JP2006246879A - Plant cultivating apparatus and method - Google Patents

Plant cultivating apparatus and method Download PDF

Info

Publication number
JP2006246879A
JP2006246879A JP2005188214A JP2005188214A JP2006246879A JP 2006246879 A JP2006246879 A JP 2006246879A JP 2005188214 A JP2005188214 A JP 2005188214A JP 2005188214 A JP2005188214 A JP 2005188214A JP 2006246879 A JP2006246879 A JP 2006246879A
Authority
JP
Japan
Prior art keywords
air
plant
temperature
pipe
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005188214A
Other languages
Japanese (ja)
Inventor
Ikuo Kotaka
生男 高鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005188214A priority Critical patent/JP2006246879A/en
Publication of JP2006246879A publication Critical patent/JP2006246879A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for plant cultivation carrying out a local cooling to facilitate plant growth and fruit coloring with suppressed capital investment. <P>SOLUTION: The invention relates to the plant cultivating apparatus supplying air with conditioned temperature and humidity from a tip of pipe fitting 11 into a bag 6 for fruit, for scattering the air to heat or cool the local point of the plant, wherein the conditioned air is obtained by introducing compressed air from a pipe fitting 9 to a vortex tube 10 and feeding warm wind and cool wind obtained by the vortex tube 10 into each flowing pipe fitting 17, 18 and adjusting the feeding rate of the warm wind and the cool wind and then mixing with a three-way valve 19, the apparatus inexpensively feeds the air with conditioned temperature and humidity to the local point of plant by the simple apparatus without necessitating heat-exchanger, etc., and facilitates coloring of grapes, etc., promote growth of plants, preventing disease, realizing a high quality cultivation of the plant in a district with more genial climate, and expansion of growing season to summer in plants cultured in winter in addition to the improvement of quality in cultivating in a district suitable for cultivating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種植物の一部の周囲環境を制御して栽培する植物栽培装置と方法に関する。   The present invention relates to a plant cultivation apparatus and method for cultivating by controlling the surrounding environment of a part of various plants.

ブドウなどの食用の果実の着色の程度は、ブドウの品質を示す指標となることはよく知られている。例えば、赤色系ブドウなどの果実の着色には果実を低温雰囲気に置くことが必要であり、品質の良いブドウ等を栽培するには温度環境が栽培に適した地方で行うか、図10に示すように、ブドウ園の温室28内のブドウの木全体を冷却する事である。しかし、前者の栽培方法では栽培地が一部の地域に限定されるという問題があり、また後者の栽培方法は経済的でないために実用化されていない。非特許文献1にはブドウの着色に関わる要因とその制御機構及び着色向上技術に関する研究の現状などについて論じられている。
また、高温多湿の環境下では果実の湿りによる有害菌の発生があり、ブドウなどの植物は乾燥雰囲気に置くことが有効な病害虫対策であった。
It is well known that the degree of coloring of edible fruits such as grapes is an indicator of grape quality. For example, coloring of fruits such as red grapes requires placing the fruits in a low-temperature atmosphere, and in order to cultivate good-quality grapes or the like, the temperature environment is performed in a region suitable for cultivation, as shown in FIG. Thus, the entire vine in the vineyard greenhouse 28 is cooled. However, the former cultivation method has a problem that the cultivation area is limited to a part of the area, and the latter cultivation method is not practical because it is not economical. Non-Patent Document 1 discusses the factors related to grape coloring, the control mechanism, and the current state of research on coloring improvement technology.
Moreover, harmful bacteria were generated due to the wetness of fruits in a hot and humid environment, and it was an effective measure against pests to place plants such as grapes in a dry atmosphere.

ところが、非特許文献2に述べられているように、地球環境の温暖化は平均気温の上昇を招き、今までブドウの栽培適地とされてきた地方が近未来に不適地となる可能性が出てきた結果、従来のブドウ栽培地でのブドウの収穫を断念し、新たな栽培地でブドウ栽培を行う必要性などが検討されている。しかし、作地転換は莫大な資金と月日を必要とする事になり、現在の栽培地で高品質の果実が得られる技術の開発が望まれていた。
また、イチゴや一部の花等の冬季作物は冬場のみの収穫に限定させるために四季を通しての安定した収益が望めず、通年栽培ができる技術の開発が課題であった。
However, as described in Non-Patent Document 2, the warming of the global environment leads to an increase in average temperature, and there is a possibility that regions that have been considered suitable for grape cultivation will become unsuitable for the near future. As a result, the necessity of abandoning the harvest of grapes in conventional vineyards and cultivating grapes in new vineyards has been studied. However, land conversion requires enormous funds and time, and the development of technology that can produce high-quality fruits in the current cultivated land has been desired.
In addition, since winter crops such as strawberries and some flowers are limited to harvesting only in winter, stable profits throughout the four seasons cannot be expected, and the development of technology that can be cultivated all year round has been an issue.

さらに、温室内で行われるイチゴや花等の栽培では夏季の収穫量を上げるためには、苗周りの雰囲気温度を下げる必要があったが、植物栽培用の温室全体を冷却する事は経済的でなく、苗の部分のみを冷気雰囲気に置く冷却方法も行われている。たとえば、メロンの恒温栽培では動力を用いて地下水を汲み上げて空気と熱交換する方式が考案されている(例えば、非特許文献3参照)。しかしこの方法は低温の地下水が得られない所では採用できず、有効な地下水がある場合でも汲み上げた地下水と空気との熱交換が必要であり、一般的に地下水の温度と栽培する植物の果実などが必要とする生育温度との温度差が小さく、熱交換が簡単ではない。   Furthermore, in the cultivation of strawberries and flowers in the greenhouse, it was necessary to lower the ambient temperature around the seedlings in order to increase the yield in summer, but it is economical to cool the entire greenhouse for plant cultivation. In addition, a cooling method in which only the seedling part is placed in a cool air atmosphere is also performed. For example, in the constant temperature cultivation of melon, a method has been devised in which groundwater is pumped using power to exchange heat with air (see, for example, Non-Patent Document 3). However, this method cannot be used where low-temperature groundwater is not available, and heat exchange between the pumped-up groundwater and air is necessary even when effective groundwater is available. The difference in temperature from the growth temperature required is small and heat exchange is not easy.

また、地下水と空気との熱交換方式では、熱交換を一箇所で行い、熱交換した空気を各果実部等へ送る場合には送風機などの機器が必要であり、さらに個々の果実部で地下水と空気との熱交換を行う場合には、それぞれの果実部で温度の管理をする必要があるが、コスト的に実用性がなかった。
「ブドウの着色機構とその制御」、園芸学会誌 第73巻 別冊2、園芸学会発行、2004年9月25日発行 杉浦俊彦「温暖化が果樹生産環境に及ぼす影響」、平成13年7月10日 日本学術会議農学研究連絡委員会シンポジウム、〔平成16年12月25日検索〕、インターネット<URL http://ss.fruit.affrc.go.jp/announcements/ronbun/ondanka.html 米沢電気工事グループ「メロン栽培で新手法」米沢電気工事株式会社WELCOME OUR SITE、〔平成16年12月25日検索〕、インターネット<URL http://www.yonezawa.co.jp/melon/
In addition, in the heat exchange system between groundwater and air, heat exchange is performed at one place, and equipment such as a blower is required to send the heat-exchanged air to each fruit part. When heat exchange is performed with air, it is necessary to control the temperature of each fruit part, but it is not practical in terms of cost.
“Grape coloring mechanism and its control”, Journal of the Horticultural Society, Vol. 73, separate volume 2, published by the Horticultural Society, September 25, 2004 Toshihiko Sugiura, “Effects of Global Warming on Fruit Tree Production Environment”, July 10, 2001 Symposium of the Academic Research Committee of Agricultural Research, [Search on December 25, 2004], Internet <URL http: // ss .fruit.affrc.go.jp / announcements / ronbun / ondanka.html Yonezawa Electric Construction Group “New Method for Melon Cultivation” Yonezawa Electric Construction Co., Ltd. WELCOME OUR SITE, [Search on December 25, 2004], Internet <URL http://www.yonezawa.co.jp/melon/

高温多湿という日本の栽培気象環境下で高温や湿気に弱い植物、または高温では着色しない果実を栽培するには低温・乾燥雰囲気を作り出さなければならないが、このような栽培条件を設定することは経済性の上で大きな障害であった。   In order to cultivate plants that are sensitive to high temperatures and humidity, or fruits that are not colored at high temperatures in Japan's cultivating meteorological environment of high temperature and high humidity, it is necessary to create a low temperature and dry atmosphere. It was a big obstacle on sex.

また、前記低温・乾燥雰囲気を作る技術として、例えば、夏季の強い太陽光線の下で植物と周囲空気と付属設備全体を冷却する方法はコストがかさむため経済的に現実的でなく、また果実だけを包装して湿気や虫による病害虫を防ぐ方策もあるが、この方法では果実を冷却することができず、逆に昇温することにもなり果実が着色しないという問題が有る。   In addition, as a technique for creating the low temperature and dry atmosphere, for example, a method of cooling the plant, the surrounding air and the entire attached equipment under the strong sunlight in summer is not economically practical because it is costly, and only the fruit. There is also a measure to prevent pests caused by moisture and insects by packaging the fruit, but this method has a problem that the fruit cannot be cooled and conversely the temperature rises and the fruit is not colored.

このように各種植物の局所冷却栽培技術に関して経済性を維持しながら、冷風を発生し、必要な箇所のみに冷風を供給する事が大きな技術的課題であり、低コストで前記低温・乾燥雰囲気を作る技術を確立することが、地球温暖化が進んでいることに対処するため及び大事業となる作地転換を回避するために強く望まれている。   In this way, while maintaining the economics of local cooling cultivation technology for various plants, it is a major technical problem to generate cold air and supply the cold air only to the necessary places. Establishing the technology to make is strongly desired to cope with the global warming and to avoid the large-scale land conversion.

本発明の課題は、設備投資を抑え、かつ植物の生育と果実の着色を助ける局所冷却が可能な植物栽培装置と方法を提供することである。   An object of the present invention is to provide a plant cultivation apparatus and method capable of local cooling that suppresses capital investment and helps plant growth and fruit coloring.

本発明は上記課題を次の解決手段で解決する。
請求項1記載の発明は、加圧空気源から凝縮水を除去された加圧空気を供給する加圧空気配管(9)と、該加圧空気配管(9)に接続したボルテックスチューブ(10)と、該ボルテックスチューブ(10)に接続し、かつボルテックスチューブ(10)で得られた温風と冷風がそれぞれ流れる温風配管(18)と冷風配管(17)と、前記両方の配管(17,18)から供給される温風と冷風の混合比率を調整して混合する温風と冷風の混合量調節手段(19)と、温風と冷風の混合により温度が調節された空気を植物の局所に導く空気配管(11)と、該空気配管(11)の先端に植物の前記局所を加熱又は冷却する空気放散手段(30)を備えた植物の栽培装置である。
The present invention solves the above problems by the following means.
The invention described in claim 1 includes a pressurized air pipe (9) for supplying pressurized air from which condensed water has been removed from a pressurized air source, and a vortex tube (10) connected to the pressurized air pipe (9). A hot air pipe (18) and a cold air pipe (17) connected to the vortex tube (10) and through which hot air and cold air obtained by the vortex tube (10) respectively flow, and both the pipes (17, 18) The mixing amount adjusting means (19) for adjusting the mixing ratio of the hot air and the cold air supplied from 18), and the air whose temperature has been adjusted by the mixing of the hot air and the cold air, A plant cultivation apparatus provided with an air pipe (11) that leads to air and an air diffusing means (30) that heats or cools the local part of the plant at the tip of the air pipe (11).

請求項2記載の発明は、加圧空気を供給する加圧空気配管(9)と、該加圧空気配管(9)に接続し、加圧空気を冷却された冷媒と熱交換させて除湿するための冷媒循環式エアードライヤー(37)と、該エアードライヤー(37)で湿度調整された高圧空気の温度を所定の温度に再加熱するヒーター(38)と、該ヒーター(38)で再加熱された空気を減圧する減圧弁(39)と、減圧され、温度と湿度が調節された空気を植物の局所に導く空気配管(11)と、該空気配管(11)の先端に植物の前記局所を加熱又は冷却する空気放散手段を備えた植物の栽培装置である。   The invention according to claim 2 is connected to the pressurized air pipe (9) for supplying pressurized air and the pressurized air pipe (9), and dehumidifies the pressurized air by exchanging heat with the cooled refrigerant. A recirculating refrigerant air dryer (37), a heater (38) for reheating the temperature of the high-pressure air whose humidity is adjusted by the air dryer (37) to a predetermined temperature, and the heater (38) A pressure reducing valve (39) for depressurizing the air, an air pipe (11) for guiding the decompressed air whose temperature and humidity are adjusted to the local part of the plant, and the local part of the plant at the tip of the air pipe (11) A plant cultivation apparatus provided with an air diffusing means for heating or cooling.

請求項3記載の発明は、前記温度調節された空気を植物の局所に導く前記空気配管(11)には空気の湿度を調整する加湿手段(24)を設けた請求項1又は2記載の植物の栽培装置である。   According to a third aspect of the present invention, in the plant according to the first or second aspect, the air pipe (11) for guiding the temperature-controlled air to a local part of the plant is provided with a humidifying means (24) for adjusting the humidity of the air. It is a cultivation device.

請求項4記載の発明は、前記温度調節された空気を植物の局所に導く前記空気配管(11)には植物成長用補助ガス又は防病害補助ガスを含む補助ガスを供給する補助ガス供給手段(23)を設けた請求項1叉は2記載の植物栽培装置である。   According to a fourth aspect of the present invention, there is provided an auxiliary gas supply means for supplying an auxiliary gas containing an auxiliary gas for plant growth or an auxiliary gas for disease prevention to the air pipe (11) for guiding the temperature-adjusted air locally to the plant. 23. The plant cultivation apparatus according to claim 1 or 2, wherein 23) is provided.

請求項5記載の発明は、加圧空気源から除水された加圧空気をボルテックスチューブ(10)に供給して温風と冷風を発生させ、得られた温風と冷風の混合比率を調整して合流させ、得られた温度及び湿度を調節された空気を植物の局所又はその近傍のみに放散する植物の栽培方法である。   According to the fifth aspect of the present invention, the pressurized air removed from the pressurized air source is supplied to the vortex tube (10) to generate hot air and cold air, and the mixing ratio of the obtained hot air and cold air is adjusted. It is a cultivation method of a plant that diffuses the air whose temperature and humidity are adjusted and diffuses only locally or in the vicinity of the plant.

請求項6記載の発明は、加圧空気を冷媒循環式エアードライヤー(37)とヒーター(81)と減圧弁(39)を順次通して空気の温度と湿度を調節し、得られた温度及び湿度が調節された空気を植物の局所又はその近傍のみに放散する植物の栽培方法である。   The invention according to claim 6 adjusts the temperature and humidity of the air by sequentially passing the pressurized air through the refrigerant circulation air dryer (37), the heater (81) and the pressure reducing valve (39), and the obtained temperature and humidity. Is a method for cultivating a plant in which air in which the air pressure is adjusted is diffused only locally or in the vicinity of the plant.

請求項7記載の発明は、植物成長用補助ガス叉は防病害補助ガスを含む補助ガス及び/又は補給水を前記温度及び湿度を調節された空気に加える請求項5又は6記載の植物栽培方法。   The invention according to claim 7 is the plant cultivation method according to claim 5 or 6, wherein an auxiliary gas containing plant growth auxiliary gas or disease prevention auxiliary gas and / or supplementary water is added to the temperature and humidity adjusted air. .

なお、前記植物の前記局所と前記空気放散手段(30)の全体を覆う袋状部、又は上一部分だけを覆うカバーを設けた構成とすることが望ましい。   In addition, it is desirable to set it as the structure which provided the cover which covers only the upper part of the bag-like part which covers the said local of the said plant and the said whole air diffusing means (30).

請求項1又は5記載の発明によれば、ボルテックスチューブ(10)で得られた温風と冷風から温度及び湿度を調節された空気を得て、この空気をボルテックスチューブ(10)の背圧を利用してブドウ果実などの植物の局所に放散させる方法により、前記局所の雰囲気を一定範囲の温度、湿度に保つことによって、電力というユーテリティーのみと熱交換などを用いない簡単な装置で必要な箇所に必要な温湿調空気を、低コストで供給でき、ブドウ果実などの着色をはじめ、植物の生育を促進し、病害を防ぐことができる。   According to invention of Claim 1 or 5, the air by which temperature and humidity were adjusted was obtained from the warm air and cold air which were obtained with the vortex tube (10), and this back pressure of the vortex tube (10) was obtained. It is necessary for a simple device that does not use only the utility of electricity and heat exchange by keeping the local atmosphere at a certain range of temperature and humidity by utilizing the method of radiating locally to plants such as grape fruits. The temperature and humidity control air required for the location can be supplied at low cost, and the growth of plants can be promoted, such as the coloring of grape fruits, and the disease can be prevented.

また、請求項1又は4記載の発明によりイチゴなどの冬季栽培作物では栽培時期の夏季への拡張ができる。これらの栽培に適地とされていた地方での高品質化に加えて、より温暖な地域での高品質栽培が可能となり、既存生産地の代替植物切り替え及び新しい適地への作地転換することなく、地球温暖化に対応した植物の栽培ができる。   Further, according to the invention described in claim 1 or 4, the cultivation season can be extended to summer in winter cultivation crops such as strawberries. In addition to improving the quality in the regions that were considered suitable for these cultivations, high-quality cultivation in warmer regions is possible, without switching to alternative plants in existing production areas and changing to new suitable land Plants that respond to global warming can be cultivated.

請求項2又は6記載の発明によれば、冷媒循環式エアードライヤー(37)とヒーター(38)と減圧弁(39)を用いて、冷媒循環式エアードライヤー(37)により高圧下で効率的に空気の除湿を行うことで、ドライヤー(37)内で用いる熱交換器の能力が小さくても良く、また除湿後の空気はヒータ(38)で温度調整が容易に行え、減圧弁(39)で大気圧に戻して温度と湿度を調整した空気を植物の生育に利用できる。   According to the invention described in claim 2 or 6, the refrigerant circulation type air dryer (37), the heater (38), and the pressure reducing valve (39) are used to efficiently perform the refrigerant circulation type air dryer (37) under high pressure. By dehumidifying the air, the capacity of the heat exchanger used in the dryer (37) may be small, and the temperature of the dehumidified air can be easily adjusted by the heater (38), and the pressure reducing valve (39) Air whose temperature and humidity are adjusted to atmospheric pressure can be used for plant growth.

請求項3記載の発明によれば、除湿された温風と冷風の混合により得られた空気を必要に応じて加湿した後、植物の局所に放散することができるので前記請求項1記載の湿度範囲より狭い湿度範囲に調節できるので、前記請求項1記載の発明の効果に加えて、植物の生育の促進と病害防止などの効果がさらに良くなる。   According to the invention described in claim 3, since the air obtained by mixing the dehumidified hot air and cold air is humidified as necessary, it can be dissipated locally to the plant. Since the humidity range can be adjusted to be narrower than the range, in addition to the effect of the invention of claim 1, effects such as promotion of plant growth and disease prevention are further improved.

請求項4又は7記載の発明によれば、植物成長用の補助ガス、防病害補助ガス又は有益菌含有補助ガスなどの補助ガスを植物の局所に放散することができるので前記請求項1、2又は請求項4に記載の発明の効果に加えて、植物の生育の促進と病害防止などの効果がさらに良くなる。   According to invention of Claim 4 or 7, since auxiliary gas, such as auxiliary gas for plant growth, disease prevention auxiliary gas, or beneficial bacteria containing auxiliary gas, can be disperse | distributed locally to a plant, said Claim 1, 2 is provided. Alternatively, in addition to the effects of the invention described in claim 4, effects such as promotion of plant growth and disease prevention are further improved.

以下、本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の一実施例のブドウ栽培設備の平面図、図2は図1のブドウ栽培設備のII−II線縦断面図、図3は図2のブドウ栽培設備の果実部の構成を示す一部拡大図である。   1 is a plan view of a grape cultivation facility according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view taken along line II-II of the grape cultivation facility of FIG. 1, and FIG. 3 is a configuration of a fruit portion of the grape cultivation facility of FIG. FIG.

図1、図2及び図3に示すように、ブドウは、その幹1から主枝2、主枝2から小枝3へと伸び、各小枝3には葉4と果実房5が成育している。それぞれの果実房5は袋6にて覆われている。また主枝2と小枝3はブドウ栽培設備に設けられた針金7によって支持されている。また、袋6は果実房に固定針金8により固定されている。   As shown in FIGS. 1, 2, and 3, grapes extend from the trunk 1 to the main branch 2, and from the main branch 2 to the twig 3, and each twig 3 is grown with leaves 4 and fruit bunches 5. . Each fruit bunch 5 is covered with a bag 6. The main branch 2 and the twig 3 are supported by a wire 7 provided in the grape cultivation facility. The bag 6 is fixed to the fruit bun with a fixed wire 8.

このブドウ栽培設備は、加圧空気は配管9から後述するボルテックスチューブ10に供給され、ボルテックスチューブ10で加圧空気から作られた冷風は供給配管11を経由して各幹1の近くへ導かれ、供給配管11に接続している複数の分配配管12から各袋6内に送られる。分配配管12は固定針金8により枝2,3又は針金7に固定されている構成を備えている。
このように分配配管12は各袋6内に導かれるために各袋6内を分配配管12から供給される冷却空気により果実5にとって生育に最適な所定の環境に維持できる。
In this viticulture facility, pressurized air is supplied from a pipe 9 to a vortex tube 10 to be described later, and cold air made from the pressurized air in the vortex tube 10 is guided to the vicinity of each trunk 1 via a supply pipe 11. The plurality of distribution pipes 12 connected to the supply pipe 11 are sent into each bag 6. The distribution pipe 12 is configured to be fixed to the branches 2, 3 or the wire 7 by a fixed wire 8.
As described above, since the distribution pipes 12 are guided into the respective bags 6, the inside of the respective bags 6 can be maintained in a predetermined environment optimum for the growth of the fruits 5 by the cooling air supplied from the distribution pipes 12.

図4に本発明の一実施例に係る果実5にとって生育に最適な所定温度の空気を作るための温風制御のシステムの一例を示す。空気圧縮機13により加圧され、過飽和水蒸気分が凝縮した空気は遮断弁14を備えた配管9を通り除水器(除湿器)15に導かれ、除水器15で空気中の凝縮した水が配管16から図示されていないスチームトラップなどを用いて排水される。   FIG. 4 shows an example of a hot air control system for producing air having a predetermined temperature optimum for growth for the fruit 5 according to one embodiment of the present invention. The air pressurized by the air compressor 13 and condensed with the supersaturated water vapor passes through the pipe 9 provided with the shut-off valve 14 and is guided to the dehydrator (dehumidifier) 15, and the condensed water in the air by the dehydrator 15. Is drained from the pipe 16 using a steam trap (not shown).

除水器15内に乾燥剤を充填した場合には、除水器15内の加圧空気は露点を−40℃以下という、ほぼ完全に乾燥空気までの除湿ができる。その場合、除水器15は除湿器となる。通常は空気の加圧により生成する空気中の凝縮水の除去でも十分な病害予防が可能である。その場合の植物へ供給される冷風の湿度を、例えば、表1に示す。

Figure 2006246879
When the desiccant 15 is filled with the desiccant, the pressurized air in the dewaterer 15 can dehumidify to dry air almost completely with a dew point of −40 ° C. or lower. In that case, the dehydrator 15 becomes a dehumidifier. Usually, sufficient disease prevention is possible even by removing condensed water in the air generated by pressurization of air. The humidity of the cold air supplied to the plant in that case is shown in Table 1, for example.
Figure 2006246879

30℃の飽和湿度100%(絶対湿度0.02718kg/kg)の大気から20℃、50%(絶対湿度0.00735kg/kg)の空気を得る場合、大気を0.38MPaまで加圧すると空気中飽和の絶対湿度は0.00735kg/kgになるので、過飽和分の凝縮した水分0.01983kg/kgを排水する事によって20℃における50%の湿度の空気が得られる。   When air at 20 ° C. and 50% (absolute humidity 0.00735 kg / kg) is obtained from the atmosphere at 30 ° C. with a saturation humidity of 100% (absolute humidity 0.02718 kg / kg), the air is pressurized to 0.38 MPa in the air. Since the absolute humidity of saturation is 0.00735 kg / kg, air with a humidity of 50% at 20 ° C. can be obtained by draining 0.01983 kg / kg of condensed water of supersaturated content.

大気温度が低下して25℃の飽和湿度になった時に0.38MPaに加圧した空気の凝縮水を排水して20℃の空気とした場合、表中の点線で示す様に得られた空気の湿度は37%となる。従って、それぞれの植物に応じて最適許容範囲の湿度(例えば、ブドウ粒などの果実又はイチゴなどの葉茎の成長を促し、かつ果実や葉茎が湿らない程度の水分を含む空気の湿度)を想定して大気の加圧を行えば、除水器15に乾燥剤を入れて除湿器にする必要は無い。   When the condensed water of the air pressurized to 0.38 MPa is drained to 20 ° C. air when the atmospheric temperature drops to 25 ° C. saturated humidity, the air obtained as shown by the dotted line in the table The humidity is 37%. Therefore, according to each plant, the optimum allowable humidity (for example, the humidity of air containing moisture to the extent that fruits such as grape grains or leaves and stems such as strawberries are grown and the fruits and leaves are not moistened). Assuming that the atmosphere is pressurized, it is not necessary to put a desiccant into the dehydrator 15 to make a dehumidifier.

除湿された加圧空気はボルテックスチューブ10により配管17を流れる冷風と配管18を流れる温風とに分けられる。ボルテックスチューブ10は、チューブ10内の接線方向に高速注入された空気がチューブ10内を高速回転する際に外縁部は加圧されて温度上昇し、中心部は減圧されて温度低下する現象を利用するもので、外縁部付近より空気を取り出すと温風が得られ、中心部より空気を取り出すと冷風が得られるという機能を有するものであり、その特性の一例を表2に示す。

Figure 2006246879
The dehumidified pressurized air is divided by the vortex tube 10 into cold air flowing through the pipe 17 and hot air flowing through the pipe 18. The vortex tube 10 utilizes a phenomenon in which when the air injected at high speed in the tangential direction in the tube 10 rotates at a high speed in the tube 10, the outer edge portion is pressurized and the temperature rises, and the central portion is decompressed and the temperature drops. Therefore, hot air is obtained when air is taken out from the vicinity of the outer edge portion, and cold air is obtained when air is taken out from the center portion. Table 2 shows an example of the characteristics.
Figure 2006246879

得られた冷風と温風はそれぞれ配管17と配管18から三方弁19に導入されて混合され、所定温度の空気が配管11内に供給され、必要箇所に供給される。この温度調節は三方弁19の出口空気温度を温度計21で検出して、その結果に基づき、コントローラ(図示せず)により自動的に三方弁19の開度を変えて、冷風用の配管17と温風用の配管18の背圧を変更し、冷風側と温風側の空気の取り出し流量を変えることによって行われる。この方法は三方弁19で前記冷風と温風を混合して配管11内の空気の温度制御が行われ供給先に送る方法であり、冷風側と温風側の混合後の空気温度はボルテックスチューブ10内の断熱変化及び損失エネルギーに相当する温度降下しか得られないので、温度制御範囲は狭くなる。   The obtained cold air and hot air are respectively introduced from the pipe 17 and the pipe 18 into the three-way valve 19 and mixed, and air of a predetermined temperature is supplied into the pipe 11 and supplied to the necessary portions. In this temperature adjustment, the temperature of the outlet air of the three-way valve 19 is detected by the thermometer 21, and based on the result, the opening degree of the three-way valve 19 is automatically changed by a controller (not shown), and the pipe 17 for cold air is used. This is done by changing the back pressure of the hot air pipe 18 and changing the flow rate of the cold air and the hot air. This method is a method in which the cold air and the hot air are mixed by the three-way valve 19 and the temperature of the air in the pipe 11 is controlled and sent to the supply destination. The air temperature after mixing the cold air side and the hot air side is the vortex tube. Since only a temperature drop corresponding to the adiabatic change and the loss energy within 10 can be obtained, the temperature control range becomes narrow.

また、図5に本発明の実施例に係る他の温風制御のシステムの部分系統図を示すが、この制御方法は、加圧空気が流れる配管9からボルテックスチューブ10に供給された加圧空気をボルテックスチューブ10で冷風用の配管17と温風用の配管18とに分けた後、温風のみを配管18から三方弁19に導入し、冷風用の配管17に接続した供給先への配管11内の空気が所定温度になるように配管18内の温風の必要量のみを冷風用の配管17内の冷風と混合し、余剰の温風は配管22から排気する方法である。この方式は余剰温風を排気する事によって、図4に示す方法に比べてより広い温度範囲で制御できる。   FIG. 5 shows a partial system diagram of another hot air control system according to the embodiment of the present invention. This control method uses pressurized air supplied to the vortex tube 10 from a pipe 9 through which pressurized air flows. Is divided into the cold air pipe 17 and the hot air pipe 18 by the vortex tube 10, and then only the hot air is introduced from the pipe 18 into the three-way valve 19 and connected to the supply destination connected to the cold air pipe 17. In this method, only the necessary amount of hot air in the pipe 18 is mixed with the cold air in the pipe 17 for cold air so that the air in the pipe 11 reaches a predetermined temperature, and excess hot air is exhausted from the pipe 22. This method can be controlled in a wider temperature range than the method shown in FIG. 4 by exhausting excess warm air.

また、この方式は供給先に送る配管11内の空気が所定温度になるように三方弁19の出口にある配管11内の空気温度を温度計21で検出して、その結果に基づきコントローラ(図示せず)により自動的に三方弁19の開度を変えて、冷風に混合する温風の量を調節し、供給先に送る空気の温度制御を行う方式である。   In this system, the air temperature in the pipe 11 at the outlet of the three-way valve 19 is detected by the thermometer 21 so that the air in the pipe 11 to be sent to the supply destination has a predetermined temperature, and the controller (see FIG. (Not shown), the opening degree of the three-way valve 19 is automatically changed, the amount of hot air mixed with the cold air is adjusted, and the temperature of the air sent to the supply destination is controlled.

図6には、本発明の一実施例に係る温風制御のシステム系統図を示すが、これは除水器(除湿器)15で凝縮水のみを除去する方法では所定の湿度が得られない場合や、大気温度が変化しても一定湿度の空気を得たい場合に有効なシステムである。   FIG. 6 shows a system diagram of hot air control according to an embodiment of the present invention. This is a method in which only condensed water is removed by a dehydrator (dehumidifier) 15 and a predetermined humidity cannot be obtained. This is an effective system when it is desired to obtain air of constant humidity even when the atmospheric temperature changes.

すなわち、空気圧縮機13により加圧され、過飽和水蒸気分が凝縮した空気は遮断弁14を備えた配管9を通って除水器15に導かれ、除水器15で空気中の凝縮した水が配管16からスチームトラップ(図示せず)などを用いて排水される。除湿器15で所定湿度よりも湿度の低い乾燥空気を得て、該乾燥空気をボルテックスチューブ10に送り、該チューブ10内で所定の温度にする。該チューブ10内で得られた冷風と温風に分けてそれぞれ各配管17,18に流す。温風用の配管18のみを三方弁19に接続して温風を三方弁19に導入し、三方弁19の出口の温風用配管18とボルテックスチューブ10で得られた冷風を流す冷風用の配管17とを接続し、さらにその下流部の冷風用の配管17には加湿器24を接続する。また、加湿器24の下流部の空気配管11には補助ガス用配管23を接続し、さらに該配管23の接続部の下流部の空気配管11には該配管11内の空気の温度を計測する温度計21を設けている。また、三方弁19の出口の余剰の温風は配管22から排気する。   That is, the air pressurized by the air compressor 13 and condensed with the supersaturated water vapor is led to the water removal device 15 through the pipe 9 provided with the shut-off valve 14, and the condensed water in the air is removed by the water removal device 15. Water is drained from the pipe 16 using a steam trap (not shown). The dehumidifier 15 obtains dry air having a humidity lower than a predetermined humidity, and the dry air is sent to the vortex tube 10 so as to have a predetermined temperature in the tube 10. The cold air and the hot air obtained in the tube 10 are divided into the respective pipes 17 and 18 respectively. Only the hot air pipe 18 is connected to the three-way valve 19 to introduce the hot air into the three-way valve 19, and the hot air pipe 18 at the outlet of the three-way valve 19 and the cold air obtained by the vortex tube 10 flow through the cold air. A humidifier 24 is connected to the pipe 17 and further to the downstream pipe 17 for cold air. Further, an auxiliary gas pipe 23 is connected to the air pipe 11 downstream of the humidifier 24, and the temperature of the air in the pipe 11 is measured in the air pipe 11 downstream of the connecting part of the pipe 23. A thermometer 21 is provided. Further, excess hot air at the outlet of the three-way valve 19 is exhausted from the pipe 22.

こうして三方弁19の出口の温風用配管18内の温風に配管17内の冷風を加えて加湿器24に供給する。また、加湿器24に補給水配管25からの補給水を加え、さらに、加湿器24の出口の空気配管11に補助ガス配管23からの補助ガスを加える。その後、供給先空気用配管11内の空気の温度を温度計21で検出して、その結果に基づきコントローラ(図示せず)により自動的に三方弁19の開度を変えて配管17内の冷風に混合する配管18からの温風の量を調節する。また、冷風用の配管17内の冷風と温風により温度調節された混合空気には加湿器24から補給水が供給される。加湿器24からの補給水の供給量は配管11内の空気の湿度を湿度計(図示せず)で計測して設定し、以後はその設定した補給水を供給することで、供給先空気用配管11内の空気の湿度調整も行われる。さらに温度と湿度が調整された供給先空気用配管11内の空気には補助ガス配管23から補助ガスが供給されることもある。例えばイチゴのように、植物によっては、温室内に炭酸ガスを補充する事で炭酸ガス同化作用を促進させるためである。また、殺虫ガスなどの防病害補助ガス又は貴腐ブドウ生成用菌などの有益菌含有補助ガスを加えることもある。   In this way, the cool air in the pipe 17 is added to the warm air in the hot air pipe 18 at the outlet of the three-way valve 19 and supplied to the humidifier 24. Further, supplementary water from the supplementary water pipe 25 is added to the humidifier 24, and auxiliary gas from the auxiliary gas pipe 23 is added to the air pipe 11 at the outlet of the humidifier 24. Thereafter, the temperature of the air in the supply air piping 11 is detected by the thermometer 21, and based on the result, the opening degree of the three-way valve 19 is automatically changed by a controller (not shown) to cool the air in the piping 17. The amount of hot air from the pipe 18 to be mixed is adjusted. Further, makeup water is supplied from the humidifier 24 to the mixed air whose temperature is adjusted by the cold air and the hot air in the pipe 17 for cold air. The supply amount of makeup water from the humidifier 24 is set by measuring the humidity of the air in the pipe 11 with a hygrometer (not shown), and thereafter supplying the set makeup water, The humidity of the air in the pipe 11 is also adjusted. Further, the auxiliary gas may be supplied from the auxiliary gas pipe 23 to the air in the supply destination air pipe 11 whose temperature and humidity are adjusted. This is because some plants, such as strawberries, promote carbon dioxide assimilation by supplementing the greenhouse with carbon dioxide. In addition, a disease-preventing auxiliary gas such as an insecticidal gas or a beneficial bacteria-containing auxiliary gas such as a noble rot-producing bacterium may be added.

このように、図6に示すシステムでは所定温度、湿度の管理に加えて、植物成長用及び/又は防病害用及び/又は有益菌含有補助ガスなど補助ガスを植物の必要箇所へ供給することも容易であり、かつ効率的な植物栽培方法となる。   As described above, in the system shown in FIG. 6, in addition to the control of the predetermined temperature and humidity, auxiliary gas such as auxiliary gas for plant growth and / or disease prevention and / or beneficial bacteria-containing auxiliary gas may be supplied to the necessary part of the plant. It is an easy and efficient plant cultivation method.

夏季にイチゴの栽培環境温度が適温より高温化した場合には、葉の炭酸同化作用が低下して、高品質、多収穫のイチゴを商取引が可能な規模での生産量で栽培することは難しかった。   If the cultivation environment temperature of strawberries is higher than the optimum temperature in summer, the carbon assimilation effect of the leaves decreases, and it is difficult to cultivate high-quality, high-yielding strawberries at a production volume that allows commercial transactions. It was.

夏季の高温対策としては、例えば温室全体を冷却する等の方法が取られていたが、夏季の直射日光は温室内外の対流伝熱による熱放散では放散しきれず、温室内に水を噴霧すること等により温度調節をしていたが、温室内に水を噴霧すると葉が濡れることが避けられず、そのためにイチゴの生育に悪い影響を与え、効果的かつ経済的な栽培方法が無かった。   As a countermeasure against high temperatures in summer, for example, the whole greenhouse was cooled, but direct sunlight in summer could not be dissipated by heat dissipation by convective heat transfer inside and outside the greenhouse, and water was sprayed into the greenhouse. Although the temperature was controlled by such means as above, it was inevitable that the leaves would get wet when water was sprayed into the greenhouse, which adversely affected the growth of strawberries, and there was no effective and economical cultivation method.

図7には本発明の実施例に係るイチゴ栽培設備の概要系統図を示す。これは冷風をイチゴの葉の部分に部分的に供給し、夏季の高温化対策を効果的に行ってイチゴの収量を上げるシステムである。加圧空気が流れる配管9からボルテックスチューブ10に供給された加圧空気をボルテックスチューブ10で配管17内の冷風と配管18内の温風とに一旦分けた後、再び配管17内の冷風と配管18内の温風をそれぞれ三方弁19に導入し、三方弁19で所定温度になった空気を配管11を経由してその先端の空気放散部30からイチゴの栽培用のカバー29内に供給する。   FIG. 7 shows a schematic system diagram of the strawberry cultivation facility according to the embodiment of the present invention. This is a system that increases the yield of strawberries by supplying cold wind partially to the strawberry leaves and effectively taking measures against high temperatures in summer. The pressurized air supplied to the vortex tube 10 from the pipe 9 through which the pressurized air flows is once divided into the cold air in the pipe 17 and the hot air in the pipe 18 by the vortex tube 10, and then the cold air and the pipe in the pipe 17 again. The warm air in 18 is introduced into the three-way valve 19, and the air that has reached a predetermined temperature in the three-way valve 19 is supplied into the strawberry cultivation cover 29 from the air radiating portion 30 at the tip of the air via the pipe 11. .

このときカバー29内に供給する配管11内の空気が所定温度になるように、三方弁19の出口の配管11内の空気温度を温度計21で検出して、その結果に基づきコントローラ(図示せず)により自動的に三方弁19の開度を変えて、配管17内の冷風と配管18内の温風の混合比率を調節する。   At this time, the air temperature in the pipe 11 at the outlet of the three-way valve 19 is detected by the thermometer 21 so that the air in the pipe 11 supplied into the cover 29 reaches a predetermined temperature, and a controller (not shown) is detected based on the result. The degree of opening of the three-way valve 19 is automatically changed to adjust the mixing ratio of the cold air in the pipe 17 and the hot air in the pipe 18.

前記冷風と温風の混合後の配管11内の空気をカバー29で覆われたイチゴ26の葉の部分に集中的に空気放散部30から放散する。このようにして、たとえ夏季にイチゴが高温化した環境にあっても葉の部分は涼しい雰囲気にして炭酸同化作用を促進させてイチゴの収量を上げる装置を示す。また、図示していないが、殺虫ガスなどの防病害補助ガス又は貴腐ブドウ生成用菌などの有益菌含有補助ガス及び/または補給水を配管11内の空気に加えて集中的に空気放散部30からイチゴ26の葉の部分に放散することもある。   The air in the pipe 11 after the mixing of the cold air and the hot air is diffused from the air radiating unit 30 intensively to the leaf portion of the strawberry 26 covered with the cover 29. In this way, even if it is in an environment where the temperature of the strawberry is high in summer, the apparatus has a cool atmosphere and promotes carbon assimilation to increase the yield of strawberry. In addition, although not shown in the drawing, a disease prevention auxiliary gas such as an insecticidal gas or a beneficial bacteria-containing auxiliary gas such as a precious vine-producing fungus and / or makeup water is added to the air in the pipe 11 to concentrate the air diffuser. It may be scattered from 30 to the leaf part of strawberry 26.

本方式の場合、イチゴ栽培装置全体の温室28(図10参照)は大気開放部を拡大して、苗の周囲温度を大気温度とし、カバー29で覆われた炭酸同化作用を行う葉の部分のみに温度制御された空気(冷風)を配管11から降り注ぎ、炭酸同化作用の低下を防ぐ事ができる。
なお前記カバー29としてはイチゴなどの植物の局所と空気放散部30の全体を覆う通気性の袋6(図2参照)又は植物の局所の一部分を覆う通気性の基材を用いる。
In the case of this method, the greenhouse 28 (see FIG. 10) of the entire strawberry cultivation apparatus expands the atmosphere opening portion, sets the ambient temperature of the seedling to the atmospheric temperature, and only the portion of the leaf that performs carbon dioxide assimilation that is covered with the cover 29. The temperature-controlled air (cold air) can be poured down from the pipe 11 to prevent the carbon dioxide assimilation effect from decreasing.
As the cover 29, a breathable bag 6 (see FIG. 2) covering the local part of the plant such as strawberry and the whole air diffusing part 30 (see FIG. 2) or a breathable base material covering a part of the local part of the plant is used.

また、図8には図7にイチゴ栽培設備の株部の設備を変更した構成図を示すが、冷風を苗27の中心部等の一部に配管12から供給して、苗27にあたかも圃場全体が涼しい雰囲気にあるかのごとく感じさせて、炭酸同化作用の低下を防ぐ方法であり、図7に示す方法より更に少ない冷風で栽培することができる。   8 shows a configuration diagram in which the plant part of the strawberry cultivation facility is changed in FIG. 7, and cold air is supplied to a part of the center of the seedling 27 or the like from the pipe 12 so that the seedling 27 is treated as if it is a field. This is a method of making the whole feel as if it is in a cool atmosphere to prevent a decrease in carbon dioxide assimilation, and can be cultivated with less cold air than the method shown in FIG.

図9には、本発明の一実施例にかかる冷風制御の他のシステム系統図を示す。加圧空気を得る動力に加え、低温除湿空気を得る動力も必要であるが、大気温度からの冷風温度を余り下げる必要の無いときで、且つ、多量の冷風を必要とするときに有効なエアードライヤーを利用するシステムである。   FIG. 9 shows another system diagram of cold air control according to an embodiment of the present invention. In addition to the power to obtain pressurized air, the power to obtain low-temperature dehumidified air is also required, but it is effective when there is no need to lower the cool air temperature from the ambient temperature and when a large amount of cool air is required. This is a system that uses a dryer.

エアードライヤーユニット37内では、コンプレッサー31において加圧された加圧冷媒は、冷媒配管32でコンデンサー33に導かれて凝縮した後、冷媒配管32及びキャピラリーチューブ34を経て、断熱膨張してクーラー35に導かれ、クーラー35において加圧空気配管9aからの空気を冷却し、冷媒は加熱されて蒸気化して再びコンプレッサー31に戻る。コンデンサー33は電気モータ36で駆動するファン41で、適宜空冷される。   In the air dryer unit 37, the pressurized refrigerant pressurized in the compressor 31 is led to the condenser 33 through the refrigerant pipe 32 and condensed, and then adiabatically expands through the refrigerant pipe 32 and the capillary tube 34 to the cooler 35. Then, the air from the pressurized air pipe 9 a is cooled in the cooler 35, and the refrigerant is heated and vaporized to return to the compressor 31 again. The condenser 33 is a fan 41 driven by an electric motor 36 and is appropriately air-cooled.

一方、加圧空気配管9a内の加圧空気はクーラー35において冷媒の蒸発熱で冷却されて、温度低下して含有水蒸気を凝縮させ、除水器15において凝縮した水分をドレン配管16に逃がした後、加圧空気配管9bを通りヒーター38で加温されて減圧弁39で必要背圧に減圧される。電源からは電源ケーブル40によりファンモータ36及びヒータ38に電力が供給される。なお、加圧空気配管9aからの空気の加圧度合いが大きい程、クーラー35の伝熱面積は小さくてよい。   On the other hand, the pressurized air in the pressurized air pipe 9a is cooled by the evaporative heat of the refrigerant in the cooler 35, the temperature is lowered to condense the contained water vapor, and the condensed water in the dehydrator 15 is released to the drain pipe 16. Thereafter, it is heated by the heater 38 through the pressurized air pipe 9 b and is reduced to the required back pressure by the pressure reducing valve 39. Power is supplied from the power source to the fan motor 36 and the heater 38 by the power cable 40. In addition, the heat transfer area of the cooler 35 may be small, so that the pressurization degree of the air from the pressurized air piping 9a is large.

前記空気の減圧の際に断熱膨張のために空気の温度が低下する。このようにクーラー35及び減圧弁39で温度が低下した空気を必要な温度にするために温度調節設備21により温度検出して、前記ヒーター38の熱出力をコントローラ(図示せず)により制御する。   During the decompression of the air, the temperature of the air decreases due to adiabatic expansion. In order to make the air whose temperature has been lowered by the cooler 35 and the pressure reducing valve 39 in this way necessary temperature, the temperature adjustment equipment 21 detects the temperature, and the heat output of the heater 38 is controlled by a controller (not shown).

ヒーター38に必要な熱はエアードライヤーユニット37内で発生する排気熱を利用した、図示されていないリヒーターにより予め余熱して、最終的にヒーター38において温度調節しても良く、この方式が温度調節範囲は狭まるが熱効率的には有利である。   The heat necessary for the heater 38 may be preheated by a reheater (not shown) using exhaust heat generated in the air dryer unit 37, and the temperature may be finally adjusted in the heater 38. Although the range is narrow, it is advantageous in terms of thermal efficiency.

エアードライヤーユニット37とヒータ38で加圧空気から作られた冷風は供給配管11を経由してブドウの幹1の近くへ導かれ、供給配管11に接続している複数の分配配管12から果実房5を覆う袋6内に送られ、果実5の生育に最適な環境が得られる。なお、分配配管12は固定針金(図示せず)により枝2,3又は針金7に固定されている。
また、図示していないが、殺虫ガスなどの防病害補助ガス又は貴腐ブドウ生成用菌などの有益菌含有補助ガス及び/または補給水を配管11内の空気に加えて集中的に空気放散部からイチゴの葉の部分に放散することもある。
The cool air made from the pressurized air by the air dryer unit 37 and the heater 38 is guided to the vicinity of the grape stem 1 via the supply pipe 11 and is fed from a plurality of distribution pipes 12 connected to the supply pipe 11. Is sent into a bag 6 covering 5, and an optimum environment for the growth of the fruit 5 is obtained. The distribution pipe 12 is fixed to the branches 2, 3 or the wire 7 by a fixed wire (not shown).
In addition, although not shown in the drawing, a disease-preventing auxiliary gas such as an insecticidal gas or a beneficial bacteria-containing auxiliary gas such as a precious vine-producing fungus and / or makeup water is added to the air in the pipe 11 to concentrate the air diffuser. May radiate to the strawberry leaves.

本実施例の冷媒循環式エアードライヤーユニット37とヒータ38を用いる温度調節された空気を利用して植物の局所に放散させる方法は前記実施例2に示すボルテックスチューブ10を用いる方法に代えてイチゴなどの植物の栽培設備に適用しても良い。   The method of radiating locally to the plant using the temperature-controlled air using the refrigerant circulation type air dryer unit 37 and the heater 38 of this embodiment is replaced with the method using the vortex tube 10 shown in the second embodiment, such as strawberry. You may apply to the plant cultivation equipment.

本発明の一実施例のブドウ栽培設備の平面図である。It is a top view of the grape cultivation installation of one Example of this invention. 図1のブドウ栽培設備のII−II線縦断面図である。It is the II-II line longitudinal cross-sectional view of the grape cultivation installation of FIG. 図2のブドウ栽培設備の果実部の構成を示す一部拡大図である。It is a partially expanded view which shows the structure of the fruit part of the grape cultivation installation of FIG. 本発明の一実施例に係る果実にとって生育に最適な所定温度の空気を作るための温風制御のシステム系統図である。It is a system system | strain diagram of the warm air control for making the air of the predetermined temperature optimal for growth for the fruit which concerns on one Example of this invention. 本発明の一実施例に係る温風制御のシステムの部分系統図である。It is a partial systematic diagram of the system of hot air control concerning one example of the present invention. 本発明の一実施例の形態に係る配管系統図である。It is a piping system diagram concerning the form of one example of the present invention. 本発明の一実施例に係るイチゴ栽培設備の概要系統図である。It is a general | schematic systematic diagram of the strawberry cultivation equipment which concerns on one Example of this invention. 図7のイチゴ栽培設備の株部設備を変更した構成図である。It is the block diagram which changed the stock part equipment of the strawberry cultivation equipment of FIG. 本発明の一実施例のブドウ栽培設備の平面図である。It is a top view of the grape cultivation installation of one Example of this invention. 従来の栽培装置の一例の温室横断面を示す。The greenhouse cross section of an example of the conventional cultivation apparatus is shown.

符号の説明Explanation of symbols

1 ブドウの幹 2 ブドウの主枝
3 ブドウの小枝 4 ブドウの葉
5 ブドウの果実房 6 袋
7 針金 8 固定針金
9 配管 10 ボルテックスチューブ
11、12、16〜18、22,23,25 配管
13 空気圧縮機 14 遮断弁
15 除水器(除湿器)
19 三方弁 21 温度計
24 加湿器 26 イチゴ
27 苗 28 温室
29 カバー 30 空気放散部
31 コンプレッサー
32 冷媒配管 33 コンデンサー
34 キャピラリーチューブ
35 クーラー 37 エアードライヤーユニット
38 ヒーター 39 減圧弁
40 電源ケーブル 41 ファン
DESCRIPTION OF SYMBOLS 1 Grape trunk 2 Grape main branch 3 Grape twig 4 Grape leaf 5 Grape fruit bunch 6 Bag 7 Wire 8 Fixed wire 9 Piping 10 Vortex tube 11, 12, 16-18, 22, 23, 25 Piping 13 Air Compressor 14 Shut-off valve 15 Dehydrator (dehumidifier)
19 Three-way valve 21 Thermometer 24 Humidifier 26 Strawberry 27 Seedling 28 Greenhouse 29 Cover 30 Air diffuser 31 Compressor 32 Refrigerant piping 33 Condenser 34 Capillary tube 35 Cooler 37 Air dryer unit 38 Heater 39 Pressure reducing valve 40 Power cable 41 Fan

Claims (7)

加圧空気源から凝縮水を除去された加圧空気を供給する加圧空気配管と、該加圧空気配管に接続したボルテックスチューブと、該ボルテックスチューブに接続し、かつボルテックスチューブで得られた温風と冷風がそれぞれ流れる温風配管と冷風配管と、前記両方の配管から供給される温風と冷風の混合比率を調整して混合する温風と冷風の混合量調節手段と、温風と冷風の混合により温度が調節された空気を植物の局所に導く空気配管と、該空気配管の先端に植物の前記局所を加熱又は冷却する空気放散手段を備えたことを特徴とする植物の栽培装置。   Pressurized air piping for supplying pressurized air from which condensed water has been removed from a pressurized air source, a vortex tube connected to the pressurized air piping, and a temperature obtained by connecting to the vortex tube and obtained from the vortex tube. A hot air pipe and a cold air pipe through which the wind and cold air respectively flow, a hot water and cold air mixing amount adjusting means for adjusting and mixing the mixing ratio of hot air and cold air supplied from both pipes, and hot air and cold air An apparatus for cultivating a plant, comprising: an air pipe for guiding air, the temperature of which has been adjusted by mixing, to a local part of the plant; and an air diffusing means for heating or cooling the local part of the plant at a tip of the air pipe. 加圧空気を供給する加圧空気配管と、該加圧空気配管に接続し、加圧空気を冷却された冷媒と熱交換させて除湿するための冷媒循環式エアードライヤーと、該エアードライヤーで湿度調整された高圧空気の温度を所定の温度に再加熱するヒーターと、該ヒーターで再加熱された空気を減圧する減圧弁と、減圧され、温度と湿度が調節された空気を植物の局所に導く空気配管と、該空気配管の先端に植物の前記局所を加熱又は冷却する空気放散手段を備えたことを特徴とする植物の栽培装置。   Pressurized air piping for supplying pressurized air, a refrigerant circulation type air dryer connected to the pressurized air piping for heat exchange with the cooled refrigerant to dehumidify, and humidity in the air dryer A heater that reheats the temperature of the adjusted high-pressure air to a predetermined temperature, a pressure-reducing valve that depressurizes the air reheated by the heater, and air that has been depressurized and adjusted in temperature and humidity is guided locally to the plant. An apparatus for cultivating a plant, comprising: an air pipe; and an air diffusion means for heating or cooling the local part of the plant at a tip of the air pipe. 前記温度調節された空気を植物の局所に導く前記空気配管には空気の湿度を調整する加湿手段を設けたことを特徴とする請求項1又は2記載の植物の栽培装置。   The plant cultivation apparatus according to claim 1 or 2, wherein humidification means for adjusting humidity of air is provided in the air pipe that guides the temperature-adjusted air locally to the plant. 前記温度調節された空気を植物の局所に導く前記空気配管には植物成長用補助ガス又は防病害補助ガスを含む補助ガスを供給する補助ガス供給手段を設けたことを特徴とする請求項1叉は2記載の植物栽培装置。   2. An auxiliary gas supply means for supplying an auxiliary gas including an auxiliary gas for plant growth or an auxiliary gas for disease prevention is provided in the air pipe for guiding the temperature-adjusted air locally to the plant. Is a plant cultivation apparatus according to 2. 加圧空気源から除水された加圧空気をボルテックスチューブに供給して温風と冷風を発生させ、得られた温風と冷風の混合比率を調整して合流させ、得られた温度及び湿度が調節された空気を植物の局所又はその近傍のみに放散することを特徴とする植物の栽培方法。   Pressurized air removed from the pressurized air source is supplied to the vortex tube to generate hot air and cold air, and the resulting hot air and cold air are mixed and mixed to obtain the obtained temperature and humidity. A method for cultivating a plant, characterized in that the air in which the temperature is adjusted is diffused only locally or in the vicinity of the plant. 加圧空気を冷媒循環式エアードライヤーとヒーターと減圧弁を順次通して空気の温度と湿度を調節し、得られた温度及び湿度が調節された空気を植物の局所又はその近傍のみに放散することを特徴とする植物の栽培方法。   Adjust the temperature and humidity of the air by passing the pressurized air sequentially through the refrigerant circulation air dryer, heater and pressure reducing valve, and dissipate the air whose temperature and humidity are adjusted to the local area of the plant or its vicinity. Plant cultivation method characterized by the above. 植物成長用補助ガス叉は防病害補助ガスを含む補助ガス及び/又は補給水を前記温度及び湿度を調節された空気に加えることを特徴とする請求項5又は6記載の植物栽培方法。   7. The plant cultivation method according to claim 5, wherein auxiliary gas for plant growth or auxiliary gas containing disease prevention auxiliary gas and / or makeup water is added to the air whose temperature and humidity are adjusted.
JP2005188214A 2005-02-14 2005-06-28 Plant cultivating apparatus and method Withdrawn JP2006246879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188214A JP2006246879A (en) 2005-02-14 2005-06-28 Plant cultivating apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005036524 2005-02-14
JP2005188214A JP2006246879A (en) 2005-02-14 2005-06-28 Plant cultivating apparatus and method

Publications (1)

Publication Number Publication Date
JP2006246879A true JP2006246879A (en) 2006-09-21

Family

ID=37087985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188214A Withdrawn JP2006246879A (en) 2005-02-14 2005-06-28 Plant cultivating apparatus and method

Country Status (1)

Country Link
JP (1) JP2006246879A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097841A (en) * 2009-11-04 2011-05-19 Katsuji Takayama Device for warming fruit
JP2011097840A (en) * 2009-11-04 2011-05-19 Katsuji Takayama Cover for warming fruit
KR101449332B1 (en) 2013-09-27 2014-10-13 현대자동차주식회사 Module for maintaining constant temperature of engine-oil and operating-method thereof
CN106106011A (en) * 2016-06-17 2016-11-16 霍山县新元生态农业有限公司 A kind of stereo cultivating method of Fructus Vitis viniferae, Fructus Fragariae Ananssae and Lentinus Edodes
CN106804281A (en) * 2017-04-06 2017-06-09 青岛农业大学 A kind of technology for improving strawberry fruit quality
CN110169276A (en) * 2019-04-10 2019-08-27 四川大学 A kind of method that cigarette strain quickly covers top
CN111149613A (en) * 2020-01-21 2020-05-15 南京信息工程大学 Summer high-temperature-resistant greenhouse maintenance management method for grapes through humidity regulation
JP2021126092A (en) * 2020-02-17 2021-09-02 ヤマト電機資産管理株式会社 Plant cure system
JP7076859B1 (en) 2021-08-04 2022-05-30 株式会社岡本ファーム Fruit cultivation system and fruit cultivation method
CN115589875A (en) * 2022-08-01 2023-01-13 农业农村部环境保护科研监测所(Cn) Hydrothermal circulation low-carbon vegetable planting system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097841A (en) * 2009-11-04 2011-05-19 Katsuji Takayama Device for warming fruit
JP2011097840A (en) * 2009-11-04 2011-05-19 Katsuji Takayama Cover for warming fruit
KR101449332B1 (en) 2013-09-27 2014-10-13 현대자동차주식회사 Module for maintaining constant temperature of engine-oil and operating-method thereof
CN106106011A (en) * 2016-06-17 2016-11-16 霍山县新元生态农业有限公司 A kind of stereo cultivating method of Fructus Vitis viniferae, Fructus Fragariae Ananssae and Lentinus Edodes
CN106804281A (en) * 2017-04-06 2017-06-09 青岛农业大学 A kind of technology for improving strawberry fruit quality
CN110169276A (en) * 2019-04-10 2019-08-27 四川大学 A kind of method that cigarette strain quickly covers top
CN111149613A (en) * 2020-01-21 2020-05-15 南京信息工程大学 Summer high-temperature-resistant greenhouse maintenance management method for grapes through humidity regulation
JP2021126092A (en) * 2020-02-17 2021-09-02 ヤマト電機資産管理株式会社 Plant cure system
JP7270980B2 (en) 2020-02-17 2023-05-11 ヤマト電機資産管理株式会社 Plant curing system
JP7076859B1 (en) 2021-08-04 2022-05-30 株式会社岡本ファーム Fruit cultivation system and fruit cultivation method
JP2023023128A (en) * 2021-08-04 2023-02-16 株式会社岡本ファーム Fruit cultivation system and fruit cultivation method
CN115589875A (en) * 2022-08-01 2023-01-13 农业农村部环境保护科研监测所(Cn) Hydrothermal circulation low-carbon vegetable planting system

Similar Documents

Publication Publication Date Title
JP2006246879A (en) Plant cultivating apparatus and method
EP2893800B1 (en) System and method for growing a plant in an at least partly conditioned environment
Misra et al. Evaporative cooling technologies for greenhouses: a comprehensive review
US20040194371A1 (en) Greenhouse climate control system
Chantoiseau et al. Heat-pump dehumidifier as an efficient device to prevent condensation in horticultural greenhouses
Kubota et al. Greenhouse tomato production.
JP5660558B2 (en) Elevated cultivation device and method for constructing moisture permeable waterproof sheet in elevated cultivation device
Bailey Microclimate, physical processes and greenhouse technology
US20090077875A1 (en) System for conditioning crops
JP5200212B2 (en) Plant cultivation temperature control device
CN205005606U (en) Be suitable for greenhouse in arid rainless area to plant with dehumidification cooling system
CN207820683U (en) A kind of floriculture greenhouse heating apparatus
JP2003219736A (en) Opened air conditioner for raising seedling
Qian et al. Vertical temperature gradients in the semi-closed greenhouses: occurrence and effects
JP2023006344A (en) Environmental control system to control microenvironment of plants
KR102553718B1 (en) Nutrient solution cooling device and method in which the efficiency of the chiller is increased by introducing a buffer tank and a three-way valve
Le Quillec et al. Benefits of a semi-closed greenhouse for tomato production in the West of France
KR101507045B1 (en) Machinery and management system for Water culture of Fruit tree
KR200401411Y1 (en) Heating and humidity control device for greenhouse
Youssef et al. Improving the Greenhouses macroclimate of hot and humid regions by modified evaporative cooling System
JP7495552B2 (en) Carbon dioxide supply device and method
CN221011105U (en) Seedling raising shed temperature control dehumidification system
CN211657015U (en) Greenhouse microclimate regulation and control system
JP7342078B2 (en) Cultivation system using liquid fertilizer, humidity, temperature, and air control
JP7523047B2 (en) Plant Growing Pot

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902