JP2023030675A - 光デバイス及び光通信装置 - Google Patents

光デバイス及び光通信装置 Download PDF

Info

Publication number
JP2023030675A
JP2023030675A JP2021135930A JP2021135930A JP2023030675A JP 2023030675 A JP2023030675 A JP 2023030675A JP 2021135930 A JP2021135930 A JP 2021135930A JP 2021135930 A JP2021135930 A JP 2021135930A JP 2023030675 A JP2023030675 A JP 2023030675A
Authority
JP
Japan
Prior art keywords
thin film
optical waveguide
substrate
gettering site
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021135930A
Other languages
English (en)
Inventor
昌樹 杉山
Masaki Sugiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Optical Components Ltd
Original Assignee
Fujitsu Optical Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Optical Components Ltd filed Critical Fujitsu Optical Components Ltd
Priority to JP2021135930A priority Critical patent/JP2023030675A/ja
Priority to US17/862,903 priority patent/US20230056833A1/en
Priority to CN202210855108.3A priority patent/CN115712208A/zh
Publication of JP2023030675A publication Critical patent/JP2023030675A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】光導波路内の電界を安定化できる光デバイス等を提供することを目的とする。【解決手段】光デバイスは、薄膜LN(LiNbO3)基板で形成する薄膜LN結晶のリブ型の光導波路と、前記光導波路上に積層されたバッファ層と、を有する。更に、光デバイスは、前記バッファ層上に積層され、前記光導波路に電圧を印加する電極と、前記光導波路と並列に配置され、前記光導波路内の電荷をトラップするゲッタリングサイトと、を有する。【選択図】図3

Description

本発明は、光デバイス及び光通信装置に関する。
従来の光変調器は、例えば、基板上に設けられた光導波路及び、その近傍に設けられた変調部で構成される。変調部は、信号電極と、接地電極とを有し、信号電極に電圧を与えると、光導波路内に電界が発生し、光導波路内の電界によって光導波路の屈折率が変化し、光の位相が変化する。光導波路はマッハツェンダ干渉計を構成し、光導波路間の光の位相の差により光出力が変化する。
光変調器では、例えば、4チャネルのマッハツェンダ変調器が集積されている。各マッハツェンダ干渉計には、RF(Radio Frequency)変調部とDC(Direct Current)変調部とがある。RF変調部の電極には、例えば、数10GHzの帯域を有する高周波信号を入力し、高速変調を行う。また、DC変調部の電極には、バイアス電圧を印加し、電気信号のON/OFFが光信号のON/OFFに対応するようにバイアス電圧を調整する。
光変調器の光導波路は、例えば、マッハツェンダ干渉計を構成し、平行に配置された複数の光導波路間の光の位相差により、例えば、XY偏波多重されるIQ信号を出力する。そして、4チャネルの出力を2チャネルずつ合波して2つのIQ信号とし、その一つを偏波回転して偏波ビームコンバイナで偏波多重化して出力することになる。
一方、光導波路は、例えば、チタン等の金属を基板表面から拡散することにより、信号電極と重ならない位置に形成される拡散光導波路がある。図11は、従来の光変調器のDC変調部100の一例を示す略断面図である。図11に示す光変調器内のDC変調部100は、LN(Lithium Niobate:ニオブ酸リチウム:LiNbO)結晶のLN基板101と、LN基板101表面に形成された拡散光導波路102と、を有する。更に、DC変調部100は、LN基板101上の拡散光導波路102を被覆するバッファ層103と、バッファ層103上に積層された電極104とを有する。電極104は、信号電極104Aと、一対の接地電極104Bとを有する。
拡散光導波路102は、信号電極104A及び一対の接地電極104Bと重ならない位置に配置されるものである。バッファ層103は、DCドリフト(印加されたバイアス電圧に起因して起きる出射光の経時変化)を抑制するために抵抗値が低くなるように組成及び膜厚を決める。尚、LN基板101には、LN結晶内に正及び負の可動電荷が存在することは勿論のこと、光変調器の形成工程で可動電荷が発生する。
しかしながら、この拡散光導波路102は光の閉じ込めが小さいため、電界の印加効率が悪く、そのため、駆動電圧が高くなる。そこで、LN結晶の薄膜を用いた光導波路が信号電極と重ならない位置に形成される薄膜光導波路がある。薄膜光導波路は、金属を拡散させる拡散光導波路よりも光の閉じ込めを強くすることができ、電界の印加効率を改善し、駆動電圧を低減できる。
図12は、従来の光変調器のDC変調部200の一例を示す略断面図である。図12に示すDC変調部200は、Si(シリコン)等の支持基板201と、支持基板201上に積層された中間層202とを有する。更に、DC変調部200は、中間層202上に積層された薄膜LN基板203と、薄膜LN基板203上に積層されたSiO2のバッファ層204とを有する。
薄膜LN基板203は、上方へ突起する凸形状の薄膜光導波路206である。薄膜光導波路206は、リブ206Aと、リブ206Aの両脇に形成されたスラブ206Bとを有するリブ型導波路である。そして、リブ206A及びスラブ206Bは、バッファ層204によって被覆され、バッファ層204の表面にコプレーナ(CPW:Coplanar Waveguide)構造の信号電極205A(205)及び一対の接地電極205B(205)が配置される。つまり、バッファ層204上には、信号電極205Aと、信号電極205Aを挟む一対の接地電極205Bとが配置されている。尚、バッファ層204は、薄膜光導波路206を伝搬する光が信号電極205A及び接地電極205Bで吸収されるのを防止できる。
信号電極205Aと接地電極205Bとの間に位置する薄膜LN基板203には、凸形状の薄膜光導波路206が形成されている。更に、信号電極205Aと接地電極205Bとの間に位置するバッファ層204にも、凸形状の薄膜光導波路206全体を被覆する段差部204Aがある。
このような薄膜光導波路206によれば、信号電極205Aにバイアス電圧を印加して電界を発生させ、薄膜光導波路206の屈折率を変化させることにより、薄膜光導波路206を伝搬する光を変調することができる。
特開2020-134875号公報 米国特許出願公開第2013/170781号明細書
しかしながら、光変調器では、LN基板を薄膜化すると、LN結晶内の可動電荷の密度が高くなって薄膜光導波路206に作用しやすくなるため、薄膜光導波路206内の電界が不安定になる。その結果、例えば、DC変調部の場合には、DC特性が不安定となり、DCドリフトを誘発し、光デバイスの寿命が短くなる。
開示の技術は、かかる点に鑑みてなされたものであって、光導波路内の電界を安定化できる光デバイス等を提供することを目的とする。
本願が開示する光デバイスは、1つの態様において、薄膜LN(LiNbO3)基板で形成する薄膜LN結晶のリブ型の光導波路と、前記光導波路上に積層されたバッファ層と、を有する。更に、光デバイスは、前記バッファ層上に積層され、前記光導波路に電圧を印加する電極と、前記光導波路と並列に配置され、前記光導波路内の電荷をトラップするゲッタリングサイトと、を有する。
本願が開示する光デバイス等の1つの態様によれば、光導波路内の電界を安定化できる。
図1は、実施例1の光通信装置の構成の一例を示すブロック図である。 図2は、実施例1の光変調器の構成の一例を示す平面模式図である。 図3は、実施例1の光変調器の第2のDC変調部の一例を示すA-A線の略断面図である。 図4は、実施例2の光変調器の構成の一例を示す平面模式図である。 図5は、実施例2の光変調器の第2のDC変調部の一例を示すB-B線の略断面図である。 図6は、実施例3の光変調器の構成の一例を示す平面模式図である。 図7は、実施例3の光変調器の第2のDC変調部の一例を示すC-C線の略断面図である。 図8は、実施例4の光変調器の第2のDC変調部の一例を示すC-C線の略断面図である。 図9は、実施例5の光変調器の構成の一例を示す平面模式図である。 図10は、実施例6の光変調器の構成の一例を示す平面模式図である。 図11は、従来の光変調器のDC変調部の一例を示す略断面図である。 図12は、従来の光変調器のDC変調部の一例を示す略断面図である。
以下、本願が開示する光デバイス等の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
図1は、実施例1の光通信装置1の構成の一例を示すブロック図である。図1に示す光通信装置1は、出力側の光ファイバ2A(2)及び入力側の光ファイバ2B(2)と接続する。光通信装置1は、DSP(Digital Signal Processor)3と、光源4と、光変調器5と、光受信器6とを有する。DSP3は、デジタル信号処理を実行する電気部品である。DSP3は、例えば、送信データの符号化等の処理を実行し、送信データを含む電気信号を生成し、生成した電気信号を光変調器5に出力する。また、DSP3は、受信データを含む電気信号を光受信器6から取得し、取得した電気信号の復号等の処理を実行して受信データを得る。
光源4は、例えば、レーザダイオード等を備え、所定の波長の光を発生させて光変調器5及び光受信器6へ供給する。光変調器5は、DSP3から出力される電気信号によって、光源4から供給される光を変調し、得られた光送信信号を光ファイバ2Aに出力する光デバイスである。光変調器5は、例えば、LN(Lithium Niobate:ニオブ酸リチウム:LiNbO)光導波路と変調部とを備えるLN光変調器等の光デバイスである。LN光導波路は、LN結晶の基板で形成される。光変調器5は、光源4から供給される光がLN光導波路を伝搬する際に、この光を変調部へ入力される電気信号によって変調することで、光送信信号を生成する。
光受信器6は、光ファイバ2Bから光信号を受信し、光源4から供給される光を用いて受信光信号を復調する。そして、光受信器6は、復調した受信光信号を電気信号に変換し、変換後の電気信号をDSP3に出力する。
図2は、実施例1の光変調器5の構成の一例を示す平面模式図である。図2に示す光変調器5は、入力側に光源4からの光ファイバ4Aを接続し、出力側に送信信号送出用の光ファイバ2Aを接続する。光変調器5は、第1の光入力部11と、RF(Radio Frequency)変調部12と、DC(Direct Current)変調部13と、第1の光出力部14とを有する。第1の光入力部11は、第1の光導波路11Aと、第1の導波路接合部11Bとを有する。第1の光導波路11Aは、光ファイバ4Aと接続する1本の光導波路と、1本の光導波路から分岐する2本の光導波路と、各2本の光導波路を分岐する4本の光導波路と、各4本の光導波路を分岐する8本の光導波路とを有するLN光導波路である。第1の導波路接合部11Bは、第1の光導波路11A内の8本の光導波路とLN光導波路21内の8本のLN光導波路21との間を接合する。
RF変調部12は、LN光導波路21と、電極22と、RF終端器23とを有する。RF変調部12は、第1の光導波路11Aから供給される光がLN光導波路21を伝搬する際に、この光を電極22の信号電極22Aから印加される電界によって変調する。LN光導波路21は、例えば、薄膜LN基板53を用いて形成されるリブ型の光導波路であり、入力側から分岐を繰り返し、複数の平行な8本のLN光導波路を有する。LN光導波路21を伝搬して変調された光は、DC変調部13内の第1のDC変調部32へ出力される。薄膜LN基板53は、LN結晶の結晶軸のZ方向で自発分極を有するため、薄膜LN結晶内に内部電界を有することになる。
電極22内の信号電極22Aは、LN光導波路21に重ならない位置に設けられ、DSP3から出力される電気信号に応じてLN光導波路21へ電界を印加する。電極22内の信号電極22Aの終端は、RF終端器23に接続されている。RF終端器23は、信号電極22Aの終端に接続され、信号電極22Aによって伝送される信号の不要な反射を防止する。
DC変調部13は、RF変調部12のLN光導波路21と接合するLN光導波路31と、第1のDC変調部32と、第2のDC変調部33と、ゲッタリングサイト71とを有する。第1のDC変調部32は、4個の子側MZ(Mach-Zehnder)干渉計で構成する。第2のDC変調部33は、2個の親側MZ干渉計で構成する。第1のDC変調部32は、LN光導波路31と、電極22とを有する。LN光導波路31は、例えば、薄膜LN基板53を用いて形成されるリブ型の光導波路である。尚、薄膜LN基板53は、薄膜化されているため、薄膜LN基板53内に残存する可動電荷の密度が高い状態である。薄膜LN基板53は、LN結晶の結晶軸のZ方向で自発分極を有するため、薄膜LN結晶内に内部電界を有することになる。
ゲッタリングサイト71A(71)は、ゲッタリング作用を有する、例えば、ポリシリコンを含む材料で形成される。ゲッタリングサイト71Aは、複数本のLN光導波路31の外側に並列配置される箇所に成膜して形成される。ゲッタリングサイト71Aは、薄膜LN基板53内に残存する可動電荷をバッファ層54経由でトラップする。具体的には、例えば、工場出荷前の熱処理による温度上昇に応じて薄膜LN結晶の抵抗値が小さくなって薄膜LN結晶の自発分極による内部電界で薄膜LN基板53内に残存する可動電荷がドリフトする。そして、ゲッタリングサイト71Aは、内部電界による可動電荷のドリフトによって、薄膜LN基板53内に残存する可動電荷をバッファ層54経由でトラップすることになる。その結果、薄膜LN基板53の薄膜光導波路60内のリブ60Aから可動電荷を除去することになる。
LN光導波路31は、8本のLN光導波路と、8本のLN光導波路の内、2本のLN光導波路と合流する4本のLN光導波路とを有する。8本のLN光導波路31は、2本のLN光導波路毎に第1のDC変調部32を配置している。第1のDC変調部32は、LN光導波路31上の信号電極22Aにバイアス電圧を印加することで、電気信号のON/OFFが光信号のON/OFFに対応するようにバイアス電圧を調整して、同相軸成分のI信号若しくは直交軸成分のQ信号を出力する。LN光導波路31内の4本のLN光導波路は、2本のLN光導波路毎に第2のDC変調部33を配置している。第2のDC変調部33は、LN光導波路31上の信号電極22Aにバイアス電圧を印加することで、電気信号のON/OFFが光信号のON/OFFに対応するようにバイアス電圧を調整してI信号若しくはQ信号を出力する。
ゲッタリングサイト71Aは、薄膜LN結晶の内部電界による可動電荷のドリフトによって、薄膜LN基板53内に残存する正及び負の可動電荷をバッファ層54経由でトラップする。その結果、薄膜LN基板53の薄膜光導波路60内のリブ60Aから正及び負の可動電荷を除去することになる。
第1の光出力部14は、第2の導波路接合部41と、第2の光導波路42と、PR(Polarization Rotator)43と、PBC(Polarization Beam Combiner:偏波ビームコンバイナ)44とを有する。第2の導波路接合部41は、DC変調部13内のLN光導波路31と第2の光導波路42との間を接合する。第2の光導波路42は、第2の導波路接合部41に接続する4本の光導波路と、4本の光導波路の内、2本の光導波路と合流する2本の光導波路とを有するLN光導波路である。
PR43は、一方の第2のDC変調部33から入力したI信号若しくはQ信号を90度回転して90度回転後の垂直偏波の光信号を得る。そして、PR43は、垂直偏波の光信号をPBC44に入力する。PBC44は、PR43からの垂直偏波の光信号と、他方の第2のDC変調部33から入力した水平偏波の光信号とを合波して偏波多重信号を出力する。
次に、実施例1の光変調器5の構成について、具体的に説明する。図3は、実施例1の光変調器5の第2のDC変調部33の一例を示すA-A線の略断面図である。尚、説明の便宜上、図2に示す第2のDC変調部33は2個のMZ干渉計で構成する場合を例示したが、図3の略断面図では1個のMZ干渉計で説明する。また、第1のDC変調部32も、4個のMZ干渉計で構成する場合を例示したが、MZ干渉計単位では、第2のDC変調部33と同一の構成であるため、同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。図3に示す第2のDC変調部33は、支持基板51と、支持基板51上に積層された中間層52とを有する。更に、第2のDC変調部33は、中間層52に積層された、薄膜LN結晶の薄膜LN基板53と、薄膜LN基板53上に積層されたバッファ層54と、電極22と、ゲッタリングサイト71(71A)とを有する。電極22は、信号電極22A及び一対の接地電極22Bを有する。
ゲッタリングサイト71Aは、例えば、ポリシリコンを含む材料で形成されるゲッタリングサイトである。尚、ゲッタリングサイト71Aは、ポリシリコンではなく、例えば、シリコンナイトライドを含む材料で形成されても良く、薄膜光導波路60内に残存するトラップ対象の可動電荷の種類に応じて材料を変更することで適宜変更可能である。
支持基板51は、例えば、Si又はLN等の基板である。中間層52は、例えば、SiO2又はTiO2等の屈折率がLNよりも低い透明材からなる層である。同様に、バッファ層54は、例えば、SiO2又はTiO2等の屈折率がLNよりも低い透明材からなる層である。
薄膜LN基板53は、上方へ突起する突条の薄膜光導波路60である。薄膜光導波路60は、第2のDC変調部33のLN光導波路31である。薄膜光導波路60は、リブ60Aと、リブ60Aの両脇にあるスラブ60Bとを有するリブ型の光導波路である。リブ60Aは、リブ60Aの上面60A1と、リブ60Aの側壁面60A2とを有する。そして、薄膜光導波路60がバッファ層54によって被覆されている。バッファ層54は、薄膜光導波路60を伝搬する光が電極22で吸収されるのを防ぐために設けられる。
バッファ層54は、薄膜光導波路60のリブ60Aの上面60A1を被覆すると共に、薄膜光導波路60のスラブ60Bを被覆する。信号電極22A及び一対の接地電極22Bは、バッファ層54上に配置されることになる。
信号電極22Aと接地電極22Bとの間に位置する薄膜光導波路60は、薄膜光導波路60内のリブ60Aである。信号電極22A及び接地電極22Bが位置する薄膜光導波路60は、薄膜光導波路60内のスラブ60Bである。
中間層52とバッファ層54との間には、厚みが0.5~3μmの薄膜LN基板53の薄膜光導波路60が挟まれている。薄膜光導波路60となるリブ60Aの幅は、例えば、1~8μm程度である。
信号電極22Aは、例えば、金や銅等の金属材料からなり、幅が2~10μm、厚みが1~20μmの電極である。接地電極22Bは、例えば、金や銅等の金属材料からなり、厚みが1μm以上の電極である。DSP3から出力される電気信号に応じたバイアス電圧が信号電極22Aに印加することで、信号電極22Aから接地電極22Bへ向かう方向の電界が発生し、この電界が薄膜光導波路60に印加される。その結果、薄膜光導波路60への電界印加に応じて薄膜光導波路60の屈折率が変化し、薄膜光導波路60を伝搬する光を変調することが可能となる。
実施例1の第2のDC変調部33のゲッタリングサイト71Aでは、薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷のドリフトによって、薄膜LN基板53内の薄膜LN結晶に残存する可動電荷をバッファ層54経由でトラップする。リブ60Aに残存した可動電荷を除去して可動電荷をゲッタリングサイト71Aに留めるため、薄膜光導波路60内の電界を安定化できる。その結果、DC特性が安定化し、DCドリフトの発生を抑制できる。しかも、第2のDC変調部33の寿命を長くできる。
第1のDC変調部32のゲッタリングサイト71Aでは、薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷のドリフトによって、薄膜LN基板53内の薄膜LN結晶に残存する可動電荷をバッファ層54経由でトラップする。リブ60Aに残存した可動電荷を除去して可動電荷をゲッタリングサイト71Aに留めるため、薄膜光導波路60内の電界を安定化できる。その結果、DC特性が安定化し、DCドリフトの発生を抑制できる。しかも、第1のDC変調部32の寿命を長くできる。
尚、説明の便宜上、例えば、工場出荷前の熱処理で薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷のドリフトによって、薄膜LN基板53内に残存する可動電荷をトラップする場合を例示した。しかしながら、熱処理の代わりに、ゲッタリングサイト71Aへの通電に応じて薄膜LN基板53内に残存する可動電荷をトラップしても良く、適宜変更可能である。この場合、薄膜LN結晶の内部電界による薄膜LN基板53の可動電荷のドリフトに依存しなくても良いが、内部電界による薄膜LN基板53の可動電荷のドリフトを使用した場合には、可動電荷のトラップ効率の更なる向上を図ることができる。
また、ゲッタリングサイト71Aへの通電は、例えば、工場出荷前等に限定されるものではなく、ゲッタリングサイト71Aと電極22とを電気的に接続し、運用中の電極22への通電に応じてゲッタリングサイト71Aも通電することができる。その結果、ゲッタリングサイト71Aは、運用中に薄膜光導波路60内の可動電荷をトラップしても良い。
尚、実施例1では、DC変調部13に適用する場合を例示したが、RF変調部12にも適用可能である。
実施例1の第2のDC変調部33では、複数本の電極22の外側にゲッタリングサイト71を並列配置する場合を例示した。しかしながら、複数本の電極22の両側から挟み込むようにゲッタリングサイト71を並列配置しても良く、その実施の形態につき、実施例2として以下に説明する。
図4は、実施例2の光変調器5の構成の一例を示す平面模式図、図5は、実施例2の光変調器5の第2のDC変調部33Aの一例を示すB-B線の略断面図である。尚、説明の便宜上、図4に示す第2のDC変調部33Aは2個のMZ干渉計で構成する場合を例示したが、図5の略断面図では1個のMZ干渉計で説明する。また、第1のDC変調部32Aも、4個のMZ干渉計で構成する場合を例示したが、MZ干渉計単位では、第2のDC変調部33Aと同一の構成であるため、同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。図4に示す第2のDC変調部33Aと図3に示す第2のDC変調部33とが異なるところは、複数本の電極22の両側から挟み込むように2本のゲッタリングサイト71を並列配置した点にある。
ゲッタリングサイト71は、第1のゲッタリングサイト71A1と、第2のゲッタリングサイト71B1とを有する。第1のゲッタリングサイト71A1は、熱処理で薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷のドリフトによって、薄膜LN基板53内に残存する正側の可動電荷をバッファ層54経由でトラップする。その結果、薄膜LN基板53の薄膜光導波路60内のリブ60Aから正側の可動電荷を除去する。第2のゲッタリングサイト71B1は、熱処理で薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷のドリフトによって、薄膜LN基板53内に残存する負側の可動電荷をバッファ層54経由でトラップする。その結果、薄膜LN基板53の薄膜光導波路60内のリブ60Aから負側の可動電荷を除去する。
第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1は、前述した通り、電極22に対して薄膜LN結晶の方位のZ軸方向に配置されている。その結果、電界の向きを内部電界の向きと同じにしたので、可動電荷がLN結晶の内部電界によって第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1にトラップすることで、薄膜光導波路60への影響を抑制できる。
第2のDC変調部33Aの第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1では、熱処理で薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷をドリフトする。更に、第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1では、可動電荷のドリフトによって、薄膜LN結晶に残存する可動電荷をバッファ層54経由でトラップする。薄膜光導波路60内のリブ60Aに残存した可動電荷を第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1内に留めるため、薄膜光導波路60内の電界を安定化できる。その結果、DC特性が安定化し、DCドリフトの発生を抑制できる。しかも、第2のDC変調部33Aの寿命を長くできる。
第1のゲッタリングサイト71A1は、薄膜LN結晶に残存する正側の可動電荷をバッファ層54経由でトラップする。第2のゲッタリングサイト71B1は、薄膜LN結晶に残存する負側の可動電荷をバッファ層54経由でトラップする。リブ60Aに残存した可動電荷を第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1内に留めるため、薄膜光導波路60内の電界を安定化できる。
第1のDC変調部32Aの第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1では、熱処理で薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷をドリフトする。更に、第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1では、可動電荷のドリフトによって、薄膜LN結晶に残存する可動電荷をバッファ層54経由でトラップする。薄膜光導波路60内のリブ60Aに残存した可動電荷を第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1内に留めるため、薄膜光導波路60内の電界を安定化できる。その結果、DC特性が安定化し、DCドリフトの発生を抑制できる。しかも、第1のDC変調部32Aの寿命を長くできる。
光変調器5は、複数のMZ干渉計が並列配置する場合に、複数のMZ干渉計の外側に第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1を配置した。その結果、光変調器5は、複数のMZ干渉計の薄膜光導波路60の電界を安定化できる。
尚、実施例2では、DC変調部13に適用する場合を例示したが、RF変調部12にも適用可能である。
尚、実施例2の第2のDC変調部33A内の第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1をバッファ層54上に積層する場合を例示した。しかしながら、ゲッタリングサイト71は、電極22から離した方が運用時の動作が安定することになるが、電極22から離し過ぎると、可動電荷のトラップ時に薄膜光導波路60内の電界が弱くなる。その結果、可動電荷のトラップが十分に行われず、可動電荷のトラップに時間を要する。そこで、例えば、第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1の配置箇所のバッファ層54及び薄膜LN基板53に開口部72を形成する。そして、開口部72内に第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1を積層しても良く、その実施の形態につき、実施例3として以下に説明する。
図6は、実施例3の光変調器5の第2のDC変調部33Bの一例を示すC-C線の略断面図である。尚、実施例3の光変調器5と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。図6に示す第2のDC変調部33Bと図5に示す第2のDC変調部33Aとが異なるところは、第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1を配置する箇所のバッファ層54及び薄膜LN基板53に開口部72を形成した点にある。そして、開口部72内に第1のゲッタリングサイト71A1の一部及び第2のゲッタリングサイト71B1の一部を積層した。
開口部72は、第1の開口部72Aと、第2の開口部72Bとを有する。第1の開口部72Aは、第1のゲッタリングサイト71A1を配置する箇所のバッファ層54、薄膜LN基板53及び中間層52に形成する。第1の開口部72Aは、第1のゲッタリングサイト71A1の一部を積層する。第2の開口部72Bは、第2のゲッタリングサイト71B2を配置する箇所のバッファ層54、薄膜LN基板53及び中間層52に形成する。第2の開口部72Bは、第2のゲッタリングサイト71B1の一部を積層する。
第1のゲッタリングサイト71A1は、第1の開口部72Aを通じて薄膜LN基板53と直接接触することで、薄膜LN基板53内の可動電荷を効率よくトラップできる。更に、第2のゲッタリングサイト71B1は、第2の開口部72Bを通じて薄膜LN基板53と直接接触することで、薄膜LN基板53内の可動電荷を効率よくトラップできる。
実施例3の第2のDC変調部33Bは、第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1の一部が開口部72によって薄膜LN基板53に直接接触する。その結果、第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1は、薄膜LN基板53内の可動電荷を効率よくトラップできる。しかも、可動電荷のトラップに要する時間を短縮化できる。
第1のDC変調部32Bは、第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1の一部が開口部72によって薄膜LN基板53に直接接触する。その結果、第1のゲッタリングサイト71A1及び第2のゲッタリングサイト71B1は、薄膜LN基板53内の可動電荷を効率よくトラップできる。しかも、可動電荷のトラップに要する時間を短縮化できる。
尚、実施例3では、DC変調部13に適用する場合を例示したが、RF変調部12にも適用可能である。
実施例3の第2のDC変調部33Bでは、開口部72にゲッタリングサイト71Aを積層することで、ゲッタリングサイト71と薄膜LN基板53とを直接接触する場合を例示した。開口部72内のゲッタリングサイト71と薄膜LN基板53とを直接接触する接触面積を広くすべく、ゲッタリングサイト71と接触する薄膜LN基板53の厚みをリブ60Aの厚みと略等しくしても良く、その実施の形態につき、実施例4として以下に説明する。
図8は、実施例4の光変調器5の第2のDC変調部33Cの一例を示すC-C線の略断面図である。尚、実施例3の光変調器5と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。図8に示す第2のDC変調部33Cと図7に示す第2のDC変調部33Bとが異なるところは、開口部72内のゲッタリングサイト71と接触する薄膜LN基板53の厚みL1をリブ60Aの厚みL2と略等しくする構造にした点にある。
第1の開口部72A内の第1のゲッタリングサイト71A1と接触する薄膜LN基板53(60A1)の厚みL1は、薄膜LN基板53のリブ60Aの厚みL2と略等しくした。その結果、第1の開口部72A内の第1のゲッタリングサイト71A1と第1の開口部72A内の薄膜LN基板53とが接触する面積を広くした。
第2の開口部72B内の第2のゲッタリングサイト71B1と接触する薄膜LN基板53(60A1)の厚みL1は、薄膜LN基板53のリブ60Aの厚みL2と略等しくした。その結果、第2の開口部72B内の第2のゲッタリングサイト71B1と第2の開口部72B内の薄膜LN基板53とが接触する面積を広くした。
第2のDC変調部33Cは、第1の開口部72A内の第1のゲッタリングサイト71A1と接触する薄膜LN基板53(60A1)の厚みL1をリブ60Aの厚みL2と略等しくした。第1の開口部72A内の第1のゲッタリングサイト71A1と第1の開口部72A内の薄膜LN基板53とが接触する面積を広くした。その結果、第1のゲッタリングサイト71A1は、薄膜LN基板53との接触面積をより広くすることで、可動電荷のトラップ効率の更なる向上を図ることができる。
第2のDC変調部33Cは、第2の開口部72B内の第2のゲッタリングサイト71B1と接触する薄膜LN基板53(60A1)の厚みL1は、薄膜LN基板53のリブ60Aの厚みL2と略等しくした。第2の開口部72B内の第2のゲッタリングサイト71B1と第2の開口部72B内の薄膜LN基板53とが接触する面積を広くした。その結果、第2のゲッタリングサイト71B1は、薄膜LN基板53との接触面積をより広くすることで、可動電荷のトラップ効率の更なる向上を図ることができる。
第1のDC変調部32Cは、開口部72内のゲッタリングサイト71と接触する薄膜LN基板53(60A1)の厚みL1をリブ60Aの厚みL2と略等しくした。開口部72内のゲッタリングサイト71と開口部72内の薄膜LN基板53とが接触する面積を広くした。その結果、ゲッタリングサイト71は、薄膜LN基板53との接触面積をより広くすることで、可動電荷のトラップ効率の更なる向上を図ることができる。
尚、説明の便宜上、ゲッタリングサイト71と接触する薄膜LN基板53の厚みL1をリブ60Aの厚みL2と略等しくする構造を例示したが、L1=L2は勿論のこと、L1がスラブ60Bの厚みよりも厚くすればよく、適宜変更可能である。
尚、実施例4では、DC変調部13に適用する場合を例示したが、RF変調部12にも適用可能である。
尚、実施例4の光変調器5では、第1の開口部72A内に第1のゲッタリングサイト71A1、第2の開口部72B内に第2のゲッタリングサイト71B1を積層する場合を例示した。しかしながら、これに限定されるものではなく、その実施の形態につき、実施例5として以下に説明する。
図9は、実施例5の光変調器5の構成の一例を示す平面模式図である。尚、実施例5の光変調器5と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。図9に示す第2のDC変調部33Dと図6に示す第2のDC変調部33Cとが異なるところは、ゲッタリングサイト71の第1の接合部X1と、開口部72側の薄膜LN基板53及びバッファ層54に形成された第2の接合部X2とを櫛歯状にした点である。更に、櫛歯状の第1の接合部X1と櫛歯状の第2の接合部X2とを噛み合わせて、ゲッタリングサイト71と薄膜LN基板53とを接合する点にある。
第1のゲッタリングサイト71A1は、第1の接合部X1と第2の接合部X2とが噛み合うことで、第1の開口部72A内の薄膜LN基板53及びバッファ層54と接合する。櫛歯状の第1の接合部X1と櫛歯状の第2の接合部X2とが噛み合って接合するため、第1のゲッタリングサイト71A1と薄膜LN基板53との間の接触面積が広くなる。
第2のゲッタリングサイト71B1は、第1の接合部X1と第2の接合部X2とが噛み合うことで、第2の開口部72B内の薄膜LN基板53及びバッファ層54と接合する。櫛歯状の第1の接合部X1と櫛歯状の第2の接合部X2とが噛み合って接合するため、第2のゲッタリングサイト71B1と薄膜LN基板53との間の接触面積が広くなる。
第1のゲッタリングサイト71A1は、櫛歯状の第1の接合部X1と櫛歯状の第2の接合部X2とが噛み合って第1の開口部72A内の薄膜LN基板53及びバッファ層54と接合する。そして、第1のゲッタリングサイト71A1と薄膜LN基板53との間の接触面積が広くなる。その結果、第1のゲッタリングサイト71A1は、薄膜LN基板53内に残存する可動電荷の密度が高い場合でも、接触面積をより広くすることで、可動電荷のトラップ効率の更なる向上を図ることができる。
第2のゲッタリングサイト71B1は、櫛歯状の第1の接合部X1と櫛歯状の第2の接合部X2とが噛み合って第2の開口部72B内の薄膜LN基板53及びバッファ層54と接合する。そして、第2のゲッタリングサイト71B1と薄膜LN基板53との間の接触面積が広くなる。その結果、第2のゲッタリングサイト71B1は、薄膜LN基板53内に残存する可動電荷の密度が高い場合でも、接触面積をより広くすることで、可動電荷のトラップ効率の更なる向上を図ることができる。
尚、実施例5では、第2のDC変調部32Dを例示したが、第1のDC変調部32Dにも適用可能である。
尚、説明の便宜上、第1の接合部X1及び第2の接合部X2を櫛歯状にした場合を例示したが、櫛歯状に限定されるものではなく、鋸歯状にしても良く。鋸歯状の第1の接合部X1と鋸歯状の第2の接合部X2とが噛み合って接合した場合、ゲッタリングサイト71と薄膜LN基板53との間の接触面積を広くできる。その結果、ゲッタリングサイト71は、接触面積をより広くすることで、可動電荷のトラップ効率の更なる向上を図ることができる。
尚、実施例5の光変調器5のDC変調部13の薄膜光導波路60(電極22)にゲッタリングサイト71を並列配置する場合を例示した。しかしながら、DC変調部13に限定されるものではなく、RF変調部12に適用しても良く、その実施の形態につき、実施例6として以下に説明する。
図10は、実施例6の光変調器5の構成の一例を示す平面模式図である。尚、実施例6の光変調器5と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。図10に示すRF変調部12Aと図9に示すRF変調部12とが異なるところは、RF変調部12A内の電極22を挟むように並列に配置されるゲッタリングサイト71を有する点にある。更に、ゲッタリングサイト71を配置する箇所のバッファ層54及び薄膜LN基板53に開口部72を形成した。
ゲッタリングサイト71は、第1のゲッタリングサイト71A2と、第2のゲッタリングサイト71B2と、第3のゲッタリングサイト71C2とを有する。開口部72は、第1の開口部72A2と、第2の開口部72B2と、第3の開口部72C2とを有する。
第1のゲッタリングサイト71A2は、熱処理で薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷をドリフトする。第1のゲッタリングサイト71A2は、可動電荷のドリフトによって、DC変調部13内の薄膜LN基板53内に残存する正側の可動電荷をトラップすると共に、RF変調部12A内の薄膜LN基板53内に残存する正側の可動電荷をトラップする。第1の開口部72A2は、第1のゲッタリングサイト71A2を配置する箇所のバッファ層54、薄膜LN基板53及び中間層52に形成し、第1のゲッタリングサイト71A2を積層する。尚、第1のゲッタリングサイト71A2の第1の接合部X1と第1の開口部72A側のバッファ層54、薄膜LN基板53及び中間層52の第2の接合部X2とが噛み合うことで、第1のゲッタリングサイト71A2は薄膜LN基板53と直接接触する。
第2のゲッタリングサイト71B2は、熱処理で薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷をドリフトする。第2のゲッタリングサイト71B2は、可動電荷のドリフトによって、DC変調部13内の薄膜LN基板53内に残存する負側の可動電荷をトラップする。第2の開口部72B2は、第2のゲッタリングサイト71B2を配置する箇所のバッファ層54、薄膜LN基板53及び中間層52に形成し、第2のゲッタリングサイト71B2を積層する。尚、第2のゲッタリングサイト71B2の第1の接合部X1と第2の開口部72B側のバッファ層54、薄膜LN基板53及び中間層52の第2の接合部X2とが噛み合うことで、第2のゲッタリングサイト71B2は薄膜LN基板53と直接接触する。
第3のゲッタリングサイト71C2は、熱処理で薄膜LN結晶の内部電界による薄膜LN基板53内の可動電荷をドリフトする。第3のゲッタリングサイト71C2は、可動電荷のドリフトによって、RF変調部12A内の薄膜LN基板53内に残存する負側の可動電荷をトラップする。第3の開口部72C2は、第3のゲッタリングサイト71C2を配置する箇所のバッファ層54、薄膜LN基板53及び中間層52に形成し、第3のゲッタリングサイト71C2を積層する。尚、第3のゲッタリングサイト71C2の第1の接合部X1と第3の開口部72C側のバッファ層54、薄膜LN基板53及び中間層52の第2の接合部X2とが噛み合うことで、第3のゲッタリングサイト71C2は薄膜LN基板53と直接接触する。
第1のゲッタリングサイト71A2は、RF変調部12A内の薄膜LN基板53内の薄膜LN結晶内の正側の可動電荷をトラップする。その結果、RF変調部12A内の薄膜LN基板53の薄膜光導波路60内のリブ60Aから正側の可動電荷を除去することになる。第3のゲッタリングサイト71C2は、RF変調部12A内の薄膜LN基板53内の薄膜LN結晶内の負側の可動電荷をトラップする。その結果、RF変調部12A内の薄膜LN基板53の薄膜光導波路60内のリブ60Aから負側の可動電荷を除去することになる。
実施例6のRF変調部12Aでは、第1のゲッタリングサイト71A2及び第3のゲッタリングサイト71C2を用いて薄膜LN基板53内の薄膜LN結晶内の可動電荷をトラップする。その結果、RF変調部12Aでは、薄膜LN基板53の薄膜光導波路60内のリブ60Aから可動電荷を除去することになる。薄膜光導波路60内の電界を安定化できるため、RF変調部12Aの寿命を長くできる。
RF変調部12Aでは、熱処理の代わりに、第1のゲッタリングサイト71A1及び第3のゲッタリングサイト71C2への通電に応じて薄膜LN基板53内に残存する可動電荷をトラップしても良く、適宜変更可能である。この場合、薄膜LN結晶の内部電界による薄膜LN基板53の可動電荷のドリフトに依存しなくても良く、また、内部電界による薄膜LN基板53の可動電荷のドリフトを使用した場合には、可動電荷のトラップ効率の更なる向上を図ることができる。
1 光通信装置
3 DSP
4 光源
5 光変調器
12A RF変調部
22 電極
22A 信号電極
22B 接地電極
32,32A,32B,32C、32D 第1のDC変調部
33,33A,33B,33C、33D 第2のDC変調部
53 薄膜LN基板
54 バッファ層
60 薄膜光導波路
60A リブ
71 ゲッタリングサイト
71A1,71A2 第1のゲッタリングサイト
71B1,71B2 第2のゲッタリングサイト
71C2 第3のゲッタリングサイト
72 開口部
X1 第1の接合部
X2 第2の接合部

Claims (11)

  1. 薄膜LN(LiNbO3)基板で形成する薄膜LN結晶のリブ型の光導波路と、
    前記光導波路上に積層されたバッファ層と、
    前記バッファ層上に積層され、前記光導波路に電圧を印加する電極と、
    前記光導波路と並列に配置され、前記光導波路内の電荷をトラップするゲッタリングサイトと、
    を有することを特徴とする光デバイス。
  2. 前記電極は、
    DC(Direct Current)電極であって、
    前記DC電極を挟むように並列に配置される前記ゲッタリングサイトは、
    前記光導波路内の正の電荷をトラップする第1のゲッタリングサイトと、
    前記光導波路内の負の電荷をトラップする第2のゲッタリングサイトと、
    を有することを特徴とする請求項1に記載の光デバイス。
  3. 前記ゲッタリングサイトは、
    前記光導波路の前記薄膜LN結晶の方位のZ軸方向に配置されることを特徴とする請求項1又は2に記載の光デバイス。
  4. 前記ゲッタリングサイトが配置される箇所下の前記バッファ層及び前記薄膜LN基板を開口する開口部を備え、
    前記ゲッタリングサイトは、
    前記開口部内に積層されることを特徴とする請求項1~3の何れか一つに記載の光デバイス。
  5. 前記開口部側に露出する前記薄膜LN基板は、
    前記光導波路のリブの前記薄膜LN基板の厚みと略等しくする構造にしたことを特徴とする請求項4に記載の光デバイス。
  6. 前記ゲッタリングサイトの櫛歯状の第1の接合部と、
    前記開口部側の前記薄膜LN基板及び前記バッファ層に形成され、前記第1の接合部と接合する櫛歯状の第2の接合部と、を有し、
    前記第1の接合部と前記第2の接合部とが噛み合うことで、前記ゲッタリングサイトと前記薄膜LN基板との間を接合することを特徴とする請求項4又は5に記載の光デバイス。
  7. 前記ゲッタリングサイトの鋸歯状の第1の接合部と、
    前記開口部側の前記薄膜LN基板及び前記バッファ層に形成され、前記第1の接合部と接合する鋸歯状の第2の接合部と、を有し、
    前記第1の接合部と前記第2の接合部とが噛み合うことで、前記ゲッタリングサイトと前記薄膜LN基板との間を接合することを特徴とする請求項4又は5に記載の光デバイス。
  8. 前記電極は、
    RF(Radio Frequency)電極であって、
    前記RF電極を挟むように並列に配置される前記ゲッタリングサイトは、
    前記光導波路内の正の電荷をトラップする第1のゲッタリングサイトと、
    前記光導波路内の負の電荷をトラップする第3のゲッタリングサイトと、
    を有することを特徴とする請求項1に記載の光デバイス。
  9. 前記ゲッタリングサイトは、
    ポリシリコンを含む材料で形成されることを特徴とする請求項1に記載の光デバイス。
  10. 前記ゲッタリングサイトは、
    シリコンナイトライドを含む材料で形成されることを特徴とする請求項1に記載の光デバイス。
  11. 電気信号に対する信号処理を実行するプロセッサと、
    光を発生させる光源と、
    前記プロセッサから出力される電気信号を用いて、前記光源から発生する光を変調する光デバイスと、を有し、
    前記光デバイスは、
    薄膜LN(LiNbO3)基板で形成する薄膜LN結晶のリブ型の光導波路と、
    前記光導波路上に積層されたバッファ層と、
    前記バッファ層上に積層され、前記光導波路に電圧を印加する電極と、
    前記光導波路と並列に配置され、前記光導波路内の電荷をトラップするゲッタリングサイトと、
    を有することを特徴とする光通信装置。
JP2021135930A 2021-08-23 2021-08-23 光デバイス及び光通信装置 Pending JP2023030675A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021135930A JP2023030675A (ja) 2021-08-23 2021-08-23 光デバイス及び光通信装置
US17/862,903 US20230056833A1 (en) 2021-08-23 2022-07-12 Optical device and optical communication apparatus
CN202210855108.3A CN115712208A (zh) 2021-08-23 2022-07-20 光器件及光通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021135930A JP2023030675A (ja) 2021-08-23 2021-08-23 光デバイス及び光通信装置

Publications (1)

Publication Number Publication Date
JP2023030675A true JP2023030675A (ja) 2023-03-08

Family

ID=85227806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021135930A Pending JP2023030675A (ja) 2021-08-23 2021-08-23 光デバイス及び光通信装置

Country Status (3)

Country Link
US (1) US20230056833A1 (ja)
JP (1) JP2023030675A (ja)
CN (1) CN115712208A (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555942B2 (ja) * 1993-08-27 1996-11-20 日本電気株式会社 光制御デバイス
US20030133637A1 (en) * 2002-01-16 2003-07-17 Zhenan Bao Lithium niobate waveguide device incorporating Li-trapping layers
JP5918160B2 (ja) * 2013-03-07 2016-05-18 株式会社日本製鋼所 ゲッタリング半導体ウエハおよびその製造方法
CN112162446A (zh) * 2020-10-15 2021-01-01 中国科学院上海微系统与信息技术研究所 Mz电光调制器及其制备方法

Also Published As

Publication number Publication date
CN115712208A (zh) 2023-02-24
US20230056833A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
US6801675B2 (en) Optical modulator
JP7056236B2 (ja) 光変調器、及びこれを用いた光トランシーバモジュール
KR0134763B1 (ko) 광도파로소자와 그 제조방법
US9954638B2 (en) Optical module and optical transmitter using the same
JP2001154164A (ja) 光変調器および光変調方法
US20070081766A1 (en) Optical waveguide device
US20220163827A1 (en) Optical device, optical communication apparatus, and manufacturing method of the optical device
US20110262071A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
JP2023030675A (ja) 光デバイス及び光通信装置
US20220299803A1 (en) Optical device, optical communication apparatus, and method of manufacturing the optical device
US20210356836A1 (en) Optical device and optical transceiver using the same
JP2023034026A (ja) 光デバイス及び光通信装置
JPS63313120A (ja) 光偏波制御素子
WO2021142588A1 (zh) 一种电光调制器及其制造方法、芯片
US11914233B2 (en) Optical device and optical communication device
JP2023025865A (ja) 光デバイス及び光通信装置
US20230073002A1 (en) Optical device and optical communication apparatus
US20220397782A1 (en) Optical device and optical communication device
JP2800792B2 (ja) 導波路型偏波スクランブラ
EP1526400A1 (en) Electrooptic modulation element
JP2023075444A (ja) 光デバイス
JP2001201725A (ja) 光変調方法及び光変調器
JPS6236631A (ja) 導波路型光変調器
CN115728970A (zh) 光电集成结构及其形成方法
CN118119879A (zh) 光波导元件、使用光波导元件的光调制器件及光发送装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240425