JP2022551310A - ロボットアーム内の故障検出応答 - Google Patents

ロボットアーム内の故障検出応答 Download PDF

Info

Publication number
JP2022551310A
JP2022551310A JP2022521419A JP2022521419A JP2022551310A JP 2022551310 A JP2022551310 A JP 2022551310A JP 2022521419 A JP2022521419 A JP 2022521419A JP 2022521419 A JP2022521419 A JP 2022521419A JP 2022551310 A JP2022551310 A JP 2022551310A
Authority
JP
Japan
Prior art keywords
motor
phase
controller
joint
robotic arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022521419A
Other languages
English (en)
Other versions
JP7361905B2 (ja
Inventor
ロバーツ・ポール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMR Surgical Ltd
Original Assignee
CMR Surgical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMR Surgical Ltd filed Critical CMR Surgical Ltd
Publication of JP2022551310A publication Critical patent/JP2022551310A/ja
Application granted granted Critical
Publication of JP7361905B2 publication Critical patent/JP7361905B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0004Braking devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/02Details
    • H02P3/025Details holding the rotor in a fixed position after deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/20Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by reversal of phase sequence of connections to the motor

Abstract

ジョイント(205)によって第2のリンク(204)に接続された第1のリンク(204)と、第2のリンク(204)が第1のリンク(204)に対して動くことを可能にするジョイント(205)と、ジョイント(205)を駆動するためのモータ(208)と、モータ(208)を制御するためのコントローラ(209)と、を備える、ロボットアーム(202)。コントローラ(209)は、重力に対してジョイント(205)の位置を維持するために、モータ(208)に制動電流を印加することによって、ロボットアーム(202)の故障の検出に応答して、モータ(208)を電気的に制動するように構成されている。コントローラ(209)は、ジョイント(205)が能動的に駆動されない場合にロボットアーム(202)が重力下で垂れ下がることになる構成にジョイント(205)がある場合のみ、この電気的に制動することを実施する。【選択図】図3

Description

本発明は、ロボットアームを制御すること、特に、ロボットアームの故障を検出し、それに応答することに関する。
図1は、動作を実施するための典型的なロボット100を例示する。ロボット100は、基部101、ロボットアーム102、および器具103から構成される。基部101は、ロボットを支持し、それ自体が、例えば、床、天井、またはカートにしっかりと取り付けられる。ロボットアーム102は、基部と器具との間に延在する。ロボットアームは、可撓性ジョイント105が散在する剛性リンク104から構成される。それによって、ロボットアームは、関節式であり、その遠位端、したがって、ワークスペース内で器具を動かすことができる。器具は、シャフト106およびエンドエフェクタ107を含む。エンドエフェクタ107は、ロボットアームからの器具の最遠位位置に位置する。エンドエフェクタは、ロボットが行っている動作に関与する。例えば、ロボットは、車両に対する動作を実施するための車両製造プラントにおける産業用ロボットであり得る。別の例として、ロボットは、外科手術を補助または実施するための外科手術ロボットであり得る。
ロボットアームのジョイント105の各々は、モータによって駆動される。ロボットアーム内の故障の検出に応答して、故障が評価される間、ロボットアームを定位置に保持することが望ましい場合がある。これは、ロボットアームの各モータに機械的制動を適用することによって行われることが知られている。しかしながら、各モータのドライブトレインに機械的制動を組み込むことは、ロボットアームの重量を増加させ、ロボットアーム内の空間を占有する。より軽量で、よりコンパクトな解決策が必要とされる。
第1の態様によると、ジョイントによって第2のリンクに接続された第1のリンクであって、第2のリンクが第1のリンクに対して動くことをジョイントが可能にする、第1のリンクと、ジョイントを駆動するためのモータと、モータを制御するためのコントローラであって、コントローラは、ロボットアームの故障の検出に応答して、重力に対してジョイントの位置を維持するように、モータに制動電流を印加することによって、モータを電気的に制動するように構成されている、コントローラと、を備える、ロボットアームが提供される。
モータが、多相モータであり得、多相モータが、多相モータの各相に対して、モータ巻線と、モータ巻線に駆動信号を印加するためのモータ駆動回路と、モータ駆動回路に電源を接続するための負荷スイッチと、を備える。
多相モータが、3つの相を備え得、コントローラが、ロボットアームの故障の検出に応答して、モータの全ての3つの相に制動電流を印加するように構成され得る。
コントローラが、ロボットアームの故障の検出に応答して、モータの第1の対の相の間のみ、第1の対の第1の相から第1の対の第2の相まで、制動電流を印加し得る。
コントローラが、直前の段落の制動電流を印加することに続いて、ロボットアームの故障を検出し続けることに応答して、モータの第2の対の相の間のみ、第2の対の第1の相から第2の対の第2の相まで、制動電流を印加し得る。
コントローラが、直前の段落の制動電流を印加することに続いて、ロボットアームの故障を検出し続けることに応答して、モータの第3の対の相の間のみ、第3の対の第1の相から第3の対の第2の相まで、制動電流を印加し得る。
コントローラが、直前の段落の制動電流を印加することに続いて、ロボットアームの故障を検出し続けることに応答して、モータの第1の対の相の間のみ、第1の対の第2の相から第1の対の第1の相まで、制動電流を印加し得る。
コントローラが、直前の段落の制動電流を印加することに続いて、ロボットアームの故障を検出し続けることに応答して、モータの第2の対の相の間のみ、第2の対の第2の相から第2の対の第1の相まで、制動電流を印加し得る。
コントローラが、直前の段落の制動電流を印加することに続いて、ロボットアームの故障を検出し続けることに応答して、モータの第3の対の相の間のみ、第3の対の第2の相から第3の対の第1の相まで、制動電流を印加し得る。
故障が、電力喪失であり得、コントローラが、ロボットアームの外部の一次電源からモータに制動電流を接続することによって、電力喪失の検出に応答して、モータを電気的に制動し得る。
故障が、電力喪失であり得、コントローラが、ロボットアームの外部のバックアップ電源からモータに制動電流を接続することによって、電力喪失の検出に応答して、モータを電気的に制動し得る。
ロボットアームが、カート上に装着され得、バックアップ電源が、カート内に収容された再充電可能なバッテリであり得る。
コントローラが、バックアップ電源から制動電流を印加することに続いて、電力喪失を検出し続けることに応答して、一次電源およびバックアップ電源とは独立してモータに接続されたさらなるバックアップ電源からモータに制動電流を接続するように構成され得る。
さらなるバックアップ電源が、5分未満にわたって重力に対するジョイントの位置を維持するのに十分な電力のみを提供することができる再充電不可能バッテリであり得る。
多相モータの単相における故障の検出に応答して、コントローラが、その単相のモータ巻線をモータから絶縁するように、その単相の負荷スイッチを開くことと、モータの他の相に制動電流を印加することと、を行い得る。
モータが、多相モータの各相に対して、負荷スイッチとモータ駆動回路との間に電流センサを備え得、電流制限が超過されたときに相における故障をコントローラに信号伝達するように電流センサが構成されている。
各モータ駆動回路が、パルス幅変調(PWM)モードでそのそれぞれのモータ巻線を駆動するように構成され得、モータ駆動回路が、PWM信号を駆動するためのハイサイドトランジスタおよびローサイドトランジスタを備え得る。モータは、多相モータの各相に対して、ハイサイドトランジスタおよびローサイドトランジスタがPWM信号を生成するために動作していることを検出するための回路をさらに備え得、回路は、PWM信号が生成されない場合に相における故障をコントローラに信号伝達し得る。
回路が、PWM信号の高パルス中に巻線に供給される電圧を高閾値と比較するように構成された第1のコンパレータと、PWM信号の低パルス中に巻線に供給される電圧を低閾値と比較するように構成された第2のコンパレータと、を備え得、回路は、巻線に供給される電圧が高閾値を下回るか、または低閾値を上回る場合、故障をコントローラに信号伝達するように構成されている。
各モータ駆動回路のハイサイドトランジスタおよびローサイドトランジスタが、直列に接続され得、各モータ駆動回路が、ハイサイドおよびローサイドトランジスタと並列に接続されたコンデンサをさらに備え得る。
ジョイントは、第2のリンクが第1のリンクに対して軸を中心として回転することを可能にし得、制動電流が、ロボットアームの現在の構成に対してジョイントの回転位置を係止するように、ジョイントに固定トルクを提供するものであり得る。
制動電流が、固定トルクを提供する前に、ジョイントの動きを停止するためにジョイントに初期トルクを提供するものであり得る。
ここで、添付図面を参照して、本発明を例として説明する。図は、以下のとおりである。
既知のロボットアームを例示する。 関節式ロボットアームを例示する。 ロボットアームのジョイントを駆動するためのモータを例示する。 図3のモータの相の例示的な構造を例示する。 モータに組み込まれたセンサを例示する。 図3の電源の例示的な構造を例示する。 ジョイントモータの起動手順を例示するフローチャートである。 故障検出後の一連の保持状態を例示する。
以下の開示は、図2に例示されるタイプのロボット200を制御することに関する。ロボットは、一端で基部201に接続され、他端で器具203に接続されたロボットアーム202から構成される。ロボットアーム202は、可撓性ジョイント205が散在する一連のリンク204を備える。各可撓性ジョイントは、それが接続するリンクが互いに対して動くことを可能にする。可撓性ジョイントは、回転ジョイントを備え得、それらの各々は、それが接続するリンクが軸を中心として互いに対して回転することを可能にする。可撓性ジョイントは、テレスコピックジョイントを備え得、それらの各々は、それが接続するリンクが軸に沿って互いに対して伸長することを可能にする。器具203は、シャフト206と、動作を実施するためのエンドエフェクタ207と、を備える。
各ジョイントは、モータ208によって駆動される。ジョイントコントローラ209は、モータを制御してジョイントを駆動する。ロボットアームの各ジョイントは、別個のモータによって駆動され得る。好適には、そのモータは、ジョイントの近位に位置する。例えば、ジョイントが接続する2つのリンクのうち、モータは、ロボットアームの基部の最近位にあるリンク上に位置し得る。しかしながら、いくつかの状況では、モータは、ロボットアームの基部の最遠位にあるリンク上に位置し得る。各ジョイントモータは、モータを制御するための専用のジョイントコントローラを有し得る。代替的に、ジョイントコントローラは、2つ以上のジョイントモータを制御し得る。
図3は、ロボットアーム202のジョイント205を駆動するための例示的なモータ300を例示する。モータ300は、多相モータである。モータは、ロータおよびステータと、ロータおよびステータの一方に装着され、ロータおよびステータの他方に作用するための複数の巻線と、を有する。各巻線は、一端で他の巻線に接続され、他端でモータ相に接続される。電流は、巻線を通して連続的に駆動され、ロータをステータに対して回転させ、それによって、ジョイント205を駆動するために使用され得るトルクを生成する。図3に示される例では、モータは、第1の巻線U302に接続された第1の相U301、第2の巻線V304に接続された第2の相V303、および第3の巻線W306に接続された第3の相W305を有する、三相モータである。しかしながら、より一般的には、モータは、3つよりも多い相を有し得る。
モータ301、303、305の各相は、負荷スイッチ307、308、309と、モータ駆動回路310、311、312と、を備える。負荷スイッチは、ジョイントコントローラ317からの制御入力314、315、316に応答して、電源レール313からその相のモータ駆動回路に電源を接続する。モータ駆動回路は、制御入力321、322、323に応答して、駆動信号318、319、320をその相のモータ巻線に印加する。電力は、電源324から電源レール313に供給される。
図4は、図3のモータ相301、303、305の例示的な構造を例示する。負荷スイッチ307、308、309は、トランジスタによって実装され得るスイッチ400を含む。例えば、スイッチ400は、電界効果トランジスタ(FET)によって実装され得る。モータ駆動回路310、311、312は、2つのトランジスタ、ハイサイドトランジスタ401およびローサイドトランジスタ402を備え得る。トランジスタ401、402の各々は、FETによって実装され得る。
ハイサイドトランジスタ401およびローサイドトランジスタ402は、直列に接続される。負荷スイッチ400、ハイサイドトランジスタ401、およびローサイドトランジスタ402は、全て、直列に接続され、ハイサイドトランジスタ401は、ローサイドトランジスタ402と負荷スイッチ400との間にある。負荷スイッチ400の他方側は、電源レール313に接続される。ローサイドトランジスタ402の他方側は、接地403に接続される。駆動信号318、319、320は、ハイサイドトランジスタとローサイドトランジスタとの間に接続される駆動信号ライン410に出力される。モータ駆動回路は、ハイサイドトランジスタ401およびローサイドトランジスタ402と並列に接続されたコンデンサ411を追加的に備え得る。具体的には、コンデンサ411は、ハイサイドトランジスタ401の一方側およびローサイドトランジスタ402の対向する側に接続される。言い換えると、コンデンサ411は、スイッチ400とハイサイドトランジスタ401との間、およびローサイドトランジスタ402と接地403との間に接続されている。コンデンサ411は、過電流がモータ駆動回路に流れる原因となる負荷スイッチの故障の事象において、ハイサイドトランジスタおよびローサイドトランジスタを保護する。このシナリオでは、コンデンサ411は、電流の一部がハイサイドトランジスタおよびローサイドトランジスタを通って流れること、したがって、損傷させることを防止する。
ジョイントコントローラ317は、制御入力407を生成して負荷スイッチ400に出力するための負荷スイッチ制御ユニット404を備える。制御入力407は、負荷スイッチ400を制御して閉じ、それによって、電源レールからモータ駆動回路までを通して電源を接続する。制御入力407はまた、負荷スイッチ400を制御して開き、それによって、電源レールからモータ駆動回路までの電源を接続解除する。ジョイントコントローラ317は、ハイサイドゲート入力408を生成してハイサイドトランジスタ401に出力するためのハイサイドゲートドライバ405を備える。ハイサイドゲート入力408は、ハイサイドトランジスタ401を制御して、それを通る電流を有効化および無効化する。ジョイントコントローラ317は、ローサイドゲート入力409を生成してローサイドトランジスタ402に出力するためのローサイドゲートドライバ406を備える。ローサイドゲート入力409は、ローサイドトランジスタ402を制御して、それを通る電流を有効化および無効化する。
ジョイントコントローラは、駆動信号ライン410上にパルス幅変調(PWM)駆動信号を生成するように、ハイサイドトランジスタ401およびローサイドトランジスタ402のゲートを駆動する。したがって、動作中、ジョイントコントローラは、第1のモータ相Uの負荷スイッチを制御して閉じ、ハイおよびローサイドゲートドライバ入力を提供して、モータ駆動回路に、第1の巻線Uを駆動するためのPWM駆動信号を生成させることによって、モータを駆動する。次いで、ジョイントコントローラは、ハイおよびローサイドゲートドライバ入力を提供して、モータ駆動回路に、PWM駆動信号の生成を継続解除させる。ジョイントコントローラは、このプロセスを他のモータ巻線の各々に順次繰り返す。任意選択的に、ジョイントコントローラは、その時点で開くためにPWM駆動信号を生成していない、モータ相の負荷スイッチを制御し得る。これは、これらの相のモータ駆動回路に電源が接続されることを防止する。
図5は、図3に示されるように例示的な三相モータを例示しており、ジョイントコントローラ317および各モータ相301、303、305は、図4に示される構造を有する。ジョイントコントローラ317の負荷スイッチ制御ユニットは、各モータ相の負荷スイッチ400a、400b、400cにそれぞれ制御入力407a、407b、407cを提供する。ジョイントコントローラ317のハイサイドゲートドライバ405は、各モータ相のハイサイドトランジスタ401a、401b、401cのそれぞれにハイサイドゲート入力408a、408b、408cを提供する。ジョイントコントローラ317のローサイドゲートドライバ406は、各モータ相のハイサイドトランジスタ402a、402b、402cのそれぞれにローサイドゲート入力409a、409b、409cを提供する。
図5のモータはまた、複数のセンサを備える。各モータ相は、その相の負荷スイッチとモータ駆動回路との間に位置する電流センサ500a、500b、500cを備える。電流センサは、例えば、電流感知抵抗器であり得る。電流センサは、電流制限を有する。電流制限は、既定され得る。例えば、電流制限は、20Aであり得る。電流センサ出力は、ジョイントコントローラ317(図示せず)に接続される。電流センサは、電流センサを通過する電流が電流制限を超える場合、ジョイントコントローラ317に信号伝達するように構成されている。
各モータ相は、モータ巻線への駆動信号の電圧が、PWM信号の高パルスの間に高閾値を上回り、かつPWM信号の低パルスの間に低閾値を下回るかどうかを検出するためのセンサ回路を備える。好適には、この回路は、パルスの端に向かう電圧を検出する。例えば、電圧は、パルスの後半で検出され得る。
このときまでに、電圧は、安定しているはずである。図5は、2つのコンパレータを備えるセンサ回路の例示的な実装を例示する。回路は、3つのモータ相の各々に対して同一である。ここで、第1のモータ相Uを監視するための回路が説明される。
2つのコンパレータ501a、502aは、各々、1つの入力503a、506aとして駆動信号318を有する。第1のコンパレータ501aは、その他の入力504aとして、上述の高閾値を有する。その高閾値は、例えば、供給レール313上の供給電圧の割合であり得る。その割合は、0.8~0.99の割合であり得る。その割合は、0.9~0.95の割合であり得る。割合は、0.95であり得る。第1のコンパレータは、駆動信号電圧を高閾値と比較する。第1のコンパレータの出力505aは、駆動信号電圧がその高閾値を上回るか、または下回るかを示す。第2のコンパレータ502aは、その他の入力507aとして、上述の低閾値を有する。その低閾値は、例えば、供給レール313上の供給電圧の割合であり得る。その割合は、0.01~0.2の割合であり得る。その割合は、0.05~0.1の割合であり得る。割合は、0.05であり得る。第2のコンパレータは、駆動信号電圧を低閾値と比較する。第2のコンパレータの出力508aは、駆動信号電圧が低閾値を上回るか、または下回るかを示す。コンパレータ501a、502aの各々の出力は、ジョイントコントローラ317(図示せず)に接続される。それによって、コンパレータは、駆動信号電圧が高閾値および低閾値を上回るか、または下回るかをジョイントコントローラに信号伝達する。
図6は、図3および図5に示される電源324の例示的な構造を例示する。電源324は、一次電源601を備える。一次電源は、主電源によって提供され得る。これは、システムの他の構成要素を介してロボットアームに経路指定され得る。例えば、ロボットアームが、マスタスレーブマニピュレータのスレーブ構成要素を形成し、遠隔コンソールに位置するマスタ構成要素の制御下で動作する場合、一次電源は、コンソールからロボットアームに供給され得る。
電源324はまた、バックアップ電源602を備え得る。バックアップ電源602は、一次電源601とは異なるソースを有する。そのソースは、一次電源とは異なる場所にあり得る。そのソースは、異なる電源ラインを介して、電源レール313に、例えば、異なるケーブルを介して、一次電源601を電源レール313に接続する電源ラインに接続され得る。バックアップ電源は、ロボットアームに局所的に収容されたバッテリであり得る。例えば、バッテリは、ロボットアームが装着されるカート内に収容され得る。好適には、バックアップ電源は、再充電可能なバッテリである。バックアップ電源は、一次電源601が故障した事象で、電源レール313に電力を供給するように制御される。好適には、バックアップ電源は、ロボットアームの操作に動力供給するために格納された十分なエネルギーを有して、一次電源が故障した後の既定の期間にわたって、ロボットアームがその意図される動作を実施することを継続することを可能にする。この既定の期間は、5~10時間であり得る。
電源324はまた、さらなるバックアップ電源603を含み得る。さらなるバックアップ電源603は、一次電源601およびバックアップ電源602とは異なるソースを有する。そのソースは、一次および/またはバックアップ電源とは異なる場所にあり得る。そのソースは、異なる電源ラインを介して、電源レール313に、例えば、異なるケーブルを介して、一次電源601およびバックアップ電源602を電源レール313に接続する電源ライン(複数可)に接続され得る。さらなるバックアップ電源は、カート内またはロボットアーム上に収容されたバッテリであり得る。バッテリは、バックアップ電源602の再充電可能なバッテリよりも顕著に小さい。バッテリは、再充電不可能であり得る。さらなるバックアップ電源603は、バックアップ電源602が故障した事象で、電源レール313に電力を供給するように制御される。さらなるバックアップ電源は、バックアップ電源が故障した後、非常に短い期間にわたってロボットアームの操作に動力供給するために格納された十分なエネルギーを有する。この既定の期間は、5分以内であり得る。既定の期間は、30秒であり得る。
図6は、数個のダイオード604を、各電源ソースと電源レール313との間に1つ例示する。これらのダイオード604は、電源から電源レール313への単方向様式で電力が供給され、電源レール313からの電源のいずれかに電流が還流しないことを確保する。
図6はまた、電源324によって供給される電圧を感知するための回路605を例示する。この回路は、その入力として電源レール313およびさらなる入力を有するコンパレータ605を含む。そのさらなる入力は、どの電源がアクティブであるかに応じて可変であり得る。例えば、そのさらなる入力は、アクティブ電源からの予想される供給電圧の割合であり得る。その割合は、例えば、0.95であり得る。この場合、コンパレータ605からの出力は、電源レールが予想される最大供給電圧の5%以内であるか否かを識別する。システムは、試験プロセス中に異なる時点で同じ電源によって異なる電圧で駆動され得る。さらなる入力は、その時点でシステムが駆動される電圧に応じて可変であり得る。コンパレータの出力は、ジョイントコントローラ317に入力され得る。
以下は、ロボットアームの起動手順中の故障について、本明細書に説明されるモータ配置を試験することを説明する。試験手順は、ロボットアームによって内部的に実施され、したがって、パワーオンセルフテスト(POST)と呼ばれ得る。好適には、ジョイントコントローラは、モータから受信された感知データを故障コントローラに渡す。故障コントローラは、ロボットアームの外部に位置する中央コントローラであり得、これは、ロボットアームの各個々のジョイントコントローラから感知データを受信する。故障コントローラは、POSTを実装するようにジョイントコントローラを制御し、故障検出時に、故障コントローラは、以下に説明されるように、故障検出に対する応答を実装するようにジョイントコントローラを制御する。
図7は、起動中にロボットアームのジョイントモータを試験するための例示的なPOSTシーケンスを例示する。ステップ701では、試験されるモータ相は、第1のモータ相、すなわち、i=1に設定される。図3のモータでは、これは、モータ相Uである。次のステップ702では、モータは、既知の状態に駆動される。好適には、この既知の状態は、モータ電圧が既知の状態である。例えば、既知の状態は、多相モータの各巻線にわたる電圧がゼロである状態であり得る。本明細書に説明される三相モータでは、これは、各モータ相の負荷スイッチ307、308、309を制御して、制御入力407a、407b、407cを介して開くジョイントコントローラ317によって達成され得る。加えて、ジョイントコントローラは、各モータ相のローサイドトランジスタを制御して、ローサイドゲート入力409a、409b、409cを介して電流がローサイドトランジスタを流れることを可能にし得る。これら2つの作用は、一緒に、モータ巻線がジョイントを駆動するためのトルクを生成しない「パッシブ制動」状態にモータを入らせる。
次のステップ703では、第1のモータ相Uが電源に接続される。好適には、これは、第1の相の負荷スイッチ400aを制御して閉じて、電源レール313から第1のモータ相Uのモータ駆動回路310に電源を接続するために、ジョイントコントローラ317によって実装される。ジョイントコントローラ317は、負荷スイッチ400aを制御して閉じるが、一方、他のモータ相の負荷スイッチ400b、400cを制御して開いたままにする。好適には、この時間の間、ジョイントコントローラは、全てのモータ相のローサイドトランジスタを制御し続けて、オンのままにする。
次のステップ704では、PWM信号は、第1のモータ相Uのモータ駆動回路310を通して駆動される。好適には、これは、上述のように、ゲート駆動入力408a、409aをPWMシーケンスにおいてハイおよびローサイドトランジスタ401a、402aに印加するジョイントコントローラ317によって実装される。それによって、PWM駆動信号318が生成され、モータ駆動回路310から第1の相巻線U302に出力される。この時間の間、ジョイントコントローラは、閉じた第1のモータ相Uの負荷スイッチ400a、および開いた他のモータ相の負荷スイッチ400b、400cを制御し続ける。
次のステップ705では、モータは、既知の状態に駆動される。好適には、これは、ステップ702に関して説明されたものと同じ方法で実装される。ステップ705のモータの既知の状態は、ステップ702のモータの既知の状態と同じであり得る。ステップ705のモータの既知の状態は、ステップ702のモータの既知の状態とは異なり得る。したがって、ジョイントコントローラは、全てのモータ相の負荷スイッチ400a、400b、および400cを制御して、開く。ジョイントコントローラはまた、各モータ相のローサイドトランジスタをオン状態に制御し得る。
次のステップ706では、PWM信号は、第1のモータ相Uのモータ駆動回路310を通して駆動される。この時点で、第1のモータ相Uの負荷スイッチ400aが開いており、したがって、第1のモータ相Uが電源レール313から接続解除される。ジョイントコントローラ317は、ステップ704と同様に、PWMシーケンスにおいて、ゲートドライブ入力408a、409aをハイおよびローサイドトランジスタ401a、402aに印加する。この時間の間、ジョイントコントローラは、開いた他のモータ相V、Wの負荷スイッチ400b、400cを制御し続ける。モータ駆動回路が任意選択のコンデンサ411aを含む場合、負荷スイッチ400aを開くこと、およびPWMシーケンスを適用するとは、コンデンサ411aを放電させる。
次のステップ707では、現在のモータ相の後にモータ相が存在するかどうかが判定される。言い換えると、i=i+1は存在するか?本明細書に説明されるモータについて、第2のモータ相が存在する。したがって、ステップ707における質問に対する答えは、「はい」であり、方法は、ステップ708に進み、iは、i+1に設定される。言い換えると、iは、2に設定される。ステップ702~706が、次いで、第2のモータ相Vに関して繰り返される。この反復でステップ707に到達すると、第3のモータ相が存在する。したがって、ステップ707における質問に対する答えは、「はい」であり、方法は、ステップ708に進み、iは、i+1に設定される。言い換えると、iは、3に設定される。ステップ702~706が、次いで、第3のモータ相Wに関して繰り返される。この反復でステップ707に到達すると、質問に対する答えは、三相モータに対して「いいえ」である。したがって、プロセスは、ステップ709に移動し、シーケンスが終了する。3つを超えるモータ相を有する多相モータでは、図7のフローチャートのさらなる反復が、各モータ相に対して1回、完了されることになる。
図7のフローチャートの各ステップは、次のステップに進む前に、既定の持続時間にわたって実施され得る。図7のステップは、示される順序で実施される。
図7のシーケンスが実施される一方で、モータからの感知データは、モータが予想どおりに動作しているか否かを試験するために、故障コントローラにフィードバックされる。好適には、以下に説明された試験は、図7に示されるフローチャートの全てのステップの間に実施される。
第1に、故障コントローラは、各モータ相について、電源レールからモータ駆動回路への電流が電流制限を超えるか否かを試験し得る。例えば、故障コントローラは、各モータ相の電流センサ500a、500b、500cの出力を使用して、電流センサを通過する電流が電流制限を超えるかどうかを判定し得る。電流制限は、既定され得る。代替的に、電流センサの電流制限は、再構成可能であり得る。例えば、電流制限は、リアルタイムで、電源レールから供給される予想される電流に近い値に設定され得る。したがって、予想される供給される電流が変化した場合、電流センサの電流制限は、それに応じて再構成される。好適には、電流制限は、最大の予想される供給される電流に設定される。故障コントローラは、電流制限を超えたという電流センサからの指示を受信すると、故障を検出する。
第2に、故障コントローラは、各モータ相について、そのモータ相のモータ巻線に供給される電圧が、電源レール電圧および接地の各々から、それぞれの量を超えて異なるか否かを試験し得る。例えば、第1のモータ相が図7のステップ704でPWMモードで駆動されている間、故障コントローラは、コンパレータ501aおよび502aの出力を使用して、第1の巻線に供給される電圧が、PWM信号の高パルスの間に高閾値を超えるか否か、および/または第1の巻線に供給される電圧が、PWM信号の低パルスの低閾値未満であるかどうかを判定し得る。故障コントローラは、他のモータ相が図7のステップ704でPWMモードで駆動されるとき、他のモータ相と同じプロセスを実施する。故障コントローラは、巻線に供給される電圧が高閾値を下回っている場合に故障を検出する。故障コントローラは、巻線に供給される電圧が低閾値を上回っている場合に故障を検出する。
第1のモータ相が図7のステップ706でPWMモードで駆動されている間、故障コントローラは、コンパレータ501aの出力を使用して、第1の巻線に供給される電圧が、PWM信号の高パルスの間に高閾値を超えるかどうかを判定し得る。故障コントローラは、他のモータ相が図7のステップ706でPWMモードで駆動されるとき、他のモータ相と同じプロセスを実施する。故障コントローラは、巻線に供給される電圧が高閾値を上回っている場合に故障を検出する。
コンパレータ501a、501b、501cおよび502a、502b、502cの高および低閾値は、供給電圧の割合である。この割合は、事前設定され得る。代替的に、この割合は、リアルタイムで構成可能であり得る。
第3に、故障コントローラは、モータに供給される電圧が閾値電圧値未満であるか否かを試験し得る。例えば、故障コントローラは、コンパレータ605の出力を使用して、時間tにおける電源レール313に供給される電圧が時間tにおける閾値電圧値未満であるかどうかを判定し得る。その閾値電圧値は、どの電源が電源レール313に電力を供給しているかに応じて、再構成可能であり得る。例えば、閾値電圧値は、アクティブ電源からの予想される供給電圧の割合であり得る。故障コントローラは、供給される電圧が閾値電圧未満であることをコンパレータ605の出力が示す場合、故障コントローラは、故障を検出する。
故障コントローラはまた、次のように、モータからの感知出力に依存して、故障源を識別し得る:
(i)故障コントローラは、図7のステップ704のPWMモード中に、そのモータ相の巻線に供給される電圧がコンパレータ501の高閾値を下回る場合、モータ相のハイサイドトランジスタで故障を検出する。例えば、故障は、ハイサイドトランジスタが短絡故障したか、または開いていることであり得る。
(ii)故障コントローラは、図7のステップ704のPWMモード中に、そのモータ相の巻線に供給される電圧がコンパレータ502の低閾値を上回る場合、モータ相のローサイドトランジスタで故障を検出する。例えば、故障は、ローサイドトランジスタが短絡故障したか、または開いていることであり得る。
(iii)故障コントローラは、図7のステップ706でPWMモードを駆動する既定の期間の後、巻線に供給される電圧がコンパレータ501の高閾値を上回る場合、モータ相の負荷スイッチで故障を検出する。例えば、故障は、負荷スイッチが短絡故障したことであり得る。
(iv)故障コントローラは、電流制限が超過したという電流センサ500からの指示を受信すると、モータ相の負荷スイッチの故障、および/またはそのモータ相のハイサイドトランジスタの故障、および/またはそのモータ相のローサイドトランジスタの故障を検出する。
(v)故障コントローラは、電源からの電圧が、その電源に対して時間tにわたって閾値電圧を下回って下がったというコンパレータ605からの指示を受信すると、電源の故障を検出する。
故障コントローラは、モータからの感知出力の組み合わせに応じて、他の故障源を識別し得る。例えば、故障コントローラは、モータ巻線が開いていること、またはハイもしくはローサイドコンパレータのうちの一方が適切に機能していないことを識別し得る。
各故障評価中、故障コントローラは、それがモータから受信する全ての感知データおよび状態情報の出力を評価し、この評価に続いて、上記に列記された故障状態のうちの1つ以上をゼロと検出し得る。
図7のフローチャートの各ステップについて、そのステップが既定の持続時間にわたって実施され、上記の試験によって故障が検出されない場合、プロセスは、次のステップに進む。しかしながら、ステップ中に故障が検出された場合、プロセスは故障状態に入り得る。
故障状態に入ると、ジョイントコントローラは、モータを電気的に制動することによって応答する。これを行うために、ジョイントコントローラは、モータが重力に対して駆動するジョイントの位置を維持するために、モータに制動電流を印加する。ジョイントは、1つの構成に保持され、したがって、ジョイントが接続するロボットアームのリンクが重力下で垂れ下がることを防止する。ジョイントが回転関節である場合、制動電流は、ジョイントの回転位置を係止することなどのために、ジョイントに固定トルクを提供する。固定トルクの値は、アームの姿勢に依存する。言い換えると、その回転位置を係止するためにジョイントに適用される固定トルクは、ロボットアームの1つの構成では1つの値を有し、ロボットアームの異なる構成では別の値を有する。したがって、固定トルクの値、したがって、制動電流の値は、ジョイントが保持される位置に依存し、それに応じてジョイントコントローラによって制御され得る。
固定トルクは、ジョイントの回転位置を重力に対して保持するのに十分である。故障状態に入る時点で、ジョイントが閾値速度未満で動いている場合、固定トルクは、時間Tでジョイントの動きを停止させ、かつ重力に対してその停止された位置にジョイントを保持するのに十分である。しかしながら、故障状態に入る時点で、ジョイントが閾値速度を上回って動いている場合、固定トルクは、時間Tでジョイントの動きを停止するには不十分である。この場合、ジョイントコントローラは、固定トルクよりも高い値を有する初期トルクを提供する制動電流を印加することによってモータを電気的に制動する。この初期トルクは、時間Tで関節の動きを停止するのに十分である。一旦、ジョイントが停止されると、関節コントローラは、次いで、固定トルクを適用することによってモータを電気的に制動して、重力に対して停止された位置にジョイントを保持する。
制動電流は、電力を必要とし、したがって、電気制動は、ジョイントを定位置に保持するための電力を必要とする。電気制動は、同じジョイントコントローラの制御下で、ジョイントの関節を駆動する同じモータによって適用される。別個の実体は、電気的に制動することに関与しない。
ジョイントコントローラは、モータの全ての相に制動電流を印加することによってモータを電気的に制動し得る。例えば、ジョイントコントローラは、(i)電源レール313からその相のモータ駆動回路に電源を接続するために閉じられるように各モータ相の負荷スイッチと、(ii)その相のモータ巻線に通る制動電流を接続するために各モータ相のモータ駆動回路と、を制御することによってこれを実装し得る。
故障コントローラが、モータ相のうちの1つに位置するとして故障源を識別した場合、ジョイントコントローラは、そのモータ相の負荷スイッチを開いて、その単相のモータ巻線をモータから絶縁し、モータの他の相のみに制動電流を印加することによって、応答する。例えば、故障コントローラが、第1のモータ相Uに故障が存在することを識別した場合、ジョイントコントローラは、(i)第1のモータ相の負荷スイッチ307を開くように、(ii)第2のモータ相の負荷スイッチ308を閉じるように、および(iii)第3のモータ相の負荷スイッチ309を開くように制御する。このようにして、ジョイントコントローラは、第2および第3のモータ相の間に制動電流を印加し、それによって、ジョイントをその現在の構成に保持する。
故障状態の間、関節コントローラは、上記に説明されたセンサから感知データを受信し続ける。
図8は、一連の保持状態を例示し、その各々が、異なる構成要素を介してモータに制動電流を印加する。ジョイントコントローラは、次の状況において、一連の保持状態を通して循環するようにモータを制御し得る:
(i)故障源が識別されていない場合、
(ii)複数の故障が検出された場合、
(iii)モータの全ての相に制動電流を印加することに続いて、故障コントローラによって受信された感知データが、故障コントローラに故障を検出させ続ける場合、または
(iv)モータの2つの相に制動電流を印加することに続いて、故障コントローラによって受信された感知データが、故障コントローラに故障を検出させ続ける場合。
図8は、6つの保持状態を例示し、その各々が、モータの2つの相の間に制動電流を印加する。状態801は、モータの第1および第2の相の間で、第1の相から第2の相まで、制動電流を印加する。状態802は、モータの第2および第3の相の間で、第2の相から第3の相まで、制動電流を印加する。状態803は、モータの第1および第3の相の間で、第1の相から第3の相まで、制動電流を印加する。状態804は、モータの第2および第1の相の間で、第2の相から第1の相まで、制動電流を印加する。状態805は、モータの第3および第2の相の間で、第3の相から第2の相まで、制動電流を印加する。状態806は、モータの第3および第1の相の間で、第3の相から第1の相まで、制動電流を印加する。
一般的に、相Xから相Yまで制動電流を印加するために、相Xの負荷スイッチは、電源レール313からその相のモータ駆動回路に電流が流れることを可能にするために閉じられ、相Yの負荷スイッチは、開かれる。加えて、相Yのローサイドトランジスタは、ローサイドゲートドライバによって接地に駆動される。相Yのハイサイドトランジスタは、開かれる。他の相Zの負荷スイッチは、開かれる。相Zのローサイドトランジスタは、浮動的であり、すなわち、電源レールまたは接地に接続されていない。相Yのハイサイドトランジスタは、開かれる。
ジョイントコントローラは、状態801から状態802、状態803、状態804、状態805、状態806、そして状態801に戻るなど、一連の保持状態を通して循環するようにモータを制御する。故障源が識別されていない場合、複数の故障が検出される場合、またはモータの全ての相に制動電流が印加されたときに故障が検出された場合、ジョイントコントローラは、図8に示される保持状態のいずれかで制動電流を最初に印加するようにモータを制御し得る。例えば、ジョイントコントローラは、状態801で始動するようにモータを制御し得る。単一のモータ相で故障が識別された場合、ジョイントコントローラは、そのモータ相を除外する保持状態で最初に制動電流を最初に印加するようにモータを制御する。例えば、第1のモータ相で故障が検出された場合、ジョイントコントローラは、どちらも第1の相と別の相との間に保持電流を印加しない保持状態802または805に最初に入るようにモータを制御し得る。ジョイントコントローラは、この状況で同じ保持状態に常に入る、例えば、常に状態802にモータを制御し得る。
ジョイントコントローラは、既定の時間、図8の保持状態で制動電流を印加するようにモータを制御する。この既定の時間の後、故障状態がもはや検出されない場合、ジョイントコントローラは、この保持状態で制動電流を維持するように、モータを制御する。既定の時間の後、故障条件が引き続き検出される場合、ジョイントコントローラは、サイクル中の次の保持状態で制動電流を印加するために動くようにモータを制御する。プロセスは、故障が引き続き検出される場合に次の状態に移動する前に既定の時間の間、保持状態にある制動電流を印加する度に、図8の状態を通して循環し続ける。
図8は、1つの例示的な状態の循環順序を例示することが理解されるであろう。循環順序は、図8に示されるものとは異なり得る。循環順序は、任意の順序における一連の状態801~806であり得る。
一般に、ジョイントコントローラは、一次電源601からモータ300に供給される電力を制御することによってモータを電気的に制動するように構成される。検出された故障が電力喪失である場合、ジョイントコントローラは、一次電源601からモータ300に供給される制動電流を最初に制御し得る。故障コントローラが、それに電力喪失を検出させる感知データを受信し続ける場合、故障コントローラは、ジョイントコントローラに、一次電源601を電源レール313から接続解除させ、代わりに、制動電流をモータに提供するためにバックアップ電源602を電源レール313に接続させる。故障コントローラが、それに電力喪失を検出させる感知データを受信し続ける場合、故障コントローラは、ジョイントコントローラに、バックアップ電源602を電源レール313から接続解除させ、代わりに、制動電流をモータに提供するためにさらなるバックアップ電源603を電源レール313に接続させる。
代替的に、故障コントローラは、電力喪失の初期検出に応答して、ジョイントコントローラに、バックアップ電源602からモータに供給される制動電流を制御させ得る。故障コントローラが、それに電力喪失を検出させる感知データを受信し続ける場合、故障コントローラは、ジョイントコントローラに、バックアップ電源602を電源レール313から接続解除させ、代わりに、制動電流をモータに提供するためにさらなるバックアップ電源603を電源レール313に接続させる。
図7を参照して説明されたPOSTプロセスは、ロボットアームのジョイントを駆動する各モータ上で有用に実施される。しかしながら、故障コントローラは、ジョイントのうちのいくつかのジョイントコントローラのみを制御して、それらのモータに電気制動を適用し得る。それらのジョイントは、能動的に駆動されない場合、重力下でアームを垂れ下げさせ得るような構成にあるものであり得る。これらのジョイントは、後退駆動可能であるものであり得る。
故障コントローラは、ロボットアームの単一のジョイントモータの単一の故障を検出すると、ロボットアーム全体を故障状態に入らせ得る。言い換えると、故障コントローラは、ロボットアーム全体をその構成で動けなくさせ、それによって、ロボットアームのモータ内の故障を検出することに応答して、ロボットアーム全体を重力に対して定位置に保持し得る。したがって、故障コントローラは、ジョイントコントローラに、それ自体が故障していないが、ロボットアーム内の別のモータで検出される故障の結果として、モータに制動電流を印加させ得る。
故障状態に入ると、故障コントローラは、1つ以上の警報信号を発する。これは、アラームなどの可聴信号、ロボットアームおよび/またはその基部および/またはロボットアームのオペレータのディスプレイ上に表示される視覚信号、ならびにロボットアームのオペレータがロボットアームを操作するためのハンドコントローラを通して感じることができる触覚信号のうちのいずれか1つまたはそれらの組み合わせであり得る。異なるアラームは、さらなるバックアップ電源が電源レールに電力を供給するように制御される事象で生成され得る。
ロボットアームのジョイントモータがPOST手順に合格した場合、ロボットアームは、通常の使用を継続し得る。ロボットアームの通常の動作中、故障コントローラは、関節モータのいくつかの故障を監視し続け得る。好適には、POSTプロセス中に監視される故障のサブセットのみが、ロボットアームの通常の使用中に監視される。故障コントローラは、次の試験を継続し得る:
(i)モータ相の負荷スイッチ307、308、309の故障について。これは、電流センサ500a、500b、500cから感知データを受信することによって実装される。その感知データは、モータ相のモータ駆動回路に負荷スイッチを通って流れる電流が、電流センサの電流制限を超えるときを示す。故障コントローラは、電流制限が超過された場合に故障を検出する。
(ii)電源の故障について。これは、コンパレータ605からセンサデータを受信することによって実装される。その感知データは、供給電圧が閾値電圧を下回って下がったときを示す。故障コントローラは、供給電圧が閾値電圧を下回って下がった場合に故障を検出する。
故障コントローラは、上記のように、故障状態に入り、かつモータを電気的に制動することによって、通常の動作中に故障の検出に応答する。
本明細書に説明される装置および方法は、故障を伴うモータ位相を絶縁し、かつモータの他の相の間に制動電流を印加することによって、モータにおける単一の故障点、例えば、単一のモータ巻線または単一のトランジスタの故障からジョイントモータが保護されることを可能にする。故障を伴うモータ相は、負荷スイッチを開くことによって絶縁される。負荷スイッチを開くことはまた、電源をモータ相から絶縁し、これは、故障がモータ相の短絡回路である事象に有用である。
本明細書に説明されるモータは、負荷スイッチを介して、電源レールから独立して各モータ相を接続解除する回路を有用に提供する。この回路は、モータ駆動信号を生成するために使用されるモータ駆動回路の回路(例えば、トランジスタ)から独立している。
好適には、本明細書に説明される方法は、非同期的に実施される。言い換えると、それらは、システムクロックに依存しない。したがって、システムクロックが故障した場合でも、故障検出および応答が実施され得る。
本明細書に説明される方法および装置は、ジョイントコントローラによって制御されるいくつかの機能、および故障コントローラによって制御される他の機能を考察する。本明細書に説明される機能は、ジョイントおよび故障コントローラの間で異なって分散され得ることが理解されるであろう。機能は、ジョイントおよび故障コントローラよりも多くのコントローラ間で分散され得る。単一のコントローラは、全ての説明される機能を実施し得る。各コントローラは、本明細書に説明される方法を実施するために命令を実行するためのプロセッサを備える。
命令は、コンピュータ実行可能であり、メモリなどの任意のコンピュータ可読媒体を使用して提供され得る。本明細書に説明される方法は、有形記憶媒体上の機械可読形態のソフトウェアによって実施され得る。ソフトウェアは、本明細書に説明される方法を実装するために、コンピューティングベースのデバイスで提供され得る。
感知および試験電流に対する参照は、代わりに、当業者によって既知の方法に従って、感知および試験電圧によって実装され得る。同様に、感知および試験電圧に対する参照は、代わりに、当業者によって既知の方法に従って、感知および試験電流によって実装され得る。
本明細書に説明されるロボットは、外科用エンドエフェクタを有する外科用器具取り付けを有する外科手術ロボットとすることができる。代替的に、ロボットは、産業ロボットまたは別の機能のためのロボットであり得る。器具は、産業ツールであり得る。
本明細書によって、本出願人は、本明細書に説明される各個々の特徴および2つ以上のかかる特徴の任意の組み合わせを、かかる特徴または組み合わせが、当業者に共通する一般知識に照らして、全体として本明細書に基づいて行うことができるような程度まで、かかる特徴または特徴の組み合わせが、本明細書に開示する任意の問題を解決するかにかかわらず、かつ特許請求の範囲を限定することなく、分離して開示する。本出願人は、本発明の態様が、任意のかかる個々の特徴または特徴の組み合わせからなり得ることを示している。前述の説明を考慮すると、本発明の範囲内で様々な修正を行うことができることは当業者には明らかであろう。
本明細書によって、本出願人は、本明細書に説明される各個々の特徴および2つ以上のかかる特徴の任意の組み合わせを、かかる特徴または組み合わせが、当業者に共通する一般知識に照らして、全体として本明細書に基づいて行うことができるような程度まで、かかる特徴または特徴の組み合わせが、本明細書に開示する任意の問題を解決するかにかかわらず、かつ特許請求の範囲を限定することなく、分離して開示する。本出願人は、本発明の態様が、任意のかかる個々の特徴または特徴の組み合わせからなり得ることを示している。前述の説明を考慮すると、本発明の範囲内で様々な修正を行うことができることは当業者には明らかであろう。
なお、本発明は、実施の態様として以下の内容を含む。
[態様1]
ロボットアームであって、
ジョイントによって第2のリンクに接続された第1のリンクであって、前記第2のリンクが前記第1のリンクに対して動くことを前記ジョイントが可能にする、第1のリンクと、
前記ジョイントを駆動するためのモータと、
前記モータを制御するためのコントローラであって、前記コントローラは、前記ジョイントが能動的に駆動されない場合に前記ロボットアームが重力下で垂れ下がることになる構成に前記ジョイントがある場合のみ、前記ロボットアームの故障の検出に応答して、重力に対して前記ジョイントの位置を維持するように、前記モータに制動電流を印加することによって、前記モータを電気的に制動するように構成されている、コントローラと、を備える、ロボットアーム。
[態様2]
前記モータが、多相モータであり、前記多相モータが、前記多相モータの各相に対して、
モータ巻線と、
前記モータ巻線に駆動信号を印加するためのモータ駆動回路と、
前記モータ駆動回路に電源を接続するための負荷スイッチと、を備える、態様1に記載のロボットアーム。
[態様3]
前記多相モータが、3つの相を備え、前記コントローラが、前記ロボットアームの前記故障の検出に応答して、前記モータの全ての3つの相に制動電流を印加するように構成されている、態様2に記載のロボットアーム。
[態様4]
前記コントローラが、前記ロボットアームの前記故障の検出に応答して、前記モータの第1の対の相の間のみ、前記第1の対の前記第1の相から前記第1の対の前記第2の相まで、制動電流を印加するように構成されている、態様2または3に記載のロボットアーム。
[態様5]
前記コントローラが、態様4に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの第2の対の相の間のみ、前記第2の対の前記第1の相から前記第2の対の前記第2の相まで、制動電流を印加するように構成されている、態様4に記載のロボットアーム。
[態様6]
前記コントローラが、態様5に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの第3の対の相の間のみ、前記第3の対の前記第1の相から前記第3の対の前記第2の相まで、制動電流を印加するように構成されている、態様5に記載のロボットアーム。
[態様7]
前記コントローラが、態様6に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの前記第1の対の相の間のみ、前記第1の対の前記第2の相から前記第1の対の前記第1の相まで、制動電流を印加するように構成されている、態様6に記載のロボットアーム。
[態様8]
前記コントローラが、態様7に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの前記第2の対の相の間のみ、前記第2の対の前記第2の相から前記第2の対の前記第1の相まで、制動電流を印加するように構成されている、態様7に記載のロボットアーム。
[態様9]
前記コントローラが、態様8に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの前記第3の対の相の間のみ、前記第3の対の前記第2の相から前記第3の対の前記第1の相まで、制動電流を印加するように構成されている、態様8に記載のロボットアーム。
[態様10]
前記故障が、電力喪失であり、前記コントローラが、前記ロボットアームの外部の一次電源から前記モータに前記制動電流を接続することによって、前記電力喪失の検出に応答して、前記モータを電気的に制動するように構成されている、態様1~9のいずれか一項に記載のロボットアーム。
[態様11]
前記故障が、電力喪失であり、前記コントローラが、前記ロボットアームの外部のバックアップ電源から前記モータに前記制動電流を接続することによって、前記電力喪失の検出に応答して、前記モータを電気的に制動するように構成されている、態様1~10のいずれか一項に記載のロボットアーム。
[態様12]
前記ロボットアームが、カート上に装着され、前記バックアップ電源が、前記カート内に収容された再充電可能なバッテリである、態様10に記載のロボットアーム。
[態様13]
前記コントローラが、態様11に記載の制動電流を印加することに続いて、電力喪失を検出し続けることに応答して、前記一次電源およびバックアップ電源とは独立して前記モータに接続されたさらなるバックアップ電源から前記モータに前記制動電流を接続するように構成されている、態様11または12に記載のロボットアーム。
[態様14]
前記さらなるバックアップ電源が、5分未満にわたって重力に対する前記ジョイントの前記位置を維持するのに十分な電力のみを提供することができる再充電不可能バッテリである、態様13に記載のロボットアーム。
[態様15]
前記多相モータの単相における故障の検出に応答して、前記コントローラが、
その単相の前記モータ巻線を前記モータから絶縁するように、その単相の前記負荷スイッチを開くことと、
前記モータの前記他の相に制動電流を印加することと、を行うように構成されている、態様2または態様2に従属するときの態様3~14のいずれか一項に記載のロボットアーム。
[態様16]
前記モータが、前記多相モータの各相に対して、前記負荷スイッチと前記モータ駆動回路との間に電流センサを備え、電流制限が超過されたときに前記相における故障を前記コントローラに信号伝達するように前記電流センサが構成されている、態様15に記載のロボットアーム。
[態様17]
各モータ駆動回路が、パルス幅変調(PWM)モードでそのそれぞれのモータ巻線を駆動するように構成されており、前記モータ駆動回路が、前記PWM信号を駆動するためのハイサイドトランジスタおよびローサイドトランジスタを備え、
前記モータは、前記多相モータの各相に対して、前記ハイサイドトランジスタおよびローサイドトランジスタが前記PWM信号を生成するために動作していることを検出するための回路をさらに備え、前記回路は、前記PWM信号が生成されない場合に前記相における故障を前記コントローラに信号伝達するように構成されている、態様15または16に記載のロボットアーム。
[態様18]
前記回路が、前記PWM信号の高パルス中に前記巻線に供給される前記電圧を高閾値と比較するように構成された第1のコンパレータと、前記PWM信号の低パルス中に前記巻線に供給される前記電圧を低閾値と比較するように構成された第2のコンパレータと、を備え、前記回路は、前記巻線に供給される前記電圧が前記高閾値を下回るか、または前記低閾値を上回る場合、故障を前記コントローラに信号伝達するように構成されている、態様17に記載のロボットアーム。
[態様19]
各モータ駆動回路の前記ハイサイドトランジスタおよびローサイドトランジスタが、直列に接続され、各モータ駆動回路が、前記ハイサイドおよびローサイドトランジスタと並列に接続されたコンデンサをさらに備える、態様17または18に記載のロボットアーム。
[態様20]
前記ジョイントは、前記第2のリンクが前記第1のリンクに対して軸を中心として回転することを可能にし、前記制動電流が、前記ロボットアームの現在の構成に対して前記ジョイントの回転位置を係止するように、前記ジョイントに固定トルクを提供するものである、態様1~19のいずれか一項に記載のロボットアーム。
[態様21]
前記制動電流が、前記固定トルクを提供する前に、前記ジョイントの動きを停止するために前記ジョイントに初期トルクを提供するものである、態様20に記載のロボットアーム。

Claims (21)

  1. ロボットアームであって、
    ジョイントによって第2のリンクに接続された第1のリンクであって、前記第2のリンクが前記第1のリンクに対して動くことを前記ジョイントが可能にする、第1のリンクと、
    前記ジョイントを駆動するためのモータと、
    前記モータを制御するためのコントローラであって、前記コントローラは、前記ジョイントが能動的に駆動されない場合に前記ロボットアームが重力下で垂れ下がることになる構成に前記ジョイントがある場合のみ、前記ロボットアームの故障の検出に応答して、重力に対して前記ジョイントの位置を維持するように、前記モータに制動電流を印加することによって、前記モータを電気的に制動するように構成されている、コントローラと、を備える、ロボットアーム。
  2. 前記モータが、多相モータであり、前記多相モータが、前記多相モータの各相に対して、
    モータ巻線と、
    前記モータ巻線に駆動信号を印加するためのモータ駆動回路と、
    前記モータ駆動回路に電源を接続するための負荷スイッチと、を備える、請求項1に記載のロボットアーム。
  3. 前記多相モータが、3つの相を備え、前記コントローラが、前記ロボットアームの前記故障の検出に応答して、前記モータの全ての3つの相に制動電流を印加するように構成されている、請求項2に記載のロボットアーム。
  4. 前記コントローラが、前記ロボットアームの前記故障の検出に応答して、前記モータの第1の対の相の間のみ、前記第1の対の前記第1の相から前記第1の対の前記第2の相まで、制動電流を印加するように構成されている、請求項2または3に記載のロボットアーム。
  5. 前記コントローラが、請求項4に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの第2の対の相の間のみ、前記第2の対の前記第1の相から前記第2の対の前記第2の相まで、制動電流を印加するように構成されている、請求項4に記載のロボットアーム。
  6. 前記コントローラが、請求項5に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの第3の対の相の間のみ、前記第3の対の前記第1の相から前記第3の対の前記第2の相まで、制動電流を印加するように構成されている、請求項5に記載のロボットアーム。
  7. 前記コントローラが、請求項6に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの前記第1の対の相の間のみ、前記第1の対の前記第2の相から前記第1の対の前記第1の相まで、制動電流を印加するように構成されている、請求項6に記載のロボットアーム。
  8. 前記コントローラが、請求項7に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの前記第2の対の相の間のみ、前記第2の対の前記第2の相から前記第2の対の前記第1の相まで、制動電流を印加するように構成されている、請求項7に記載のロボットアーム。
  9. 前記コントローラが、請求項8に記載の前記制動電流を印加することに続いて、前記ロボットアームの故障を検出し続けることに応答して、前記モータの前記第3の対の相の間のみ、前記第3の対の前記第2の相から前記第3の対の前記第1の相まで、制動電流を印加するように構成されている、請求項8に記載のロボットアーム。
  10. 前記故障が、電力喪失であり、前記コントローラが、前記ロボットアームの外部の一次電源から前記モータに前記制動電流を接続することによって、前記電力喪失の検出に応答して、前記モータを電気的に制動するように構成されている、請求項1~9のいずれか一項に記載のロボットアーム。
  11. 前記故障が、電力喪失であり、前記コントローラが、前記ロボットアームの外部のバックアップ電源から前記モータに前記制動電流を接続することによって、前記電力喪失の検出に応答して、前記モータを電気的に制動するように構成されている、請求項1~10のいずれか一項に記載のロボットアーム。
  12. 前記ロボットアームが、カート上に装着され、前記バックアップ電源が、前記カート内に収容された再充電可能なバッテリである、請求項10に記載のロボットアーム。
  13. 前記コントローラが、請求項11に記載の制動電流を印加することに続いて、電力喪失を検出し続けることに応答して、前記一次電源およびバックアップ電源とは独立して前記モータに接続されたさらなるバックアップ電源から前記モータに前記制動電流を接続するように構成されている、請求項11または12に記載のロボットアーム。
  14. 前記さらなるバックアップ電源が、5分未満にわたって重力に対する前記ジョイントの前記位置を維持するのに十分な電力のみを提供することができる再充電不可能バッテリである、請求項13に記載のロボットアーム。
  15. 前記多相モータの単相における故障の検出に応答して、前記コントローラが、
    その単相の前記モータ巻線を前記モータから絶縁するように、その単相の前記負荷スイッチを開くことと、
    前記モータの前記他の相に制動電流を印加することと、を行うように構成されている、請求項2または請求項2に従属するときの請求項3~14のいずれか一項に記載のロボットアーム。
  16. 前記モータが、前記多相モータの各相に対して、前記負荷スイッチと前記モータ駆動回路との間に電流センサを備え、電流制限が超過されたときに前記相における故障を前記コントローラに信号伝達するように前記電流センサが構成されている、請求項15に記載のロボットアーム。
  17. 各モータ駆動回路が、パルス幅変調(PWM)モードでそのそれぞれのモータ巻線を駆動するように構成されており、前記モータ駆動回路が、前記PWM信号を駆動するためのハイサイドトランジスタおよびローサイドトランジスタを備え、
    前記モータは、前記多相モータの各相に対して、前記ハイサイドトランジスタおよびローサイドトランジスタが前記PWM信号を生成するために動作していることを検出するための回路をさらに備え、前記回路は、前記PWM信号が生成されない場合に前記相における故障を前記コントローラに信号伝達するように構成されている、請求項15または16に記載のロボットアーム。
  18. 前記回路が、前記PWM信号の高パルス中に前記巻線に供給される前記電圧を高閾値と比較するように構成された第1のコンパレータと、前記PWM信号の低パルス中に前記巻線に供給される前記電圧を低閾値と比較するように構成された第2のコンパレータと、を備え、前記回路は、前記巻線に供給される前記電圧が前記高閾値を下回るか、または前記低閾値を上回る場合、故障を前記コントローラに信号伝達するように構成されている、請求項17に記載のロボットアーム。
  19. 各モータ駆動回路の前記ハイサイドトランジスタおよびローサイドトランジスタが、直列に接続され、各モータ駆動回路が、前記ハイサイドおよびローサイドトランジスタと並列に接続されたコンデンサをさらに備える、請求項17または18に記載のロボットアーム。
  20. 前記ジョイントは、前記第2のリンクが前記第1のリンクに対して軸を中心として回転することを可能にし、前記制動電流が、前記ロボットアームの現在の構成に対して前記ジョイントの回転位置を係止するように、前記ジョイントに固定トルクを提供するものである、請求項1~19のいずれか一項に記載のロボットアーム。
  21. 前記制動電流が、前記固定トルクを提供する前に、前記ジョイントの動きを停止するために前記ジョイントに初期トルクを提供するものである、請求項20に記載のロボットアーム。
JP2022521419A 2019-10-11 2020-10-09 ロボットアーム内の故障検出応答 Active JP7361905B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1914737.0 2019-10-11
GB1914737.0A GB2588175B (en) 2019-10-11 2019-10-11 Fault detection response in a robot arm
PCT/GB2020/052528 WO2021069925A1 (en) 2019-10-11 2020-10-09 Fault detection response in a robot arm

Publications (2)

Publication Number Publication Date
JP2022551310A true JP2022551310A (ja) 2022-12-08
JP7361905B2 JP7361905B2 (ja) 2023-10-16

Family

ID=68619609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022521419A Active JP7361905B2 (ja) 2019-10-11 2020-10-09 ロボットアーム内の故障検出応答

Country Status (6)

Country Link
US (1) US20240100722A1 (ja)
EP (1) EP4041504A1 (ja)
JP (1) JP7361905B2 (ja)
CN (1) CN114630735A (ja)
GB (1) GB2588175B (ja)
WO (1) WO2021069925A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117653354A (zh) * 2022-08-31 2024-03-08 上海微创医疗机器人(集团)股份有限公司 操作臂回收控制方法、装置及操作设备
CN117257468B (zh) * 2023-11-20 2024-01-23 云南师范大学 一种多自由度的机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335179A (ja) * 1993-05-19 1994-12-02 Nec Corp 無停電電源装置
JPH09146619A (ja) * 1995-11-22 1997-06-06 Mitsubishi Electric Corp 制御装置および制御方法
JPH1177572A (ja) * 1997-08-30 1999-03-23 Toyoda Mach Works Ltd ロボット制御装置
JP2001339875A (ja) * 2000-03-24 2001-12-07 Denso Corp 移動ロボットの電力供給装置
JP2018510604A (ja) * 2015-03-17 2018-04-12 ケンブリッジ メディカル ロボティックス リミテッドCambridge Medical Robotics Limited ロボットシステム
US20180354135A1 (en) * 2017-06-09 2018-12-13 Precise Automation, Inc. Collaborative robot
WO2019102539A1 (ja) * 2017-11-22 2019-05-31 三菱電機株式会社 回転電機制御装置及び電動車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209970A (ja) * 1988-02-15 1989-08-23 Sankyo Seiki Mfg Co Ltd モータのダイナミックブレーキ装置
JPH0283185A (ja) * 1988-09-16 1990-03-23 Fanuc Ltd 産業用ロボットの教示方法と装置
DE59814122D1 (de) * 1997-12-06 2007-12-20 Elan Schaltelemente Gmbh & Co Verfahren zur Überwachung einer technischen Anlage, insbesondere eines Handhabungsgerätes, sowie Überwachungs- und Steuergerät

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335179A (ja) * 1993-05-19 1994-12-02 Nec Corp 無停電電源装置
JPH09146619A (ja) * 1995-11-22 1997-06-06 Mitsubishi Electric Corp 制御装置および制御方法
JPH1177572A (ja) * 1997-08-30 1999-03-23 Toyoda Mach Works Ltd ロボット制御装置
JP2001339875A (ja) * 2000-03-24 2001-12-07 Denso Corp 移動ロボットの電力供給装置
JP2018510604A (ja) * 2015-03-17 2018-04-12 ケンブリッジ メディカル ロボティックス リミテッドCambridge Medical Robotics Limited ロボットシステム
US20180354135A1 (en) * 2017-06-09 2018-12-13 Precise Automation, Inc. Collaborative robot
WO2019102539A1 (ja) * 2017-11-22 2019-05-31 三菱電機株式会社 回転電機制御装置及び電動車両

Also Published As

Publication number Publication date
GB2588175A (en) 2021-04-21
GB201914737D0 (en) 2019-11-27
CN114630735A (zh) 2022-06-14
US20240100722A1 (en) 2024-03-28
WO2021069925A1 (en) 2021-04-15
GB2588175B (en) 2023-11-01
EP4041504A1 (en) 2022-08-17
JP7361905B2 (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
JP7361905B2 (ja) ロボットアーム内の故障検出応答
CN107431450B (zh) 机器人系统
US9676103B2 (en) Multi-axis robot power shut-off device and multi-axis robot
US7880460B2 (en) Hardware in the loop motor simulation
JPWO2006112033A1 (ja) 交流モータ制御装置
US10658954B2 (en) Calibration of 3-phase motor current sensing for surgical robotic actuators
JP2003037929A5 (ja)
US10530147B2 (en) Control device with safety shutdown
JP7198929B2 (ja) ロボットアームのモータの故障をテストする方法
JP6010104B2 (ja) サーボモータ制御装置
GB2619652A (en) Fault detection response in a robot arm
CN114465526B (zh) 电动马达用的控制装置、具备该控制装置的机器人以及电动马达的控制方法
WO2021131417A1 (ja) ロボット、人型ロボットおよびロボットの倒れ制御方法
JP7195479B2 (ja) 多関節ロボット
JP6904201B2 (ja) ロボット制御装置、ロボット、及びロボットシステム
Benslimane A new technique for simultaneous detection of one to two open-switch faults in three phase voltage-inverter-fed pm brushless DC motor drive
EP4065025A1 (en) Detecting a trigger in a surgical robotic system
JP2022021849A5 (ja)
JP2000237981A (ja) ロボット駆動装置の安全保護装置
JPH02290184A (ja) 速度制御モータの安全装置
JP2008104271A (ja) 電力変換装置の制御方法
JPS5877489A (ja) 工業用ロボツトの暴走防止装置
JP2014128155A (ja) 建設機械用インバータシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7361905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150