JP2023023128A - Fruit cultivation system and fruit cultivation method - Google Patents

Fruit cultivation system and fruit cultivation method Download PDF

Info

Publication number
JP2023023128A
JP2023023128A JP2021128364A JP2021128364A JP2023023128A JP 2023023128 A JP2023023128 A JP 2023023128A JP 2021128364 A JP2021128364 A JP 2021128364A JP 2021128364 A JP2021128364 A JP 2021128364A JP 2023023128 A JP2023023128 A JP 2023023128A
Authority
JP
Japan
Prior art keywords
circulation
air
pipe
fruit
cultivation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021128364A
Other languages
Japanese (ja)
Other versions
JP7076859B1 (en
Inventor
一郎 岡本
Ichiro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Farm Co Ltd
Original Assignee
Okamoto Farm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Farm Co Ltd filed Critical Okamoto Farm Co Ltd
Priority to JP2021128364A priority Critical patent/JP7076859B1/en
Application granted granted Critical
Publication of JP7076859B1 publication Critical patent/JP7076859B1/en
Publication of JP2023023128A publication Critical patent/JP2023023128A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Protection Of Plants (AREA)

Abstract

To provide a fruit cultivation system and a fruit cultivation method that efficiently control a surrounding environment of fruits so as to fit for the cultivation of the fruits, thereby preventing damage such as dehiscence.SOLUTION: A fruit cultivation system comprises: at least an air controller that controls air humidity; a circulation pipeline that is connected to the air controller and allows the circulation of controlled air which is air controlled by the air controller; a plurality of coating parts that form a clearance with the fruits and cover them; a sending tubule that is connected to the circulation pipeline and the coating parts and guides the controlled air to the coating parts; and a receiving tubule that is connected to the coating parts and the circulation pipeline and guides air in the coating parts to the circulation pipeline.SELECTED DRAWING: Figure 2

Description

本発明は、果実の周囲環境を調節して果実を栽培する果実栽培システム及びそれを用いた果実栽培方法に関する TECHNICAL FIELD The present invention relates to a fruit cultivation system for cultivating fruits by adjusting the surrounding environment of the fruits, and a fruit cultivation method using the same.

ブドウ等の果実を栽培し、商品として出荷するためには、一定以上の品質を確保する必要がある。果実の品質は、気候、土壌、更には病害虫等を含めた周囲環境に大きく影響を受けるので、高品質な果実を栽培するためには、周囲環境への配慮が不可欠である。この周囲環境への配慮が不十分になると、発育不全、病虫害等、様々な被害が発生する。そのような被害により発生する現象の1つとして裂果という現象がある。 In order to grow fruits such as grapes and ship them as products, it is necessary to ensure a certain level of quality. Since the quality of fruits is greatly affected by the surrounding environment including climate, soil, and pests and diseases, it is essential to consider the surrounding environment in order to cultivate high-quality fruits. Insufficient consideration for the surrounding environment causes various damages such as stunted growth and disease and pest damage. One of the phenomena caused by such damage is the phenomenon of fruit cracking.

裂果とは、果実が割れる現象のことで、実割れと呼ばれることもある。裂果は、病虫害、果粒の過密着等によっても発生するが、降雨等による果粒内水分の増加が大きな原因の1つである。成熟期に吸水によって果粒内の水分が増加すると、膨圧に抗しきれずに果皮が破裂すると考えられる。この果粒内水分の増加は土壌水分過剰の他に、空中湿度が高いことからも発生し、後者が裂果発生への影響が大きいとの見解もある。
裂果はブドウにも発生し、ブドウの成熟期である7~9月頃の近年の異常気象が、ブドウの裂果被害を大きくするおそれがあるので、早急な対策が望まれている。
Fruit cracking is a phenomenon in which the fruit cracks, and is sometimes called fruit cracking. Fruit cracking is caused by disease and pest damage, excessive adhesion of the fruit, etc., but one of the major causes is an increase in moisture content in the fruit due to rainfall, etc. It is thought that when the moisture inside the fruit increases due to water absorption during the ripening stage, the pericarp bursts due to the turgor pressure. This increase in intra-fruit moisture is caused not only by excessive soil moisture, but also by high atmospheric humidity, and there is a view that the latter has a large effect on the development of fruit cracking.
Fruit cracking also occurs in grapes, and the recent abnormal weather around July to September, which is the ripening period of grapes, may increase the damage of grape cracking, so immediate measures are desired.

上述のように、空中湿度の高さが裂果の要因と1つとして挙げられているので、湿度を制御することにより、裂果の抑制が期待できる。しかし、湿度を制御するためにブドウをビニールハウス等の温室で栽培する場合でも、温室全体の湿度を制御するのは経済的な問題があり、実現が難しい。よって、経済面も考慮した湿度制御技術が求められている。 As described above, the high atmospheric humidity is one of the factors that cause fruit cracking, so controlling the humidity can be expected to suppress fruit cracking. However, even when cultivating grapes in a greenhouse such as a vinyl greenhouse in order to control the humidity, controlling the humidity in the entire greenhouse poses economic problems and is difficult to achieve. Therefore, there is a demand for a humidity control technology that also takes into consideration the economic aspect.

例えば、特許文献1には、設備投資を抑えて、植物の生育と果実の着色を助ける局所冷却を可能とすることを目的として、温度と湿度が調節された空気を果実の袋に放散する植物栽培装置が開示されている。特許文献1の植物栽培装置では、ボルテックスチューブで得られた温風と冷風から温度及び湿度を調節された空気を得て、この空気をボルテックスチューブの背圧を利用してブドウ果実などの植物の局所に放散させている。 For example, Patent Document 1 describes a plant that dissipates temperature- and humidity-controlled air into fruit bags for the purpose of enabling local cooling that helps plant growth and fruit coloring while reducing capital investment. A cultivation device is disclosed. In the plant cultivation apparatus of Patent Document 1, temperature- and humidity-controlled air is obtained from warm air and cold air obtained by the vortex tube, and this air is used to grow plants such as grapes using the back pressure of the vortex tube. It is locally diffused.

特開2006-246879号公報JP 2006-246879 A

しかしながら、特許文献1の植物栽培装置では、温度と湿度が調節された空気を果実の袋内に放散しているので、放散している間は、ボルテックスチューブにて温風と冷風を作り続けなければならず、消費するエネルギーが大きくなる可能性がある。 However, in the plant cultivation apparatus of Patent Literature 1, the temperature- and humidity-controlled air is dissipated into the fruit bag. and may consume more energy.

本発明は上述のような事情よりなされたものであり、本発明の目的は、果実の周囲環境を、果実の栽培に適するように効率的に調節して、裂果等の被害を抑制することができる果実栽培システム及び果実栽培方法を提供することにある。 The present invention has been made under the circumstances as described above, and an object of the present invention is to efficiently adjust the surrounding environment of fruits so as to be suitable for cultivating fruits, thereby suppressing damage such as cracked fruits. To provide a fruit cultivating system and a fruit cultivating method.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。 As a result of earnest research to solve the above problems, the inventors of the present invention have found that the following inventions meet the above objects, and have completed the present invention.

すなわち、本発明は、以下の発明に係るものである。
<1> 少なくとも空気の湿度を調節する空気調節部と、前記空気調節部に接続し、前記空気調節部で調節された空気である調節空気が循環する循環配管と、果実との間に間隙を形成して、前記果実を覆う複数の被覆部と、前記循環配管及び前記被覆部に接続し、前記調節空気を前記被覆部に導く送出細管と、前記被覆部及び前記循環配管に接続し、前記被覆部内の空気を前記循環配管に導く受入細管と、を備えることを特徴とする果実栽培システム。
<2> 前記送出細管の前記循環配管に接続する端部の開口面が、前記調節空気が前記循環配管内を流れる向きと反対の向きを向くように、前記送出細管が前記循環配管に接続し、前記受入細管の前記循環配管に接続する端部の開口面が、前記調節空気が前記循環配管内を流れる向きと同じ向きを向くように、前記受入細管が前記循環配管に接続している<1>に記載の果実栽培システム。
<3> 前記空気調節部が、空気の湿度及び温度を調節する<1>又は<2>に記載の果実栽培システム。
<4> 前記循環配管内の前記調節空気の流れの下流に位置するにつれて、接続する前記送出細管及び前記受入細管の内径が大きくなっている<1>から<3>のいずれかに記載の果実栽培システム。
<5> 前記送出細管の前記被覆部に接続する端部及び前記受入細管の前記被覆部に接続する端部が、小孔を有して、前記被覆部の内部に挿入されている<1>から<4>のいずれかに記載の果実栽培システム。
<6> 前記循環配管が、内径が順次小さくなる循環本管、循環支管、循環小支管及び循環細管から構成され、前記循環本管及び前記循環支管が前記空気調節部に接続し、前記送出細管及び前記受入細管は前記循環細管に接続している<1>から<5>のいずれかに記載の果実栽培システム。
<7> 前記循環本管、前記循環支管、前記循環小支管及び前記循環細管間の接続は、Y管を介して行われている<6>に記載の果実栽培システム。
<8> 前記果実の栽培のために使用される薬剤を、前記調節空気に加える薬剤付加手段を更に備える<1>から<7>のいずれかに記載の果実栽培システム。
<9> 前記空気調節部が、前記果実の裂果を抑制するように空気を調節する<1>から<8>のいずれかに記載の果実栽培システム。
<10> <1>から<9>のいずれかに記載の果実栽培システムを用いることを特徴とする果実栽培方法。
<11> 前記果実が、ブドウの果実である<10>に記載の果実栽培方法。
That is, the present invention relates to the following inventions.
<1> An air conditioning unit that adjusts at least the humidity of the air, a circulation pipe that is connected to the air conditioning unit and circulates the conditioned air that is air conditioned by the air conditioning unit, and a gap between the fruits. forming a plurality of sheaths covering the fruit; delivery capillaries connected to the circulation line and the sheath and directing the conditioned air to the sheath; connected to the sheath and the circulation line; and a receiving narrow tube that guides air in the covering portion to the circulation pipe.
<2> The delivery capillary is connected to the circulation pipe such that the opening of the end of the delivery capillary connected to the circulation pipe faces the direction opposite to the direction in which the regulated air flows in the circulation pipe. , the receiving capillary is connected to the circulation pipe such that the opening surface of the end of the receiving capillary connected to the circulation pipe faces the same direction as the direction in which the conditioned air flows in the circulation pipe. 1>.
<3> The fruit cultivation system according to <1> or <2>, in which the air conditioning unit adjusts humidity and temperature of air.
<4> The fruit according to any one of <1> to <3>, wherein the inner diameters of the connected delivery capillary and the receiving capillary are increased as they are located downstream of the flow of the regulated air in the circulation pipe. cultivation system.
<5> An end portion of the sending capillary tube connected to the covering portion and an end portion of the receiving capillary tube connecting to the covering portion have small holes and are inserted into the covering portion <1> The fruit cultivation system according to any one of <4>.
<6> The circulation pipe comprises a circulation main pipe, a circulation branch pipe, a circulation small branch pipe, and a circulation narrow pipe, each of which has an inner diameter that gradually decreases, and the circulation main pipe and the circulation branch pipe are connected to the air adjustment section, and the delivery narrow pipe And the fruit cultivation system according to any one of <1> to <5>, wherein the receiving tubule is connected to the circulation tubule.
<7> The fruit cultivation system according to <6>, wherein the circulation main pipe, the circulation branch pipe, the circulation small branch pipe, and the circulation tubule are connected via a Y pipe.
<8> The fruit cultivation system according to any one of <1> to <7>, further comprising drug addition means for adding a drug used for cultivating the fruit to the regulated air.
<9> The fruit cultivation system according to any one of <1> to <8>, wherein the air conditioning unit adjusts air so as to suppress cracking of the fruit.
<10> A method for cultivating fruit, comprising using the system for cultivating fruit according to any one of <1> to <9>.
<11> The fruit cultivation method according to <10>, wherein the fruit is a grape fruit.

本発明の果実栽培システム及び果実栽培方法によれば、果実を覆う被覆部に、調節された空気を循環させて流しているので、果実の周囲環境を局所的で効率的に調節することができ、裂果等の被害を低コストで抑制することができる。 According to the fruit cultivating system and fruit cultivating method of the present invention, the controlled air is circulated and flowed through the covering portion covering the fruit, so that the surrounding environment of the fruit can be locally and efficiently adjusted. , damage such as cracked fruit can be suppressed at low cost.

本発明に係る果実栽培システムが使用されるビニールハウスの例を示す斜視図である。1 is a perspective view showing an example of a greenhouse in which a fruit cultivation system according to the present invention is used; FIG. 本発明に係る果実栽培システムの例(第1実施形態)を示す平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view which shows the example (1st Embodiment) of the fruit cultivation system which concerns on this invention. 送出細管及び受入細管と循環細管の接続箇所の模式図である。FIG. 4 is a schematic diagram of a connection point between a delivery capillary, a reception capillary, and a circulation capillary. ブドウ果実を覆った状態での被覆部の模式図である。It is a schematic diagram of the covering part in the state which covered the grape fruit. 本発明に係る果実栽培システムの例(第2実施形態)を示す平面図である。It is a top view which shows the example (2nd Embodiment) of the fruit cultivation system which concerns on this invention.

本発明は、空気調節部にて調節された空気(調節空気)を、循環配管によって循環させる。そして、その空気を、循環配管に接続する送出細管を通して、果実を覆う被覆部に流し、被覆部内の空気を、循環配管に接続する受入細管を通して、循環配管に戻す。よって、調節する周囲環境の範囲は、果実を栽培するビニールハウス等の温室全体ではなく、空気調節部、循環配管、送出細管、受入細管及び被覆部の中だけとなるので、局所的な調節が可能となり、大規模な装置を用いなくても、的確に果実の周囲環境を調節することができる。 The present invention circulates the air (conditioned air) adjusted by the air conditioning unit through the circulation pipe. Then, the air is flowed through the delivery capillary connected to the circulation pipe to the covering part covering the fruit, and the air in the covering part is returned to the circulation pipe through the receiving capillary connected to the circulation pipe. Therefore, the range of the ambient environment to be adjusted is not the entire greenhouse such as a vinyl greenhouse where fruits are grown, but only the inside of the air conditioning section, circulation pipe, delivery tubule, receiving tubule, and covering section, so local adjustment is not possible. This makes it possible to accurately adjust the surrounding environment of the fruit without using a large-scale device.

また、本発明は、循環配管内を循環する空気の一部を送出細管→被覆部→受入細管との流れで循環配管に戻す構成になっているので、循環配管内での空気の流れの弱化を抑えて空気を循環することができ、効率的な調節が可能である。このように局所的で的確に、かつ効率的に周囲環境を調節するので、裂果等の果実の被害を低コストで抑制することができる。 Further, in the present invention, part of the air circulating in the circulation pipe is returned to the circulation pipe in the flow of the delivery thin tube → the covering part → the receiving thin tube, so the air flow in the circulation pipe is weakened. Air can be circulated with less pressure, and efficient adjustment is possible. Since the surrounding environment is adjusted locally, precisely, and efficiently in this manner, damage to fruits such as cracked fruit can be suppressed at low cost.

以下に、本発明の実施の形態を、図面を参照して説明する。なお、各図において、同一構成要素には同一符号を付し、説明を省略することがある。更に、以下の説明における数値や形状等は例示であり、本発明はこれらに限定されるものではない。また、本実施形態はブドウの栽培における裂果の抑制を例としているが、本発明は、ブドウの栽培に限られず、他の果実の栽培にも適用可能であり、裂果以外の果実の被害抑制や着色等の果実の育成促進等にも有効である。 BEST MODE FOR CARRYING OUT THE INVENTION Below, embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the same code|symbol may be attached|subjected to the same component and description may be abbreviate|omitted. Furthermore, numerical values, shapes, etc. in the following description are examples, and the present invention is not limited to these. In addition, although the present embodiment is an example of suppressing fruit cracking in grape cultivation, the present invention is not limited to grape cultivation, and can be applied to the cultivation of other fruits. It is also effective for promotion of fruit growth such as coloring.

本発明に係る果実栽培システムを、ビニールハウスでのブドウの栽培に使用した場合の例(第1実施形態)について説明する。 An example (first embodiment) in which the fruit cultivation system according to the present invention is used for cultivating grapes in a greenhouse will be described.

図1は、ビニールハウス1の斜視図であり、図2は、ビニールハウス1で使用される果実栽培システム2の平面図である。図2では、ビニールハウス1内での果実栽培システム2の構造をわかりやすく示すために、ビニールハウス1に比べて、果実栽培システム2が大きく記載されている。
ビニールハウス1は複数の棟から構成される連棟となっており、本実施形態では10棟から成っており、図1及び図2では、各棟は横方向に並んでいる。各棟はアーチ状の天井を有している。各棟の間口(横幅)(図2における横方向での長さ)及び奥行(図2における縦方向での長さ)は適宜設定可能であり、本実施形態では間口は4m、奥行は50mとなっている。各棟間の境界(以下、「棟境界」とする)にはビニールは張られておらず、ビニールハウス1を支える柱が複数立っている。
FIG. 1 is a perspective view of a greenhouse 1, and FIG. 2 is a plan view of a fruit cultivation system 2 used in the greenhouse 1. FIG. In FIG. 2 , the fruit cultivation system 2 is shown larger than the greenhouse 1 in order to clearly show the structure of the fruit cultivation system 2 inside the greenhouse 1 .
The vinyl house 1 is a series of buildings composed of a plurality of buildings, and in this embodiment, it consists of 10 buildings, and in FIGS. Each building has an arched ceiling. The frontage (horizontal width) (the length in the horizontal direction in FIG. 2) and the depth (the length in the vertical direction in FIG. 2) of each building can be set as appropriate. It's becoming The boundary between each building (hereinafter referred to as "building boundary") is not covered with vinyl, and a plurality of pillars supporting the greenhouse 1 stand.

ブドウ3は棟境界に沿って、H型整枝法で植えられている。つまり、棟境界に位置する地面から複数のブドウ3の主幹が鉛直方向に伸びており、そこから主枝がH型に広がり、図2に示されるように、ビニールハウス1の奥行方向に伸びている。主枝から小枝が伸び、各小枝に果実(ブドウ果実)が成育する。図2には主枝のみが記載されている。 Grapes 3 are planted along the ridge boundary with an H-shaped branching method. That is, the main trunks of a plurality of grapes 3 extend vertically from the ground located at the boundary of the ridge, and the main branches spread out in an H shape from there, extending in the depth direction of the greenhouse 1 as shown in FIG. there is Twigs grow from the main branch, and a fruit (grape berry) grows on each twig. Only the main branch is shown in FIG.

果実栽培システム2は、ブドウ3の裂果抑制に適した湿度及び温度に空気を調節する空気調節部10、ブドウ果実3A(後述の図4参照)を覆う被覆部90、空気調節部10で調節された空気を循環させる循環配管、循環する空気を被覆部90に導く送出細管60及び被覆部90内の空気を循環配管に導く受入細管70を備える。 The fruit cultivation system 2 includes an air conditioning unit 10 that adjusts the air to humidity and temperature suitable for suppressing cracking of the grapes 3, a covering unit 90 that covers the grape fruit 3A (see FIG. 4 described later), and an air conditioning unit 10. A circulation pipe for circulating the air, a delivery narrow pipe 60 for guiding the circulating air to the covering portion 90, and a receiving narrow pipe 70 for guiding the air in the covering portion 90 to the circulation pipe are provided.

空気調節部10はビニールハウス1の外部に位置し、循環配管と接続しており、循環配管はビニールハウス1の内部に配管される。なお、空気調節部10をビニールハウス1の内部に設置しても良い。
空気調節部10では、ブドウ3の裂果を抑制するために、空気調節部10を壁等で囲まれた閉じた空間にして、市販の装置を使用して空間内の空気を所定の湿度及び温度に調節し、調節された空気が送出される。具体的には、湿度及び温度を設定値に自動的に調節するエア・コンディショナー(以下、「エアコン」と略す)及び電動送風機を使用する。
裂果を抑制するためには、ブドウ果実3A周辺を低湿度で低温な環境にするのが良いので、エアコンを使用して、空気調節部10内の空気をそのような環境の湿度及び温度にする。
The air conditioning unit 10 is located outside the greenhouse 1 and is connected to a circulation pipe, which is piped inside the greenhouse 1 . Note that the air conditioning unit 10 may be installed inside the greenhouse 1 .
In the air conditioning unit 10, in order to suppress the cracking of the grapes 3, the air conditioning unit 10 is a closed space surrounded by walls or the like, and the air in the space is adjusted to a predetermined humidity and temperature using a commercially available device. and the conditioned air is delivered. Specifically, an air conditioner (hereinafter abbreviated as "air conditioner") that automatically adjusts humidity and temperature to set values and an electric blower are used.
In order to suppress fruit cracking, it is preferable to create a low-humidity and low-temperature environment around the grape fruit 3A, so use an air conditioner to set the air in the air conditioning unit 10 to such an environmental humidity and temperature. .

具体的な湿度及び温度は、実験や当該分野の公知の知見に基づき、ブドウの品種、ブドウ果実3Aの成長具合等を考慮して適宜決定する。 The specific humidity and temperature are appropriately determined based on experiments and known knowledge in the relevant field, taking into consideration the grape variety, the growth condition of the grapes 3A, and the like.

例えば、湿度については、ブドウ果実3Aの成長初期には湿度をビニールハウス1内部と同程度(60~70%)とし、裂果が生じないように成長に合わせて被覆部90内の湿度が、50%以下、30%以下、20%以下(収穫直前)、となるように流通させる空気の湿度を制御すればよい。また、温度については、ブドウ果実3Aが色づきはじめる温度が23℃程度であることから、15℃~23℃(夜間温度)になるように流通させる空気の温度を制御することが好ましい。なお、ブドウ3を成熟期の後期に強く乾燥させると、根元から遠い果実から脱粒を起こすことがある等、裂果以外の現象にも注意する必要がある。エアコンで調節された空気は、電動送風機を使用して、空気調節部10に接続している循環配管に送出される。電動送風機が送出する風量は、ビニールハウス1内に配管する循環配管の規模や構造等に応じて設定し、例えば20m3/分に設定する。 For example, regarding the humidity, the humidity in the early stage of growth of the grape fruit 3A is set to the same level as the inside of the vinyl house 1 (60 to 70%), and the humidity in the covering part 90 is adjusted to 50 according to the growth so as not to cause cracking. % or less, 30% or less, or 20% or less (immediately before harvest). As for the temperature, since the temperature at which the grapes 3A begin to color is about 23° C., it is preferable to control the temperature of the air to be circulated to 15° C. to 23° C. (nighttime temperature). In addition, if the grapes 3 are strongly dried in the latter half of the ripening period, it is necessary to pay attention to phenomena other than cracking, such as shedding of seeds far from the root. The air conditioned by the air conditioner is delivered to the circulation pipe connected to the air conditioning unit 10 using an electric blower. The amount of air blown out by the electric blower is set according to the size and structure of the circulation pipe installed in the greenhouse 1, and is set to 20 m 3 /min, for example.

なお、低湿度な環境にするだけでも裂果抑制に効果があるので、空気調節部10内の湿度のみをエアコンで調節するようにしても良い。この場合、エアコンではなく、除湿機を使用しても良い。エアコンに空気清浄機能が搭載されている場合、その機能を有効にしても良い。空気-調節部10内の空気を効率的に調節するために、サーキュレーター等の空気撹拌機を使用しても良い。また、空気調節部10を市販の装置で構成するのではなく、専用装置を作製しても良い。 It should be noted that only the humidity in the air-conditioning unit 10 may be controlled by an air conditioner, since even a low-humidity environment is effective in suppressing fruit cracking. In this case, a dehumidifier may be used instead of an air conditioner. If the air conditioner is equipped with an air cleaning function, the function may be enabled. An air agitator, such as a circulator, may be used to effectively condition the air within the air-conditioning section 10 . Further, instead of configuring the air conditioning unit 10 with a commercially available device, a dedicated device may be manufactured.

循環配管は、循環本管20、循環支管30、循環小支管40及び循環細管50から構成される。更に、循環支管30は循環支管31及び32から、循環小支管40は循環小支管41及び42から、循環細管50は循環細管51及び52からそれぞれ構成される。
循環本管20、循環支管30、循環小支管40及び循環細管50は硬質ポリ塩化ビニル管(通称、塩ビ管)であり、内径はこの順番で小さくなっている。例えば、循環本管20の内径は100mm、循環支管30の内径は65~70mm、循環小支管40の内径は30mm、循環細管50の内径は25mmとなっている。なお、循環配管は塩ビ管ではなく、鉄管等の他の素材の管でも良い。
The circulation pipe is composed of a circulation main pipe 20, a circulation branch pipe 30, a circulation small branch pipe 40 and a circulation tubule 50. Further, the circulatory branch 30 is composed of the circulatory branches 31 and 32, the circulatory small branch 40 is composed of the circulatory small branches 41 and 42, and the circulatory tubule 50 is composed of the circulatory tubules 51 and 52, respectively.
The circulation main pipe 20, the circulation branch pipe 30, the circulation small branch pipe 40, and the circulation narrow pipe 50 are rigid polyvinyl chloride pipes (commonly known as PVC pipes), and the inner diameters thereof decrease in this order. For example, the inner diameter of the circulation main tube 20 is 100 mm, the inner diameter of the circulation branch tube 30 is 65 to 70 mm, the inner diameter of the circulation small branch tube 40 is 30 mm, and the inner diameter of the circulation narrow tube 50 is 25 mm. The circulation pipe may be a pipe made of other materials such as an iron pipe instead of a PVC pipe.

循環本管20は、空気調節部10に接続している。具体的には空気調節部10内の電動送風機の吐出口と接続し、空気調節部10の壁を貫通し、ビニールハウス1の内部へと延伸している。ビニールハウス1の内部では、循環本管20は、ビニールハウス1の奥行方向(図2における縦方向)の略中央に位置し、間口方向(図2における横方向)にて水平に延伸するように配管されている。よって、空気調節部10は、ビニールハウス1の間口方向での一方の端面(側面)の中央近辺に設置するのが好ましい。
例えば、図2のように空気調節部10がビニールハウス1の一方の側面の外側に設置された場合、循環本管20は、ビニールハウス1の内部に挿入された地点から間口方向に他方の側面まで延伸している。他方の側面と対向する循環本管20の端面は閉鎖されている。循環本管20は、ブドウ果実3Aより高い位置に配管されており、ビニールハウス1を形成及び支えるパイプ等に、金具や針金等で固定されている。
The circulation main pipe 20 is connected to the air conditioning section 10 . Specifically, it is connected to the discharge port of the electric blower in the air conditioning section 10 , penetrates the wall of the air conditioning section 10 , and extends into the inside of the greenhouse 1 . Inside the greenhouse 1, the circulation main pipe 20 is positioned substantially in the center of the greenhouse 1 in the depth direction (vertical direction in FIG. 2) and extends horizontally in the frontage direction (horizontal direction in FIG. 2). is plumbed. Therefore, it is preferable to install the air conditioning unit 10 near the center of one end surface (side surface) of the greenhouse 1 in the frontage direction.
For example, when the air conditioner 10 is installed outside one side of the greenhouse 1 as shown in FIG. is extended to The end face of circulation main 20 facing the other side is closed. The circulation main pipe 20 is laid at a position higher than the grape berries 3A, and is fixed to pipes or the like that form and support the greenhouse 1 with metal fittings, wires, or the like.

循環支管30を構成する循環支管31及び32も、空気調節部10に接続している。循環支管31及び32は、空気調節部10の壁に穿設された別々の開口部に、循環支管31及び32それぞれの端面を嵌合することにより、接続している。 The circulation branch pipes 31 and 32 constituting the circulation branch pipe 30 are also connected to the air conditioning section 10 . The circulation branch pipes 31 and 32 are connected to separate openings drilled in the wall of the air conditioning section 10 by fitting the end faces of the circulation branch pipes 31 and 32 respectively.

ビニールハウス1の内部では、循環支管31は、図2に示されるように、ビニールハウス1の内部に挿入された地点から側面に沿って一方の妻面(図2における上部)まで延伸し、妻面の近傍にて垂直に屈曲し、妻面に沿って、他方の側面まで延伸している。循環支管32の配管は、循環支管31の配管と対称的になっている。 Inside the greenhouse 1, as shown in FIG. 2, the circulation branch pipe 31 extends along the side from the point where it is inserted into the inside of the greenhouse 1 to one gable surface (upper part in FIG. 2). It bends vertically near the face and extends to the other side along the gable face. The piping of the circulation branch pipe 32 is symmetrical with the piping of the circulation branch pipe 31 .

即ち、循環支管32は、ビニールハウス1の内部に挿入された地点から側面に沿って他方の妻面(図2における下部)まで延伸し、妻面の近傍にて垂直に屈曲し、妻面に沿って、他方の側面まで延伸している。他方の側面と対向する循環支管31及び32の端面は閉鎖されている。循環支管31及び32が配管されている高さは、循環本管20と同じ高さで、循環本管20と同様に、ビニールハウス1を形成及び支えるパイプ等に、金具や針金等で固定されている。 That is, the circulation branch pipe 32 extends along the side surface from the point where it is inserted into the interior of the greenhouse 1 to the other gable surface (lower part in FIG. 2), bends vertically near the gable surface, and extends to the gable surface. along the other side. The end faces of the circulation branch pipes 31 and 32 facing the other side are closed. The height at which the circulation branch pipes 31 and 32 are laid is the same height as the circulation main pipe 20, and like the circulation main pipe 20, they are fixed to a pipe or the like that forms and supports the greenhouse 1 with metal fittings, wires, or the like. ing.

循環小支管40を構成する循環小支管41は循環本管20に接続しており、循環小支管42は循環支管30(循環支管31又は32)に接続している。 The small circulation pipe 41 constituting the small circulation pipe 40 is connected to the main circulation pipe 20, and the small circulation pipe 42 is connected to the circulation branch pipe 30 (circulation branch pipe 31 or 32).

循環小支管41は、循環本管20から、循環本管20の両側(図2において循環本管20の上方及び下方)に展開するブドウ3の各主枝に向けて延伸しており、棟境界の近辺に4本ずつ配管されている。循環本管20を流れる空気が循環小支管41を通って循環細管50に流れていくので、空気が流れ易いように、循環小支管41は、循環本管20に対して斜めに接続されている。具体的には、循環小支管41は、接続箇所から循環本管20内を流れる空気の向きと循環小支管41内を流れる空気の向きが作る角度が鋭角になるように、循環本管20に接続している。接続にはY管を継手として使用する。よって、循環本管20に対して一方の向きに接続している循環小支管41(図2において循環本管20の上部に接続している循環小支管41又は下部に接続している循環小支管41)は、他方の向きに接続している循環小支管41からずれて、循環本管20に接続している。 The circulation small branch pipe 41 extends from the circulation main pipe 20 toward each main branch of the grape 3 that develops on both sides of the circulation main pipe 20 (above and below the circulation main pipe 20 in FIG. 2). 4 pipes are laid in the vicinity of each. Since the air flowing through the circulation main pipe 20 flows through the circulation small branch pipe 41 to the circulation small pipe 50, the circulation small branch pipe 41 is obliquely connected to the circulation main pipe 20 so that the air can flow easily. . Specifically, the circulation small branch pipe 41 is connected to the circulation main pipe 20 so that the direction of the air flowing in the circulation main pipe 20 from the connection point and the direction of the air flowing in the circulation small branch pipe 41 form an acute angle. Connected. A Y pipe is used as a joint for the connection. Therefore, the circulation small branch 41 connected to the circulation main pipe 20 in one direction (the circulation small branch 41 connected to the upper part of the circulation main pipe 20 in FIG. 2 or the circulation small branch pipe connected to the bottom 41) is connected to the circulation main 20 offset from the circulation small branch 41 connected in the other direction.

循環小支管42は、循環小支管41と対になっており、循環支管30からブドウ3の各主枝に向けて延伸しており、棟境界の近辺に、循環支管31に接続する2本と循環支管32に接続する2本の計4本ずつ配管されている。循環細管50からの空気が循環小支管42を通って循環支管30に流れていくので、循環小支管41と同様に、空気が流れ易いように、循環小支管42は、循環支管30に対して斜めに接続されている。具体的には、循環小支管42は、接続箇所に向かう循環支管30内を流れる空気の向きと循環小支管42内を流れる空気の向きが作る角度が鋭角になるように、循環支管30に接続している。接続には、循環小支管41と同様に、Y管を継手として使用する。 The small circulation pipe 42 is paired with the small circulation pipe 41, extends from the circulation branch pipe 30 toward each main branch of the grape 3, and is connected to the circulation branch pipe 31 in the vicinity of the ridge boundary. Two pipes connected to the circulation branch pipe 32 are piped for a total of four pipes. Since the air from the circulation tubule 50 flows through the circulation small branch tube 42 to the circulation branch tube 30, the circulation small branch tube 42 is positioned relative to the circulation branch tube 30 so that the air can flow easily in the same way as the circulation small branch tube 41. connected diagonally. Specifically, the circulation branch tube 42 is connected to the circulation branch tube 30 so that the direction of the air flowing in the circulation branch tube 30 toward the connection point and the direction of the air flowing in the circulation branch tube 42 form an acute angle. are doing. For connection, a Y pipe is used as a joint, similar to the circulation small branch pipe 41 .

循環小支管40にはバルブ80が設置されている。バルブ80により循環小支管40を流れる空気の量を調節することにより、最終的に被覆部90に送出される空気の量を調節する。なお、コスト等を考慮して、バルブ80を省略しても良い。 A valve 80 is installed in the circulation small branch tube 40 . By adjusting the amount of air flowing through circulation small branch 40 by means of valve 80 , the amount of air ultimately delivered to sheath 90 is adjusted. Note that the valve 80 may be omitted in consideration of cost and the like.

循環細管50は循環小支管41及び42に接続している。1組の循環小支管41及び42に対して、2本の循環細管50(循環細管51及び52)が接続している。具体的には、2分岐型のY管を継手として使用して、分岐していない側のY管の開口部に、循環本管20と接続していない循環小支管41の端部が接着され、分岐しているY管の2つの開口部に、循環細管51及び52それぞれの一方の端部が接着されている。 Circulatory tubule 50 is connected to circulatory small branches 41 and 42 . Two circulation tubules 50 (circulation tubules 51 and 52) are connected to one set of circulation tubules 41 and . Specifically, a bifurcated Y pipe is used as a joint, and the end of the circulation small branch pipe 41 that is not connected to the circulation main pipe 20 is adhered to the opening of the unbranched Y pipe. , one end of each of the circulation tubules 51 and 52 is glued to the two openings of the branched Y tube.

循環細管51及び52は、ブドウ3の主枝を挟むような形で、平行して、ビニールハウス1の奥行方向に延伸している。そして、循環細管51及び52それぞれの他方の端部と循環小支管42の端部が、循環小支管41の場合と同様に、継手である2分岐型のY管の開口部にそれぞれ接着されている。 The circulation tubules 51 and 52 extend in parallel in the depth direction of the greenhouse 1 so as to sandwich the main branch of the grape 3 . Then, the other end of each of the circulation capillaries 51 and 52 and the end of the circulation small branch tube 42 are adhered to the openings of the bifurcated Y tube, which is a joint, as in the case of the circulation small branch tube 41. there is

本実施形態では、ビニールハウス1の奥行が50mとなっているので、1本の循環細管50の長さは約25mとなっている。循環細管50は、循環本管20及び循環支管30と同様に、ビニールハウス1を形成及び支えるパイプ等に、金具や針金等で固定されている。 In this embodiment, since the depth of the greenhouse 1 is 50 m, the length of one circulating tubule 50 is approximately 25 m. Like the circulation main pipe 20 and the circulation branch pipe 30, the circulation tubule 50 is fixed to a pipe or the like that forms and supports the vinyl greenhouse 1 with metal fittings, wires, or the like.

このような循環配管の構成により、空気調節部10で調節された空気は、図2の矢印で示されるように、空気調節部10から、循環本管20、循環小支管41、循環細管50(循環細管51及び52)の順で流れ、更に、循環小支管42、循環支管30(循環支管31又は32)の順で流れて、空気調節部10に戻る。 With such a configuration of the circulation pipes, the air adjusted in the air conditioning unit 10 flows from the air conditioning unit 10 as indicated by the arrows in FIG. Circulation tubules 51 and 52 ), then circulation small branch tube 42 , circulation branch tube 30 (circulation branch tube 31 or 32 ), in that order, and returns to air control unit 10 .

送出細管60及び受入細管70は、シリコーン樹脂のうちでゴム状(ラバー状)のものであるシリコーンゴムからなるチューブであり、内径は循環細管50よりも小さく、例えば5~7mmとなっている。なお、シリコーンゴムではなく、他の素材でも良い。 The delivery capillary tube 60 and the receiving capillary tube 70 are tubes made of silicone rubber, which is rubber-like among silicone resins, and have an inner diameter smaller than that of the circulation capillary tube 50, for example, 5 to 7 mm. It should be noted that other materials may be used instead of silicone rubber.

送出細管60及び受入細管70は、隣接して1本ずつが組となっており、一定の間隔をあけて、循環細管50に接続している。循環細管50に接続していない方の送出細管60及び受入細管70の端部は、被覆部90の内部に挿入されている。よって、1本の循環細管50に接続する送出細管60及び受入細管70の数は、循環細管50の長さの範囲において想定される成育するブドウ果実3Aの数に合わせた数となる。例えば、本実施形態では循環細管50の長さは約25mであるから、送出細管60及び受入細管70を約14cm間隔で循環細管50に接続し、1本の循環細管50に175組の送出細管60及び受入細管70を接続する。 The delivery capillaries 60 and the reception capillaries 70 are paired one by one adjacently and are connected to the circulation capillaries 50 at regular intervals. The ends of the delivery capillary tube 60 and the receiving capillary tube 70 that are not connected to the circulation capillary tube 50 are inserted inside the sheath 90 . Therefore, the number of sending capillaries 60 and receiving capillaries 70 connected to one circulation capillaries 50 is the number that matches the number of growing grapes 3A expected in the range of the length of the circulation capillaries 50. For example, in this embodiment, the length of the circulation capillary 50 is about 25 m, so the delivery capillary 60 and the receiving capillary 70 are connected to the circulation capillary 50 at intervals of about 14 cm. 60 and receiving tubule 70 are connected.

循環細管50内を流れる空気には、流れるにつれて被覆部90内の空気が受入細管70を介して加わり、空気の温度が上がっていく。よって、流れの上流から下流にいくに従って、つまり循環小支管41に近い位置から循環小支管42に近い位置になるに従って、循環細管50に接続する送出細管60及び受入細管70の内径を大きくしている。例えば、1本の循環細管50に接続する175組の送出細管60及び受入細管70のうち、空気の流れの上流から下流に向かって、最初の60組の内径を5mm、次の60組の内径を6mm、残りの55組の内径を7mmとする。 The air in the covering portion 90 is added to the air flowing through the circulating tubule 50 via the receiving tubule 70 as the air flows, and the temperature of the air rises. Therefore, the inner diameters of the delivery capillaries 60 and the reception capillaries 70 connected to the circulation capillaries 50 are increased from the upstream to the downstream of the flow, that is, from a position closer to the circulation capillaries 41 to a position closer to the circulation capillaries 42. there is For example, among the 175 sets of delivery capillaries 60 and receiving capillaries 70 connected to one circulation capillaries 50, from upstream to downstream of the air flow, the first 60 sets have an inner diameter of 5 mm, the next 60 sets have an inner diameter of 5 mm, and is 6 mm, and the inner diameter of the remaining 55 sets is 7 mm.

これにより、下流になるにつれて、被覆部90に流入する空気の量を増やし、冷却効果の低下を抑制する。なお、下流での空気の温度の上昇が大きくない場合や冷却効果の低下を他の手段で抑制している場合等では、送出細管60及び受入細管70の内径は変えずに同じ大きさでも良い。 As a result, the amount of air flowing into the covering portion 90 increases as it goes downstream, thereby suppressing a decrease in the cooling effect. If the temperature rise of the downstream air is not large, or if the decrease in cooling effect is suppressed by other means, the inner diameters of the sending capillary tube 60 and the receiving capillary tube 70 may be the same size without changing. .

送出細管60及び受入細管70と循環細管50の接続箇所の模式図を図3に示す。
図3は、これらの接続箇所を通り、循環細管50の長さ方向に伸びる面で循環細管50を切断した場合の循環細管50の内部構造を示している。矢印は空気が流れる向きを示している。
FIG. 3 shows a schematic diagram of connection points between the delivery capillary tube 60 and the receiving capillary tube 70 and the circulation capillary tube 50 .
FIG. 3 shows the internal structure of the circulation tubule 50 when the circulation tubule 50 is cut along a plane extending in the longitudinal direction of the circulation tubule 50 through these connection points. Arrows indicate the direction of air flow.

送出細管60及び受入細管70は、循環細管50に穿設された別々の開口部から、循環細管50の内部に挿入されている。そして、送出細管60は、送出細管60の端部の開口面が、循環細管50内の空気が流れる向きと反対の向きを向くように設置されており、受入細管70は、受入細管70の端部の開口面が、循環細管50内の空気が流れる向きと同じ向きを向くように設置されている。 The delivery capillary tube 60 and the receiving capillary tube 70 are inserted into the circulation capillary tube 50 through separate openings drilled in the circulation capillary tube 50 . The delivery capillary tube 60 is installed so that the opening surface of the end of the delivery capillary tube 60 faces the direction opposite to the direction in which the air in the circulation capillary tube 50 flows. The opening face of the part is installed so as to face the same direction as the direction in which the air in the circulation tubule 50 flows.

図3では、循環細管50内の空気は右から左に流れているので、送出細管60の開口面は右向きに、受入細管70の開口面は左向きになっている。これにより、循環細管50内を流れる空気が送出細管60に流入し易くなり、受入細管70を流れる空気が循環細管50に流出し易くなる。送出細管60及び受入細管70が循環細管50内で動かないように、それぞれの端部及び/又は循環細管50に穿設された開口部に密接する部分を循環細管50に接着しても良い。または、送出細管60及び受入細管70を、循環細管50に対して脱着可能な状態で挿入しても良い。
循環細管50と接続していない方の送出細管60及び受入細管70の端部は、被覆部90の内部に挿入されている。この送出細管60及び受入細管70の端部の端面は開放されており、更に、端部には複数の小孔が穿設されている。小孔を穿設することにより、送出細管60及び受入細管70の端面が被覆部90の内面に付着して閉鎖状態となるのを防止する。なお、そのような付着が発生するおそれがない場合等では、小孔を穿設しなくても良い。
In FIG. 3, since the air in the circulation tubule 50 flows from right to left, the opening surface of the delivery tubule 60 faces right and the opening surface of the reception tubule 70 faces left. This makes it easier for the air flowing through the circulation narrow tube 50 to flow into the delivery narrow tube 60 , and makes it easier for the air flowing through the receiving narrow tube 70 to flow out to the circulation narrow tube 50 . To prevent the delivery capillary 60 and the receiving capillary 70 from moving within the circulation capillary 50 , the respective ends and/or portions adjacent to the openings drilled in the circulation capillary 50 may be glued to the circulation capillary 50 . Alternatively, the delivery capillary tube 60 and the receiving capillary tube 70 may be detachably inserted into the circulation capillary tube 50 .
The ends of the delivery capillary tube 60 and the receiving capillary tube 70 that are not connected to the circulation capillary tube 50 are inserted inside the covering portion 90 . The end faces of the delivery capillary tube 60 and the receiving capillary tube 70 are open, and a plurality of small holes are drilled in the ends. By drilling the small holes, the end surfaces of the delivery tubule 60 and the reception tubule 70 are prevented from adhering to the inner surface of the covering portion 90 and becoming closed. In addition, when there is no risk of such adhesion occurring, it is not necessary to drill small holes.

被覆部90は、ブドウ果実3Aを覆い、ブドウ果実3Aの周囲に外部と隔離した閉空間となる間隙を形成する。この間隙に、空気調節部10にて調節された空気を送出することにより、ブドウ果実3Aの周囲環境を調節する。 The covering part 90 covers the grape 3A and forms a gap around the grape 3A, which is a closed space isolated from the outside. The surrounding environment of the grape 3A is adjusted by sending the air adjusted by the air adjustment part 10 to this gap.

ブドウ果実3Aを覆った状態での被覆部90の模式図を図4に示す。被覆部90は袋状になっており、ブドウ果実3A全体を覆って一定の広さの間隙を形成する大きさを有する。
被覆部90として、外部の湿度環境の影響を受けにくいように透湿性が低く、ブドウ果実3Aの状態が外部から確認できるように可視光透過性が高いものが好ましい。本実施形態では、ポリ塩化ビニリデンやポリプロピレン等を素材とした透明フィルムで被覆部90は形成されている。なお、被覆部90を、これらを素材とした透明フィルム以外としても良く、袋ではなく、フィルムよりも硬質な容器としても良い。
FIG. 4 shows a schematic diagram of the covering portion 90 covering the grape fruit 3A. The covering part 90 is bag-shaped and has a size that covers the entire grape fruit 3A and forms a gap of a certain size.
It is preferable that the covering portion 90 has low moisture permeability so as not to be affected by the external humidity environment, and high visible light permeability so that the state of the grape 3A can be confirmed from the outside. In this embodiment, the covering portion 90 is formed of a transparent film made of polyvinylidene chloride, polypropylene, or the like. Note that the covering portion 90 may be made of a material other than the transparent film made of these materials, and may be a container harder than the film instead of the bag.

被覆部90の開口部から、ブドウ果実3Aと共に、送出細管60及び受入細管70を挿入し、ブドウ果実3Aが成育している小枝、送出細管60及び受入細管70を束ねた状態で開口部を閉じて、閉じた部分は紐状の部材等で縛られている。 From the opening of the covering part 90, the delivery tubule 60 and the reception tubule 70 are inserted together with the grape 3A, and the opening is closed while the twig on which the grape 3A is growing, the delivery tubule 60 and the reception tubule 70 are bundled. The closed part is bound with a string-like member or the like.

送出細管60は、端部の開口面が被覆部90の上部に位置するように挿入されており、受入細管70は、端部の開口面が被覆部90の下部に位置するように挿入されている。これにより、空気調節部10で調節された空気が送出細管60からブドウ果実3A全体に効率的に行き渡り、被覆部90内の空気が受入細管70から効率的に排出される。
また、上述のように、送出細管60の端部及び受入細管70の端部にはそれぞれ小孔61及び71が穿設されており、送出細管60の開口面及び受入細管70の開口面が被覆部90の内面に付着しないようにしている。
The delivery capillaries 60 are inserted so that the end opening faces are positioned above the covering part 90 , and the receiving capillaries 70 are inserted so that the end opening faces are positioned below the covering part 90 . there is As a result, the air adjusted by the air conditioning unit 10 is efficiently distributed from the delivery tubule 60 to the entire grape fruit 3A, and the air in the covering section 90 is efficiently discharged from the reception tubule 70.
In addition, as described above, small holes 61 and 71 are formed in the end of the delivery capillary 60 and the end of the reception capillary 70, respectively, so that the opening surface of the delivery capillary 60 and the opening surface of the reception capillary 70 are covered. It is kept from adhering to the inner surface of the portion 90 .

被覆部90内への外気温の影響を軽減するために、断熱性や遮熱性を有するシートを被覆部90に被せても良い。例えば、高密度ポリエチレンのシートを被覆部90全体或いは上部に被せる。更に、そのシートの上から、鳥よけ用に、例えば下方が開口しているポリエチレン製の袋やナイロン製のネット等を被せても良い。
なお、被覆部90の場合と同様に、循環配管に断熱性や遮熱性を有するシートを巻着することにより、管内を流れる空気への外気温の影響を軽減し、より効率的に低湿度で低温な環境を創出することも可能である。
In order to reduce the influence of outside air temperature on the interior of the covering portion 90, the covering portion 90 may be covered with a sheet having heat insulation or heat shielding properties. For example, a sheet of high-density polyethylene may be placed over or over the cover 90 . Further, the sheet may be covered with, for example, a polyethylene bag or a nylon net having an opening at the bottom to keep out birds.
In addition, as in the case of the covering part 90, by wrapping a sheet having heat insulation and heat shielding properties around the circulation pipe, the influence of the outside temperature on the air flowing inside the pipe is reduced, and more efficiently at low humidity. It is also possible to create a cold environment.

また、空気調節部10は、空気調節部10内部の湿度及び温度が裂果抑制に適切な値になるようにエアコンを設定しているが、被覆部90内の湿度及び温度を測定し、それら実測値が裂果抑制に適切な値になるようにエアコンでの設定値を調節しても良い。これにより、より適切に湿度及び温度を調節することができる。 In addition, the air conditioning unit 10 sets the air conditioner so that the humidity and temperature inside the air conditioning unit 10 are appropriate values for suppressing fruit cracking, but the humidity and temperature inside the covering unit 90 are measured. You may adjust the setting value in an air conditioner so that a value may become a value suitable for fruit crack control. Thereby, humidity and temperature can be adjusted more appropriately.

本発明の他の実施の形態について説明する。 Another embodiment of the present invention will be described.

第1実施形態では、空気調節部10は、湿度及び温度を調節した空気を送出するだけであるが、果実の栽培のために使用される薬剤を、空気調節部で調節された空気に加える薬剤付加手段を更に備えていても良い。例えば、ブドウ3の育成促進や防病害等のために使用される化学物質を煙霧状にして、送出する空気に加えることが可能である。例えば、燻煙剤や次亜塩素酸水等の蒸気を、送出する空気に加える。燻煙剤を加えることにより病害虫を防除することができ、次亜塩素酸水を加えることにより、殺菌及び除菌を行うことができる。 In the first embodiment, the air conditioning unit 10 only delivers air whose humidity and temperature have been adjusted. Additional means may be further provided. For example, it is possible to atomize chemical substances used to promote the growth of grapes 3, prevent diseases, etc., and add them to the air to be delivered. For example, a fumigating agent or vapor such as hypochlorous acid water is added to the air to be delivered. By adding a smoking agent, pests can be controlled, and by adding hypochlorous acid water, sterilization and sterilization can be performed.

ブドウ果実3Aを被覆部90のような袋等で覆った場合、通常はこのような煙霧状の化学物質をブドウ果実3Aに噴霧することは困難であるが、空気調節部から送出される空気に加えることにより、これらの噴霧が可能となる。 When the grape fruit 3A is covered with a bag or the like such as the covering unit 90, it is usually difficult to spray the grape fruit 3A with such a smoke-like chemical substance, but the air sent from the air adjustment unit These additions enable these to be sprayed.

上述に対応した果実栽培システムの例(第2実施形態)を図5に示す。第2実施形態の果実栽培システム4では、図2に示される第1実施形態の果実栽培システム2と比べると、空気調節部10が空気調節部11に代わっており、空気調節部11は薬剤付加手段12を具備する。 An example (second embodiment) of a fruit cultivation system corresponding to the above is shown in FIG. In the fruit cultivation system 4 of the second embodiment, as compared with the fruit cultivation system 2 of the first embodiment shown in FIG. Means 12 are provided.

薬剤付加手段12は、燻煙剤及び次亜塩素酸水噴霧器から構成される。これらを同時に又は個別に使用し、空気調節部11が循環本管20に送出する空気に、煙霧状の燻煙剤及び/又は次亜塩素酸水を加える。
なお、薬剤付加手段12は、煙霧状の燻煙剤や次亜塩素酸水の他に、貴腐菌(ボトリティス・シネレア菌)等の有益菌を含むガスを生成しても良い。また、薬剤付加手段12は空気調節部11内に具備されているが、空気調節部11から独立して、循環本管20に直接接続するようにしても良い。
The chemical addition means 12 is composed of a fumigation agent and a hypochlorous acid water sprayer. These are used simultaneously or separately to add fume-like fumigants and/or hypochlorous acid water to the air delivered by the air conditioning section 11 to the circulation main 20 .
The chemical addition means 12 may generate a gas containing beneficial bacteria such as noble rot (Botrytis cinerea) in addition to the fume-like smoke agent and hypochlorous acid water. Moreover, although the medicine adding means 12 is provided in the air conditioning section 11 , it may be connected directly to the circulation main pipe 20 independently of the air conditioning section 11 .

上述の実施形態では、循環配管は循環本管20、循環支管30、循環小支管40及び循環細管50の4種類の管から構成されるが、構成する管の種類は4種類に限られず、他の種類数で構成しても良い。また、各管の本数も上述に限られず、他の本数で構成しても良い。各管の内径も上述に限られず、適宜変更可能であり、全ての管の内径を同じにしても良い。 In the above-described embodiment, the circulation pipe is composed of four types of pipes, ie, the main circulation pipe 20, the branch pipes 30, the small branch pipes 40, and the narrow pipes 50. It may be configured with the number of types of Also, the number of each tube is not limited to the above, and other numbers may be used. The inner diameter of each tube is not limited to the above, and can be changed as appropriate, and all the tubes may have the same inner diameter.

ビニールハウス1の全体を防風ネットで覆うようにしても良い。送出細管60及び受入細管70はシリコーンゴムを素材としており、被覆部90内に挿入されている端部は固定されていないので、被覆部90が強風に晒された場合、循環細管50から外れる可能性がある。ビニールハウス1の全体を防風ネットで覆うことにより、その可能性を小さくすることができる。防風ネットの使用により、ブドウ果実や新梢への被害も抑制することができる。 The entire plastic greenhouse 1 may be covered with a windbreak net. The delivery capillary tube 60 and the receiving capillary tube 70 are made of silicone rubber, and the ends inserted into the covering part 90 are not fixed. have a nature. By covering the entire vinyl house 1 with a windbreak net, the possibility can be reduced. The use of windbreak nets can also limit damage to grape berries and shoots.

以上、本発明の実施形態について説明したが、本発明は上記形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。また、上記形態において明示的に開示されていない事項、例えば構成物の寸法、重量等は、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications are possible without departing from the gist of the present invention. In addition, matters that are not explicitly disclosed in the above embodiments, such as the dimensions and weight of the components, do not deviate from the range that a person skilled in the art usually implements, and a person skilled in the art can easily imagine them. Any possible value can be adopted.

1 ビニールハウス
2、4 果実栽培システム
3 ブドウ
3A ブドウ果実
10、11 空気調節部
12 薬剤付加手段
20 循環本管
30、31、32 循環支管
40、41、42 循環小支管
50、51、52 循環細管
60 送出細管
61、71 小孔
70 受入細管
80 バルブ
90 被覆部
1 vinyl greenhouses 2, 4 fruit cultivation system 3 grapes 3A grape berries 10, 11 air conditioner 12 drug addition means 20 circulation main pipes 30, 31, 32 circulation branch pipes 40, 41, 42 circulation small branch pipes 50, 51, 52 circulation tubules 60 sending capillaries 61, 71 small hole 70 receiving capillaries 80 valve 90 cover

Claims (11)

少なくとも空気の湿度を調節する空気調節部と、
前記空気調節部に接続し、前記空気調節部で調節された空気である調節空気が循環する循環配管と、
果実との間に間隙を形成して、前記果実を覆う複数の被覆部と、
前記循環配管及び前記被覆部に接続し、前記調節空気を前記被覆部に導く送出細管と、
前記被覆部及び前記循環配管に接続し、前記被覆部内の空気を前記循環配管に導く受入細管と、を備えることを特徴とする果実栽培システム。
an air conditioning unit that regulates at least the humidity of the air;
a circulation pipe that is connected to the air conditioning unit and circulates the conditioned air, which is the air that has been conditioned by the air conditioning unit;
A plurality of covering parts that form a gap between the fruit and cover the fruit;
a delivery capillary connected to the circulation pipe and the sheath and guiding the conditioned air to the sheath;
A fruit cultivation system comprising: a receiving capillary connected to the covering section and the circulation pipe and guiding air in the covering section to the circulation pipe.
前記送出細管の前記循環配管に接続する端部の開口面が、前記調節空気が前記循環配管内を流れる向きと反対の向きを向くように、前記送出細管が前記循環配管に接続し、
前記受入細管の前記循環配管に接続する端部の開口面が、前記調節空気が前記循環配管内を流れる向きと同じ向きを向くように、前記受入細管が前記循環配管に接続している請求項1に記載の果実栽培システム。
the delivery capillary is connected to the circulation pipe such that the open surface of the end of the delivery capillary connected to the circulation pipe faces a direction opposite to the direction in which the regulated air flows in the circulation pipe;
3. The receiving capillary is connected to the circulation pipe such that the opening of the end of the receiving capillary connected to the circulation pipe faces the same direction as the direction in which the regulated air flows in the circulation pipe. 2. The fruit cultivation system according to 1.
前記空気調節部が、空気の湿度及び温度を調節する請求項1又は2に記載の果実栽培システム。 The fruit cultivation system according to claim 1 or 2, wherein the air conditioning unit regulates humidity and temperature of air. 前記循環配管内の前記調節空気の流れの下流に位置するにつれて、接続する前記送出細管及び前記受入細管の内径が大きくなっている請求項1乃至3のいずれかに記載の果実栽培システム。 4. The fruit cultivation system according to any one of claims 1 to 3, wherein the inner diameters of the connected delivery narrow pipe and the receiving narrow pipe increase as they are located downstream of the flow of the regulated air in the circulation pipe. 前記送出細管の前記被覆部に接続する端部及び前記受入細管の前記被覆部に接続する端部が、小孔を有して、前記被覆部の内部に挿入されている請求項1乃至4のいずれかに記載の果実栽培システム。 5. An end portion of said sending capillary tube connected to said covering portion and an end portion of said receiving capillary tube connecting to said covering portion have small holes and are inserted into said covering portion. A fruit cultivation system according to any one of the above. 前記循環配管が、内径が順次小さくなる循環本管、循環支管、循環小支管及び循環細管から構成され、
前記循環本管及び前記循環支管が前記空気調節部に接続し、
前記送出細管及び前記受入細管は前記循環細管に接続している請求項1乃至5のいずれかに記載の果実栽培システム。
The circulation pipe is composed of a circulation main pipe, a circulation branch pipe, a circulation small branch pipe, and a circulation narrow pipe, the inner diameters of which gradually decrease,
the circulation main pipe and the circulation branch pipe are connected to the air conditioning unit;
6. A fruit cultivation system according to any one of claims 1 to 5, wherein said delivery capillaries and said receiving capillaries are connected to said circulation capillaries.
前記循環本管、前記循環支管、前記循環小支管及び前記循環細管間の接続は、Y管を介して行われている請求項6に記載の果実栽培システム。 7. The fruit cultivation system according to claim 6, wherein the connection among the main circulation pipe, the branch pipes, the small branch pipes and the tubules is made through a Y pipe. 前記果実の栽培のために使用される薬剤を、前記調節空気に加える薬剤付加手段を更に備える請求項1乃至7のいずれかに記載の果実栽培システム。 8. The fruit cultivation system according to any one of claims 1 to 7, further comprising chemical adding means for adding a chemical used for cultivating the fruit to the conditioned air. 前記空気調節部が、前記果実の裂果を抑制するように空気を調節する請求項1乃至8のいずれかに記載の果実栽培システム。 9. The fruit cultivation system according to any one of claims 1 to 8, wherein the air adjustment unit adjusts air so as to suppress cracking of the fruit. 請求項1乃至9のいずれかに記載の果実栽培システムを用いることを特徴とする果実栽培方法。 A fruit cultivation method using the fruit cultivation system according to any one of claims 1 to 9. 前記果実が、ブドウの果実である請求項10に記載の果実栽培方法。 11. The fruit cultivation method according to claim 10, wherein the fruit is a grape fruit.
JP2021128364A 2021-08-04 2021-08-04 Fruit cultivation system and fruit cultivation method Active JP7076859B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021128364A JP7076859B1 (en) 2021-08-04 2021-08-04 Fruit cultivation system and fruit cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021128364A JP7076859B1 (en) 2021-08-04 2021-08-04 Fruit cultivation system and fruit cultivation method

Publications (2)

Publication Number Publication Date
JP7076859B1 JP7076859B1 (en) 2022-05-30
JP2023023128A true JP2023023128A (en) 2023-02-16

Family

ID=81802000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021128364A Active JP7076859B1 (en) 2021-08-04 2021-08-04 Fruit cultivation system and fruit cultivation method

Country Status (1)

Country Link
JP (1) JP7076859B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333923A (en) * 2004-05-28 2005-12-08 National Agriculture & Bio-Oriented Research Organization Method for growing fruit and device for growing fruit
JP2006246879A (en) * 2005-02-14 2006-09-21 Ikuo Kotaka Plant cultivating apparatus and method
JP2018183122A (en) * 2017-04-27 2018-11-22 大浩研熱株式会社 Warming system for plant green house

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333923A (en) * 2004-05-28 2005-12-08 National Agriculture & Bio-Oriented Research Organization Method for growing fruit and device for growing fruit
JP2006246879A (en) * 2005-02-14 2006-09-21 Ikuo Kotaka Plant cultivating apparatus and method
JP2018183122A (en) * 2017-04-27 2018-11-22 大浩研熱株式会社 Warming system for plant green house

Also Published As

Publication number Publication date
JP7076859B1 (en) 2022-05-30

Similar Documents

Publication Publication Date Title
US10631471B2 (en) Method and system for increasing days for the cultivation of particular fruit bearing vines in unfavourable climatic regions
US8234814B2 (en) Plant growing assembly
CN103960105B (en) Pawpaw and pineapple stereo cultivation method
US10327398B2 (en) High density soilless plant growth system and method
JP5515118B2 (en) Plant growth facility
JP6369827B2 (en) Plant cultivation method and plant cultivation apparatus
JP2004175810A (en) System for providing useful insect or useful acarid
CN110708952A (en) Methods and materials for extending plant vigor in a non-refrigerated storage environment
US11350575B2 (en) Adjustable system and apparatus for promoting plant growth and production with suspended emitters
JP5133121B2 (en) Cultivation house
JP2023023128A (en) Fruit cultivation system and fruit cultivation method
KR101396436B1 (en) Cultivation system of greenhouse plant
JP2022178756A (en) Fruit cultivation system and fruit cultivation method
KR101357111B1 (en) Hydroponics cultivation device
KR101883153B1 (en) Gut
CN211532093U (en) Greenhouse planting and nutrient feeding device
CN107182636A (en) Drip irrigation appliance
CN210094138U (en) Rich and honour son is cultivated with planting big-arch shelter
CN209660063U (en) A kind of greenhouse gardening cultivation is complementary to support system altogether
CN210406379U (en) Seedling breeds big-arch shelter
JP2023140297A (en) Fruit cultivation system, fruit cultivation kit, and fruit production method
CN106577027A (en) Manihot esculenta crantz rapid propagation method based on atomization nutrient solutions
Peckenpaugh Hydroponic Solutions: Volume 1: Hydroponic Growing Tips
CN104938240A (en) Standardized vegetable planting device and method adopting stereoscopic pipeline micro-irrigation
CN204762439U (en) Normalized planting device of three -dimensional pipeline slight irrigation vegetables

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7076859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150