負とした場合に、舵角速度αの絶対値が大きくなるほど、図12に示す実線または点線の傾きが大きくなる。
ゲインG32が1よりも小さくなることで、上記式(3)のように、ADASによる制御介入を判断するための衝突余裕時間の閾値である退出区間TR3の制御介入閾値T3が短縮され、ADASによる制御介入が抑制される。このように、制御介入調整部F4は、転回進路TRの退出区間TR3において、車両100の車幅中央位置に対する予測衝突横位置CLLが、舵角θの時間変化率である舵角速度αの方向と逆方向である場合に、進入区間TR1の制御介入閾値T1を短縮して、ADASによる制御介入を抑制する。
次に、車両制御装置110は、図5に示す制御介入閾値T1,T2,T3を選択する処理P48を実行する。前述の処理P42,P44,P46において、進路予測部F1が、車両100が走行している区間として、進入区間TR1、旋回区間TR2、退出区間TR3のうち、いずれか一つの区間を判定したと仮定する。この場合、処理P48において、制御介入調整部F4は、進路予測部F1が判定した区間の制御介入閾値T1,T2,T3を選択して、図5に示す処理P4を終了する。
一方、前述の処理P42,P44,P46において、進路予測部F1が、車両100が走行している区間として、進入区間TR1、旋回区間TR2、退出区間TR3のうち、2つ以上の区間を判定したとする。この場合、処理P48において、制御介入調整部F4は、進路予測部F1が判定した2つ以上の区間の補正テーブルCT1,CT2,CT3のうち、制御介入閾値T1,T2,T3が最短となる補正テーブルCT1,CT2,CT3を選択する。
より具体的には、図10に示すように、車両100の転回進路TRの旋回区間TR2から退出区間TR3への移行時には、前述の処理P42で進入区間TR1を走行中とは判定されないが、前述の処理P44,P46でそれぞれ旋回区間TR2、退出区間TR3を走行中と判定される場合がある。この場合、前述の処理P45,P47において、それぞれ、標準の制御介入閾値T0にゲインG21、G22と、ゲインG31,G32が乗じられて、旋回区間TR2の制御介入閾値T2と、退出区間TR3の制御介入閾値T3が算出される。
図13は、ADASによる車両100の制御介入に用いる制御介入閾値THの決定方法の一例を示すグラフである。図13に示す例では、車両100が転回進路TRの旋回区間TR2の走行を開始した時点から右左折時の転回終了まで、二点鎖線で示すように、衝突予測部F3によって、物標Oに対する衝突余裕時間(TTC)が算出されている。
また、進路予測部F1は、車両100が旋回区間TR2の走行を開始した時点から右左折時の転回終了まで、車両100が旋回区間TR2を走行中であることを判定している。また、進路予測部F1は、退出区間TR3の開始から右左折時の転回終了まで、車両100が退出区間TR3を走行中であることを判定している。
すなわち、進路予測部F1は、車両100が旋回区間TR2の走行を開始してから退出区間TR3の走行を開始するまでは、車両100が旋回区間TR2の一つの区間を走行中であることを判定している。しかし、進路予測部F1は、車両100が退出区間TR3の走行を開始してから右左折時の転回終了まで、旋回区間TR2と退出区間TR3の二つの区間を走行中であることを判定している。
この場合、図13に破線で示すように、制御介入調整部F4は、車両100が旋回区間TR2の走行を開始してから退出区間TR3の走行を開始するまでの間は、旋回区間TR2の制御介入閾値T2のみを算出している。そのため、この間は、図13に実線で示すように、制御介入調整部F4は、ADASによる車両100の制御介入に用いる制御介入閾値THとして、旋回区間TR2の制御介入閾値T2を選択している。
しかし、車両100が退出区間TR3の走行を開始してから右左折時の転回終了までの間は、制御介入調整部F4は、旋回区間TR2の制御介入閾値T2に加えて、図13に点線で示すように、退出区間TR3の制御介入閾値T3も算出している。しかし、車両100が退出区間TR3の走行を開始してから暫くの間は、図10に示すように、車両100に対する物標Oの予測衝突横位置CLLが、車両100の車幅中央位置に対して右折時の転回方向である右方向と反対側の左端であることが予測されている。
この場合、図11に示す転舵方向ゲインテーブルCT31と予測衝突横位置CLLに基づくゲインG31は1となる。また、車両100が退出区間TR3の走行を開始してから暫くの間は、車両100の運転者がステアリングホイールを右に切っているとする。この場合、図12に示す舵角速度ゲインテーブルCT32と舵角速度αに基づくゲインG32は1となる。そのため、前記式(3)に基づく退出区間TR3の制御介入閾値T3は、車両100の速度Vに基づいて設定された標準の制御介入閾値T0になっており、右左折時の転回終了の直前まで、旋回区間TR2の制御介入閾値T2よりも長くなっている。
この場合、制御介入調整部F4は、ADASによる車両100の制御介入に用いる制御介入閾値THとして、旋回区間TR2の制御介入閾値T2と退出区間TR3の制御介入閾値T3のうち、最短の旋回区間TR2の制御介入閾値T2を選択する。その後、右折時の転回進路TRの退出区間TR3の終了直前で、車両100の運転者がステアリングホイールを左に切り戻すと、車両100に対する物標Oの予測衝突横位置CLLが車幅中央位置よりも右へ移動する。すると、図11に示す転舵方向ゲインテーブルCT31と予測衝突横位置CLLに基づくゲインG31と、図12に示す舵角速度ゲインテーブルCT32と舵角速度αに基づくゲインG32が、それぞれ1よりも小さくなる。
その結果、前記式(3)で算出される退出区間TR3の制御介入閾値T3が旋回区間TR2の制御介入閾値T2を下回る。すると、制御介入調整部F4は、ADASによる車両100の制御介入に用いる制御介入閾値THとして、旋回区間TR2の制御介入閾値T2と退出区間TR3の制御介入閾値T3のうち、最短の退出区間TR3の制御介入閾値T3を選択する。
このように、進路予測部F1は、車両100が転回進路TRの走行中に、進入区間TR1、旋回区間TR2、退出区間TR3の2つ以上の区間を同時に判定する場合がある。この場合、制御介入調整部F4は、2つ以上の区間の補正テーブルCT1,CT2,CT3のうち、制御介入閾値T1,T2,T3が最短となる補正テーブルを選択する。車両制御装置110は、図5に示す処理P48の終了後、図5に示す処理P4を終了して、図3に示す制御対象140を制御する処理P5を実行する。
処理P5において、車両制御装置110は、車両制御部F5により、車両100に対する物標Oの衝突余裕時間が制御介入閾値THよりも短い場合に、車両100の衝突回避制御を実行する。この車両制御部F5による衝突回避制御は、たとえば、画像表示装置141および音声出力装置142の少なくとも一方による衝突警告を含む。また、車両制御部F5による衝突回避制御は、たとえば、アクチュエータ143による衝突軽減制動(AEB)を含んでもよい。
なお、制御介入閾値THは、衝突警告を実行する場合と、AEBを実行する場合とで異ならせてもよい。この場合、制御介入調整部F4は、衝突警告用の補正テーブルCT1,CT2,CT3と、AEB用の補正テーブルCT1,CT2,CT3を、別に備えることができる。これにより、車両制御部F5は、たとえば、AEBを実行する前に、衝突警告を実行することが可能になる。また、車両制御部F5は、たとえば、車両100に対する物標Oの衝突余裕時間が短くなるほど、車両100の減速度が大きくなるように、アクチュエータ143を制御する。
以上のように、本実施形態の車両制御装置110は、車両100に搭載され、進路予測部F1と、衝突予測部F3と、車両制御部F5と、制御介入調整部F4とを備えている。進路予測部F1は、車両100の左折時また右折時の転回進路TRを車両100の舵角センサ132によって検出される舵角θに基づく定常円旋回進路として予測する。衝突予測部F3は、車両100の外界センサ120によって検出された物標Oと定常円旋回進路を走行する車両100との衝突余裕時間および車両100の車幅中央位置に対する物標Oの予測衝突横位置CLLを算出する。車両制御部F5は、衝突余裕時間が制御介入閾値THよりも短い場合に車両100の衝突回避制御を実行する。制御介入調整部F4は、制御介入閾値THを調整する。制御介入調整部F4は、図7および図12に示すように、車両100の車幅中央位置に対する予測衝突横位置CLLが、舵角θの時間変化率である舵角速度αの方向と逆方向である場合に、前記式(1)および式(3)のように制御介入閾値T1,T2を短縮する。
このような構成により、本実施形態の車両制御装置110は、安全性を確保しつつADASの誤作動を防止することができる。より具体的には、たとえば、図4または図10に示すように、車両100の右折時または左折時の転回進路TRの進入区間TR1または退出区間TR3において、車両100と物標Oとの衝突が予測される場合がある。このような場合でも、車両100の車幅中央位置に対する物標Oの予測衝突横位置CLLが舵角速度αの方向と逆方向であれば、その後に車両100の進行方向が舵角速度αの方向に変化することで物標Oとの衝突が回避される可能性が高くなる。そのため、制御介入調整部F4は、図7および前記式(1)または図12および前記式(3)のように、車両100の車幅中央位置に対する物標Oの予測衝突横位置CLLが舵角速度αの方向と逆方向である場合に、制御介入閾値T1,T2を短縮する。その結果、物標Oとの衝突が回避される可能性が高い場合に、車両制御部F5による衝突回避制御を抑制し、不要な衝突警告や不要なAEBを回避して、ADASの誤作動を防止することができる。また、車両100の車幅方向中央に対する物標Oの予測衝突横位置CLLが、舵角速度αの方向と同方向であれば、標準的な制御介入閾値T0が短縮されないため、ADASを正しく作動させ、車両100と物標Oの安全性を確保することができる。
また、本実施形態の車両制御装置110において、進路予測部F1は、車両100が転回進路TRを走行中に、舵角速度αの方向が車両100の転舵方向に一致する進入区間TR1と、舵角速度αが略ゼロになる旋回区間TR2と、舵角速度αの方向が車両100の転舵方向と逆になる退出区間TR3と、を判別する。また、制御介入調整部F4は、進入区間TR1、旋回区間TR2、および退出区間TR3のそれぞれに対し、制御介入閾値T1,T2,T3を短縮するためのゲインG11,G12,G2,G31,G32を規定した補正テーブルCT1,CT2,CT3を有している。
このような構成により、本実施形態の車両制御装置110は、転回進路TRの進入区間TR1、旋回区間TR2、および退出区間TR3のそれぞれの区間において、転回進路TRが舵角θに基づく定常円旋回進路として予測されることによるADASの誤作動を抑制することができる。また、車両制御装置110は、転回進路TRの進入区間TR1、旋回区間TR2、および退出区間TR3のそれぞれの区間において、転回進路TRが舵角θに基づく定常円旋回進路として予測されることによる安全性の低下を防止できる。
また、本実施形態の車両制御装置110において、進入区間TR1の補正テーブルCT1は、図7に示すような舵角速度ゲインテーブルCT12を含む。舵角速度ゲインテーブルCT12は、予測衝突横位置CLLを横軸、ゲインG12を縦軸とするグラフである。舵角速度ゲインテーブルCT12は、予測衝突横位置CLLが車両100の車幅中央位置から舵角速度αの方向と反対方向に離れるほどゲインG12が減少し、かつ舵角速度αが高いほど予測衝突横位置CLLに対するゲインG12の変化率が大きい。
このような構成により、本実施形態の車両制御装置110は、図4に示すように、車両100の運転者がステアリングホイールを右左折時の転舵方向へ切り増す転回進路TRの進入区間TR1において、前述のように、安全性を確保しつつADASの誤作動を抑制することができる。また、進入区間TR1では、舵角速度αが高いほど、車両100の進行方向が短時間で転舵方向に変化し、物標Oに対する衝突の可能性が低下する。そのため、図7に示すように、舵角速度αが高いほど、予測衝突横位置CLLに対するゲインG12の変化率を大きくして、ゲインG12をより減少させることで、より確実にADASの誤作動を抑制することが可能になる。
また、本実施形態の車両制御装置110において、進入区間TR1の補正テーブルCT1は、図6に示すような転舵方向ゲインテーブルCT11を含む。転舵方向ゲインテーブルCT11は、予測衝突横位置CLLを横軸、ゲインG11を縦軸とするグラフであり、予測衝突横位置CLLが車両100の車幅中央位置から車両の転舵方向と反対方向に離れるほどゲインG11が減少する。
このような構成により、本実施形態の車両制御装置110は、図4に示すような右左折時の転回進路TRの進入区間TR1において、安全性を確保しつつ、ADASの誤作動を抑制することが可能になる。具体的には、転回進路TRの進入区間TR1では、車両100の運転者がステアリングホイールを右左折時の転舵方向へ切り増す。そのため、物標Oの予測衝突横位置CLLが、車両100の車幅中央位置から車両100の転舵方向と反対に離れるほど、衝突の可能性が低下する。したがって、図6に示すように、物標Oの予測衝突横位置CLLが車両100の車幅中央位置から車両の転舵方向と反対方向に離れるほどゲインG11を減少させ、進入区間TR1の制御介入閾値T1を短縮することで、安全性を確保しつつ、ADASの誤作動を抑制することが可能になる。
また、本実施形態の車両制御装置110において、制御介入調整部F4は、旋回区間TR2において車両100の現在の前後軸と衝突余裕時間の経過後の前後軸とのなす角である衝突予測ヨー角δと、車両100の現在の前後軸と退出区間TR3の通過時の前後軸とのなす角である転回終了ヨー角γと、衝突予測ヨー角δから転回終了ヨー角γを減じた超過ヨー角εとを算出する。また、旋回区間TR2の補正テーブルCT2は、図9に示すような超過ヨー角ゲインテーブルCT21を含む。超過ヨー角ゲインテーブルCT21は、超過ヨー角εを横軸、ゲインG2を縦軸とするグラフであり、超過ヨー角εが正である場合に、超過ヨー角εが増加するほどゲインG2が減少する。
このような構成により、図8に示すような転回進路TRの旋回区間TR2において、安全性を確保しつつ、ADASの誤作動を抑制することが可能になる。具体的には、転回進路TRの旋回区間TR2では、進路予測部F1が予測した定常円旋回進路において車両100と物標Oとの衝突が予測された場合でも、その後の退出区間TR3において運転者がステアリングホイールを転回方向と反対方向に切り戻すことで、衝突の可能性が低下する。すなわち、超過ヨー角εが大きいほど、ADASの誤作動が生じやすくなる。そのため、補正テーブルCT2において、超過ヨー角εが増加するほどゲインG2を減少させ、旋回区間TR2の制御介入閾値T2を短縮することで、安全性を確保しつつ、ADASの誤作動を抑制することが可能になる。
また、本実施形態の車両制御装置110において、退出区間TR3の補正テーブルCT3は、図12に示すような舵角速度ゲインテーブルCT32を含む。舵角速度ゲインテーブルCT32は、予測衝突横位置CLLを横軸、ゲインG32を縦軸とするグラフである。舵角速度ゲインテーブルCT32は、予測衝突横位置CLLが車両100の車幅中央位置から舵角速度αの方向と反対方向に離れるほどゲインG32が減少し、かつ舵角速度αが高いほど予測衝突横位置CLLに対するゲインG32の変化率が大きい。
このような構成により、本実施形態の車両制御装置110は、図10に示すように、車両100の運転者がステアリングホイールを右左折時の転舵方向と反対方向へ切り戻す転回進路TRの退出区間TR3において、前述のように、安全性を確保しつつADASの誤作動を抑制することができる。また、退出区間TR3では、舵角速度αが高いほど、車両100の進行方向が短時間で転舵方向に変化し、物標Oに対する衝突の可能性が低下する。そのため、図12に示すように、舵角速度αが高いほど、予測衝突横位置CLLに対するゲインG32の変化率を大きくして、ゲインG32をより減少させることで、より確実にADASの誤作動を抑制することが可能になる。
また、本実施形態の車両制御装置110において、退出区間TR3の補正テーブルCT3は、図11に示すような転舵方向ゲインテーブルCT31を含む。転舵方向ゲインテーブルCT31は、予測衝突横位置CLLを横軸、ゲインG31を縦軸とするグラフであり、予測衝突横位置CLLが車両100の車幅中央位置から車両100の転舵方向に離れるほどゲインG31が減少する。
このような構成により、本実施形態の車両制御装置110は、図10に示すような右左折時の転回進路TRの退出区間TR3において、安全性を確保しつつ、ADASの誤作動を抑制することが可能になる。具体的には、転回進路TRの退出区間TR3では、車両100の運転者がステアリングホイールを右左折時の転舵方向と反対方向へ切り戻す。そのため、物標Oの予測衝突横位置CLLが、車両100の車幅中央位置から転舵方向に離れるほど、衝突の可能性が低下する。したがって、図11に示すように、物標Oの予測衝突横位置CLLが車両100の車幅中央位置から車両の転舵方向に離れるほどゲインG31を減少させ、退出区間TR3の制御介入閾値T3を短縮することで、安全性を確保しつつ、ADASの誤作動を抑制することが可能になる。
また、本実施形態の車両制御装置110の進路予測部F1は、進入区間TR1、旋回区間TR2、退出区間TR3の2つ以上の区間を同時に判定する場合がある。この場合、制御介入調整部F4は、進路予測部F1が判定した2つ以上の区間の補正テーブルCT1,CT2,CT3のうち、制御介入閾値T1,T2,T3が最短となる補正テーブルCT1,CT2,CT3を選択する。
このような構成により、本実施形態の車両制御装置110は、たとえば図13に示すように、進路予測部F1が二つ以上の区間を判定した場合でも、最短の旋回区間TR2の制御介入閾値T2または退出区間TR3の制御介入閾値T3を、車両制御部F5による衝突回避制御の制御介入閾値THとして選択することができる。これにより、本実施形態の車両制御装置110は、安全性を確保しつつ、より確実にADASの誤作動を抑制することが可能になる。
以上説明したように、本実施形態によれば、安全性を確保しつつ高度運転支援システムの誤作動を防止することができる車両制御装置110を提供することができる。
以上、図面を用いて本開示に係る車両制御装置の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。
100 車両
110 車両制御装置
120 外界センサ
132 舵角センサ
CLL 予測衝突横位置
CT1 補正テーブル
CT11 転舵方向ゲインテーブル
CT12 舵角速度ゲインテーブル
CT2 補正テーブル
CT21 超過ヨー角ゲインテーブル
CT3 補正テーブル
CT31 転舵方向ゲインテーブル
CT32 舵角速度ゲインテーブル
F1 進路予測部
F3 衝突予測部
F4 制御介入調整部
F5 車両制御部
G11 ゲイン
G12 ゲイン
G2 ゲイン
G31 ゲイン
G32 ゲイン
O 物標
TH 制御介入閾値
TR 転回進路
TR1 進入区間
TR2 旋回区間
TR3 退出区間
α 舵角速度
δ 衝突予測ヨー角
ε 超過ヨー角
γ 転回終了ヨー角
θ 舵角

Claims (8)

  1. 車両に搭載される車両制御装置であって、
    前記車両の左折時また右折時の転回進路を前記車両の舵角センサによって検出される舵角に基づく定常円旋回進路として予測する進路予測部と、前記車両の外界センサによって検出された物標と前記定常円旋回進路を走行する前記車両との衝突余裕時間および前記車両の車幅中央位置に対する前記物標の予測衝突横位置を算出する衝突予測部と、前記衝突余裕時間が制御介入閾値よりも短い場合に前記車両の衝突回避制御を実行する車両制御部と、前記制御介入閾値を調整する制御介入調整部と、を備え、
    前記制御介入調整部は、前記車両の前記車幅中央位置に対する前記予測衝突横位置が、前記舵角の時間変化率である舵角速度の方向と逆方向である場合に、前記制御介入閾値を短縮することを特徴とする車両制御装置。
  2. 前記進路予測部は、前記車両が前記転回進路を走行中に、前記舵角速度の方向が前記車両の転舵方向に一致する進入区間と、前記舵角速度が略ゼロになる旋回区間と、前記舵角速度の方向が前記車両の前記転舵方向と逆になる退出区間と、を判別し、
    前記制御介入調整部は、前記進入区間、前記旋回区間、および前記退出区間のそれぞれに対し、前記制御介入閾値を短縮するためのゲインを規定した補正テーブルを有していることを特徴とする請求項1に記載の車両制御装置。
  3. 前記進入区間の補正テーブルは、舵角速度ゲインテーブルを含み、
    前記舵角速度ゲインテーブルは、前記予測衝突横位置を横軸、前記ゲインを縦軸とするグラフであり、前記予測衝突横位置が前記車両の前記車幅中央位置から前記舵角速度の方向と反対方向に離れるほど前記ゲインが減少し、かつ前記舵角速度が高いほど前記予測衝突横位置に対する前記ゲインの変化率が大きいことを特徴とする請求項2に記載の車両制御装置。
  4. 前記進入区間の補正テーブルは、転舵方向ゲインテーブルを含み、
    前記転舵方向ゲインテーブルは、前記予測衝突横位置を横軸、前記ゲインを縦軸とするグラフであり、前記予測衝突横位置が前記車両の前記車幅中央位置から前記車両の前記転舵方向と反対方向に離れるほど前記ゲインが減少することを特徴とする請求項2に記載の車両制御装置。
  5. 前記制御介入調整部は、前記旋回区間において、前記車両の現在の前後軸と前記衝突余裕時間の経過後の前後軸とのなす角である衝突予測ヨー角と、前記車両の現在の前後軸と前記退出区間の通過時の前後軸とのなす角である転回終了ヨー角と、前記衝突予測ヨー角から前記転回終了ヨー角を減じた超過ヨー角とを算出し、
    前記旋回区間の補正テーブルは、超過ヨー角ゲインテーブルを含み、
    前記超過ヨー角ゲインテーブルは、前記超過ヨー角を横軸、前記ゲインを縦軸とするグラフであり、前記超過ヨー角が正である場合に前記超過ヨー角が増加するほど前記ゲインが減少することを特徴とする請求項2に記載の車両制御装置。
  6. 前記退出区間の補正テーブルは、舵角速度ゲインテーブルを含み、
    前記舵角速度ゲインテーブルは、前記予測衝突横位置を横軸、前記ゲインを縦軸とするグラフであり、前記予測衝突横位置が前記車両の前記車幅中央位置から前記舵角速度の方向と反対方向に離れるほど前記ゲインが減少し、かつ前記舵角速度が高いほど前記予測衝突横位置に対する前記ゲインの変化率が大きいことを特徴とする請求項2に記載の車両制御装置。
  7. 前記退出区間の補正テーブルは、転舵方向ゲインテーブルを含み、
    前記転舵方向ゲインテーブルは、前記予測衝突横位置を横軸、前記ゲインを縦軸とするグラフであり、前記予測衝突横位置が前記車両の前記車幅中央位置から前記車両の前記転舵方向に離れるほど前記ゲインが減少することを特徴とする請求項2に記載の車両制御装置。
  8. 前記進路予測部が、前記進入区間、前記旋回区間、前記退出区間の2つ以上の区間を同時に判定した場合に、
    前記制御介入調整部は、前記2つ以上の区間の前記補正テーブルのうち、前記制御介入閾値が最短となる前記補正テーブルを選択することを特徴とする請求項2に記載の車両制御装置。
JP2021148429A 2021-09-13 2021-09-13 車両制御装置 Pending JP2023041204A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021148429A JP2023041204A (ja) 2021-09-13 2021-09-13 車両制御装置
DE112022001209.9T DE112022001209T5 (de) 2021-09-13 2022-03-09 Fahrzeugsteuervorrichtung
CN202280020942.9A CN116981607A (zh) 2021-09-13 2022-03-09 车辆控制装置
PCT/JP2022/010224 WO2023037601A1 (ja) 2021-09-13 2022-03-09 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021148429A JP2023041204A (ja) 2021-09-13 2021-09-13 車両制御装置

Publications (1)

Publication Number Publication Date
JP2023041204A true JP2023041204A (ja) 2023-03-24

Family

ID=85507314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021148429A Pending JP2023041204A (ja) 2021-09-13 2021-09-13 車両制御装置

Country Status (4)

Country Link
JP (1) JP2023041204A (ja)
CN (1) CN116981607A (ja)
DE (1) DE112022001209T5 (ja)
WO (1) WO2023037601A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742657B2 (ja) * 2005-04-19 2011-08-10 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2017117344A (ja) * 2015-12-25 2017-06-29 株式会社デンソー 走行支援装置
JP6721404B2 (ja) * 2016-05-10 2020-07-15 本田技研工業株式会社 運転技量判定装置
JP6565893B2 (ja) * 2016-12-26 2019-08-28 トヨタ自動車株式会社 運転支援装置
JP2018162007A (ja) * 2017-03-27 2018-10-18 トヨタ自動車株式会社 車両の旋回制御装置
JP2020066383A (ja) * 2018-10-26 2020-04-30 本田技研工業株式会社 車両制御装置
JP7183769B2 (ja) 2018-12-20 2022-12-06 株式会社デンソー 運転支援装置

Also Published As

Publication number Publication date
DE112022001209T5 (de) 2024-01-11
WO2023037601A1 (ja) 2023-03-16
CN116981607A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2018225575A1 (ja) 車両制御装置
JP2018154216A (ja) 運転支援制御装置
JP2018039303A (ja) 車両制御装置
JP6600671B2 (ja) 車両制御装置
JP7287701B2 (ja) 自律走行車両の制御装置及び方法
JP2018203108A (ja) 車両制御装置
US11884276B2 (en) Travel assistance method and travel assistance device
US10948303B2 (en) Vehicle control device
JP7117162B2 (ja) 走行支援方法及び走行支援装置
WO2020148561A1 (ja) 運転支援方法及び運転支援装置
EP4045370A1 (en) Adaptive cruise control
JP7351076B2 (ja) 電動車両の制御方法、及び、電動車両の制御装置
WO2023037601A1 (ja) 車両制御装置
JP7441405B2 (ja) 走行経路生成システム及び車両運転支援システム
US20240208491A1 (en) Vehicle control device
JP2020067699A (ja) 運転支援方法及び運転支援装置
JP2019182353A (ja) 走行制御装置
JP7354170B2 (ja) 車両の制御装置及び車両の制御方法
WO2023032092A1 (ja) 車両制御方法及び車両制御装置
JP7394904B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7385697B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7471150B2 (ja) 走行支援方法、及び、走行支援装置
JP7399010B2 (ja) 運転支援方法及び運転支援装置
JP2018086945A (ja) 車両制御装置
WO2019235358A1 (ja) 車両制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240418