JP2022550706A - 生化学物質分析システム、方法及び装置 - Google Patents

生化学物質分析システム、方法及び装置 Download PDF

Info

Publication number
JP2022550706A
JP2022550706A JP2022518312A JP2022518312A JP2022550706A JP 2022550706 A JP2022550706 A JP 2022550706A JP 2022518312 A JP2022518312 A JP 2022518312A JP 2022518312 A JP2022518312 A JP 2022518312A JP 2022550706 A JP2022550706 A JP 2022550706A
Authority
JP
Japan
Prior art keywords
signal
flow cell
fluid
unit
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022518312A
Other languages
English (en)
Other versions
JP7457798B2 (ja
Inventor
鶴鳴 姜
楚填 ▲しん▼
ジョンモ ヤン
相坤 隋
健 劉
ラズヴァン キリタ
忠海 王
サイモン ロバート アダムス
楽 王
マルコ フレデリック センコ
クレイグ エドワード ウリチ
思成 文
ピン カオ
峰 牟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MGI Tech Co Ltd
Original Assignee
MGI Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MGI Tech Co Ltd filed Critical MGI Tech Co Ltd
Publication of JP2022550706A publication Critical patent/JP2022550706A/ja
Application granted granted Critical
Publication of JP7457798B2 publication Critical patent/JP7457798B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/13Moving of cuvettes or solid samples to or from the investigating station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0193Arrangements or apparatus for facilitating the optical investigation the sample being taken from a stream or flow to the measurement cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0325Cells for testing reactions, e.g. containing reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • G01N2021/637Lasing effect used for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

フローセル(38)内のサンプルの生物学的特徴を検出するための生化学物質分析システム(3)であって、検出システム(31)と、スケジューリングシステム、生化学反応システム及び制御システム(36)を備え、スケジューリングシステムは、前記フローセル(38)を異なる箇所でスケジューリングするためのものであり、前記箇所は、検出システム(31)に位置する箇所と生化学反応システムに位置する箇所を含み、生化学反応システムは、前記フローセル(38)内のサンプルを反応させ、検出システム(31)は、既に反応したサンプルに対して信号検出を行なって、前記サンプルの生物学的特徴を表す信号を取得し、制御システム(36)は、検出システム(31)とスケジューリングシステムと生化学反応システムとの連携作業を制御する。このシステムは、生化学物質分析の自動化程度と検出量を高めた。

Description

本発明は、生化学物質分析分野に関し、特に、生化学物質分析システム、方法及び装置に関する。
一般的なサンプル検査用器具は、少なくともフローセル、検出システム、流体システム等を含んでいることが必要である。フローセルは、被検サンプルが検出流体(試薬)と検出反応が発生する領域である。検出システムは、検出励起をかけて、検出反応の応答信号を記録する。流体システムは、検出反応に関与する検出流体の入力と検出反応後のスクラップの排出を担う。一般的にみられる第二世代シーケンシング技術設計に基づき製造される遺伝子シーケンサを例にとると、そのシステム全体は、主にフローセル、信号検出システム及び流体システムからなる。
フローセル(即ち、サンプルキャリア)は、生化学物質のサンプルを入れて検出分析反応を生じさせるための領域であり、通常、サンプルと流体を収容するチャンバーを含む。シーケンシングの分野において、フローセルは遺伝子シーケンシングのサンプルを積載してシーケンシング反応を生じさせるための領域であり、通常、サンプルと流体を収容するチャンバーを含み、一般にフローセル、反応セル、チップ、シーケンシングチップ、遺伝子シーケンシングチップ若しくはカートリッジなどと呼ばれる。よくある英名には、Flow Cell、Flowcell、Chip、Chip Kit及びCartridgeなどがある。シーケンシングチップは、サンプルロードの不可繰り返し性、及び、異なるサンプル間の交差汚染の回避等の要請から、通常、使い捨て、繰り返し着脱、及び、全閉が可能な様式に設計される。シーケンシングチップは、1つまたは複数の独立した流路を有し、各流路は、反応流体の入出力を検出するための入口と出口とをそれぞれ1つ有する。シーケンシングチップの上面は、通常、励起光信号及び励起された光信号を透過し、この上面を透過して光信号の検出を行う光透過性の材料である。シーケンシングチップの下面は、通常、ベース層となっており、被検遺伝子サンプルが何らかの生物的または化学反応によりその表面に固定され得る。
信号検出システムは、励起信号を生成し、フィードバック信号を受信することができる。第2世代シーケンシング技術における常用の検出方法は、レーザ光を用いてサンプル蛍光を誘起する。即ち、レーザを用いてサンプルを励起し、それに蛍光信号をフィードバックさせて、その後、励起された光学信号をエリアアレイカメラを用いて撮影して記録する。したがって、この検出システムは、本質的に光学的イメージングシステムであり、主に、レーザ、対物レンズ、フィル夕、筒鏡、カメラ、ワークテーブル等の部品からなる。ここで、レーザは、シーケンシング反応における被検サンプルの蛍光信号を励起するために用いられ、対物レンズ、フィル夕、筒鏡及びカメラなどの部品からなるモジュールは、被検サンプルから発せられた蛍光信号の採取を担う。通常、エリアアレイカメラが撮像する領域がシーケンシングチップの設計検出領域に比べてはるかに小さいので、検出システムが動作する際には、シーケンシングチップがワークテーブルに従って移動して行き、全ての反応領域に行き渡らせながらカメラを用いてリアルタイム露光を行ってはじめて、シーケンシングチップにおける各検出領域が発する蛍光信号を1つずつ受信することができる。
流体システムは、遺伝子シーケンサにおいて、検出反応に関与する流体がシーケンシング流体である。流体システムは、反応すべきシーケンシング流体をシーケンシングチップに入力するとともに、反応後のシーケンシング流体をシーケンシングチップから排出することを担当するシステムである。一般に、シーケンシング流体カートリッジ、採取針、配管、液ポンプ等の部材から構成されている。ここで、シーケンシング流体カートリッジは、シーケンシング流体を収容する容器であり、チューブは、流体システムの各部材を接続し且つシーケンシング流体を通過させる閉塞流路であり、液ポンプは、シーケンシング流体を流体システム内で運動させる動力源である。一般的な流体システムは、通常、タンデム形式に設計されており、液ポンプによるクロス汚染が生じないように、一般にシーケンシング流体カートリッジを上流に配置し、流体システムの入り口として採取針を用い、その下流をシーケンシングチップと液ポンプとに配管を介して順次に接続する。シーケンシングチップと液ポンプに接続される配管は、通常、メイン配管と呼ばれ、シーケンシング流体の流体システムに対する入出力に必要な経路である。流体システムは、動作時には、採取針をシーケンシング流体カートリッジに挿入して液ポンプをオンにし、流体針に沿ってシーケンシング流体を配管を通してシーケンシングチップに流入させるとともに、シーケンシングチップの中の既存のシーケンシング流体を液ポンプの配管に沿って排出させる。この設計方式の物理的な本質は、液ポンプを用いて負圧を作り、流体システム全体の圧力を外部大気圧よりも低くし、外部大気圧を利用してシーケンシング流体を流体システムに圧入することである。
しかし、従来の検出機器は、自動化程度が高くなく、スループットが低いという問題もあった。
従来技術の上述した一部または全ての問題及び他の潜在的な問題を解決するためには、生化学物質分析システム、方法及び装置を提案する必要がある。
第1の態様では、フローセル内のサンプルの生物学的特徴に対する検出を完了するために用いられる生化学物質分析システムを提供する。この生化学物質分析システムは、検出システム、スケジューリングシステム、生化学反応システム、及び制御システムを含む。ここで、前記スケジューリングシステムは、前記フローセルを異なる箇所でスケジューリングするために用いられる。前記位置は、検出システムに位置する箇所及び生化学反応システムに位置する箇所を含む。前記生化学反応システムは、前記フローセル内のサンプルに反応させる。前記検出システムは、既に反応したサンプルに対して信号検出を行ない、前記サンプルの生物特徴を代表する信号を取得する。前記制御システムは、前記検出システムと前記スケジューリングシステムと前記生化学反応システムとの連携作業を制御する。
第2の態様では、以下のステップを含む生化学物質分析方法を提供する。
フローセルを受けて、受けたフローセルを生化学反応システムに移送するステップ。
生化学反応システム内で前記フローセル内のサンプルを反応させるステップ。
サンプルが生化学反応を終えたフローセルを検出システムに移転するステップ。
検出システム内で前記フローセル内のサンプルに対して信号検出を行なって、前記サンプルの生体的特徴を反映する信号を取得するステップ。
第3の態様では、上記の生化学物質分析システムを含む生化学物質分析装置、または、上記の生化学物質分析方法を利用してフローセル内のサンプルの生物学的特徴を反映する信号、分析可能データ或いは検出レポートを取得する生化学物質分析装置を提供する。
本発明の実施形態に係る生化学物質分析システム、方法及び装置によって、ユーザはシーケンシングに必要な検出流体、洗浄流体、及びサンプルを積載したフローセルを、遺伝子シーケンサにおけるインターフェースを介して遺伝子シーケンサに入れて、ユーザインタラクティブシステムを介して関連パラメータを設けるだけで、遺伝子シーケンサ及び遺伝子シーケンシングシステムが自動的に遺伝子シーケンシングを完了することができるので、遺伝子シーケンシングの自動化の程度が高められる。
以下、本発明の実施形態の技術提案をより明確化するために、本発明の実施形態において必要な図面を簡単に紹介する。以下の記載における図面は本発明のいくつかの実施例に過ぎず、当業者にとって創造的な労働を払わずに、これらの図面から他の図面が得られることは明らかである。
本発明の実施形態1における遺伝子シーケンサの斜視模式図である。 本発明の遺伝子シーケンサの遺伝子シーケンシングシステムを示す図である。 図2に示したシステムにおける信号検出システムの各モジュールを示す図である。 図2に示したシステムにおける流体輸送モジュールの各構成要素の模式図である。 図2に示したシステムにおける検出反応モジュールの各構成要素の模式図である。 図2に示したシステムにおけるスクラップ処理システムの各モジュールを示す図である。 図2に示したシステムにおける転移システムの実行ロジックを示す図である。 図2に示したシステムにおける信号処理システムの各モジュールを示す図である。 本発明の実施形態2による生化学物質分析システムのブロック図である。 本発明の実施形態3による生化学物質分析方法のフローチャートである。 本発明の実施形態4による生化学物質分析装置の概略図である。 本発明の実施形態5による生化学物質分析装置の概略図である。
以下、上述した図面に合わせて、本発明を実施するための形態を具体的に説明する。
以下、本発明の実施形態の図面に関連して、本発明の実施形態の技術的態様を明確かつ完全に説明するが、説明された実施形態は本発明の一部の実施形態にすぎず、すべての実施形態ではないことは明らかである。本開示の実施例に基づいて、当業者が創造的な労働なしになし得る他の全ての実施例は、すべて本開示の範囲に属する。
なお、あるユニットが他のユニットに「固定される」または「装着される」と称する場合、それが他のユニットに直接存在してもよいし、中間部材を介して設けられてもよい。あるユニットが他のユニットに「配置される」とみなされる場合、それが直接に他のユニットに配置されてもよいし、中央ユニットが同時に存在してもよい。ここで用いられる用語「及び/または」は、1つまたは複数の関連するリストされたアイテムのすべてと任意の組み合わせを含む。本明細書で使用される用語「及び/または」は、1つまたは複数の関連する列挙された項目のすべて及び任意の組み合わせを含む。
文中のM、N及びXなどの数の量的代名詞は、所々に不定数または順序を意味し、特定の数または順序を意味するものではない。つまり、同じM、N及びXが異なる場所において異なる数や順番を指し示す可能性がある。
図1は、本発明の一実施形態における遺伝子シーケンサの模式図である。前述の遺伝子シーケンサ1は、筐体2と、筐体2内に配置され且つ筐体2を介して外部とやり取りされる遺伝子シーケンシングシステム3と、を備える。
本実施形態において、筐体2には、複数の入出力インターフェースが設けられている。前記入出力インターフェースは、表示インターフェース201、キーボードマウス207等のような情報入出力インターフェースを含んでいる。本実施形態において、キーボードマウス207は、筐体2に隠されており、使用時に筐体2から抜き取ることができるようになっている。前記入出力インターフェースには、フローセル投入インターフェース203、カートリッジ置換インターフェース205などの物質入出力インターフェースも含まれる。ユーザは、情報入力インターフェースを介して必要なパラメータ/コマンドを設定し、サンプルを積載したフローセル(サンプルキャリア)、必要なシーケンシング流体(例えば、試薬)及び洗浄流体(例えば、洗浄液)を盛る流体カートリッジ(例えば、試薬カートリッジ)を対応する物質入出力インターフェースを介して遺伝子シーケンサ1の中に入れた後、遺伝子シーケンサ1を起動する。遺伝子シーケンサ1は、設定されたパラメータ/コマンドに従ってフローセル内のサンプルの検出を自動的に完了し、且つ結果情報を情報入出力インターフェースを介してユーザに出力する。
なお、本発明でいう「フローセル」とは、生化学物質のサンプルを積載して検出分析反応を起こすための領域であり、通常、サンプルと流体を収容するチャンバーを含み、これを広義のサンプルキャリアとして理解すべきである。即ち、シーケンシングの場合はシーケンシングチップとして理解することができるほか、その他の場合には他のサンプルキャリアとして理解することもできる。
図2に示すように、本実施例では、上記遺伝子シーケンシングシステム3は、信号検出システム31、信号処理システム32、流体システム33、スクラップ処理システム34、転移システム35、制御システム36及びユーザインタラクティブシステム37などのサブシステムを含む。1つまたは複数のフローセル38が遺伝子シーケンサ1の中に投入された後、それぞれのフローセル38は転移システム35によってそれぞれの関連サブシステムにおいて位置変換され、フローセル38内のサンプルが検出反応を完了して信号検出が行われるようにする。
以下、各サブシステムについて詳細に説明する。
信号検出システム31は、フローセル38内のサンプルに対して信号検出を行うものであり、励起信号の印加、サンプルからのフィードバック信号の受信、記録等の操作を含む。本実施形態では、前記信号検出システム31は、励振信号送信モジュール301と、信号チャンネルモジュール303と、フィードバック信号受信モジュール305と、受信信号補正モジュール306と、検出固定ユニット308と、移動ユニット310とをさらに含む。なお、本実施例では、1つの信号検出システム31のみでフローセル38内のサンプルを検出することのみを示したが、実際には、係る信号検出システム31は、必要に応じて、複数であってもよい。例えば、必要に応じて、遺伝子シーケンサ1に、M(Mは1より大きい自然数)個の信号検出システム31を設け、信号検出システム31毎には、制御システム36の制御に従って、1つのフローセル38内のサンプルに対して、当該フローセル38内のサンプルに対する少なくとも1塩基の信号検出が完了するように、少なくとも1回の検出を実行してもよい。遺伝子シーケンサ1に複数の信号検出システム31が設けられている場合、遺伝子シーケンサ1は、複数のフローセル38中のサンプルに対して同時に信号検出を行うことができる。
前記信号検出システム31の各サブモジュールについて、以下に詳細に説明する。
励振信号送信モジュール301は、フローセル38内のサンプルに励振信号を印加して、フィードバック信号が得られるか否かを検出するものである。サンプルの成分は、信号をフィードバックすることにより判別できる。励振信号は、光信号若しくは電気信号であってもよい。光信号であれば、前記励振信号送信モジュール301はレーザやLED等の光源であってもよい。電気信号であれば、前記励振信号送信モジュール301は電源であってもよい。
信号チャンネルモジュール303は、励振信号送信モジュール301から送信された励振信号を予め定められた経路でフローセル38に到達させ、フィードバック信号をフローセル38から出発して予め定められた経路でフィードバック信号受信モジュール305に到達させるためのものである。信号チャンネルモジュール303は、励振信号が光信号である場合には、対物レンズ、筒鏡、レンズ、フィルタなどの1つ又は複数の光学部品で構成される光学モジュールである。励振信号が電気信号である場合には、信号チャンネルモジュール303は導電線、電気抵抗、コンデンサ、整流器、フィルタなどの1つ又は複数の電気部品で構成される電気モジュールである。
フィードバック信号受信モジュール305は、励起信号によりサンプルが励起されて発生するフィードバック信号を受信する。フィードバック信号受信モジュール305は、励起信号が光信号であれば、各種のエリアアレイカメラ、ラインスキャンカメラ若しくはその他のフォトダイオード、光電子増倍管等の光信号受信部であってもよく、励起信号が電気信号であれば、信号収集カードなどの電気信号受信部材であってもよい。
受信信号補正モジュール306は、励振信号の送信経路とフィードバック信号の受信経路とを調整して、送信した励振信号と受信したフィードバック信号とを一致させ、かつ最も効果が高くなるようにする。本実施形態では、受信信号補正モジュール306は、励振信号が光信号である場合には、各種類のオートフォーカス部品及びその組み合わせであり、励振信号が電気信号である場合には、各種の整流部品及びその組み合わせであってもよい。
前記検出固定ユニット308は、フローセル38を着脱可能に装着及び固定するものであり、信号検出時にフローセル38に前記検出固定ユニット308と相対的な静止状態を保持させる。
前記移動ユニット310は、前記検出固定ユニット308と接続され、フローセル38の全ての検出すべき領域が信号検出を行えるように、前記検出固定ユニット310を駆動して一定の範囲内で移動させる。本実施形態において、前記移動ユニット310は、XY移動ステージなどの移動制御デバイスであってもよい。
前記信号処理システム32は、前記信号検出システム31が受信したフィードバック信号を処理して分析し、シーケンシングデータを得てレポートを生成するために用いられる。本実施形態では、信号処理システム32は、信号伝送モジュール312と、信号処理モジュール314と、データ記憶モジュール316とを有する。以下、上記信号処理システム32の各サブモジュールについて詳細に説明する。
前記信号伝送モジュール312は、信号検出システム31から伝送されてきたフィードバック信号を受け取り、このフィードバック信号をバッファリングし、後続の処理分析を待つ。前記遺伝子シーケンサ1は、前述のように、必要に応じて複数の信号検出システム31を設けても良い。複数の信号検出システム31を設けた場合には、信号検出システム31毎に受信したフィードバック信号が前記信号伝送モジュール312に送られてバッファリングされ、後続の処理分析を待つ。前記信号伝送モジュール312は、各種の不揮発性信号バッファ装置あってもよい。
信号処理モジュール314は、信号伝送モジュール312からバッファリングされたフィードバック信号を取得し、アルゴリズムにより解析可能なデータに変換し、さらに前記データを解析してシーケンシングレポートを生成し、且つ当該シーケンシングレポートをユーザインタラクティブシステム37に出力する。
データ記憶モジュール316は、処理が完了したデータやシーケンシングレポートを圧縮し、ユーザが随時に呼び出して見ることができるようにバックアップとして記憶媒体に記憶させるためのものである。
流体システム33は、サンプル検出中に、検出試薬などの検出用流体を貯留し、フローセル38に検出用流体を入力して検出反応を行い、且つ検出反応終了後の全てのスクラップをスクラップ処理システム34に排出する。本実施形態では、流体システム33は、検出反応モジュール318、反応温度制御ユニット320、流体輸送モジュール322、非温度制御貯留ユニット324、温度制御貯留ユニット326、及び記憶温度制御ユニット328などの複数のサブモジュールまたはユニットを備えている。なお、本実施例においては、1つの流体システム33のみを示しているが、実際には、前記流体システム33は、必要に応じて、複数であってもよく、例えば、必要に応じて、遺伝子シーケンサ1において、N(Nが1より大きい自然数)個の流体システム33を設けてもよい。各流体システム33は、1つのフローセル38をロードし、且つ当該フローセル38に対してシーケンシングに必要な特定の流体を入力することにより、前記フローセル38におけるサンプルの検出反応を生じさせる。前記フローセル38の各検出箇所に、前記信号検出システム31により検出可能な特定の物質や構造を形成してもよい。遺伝子シーケンサ1に流体システム33を複数設けると、遺伝子シーケンサ1は、複数のフローセル38を同時にロードして、各フローセル38に対してシーケンシングに必要な特定の流体を入力することで、各フローセル38内のサンプルの検出反応を完了させることができる。以下、前記流体システム33の各サブモジュール、ユニットについて詳細に説明する。
検出反応モジュール318は、検出反応を行うフローセル38を着脱可能に装着し、この検出反応モジュール318に対してフローセル38を物理的な接続で複数回繰り返して固定できるように構成されている。本実施形態では、検出反応モジュール318に装着された後、フローセル38と検出反応モジュール318との間が相対的に静止し、フローセル38と検出反応モジュール318との接触面が十分な接触を保ち、熱交換効率が確保され、フローセル38の流体の進入のための入口と流体の排出のための出口とが流体システム33の他のモジュールに密封接続される。前記検出反応モジュール318は、流体システム33とフローセル38とのインタラクティブモジュールである。前記検出反応モジュール318の内部の流路部分は、流体がフローセル38に入力する及びフローセル38から排出する場合の流れの仕方を決めることもできる。
前記反応温度制御ユニット320は、フローセル38の検出反応時に必要な温度条件を満たすように、検出反応モジュール318とフローセル38との温度を制御するためのものである。本実施形態において、前記反応温度制御ユニット320は、TECやその他の温度制御可能なユニット或いはその組み合せであってもよい。
流体輸送モジュール322は、検出反応に関与する流体を貯留モジュール(即ち、非温度制御貯留ユニット324及び/又は温度制御貯留ユニット326)の中から取り出し、フローセル38の入口を通してフローセル38に輸送し、フローセル38内のサンプルについて検出反応を進行させ、検出反応後のスクラップをフローセル38の出口を通してスクラップ処理システム34に排出するためのものである。この流体輸送モジュール322は、ポンプ、バルブ、チューブ等により構成されることができる。
前記非温度制御貯留ユニット324は、検出反応に関与する、貯留温度に要求がない検出流体を貯留する。本実施形態では、前記非温度制御貯留ユニット324は、内部に1つ又は複数のサブ容器を収容した容器である。検出流体が流体輸送モジュール322に入るための入口として、サンプリング針(図示せず)が各サブ容器に1つずつ接続されている。
前記温度制御貯留ユニット326は、検知反応に関与する、貯留温度に要求がある(例えば、一定温度や温度範囲での使用を要する)検知流体を貯留するためのものである。この温度制御貯留ユニット326は、さらに、温度制御により発生された凝縮液等のスクラップを定期的にスクラップ処理システム34に排出する。温度制御貯留ユニット326は、内部に1つまたは複数のサブ容器が収納された温度制御器である。検出流体が流体輸送モジュール322に入る入口として、サブ容器毎に流体輸送モジュール322に連接する1つのサンプリング針が設けられている。
記憶温度制御ユニット328は、貯留温度に要求がある検出流体の貯留条件を満たすように、温度制御貯留ユニット326の温度を制御する。記憶温度制御ユニット328は、TEC又は他の温度制御可能な部品或いはその組み合わせであってもよい。
前記スクラップ処理システム34は、流体システム33から排出されたスクラップを貯留するためのものである。本実施形態において、前記スクラップは、排出された廃液であってもよい。本実施形態では、前記スクラップ処理システム34は、さらに、遺伝子シーケンサ1の外に設置されたスクラップ貯留装置4にも接続され、スクラップを前記スクラップ貯留装置4の中に排出するためのものである。前記スクラップには、検出反応によって生じたスクラップが含まれるが、これに限らない。スクラップ処理システム34には、スクラップ収集モジュール330及びスクラップ輸送モジュール332等のサブモジュールが含まれる。
ここで、スクラップ収集モジュール330は、流体システム33から排出されるスクラップのすべてを回収して貯留するためのものであり、検出反応のスクラップ及び流体システム33が稼働するときに発生する他のスクラップを含んでいる。本実施形態では、スクラップ収集モジュール330は、スクラップが動力を欠いた際に、前記スクラップをスクラップ収集モジュール330内に進入させるように駆動するための動力ユニットを含む。前記動力ユニットは、液体ポンプであってもよい。前記スクラップ収集モジュール330内には、スクラップを受け入れ可能な装置や容器が設けられている。
前記スクラップ輸送モジュール332は、前記スクラップ収集モジュール330に格納されたスクラップを、遺伝子シーケンサ1の外のスクラップ貯留装置4の中に排出するためのものである。前記スクラップ輸送モジュール332は、ポンプ、バルブ、配管等の流体部品からなるモジュールであってもよい。
前記スクラップ貯留装置4は、検出反応のスクラップ及びその他のスクラップをまとめて蓄積するためのものであり、遺伝子シーケンサ1の外に置かれて、スクラップの集中保存と処理を容易にする。前記スクラップ貯留装置4は、カスタマイズされたスクラップ樽であってもよいし、ユーザがカスタマイズする特殊なスクラップ収集及び処理装置であってもよい。
前記転移システム35は、フローセル38を遺伝子シーケンサ1内の異なる位置にオンデマンドで移動させるためのものである。例えば、フローセル38は、流体システム33と信号検出システム31との間を転移する必要がある。信号検出を終えたフローセル38が次の検出反応を行なう必要がある場合に、前記転移システム35は、信号検出システム31の検出固定ユニット308からフローセル38を取り外し、流体システム33の検出反応モジュール318に装着する。検出反応が完了し、信号検出が必要な時に、前記転移システム35は、検出反応モジュール318におけるフローセル38を取り外し、信号検出システム31の検出固定ユニット308に装着する。前記転移システム35は、1つのロボットであってもよく、1つのロボットアームであってもよく、ベルトコンベア等の自動化移送を目的とした機械装置であってもよい。
制御システム36は、信号検出システム31、流体システム33、スクラップ処理システム34及び転移システム35の各手段の連携作業を制御するためのものである。本実施形態では、制御システム36は、検出制御モジュール334、温度制御モジュール336、流体制御モジュール338、スクラップ制御モジュール340、転移制御モジュール342及びシステム制御モジュール344等のサブモジュールを含んでいる。
なお、前記検出制御モジュール334は、信号検出システム31の各部の動作を制御するためのものであり、ユーザがシステム制御モジュール344を介して下した指令を信号検出システム31の各部が実行可能な信号に変換する。さらに、本実施形態では、前記検出制御モジュール334は、信号検出システム31への電力供給も制御する。前記検出制御モジュール334は、電子部品、ボードカード、ケーブル等からなる電子制御ボードであってもよく、その他の特定用途の電子制御ユニットの集合であってもよい。なお、必要に応じて、遺伝子シーケンサ1において複数の信号検出システム31を設計する場合、前記検出制御モジュール334は複数であってもよい。個々の信号検出システム31は、対応する検出制御モジュール334によって制御される。個々の検出制御モジュール334は、各信号検出システム31が動作する際に独立性が確保され、互いに干渉しないように、1つの信号検出システム31のみを制御することが好ましい。
温度制御モジュール336は、流体システム33における反応温度制御ユニット320及び記憶温度制御ユニット328の動作を制御するためのものであり、ユーザがシステム制御モジュール344を介して下した温度制御指令を、上述したモジュールの各部の実行可能な信号に変換する。さらに、本実施形態では、前記温度制御モジュール336は、前記モジュールへの給電も制御する。前記検出制御モジュール334は、電子部品、ボードカード、ケーブル等からなる電子制御ボードであってもよく、その他の特定用途の電子制御ユニットの集合であってもよい。
この流体制御モジュール338は、流体システム33各部の動作を制御するためのものであり、ユーザがシステム制御モジュール344を介して下した指令を、流体システム33の各部が実行可能な信号に変換する。さらに、本実施形態では、前記流体制御モジュール338は、流体システム33の電力供給も制御する。前記流体制御モジュール338は、電子部品、ボードカード、ケーブル等からなる電子制御ボードであってもよく、その他の特定用途の電子制御ユニットの集合であってもよい。なお、必要に応じて、遺伝子シーケンサ1において複数の流体システム33を設けた場合に、各流体システム33は、対応する流体制御モジュール338によって制御されることになるが、各流体制御モジュール338は、各流体システム33が互いに干渉することなく、動作時の独立性を確保するために、1つの流体システム33のみを制御することができる。
スクラップ制御モジュール340は、スクラップ処理システム34の各部の動作を制御するためのものであり、ユーザがシステム制御モジュール344を介して下した指令を、スクラップ処理システム34の各部が実行可能な信号に変換する。さらに、本実施形態では、前記スクラップ制御モジュール340は、スクラップ処理システム34への給電も制御する。前記スクラップ制御モジュール340は、電子部品、ボードカード、ケーブル等からなる電子制御ボードであってもよく、その他の特定用途の電子制御ユニットの集合であってもよい。
上記転移制御モジュール342は、転移システム35の各部の動作を制御するためのものであり、ユーザがシステム制御モジュール344によって下した指令を転移システム35の各部が実行可能な信号に変換する。さらに、本実施形態では、前記転移制御モジュール342は、転移システム35の電力供給も制御する。前記転移制御モジュール342は、電子部品、ボードカード、ケーブル等からなる電子制御ボードであってもよく、その他の特定用途の電子制御ユニットの集合であってもよい。
システム制御モジュール344は、上記の各制御モジュールにユーザの指令を送り、且つ各制御モジュールからのフィードバックをユーザインタラクティブシステム37に伝送するためのものである。システム制御モジュール344は、電子部品、ボードカード、ケーブル等からなる電子制御ボードであってもよく、その他の特定用途の電子制御ユニットの集合であってもよい。
ユーザインタラクティブシステム37は、ヒューマン・マシンインタラクションに用いられ、遺伝子シーケンシングシステム3にユーザの指令を受け付け可能にするとともに、ユーザの指令をフィードバックする。本実施形態では、上記の遺伝子シーケンシングシステム3は、ユーザの指令を受信すること及びユーザへのフィードバックは主に2つの方面にわたる。1つ目は、システム制御モジュール344とインタラクションを行なうために開発されたマシン全体操作ソフトウェアであって、ユーザが関連パラメータを入力して機械全体の検出反応フローを実行できるようにする。二つ目は、信号処理システム32に由来し、信号処理システム3は処理された後の検出データを供給し、検出結果を直感的にユーザに視認させる。本実施形態では、前記ユーザインタラクティブシステム37は、視覚インタラクティブモジュール346、入力モジュール348等のサブモジュールで構成される。前記ユーザインタラクティブシステム37は、前記筐体2に設けられた情報入出力インターフェースを備える。例えば、視覚インタラクティブモジュール346は、表示インターフェース201を備え、入力モジュール348は、筐体2に設けられたキーボード、マウス等を備える。
視覚インタラクティブモジュール346は、ヒューマン・マシンインタラクションの内容を視覚的に表示し、ヒューマン・マシンインタラクションを容易にするためのものである。視覚インタラクティブモジュール346は、各種のモデルのディスプレイであってもよいし、各種のモデルのタッチパネルディスプレイであってもよいし、その他の視覚出力用のデバイスであってもよい。
入力モジュール348は、ユーザのマシン全体に対する各種の指令を入力するためのものであり、各種の入出力装置であってもよく、キーボード、マウスやその他の入力に使用できるデバイスを含む。
図2において、長い破線を用いて転移システム35を信号検出システム31及び流体システム33にそれぞれ接続し、フローセル38が信号検出システム31と流体システム33との間で遷移を行なうことを表す。遷移完了後に、2つのシステムにそれぞれ固定して特定の検出/反応ステップを完了する必要がある。信号検出システム31及び流体システム33によるフローセル38の制御は、短期的な制御行為である。フローセル38が転移システム35によって取得されると、フローセル38は信号検出システム31または流体システム33の制御から完全に逸脱し、転移システム35のみによって制御され且つ最終的に指定された位置に移動される。
図2において、信号検出システム31と信号処理システム32とを実線で接続し、信号検出システム31と信号処理システム32との間の信号/データ伝送を表す。流体システム33とスクラップ処理システム34とスクラップ貯留装置4とを実線で順次接続し、流体システム33とスクラップ処理システム34やスクラップ貯留装置4との間の物質移動を表す。実線を使用して、検出反応モジュール318と反応温度制御ユニット320とを接続するとともに、温度制御貯留ユニット326と記憶温度制御ユニット328とを接続し、反応温度制御ユニット320が必要に応じて検出反応モジュール318を温度制御すること、および記憶温度制御ユニット328が必要に応じて温度制御貯留ユニット326を温度制御することを表す。したがって、本実施形態において、図2の実線でモジュール/ユニットを接続することは、データや物質の伝送過程を表わしている。
図2において、信号検出システム31、流体システム33、スクラップ処理システム34、及びユーザインタラクティブシステム37のそれぞれに、点線で制御システム36がそれぞれ接続されており、信号検出システム31、流体システム33、スクラップ処理システム34、及びユーザインタラクティブシステム37のそれぞれに対する制御システム36の制御及び情報のやり取りを表している。したがって、本実施形態において、図2の点線は、持続可能または非持続的な制御信号伝達プロセスを表している。
なお、図2において、フローセル38は、信号検出システム31と流体システム33との中に置かれて長い破線の枠で示されており、当該フローセル38が常にこの2つの位置に取り付けられているのではなく、シーケンシングの進捗に応じて、転移システム35によってオンデマンドでその2つの位置の一方に転移、固定されていることを示している。他の実施形態として、上記2つの位置には、同時にフローセル38が置かれていてもよいが、フローセル38が信号検出システム31又は流体システム33に装着された後にのみ、信号検出システム31または流体システム33が作動し始めることができる。
図3は、本実施形態の信号検出システム31における各モジュールのさらなる詳細を示す図である。このうち、励振信号送信モジュール301は、励振信号送信モジュール3011と、励振信号整理ユニット3012と、汎用励振信号割当ユニット3013等を有している。フィードバック信号受信モジュール305は、フィードバック信号受信モジュール3051、フィードバック信号整理ユニット3052及び汎用フィードバック信号割当ユニット3053等を備える。信号チャンネルモジュール303は、汎用信号割当ユニット3031及び汎用信号送受信ユニット3032等から構成される。受信信号補正モジュール306は、補正信号送信ユニット3061、補正信号割当ユニット3062、及び信号補正ユニット3063などから構成される。上記各ユニットの詳細を以下に述べる。
励振信号送信モジュール3011は、フローセル38内のサンプルに対して励起信号を送信するためのものである。この励起信号は、サンプルのフィードバック信号を励起し、サンプルのフィードバック信号を検出することにより、サンプルが特定の検出された成分を含むか否かを分析することができる。フィードバック信号を電気的に励振するような信号検出に対応して、励振信号送信モジュール3011は電圧、電流若しくは電荷のトリガー手段であってもよい。フィードバック信号を光学的に励振するような信号検出に対応して、励振信号送信モジュール3011はレーザ、LEDランプ等の光源装置であってもよい。
励振信号整理ユニット3012は、送信された励振信号をサンプルの受信要求に適応するように整理するためのものである。フィードバック信号を電気的に励起するような信号検出に対応して、励振信号整理ユニット3012は、整形、フィルタリング等の機能を有する回路モジュールである。フィードバック信号を光学的に励起するような信号検出に対応して、励振信号整理ユニット3012は、レンズ、反射ミラー、フィルタ等の光学デバイスであってもよい。
前記汎用励振信号割当ユニット3013は、送信される励振信号をグループ化してまとめるためのものであり、励振信号の送信要求を簡素化し、励振信号に対する整理要求も同時に実現するものである。フィードバック信号を電気的に励起するような信号検出に対応して、前記汎用励振信号割当ユニット3013は、整形、フィルタリング等の機能を有する回路モジュールであってもよい。フィードバック信号を光学的に励起するような信号検出に対応して、前記汎用励振信号割当ユニット3013は、レンズ、反射ミラー、フィルタまたはその組み合わせ等の光学デバイスであってもよい。
図3に示す実施形態では、励振信号送信モジュール301は、A個の汎用励振信号割当ユニット3013と、A×M個の励振信号送信モジュール3011と、A×M個の励振信号整理ユニット3012とを有している。従って、M個あたりの励振信号送信モジュール3011とM個あたりの励振信号整理ユニット3012は、1つの汎用励振信号割当ユニット3013に対応している。
上記フィードバック信号受信モジュール3051は、サンプルから発せられるフィードバック信号を受信する。当該フィードバック信号は、励起信号により励起されるものであり、このフィードバック信号を検出することにより、サンプルが特定の検出された物質や成分を含むか否かを分析することができる。フィードバック信号受信モジュール3051は、フィードバック信号を電気的に励起するような信号検出に対応して、電圧、電流や電荷などの記録装置であってもよい。フィードバック信号受信モジュール3051は、フィードバック信号を光学的に励起するような信号検出に対応して、エリアアレイカメラ(例えば、CCD)、ラインスキャンカメラ(例えば、TDI)、CMOSなどの感光記録装置であってもよい。
前記フィードバック信号整理ユニット3052は、受信したフィードバック信号を整理して、フィードバック信号の記録要求に応えるためのものである。前記フィードバック信号整理ユニット3052は、フィードバック信号を電気的に励起するような信号検出に対応して、整形、フィルタリング等の機能を有する回路モジュールであってもよい。前記フィードバック信号整理ユニット3052は、フィードバック信号を光学的に励起するような信号検出に対応して、レンズ、反射ミラー、フィルタ、またはその組み合わせ等の光学デバイスであってもよい。
前記汎用フィードバック信号割当ユニット3053は、受信したフィードバック信号をグループ化してまとめるためのものであり、励振信号の送信要求を簡素化し、励振信号に対する整理要求も同時に実現するものである。フィードバック信号を電気的に励起するような信号検出に対応して、前記汎用フィードバック信号割当ユニット3053は、整形、フィルタリング等の機能を有する回路モジュールであってもよい。フィードバック信号を光学的に励起するような信号検出に対応して、前記汎用フィードバック信号割当ユニット3053は、レンズ、反射ミラー、フィルタまたはその組み合わせ等の光学デバイスであってもよい。
図3に示す実施形態において、フィードバック信号受信モジュール305は、B個の汎用フィードバック信号割当ユニット3053と、B×N個のフィードバック信号送信ユニット3051と、B×N個のフィードバック信号整理ユニット3052とを有している。従って、N個あたりのフィードバック信号送信ユニット3051とN個あたりのフィードバック信号整理ユニット3052は、1つの汎用フィードバック信号割当ユニット3053に対応している。
前記汎用信号割当ユニット3031は、励起信号とフィードバック信号をグループ化するために使用され、励振信号及びフィードバック信号の整理要求も同時に実現する。フィードバック信号を電気的に励起するような信号検出に対応して、前記汎用信号割当ユニット3031は、整形、フィルタリング等の機能を有する回路モジュールであってもよい。フィードバック信号を光学的に励起するような信号検出に対応して、前記汎用信号割当ユニット3031は、レンズ、反射ミラー、フィルタまたはその組み合わせ等の光学デバイスであってもよい。
前記汎用信号送受信ユニット3032は、信号チャンネルモジュール303からサンプルへの励振信号の遷移と、サンプルから信号チャンネルモジュール303へのフィードバック信号の遷移とを実現するためのものである。汎用信号送受信ユニット3032は、信号補正ユニット3063により制御されて、励振信号とフィードバック信号の送受信効果が最適になるように微調整することができる。汎用信号送受信ユニット3032は、フィードバック信号を電気的に励起するような信号検出に対応して、プローブ、ワイヤなどの電子放出デバイスであり、フィードバック信号を光学的に励起するような信号検出に対応して、対物レンズ、反射ミラー、フィルタまたはその組み合わせなどの光学デバイスであってもよい。
補正信号送信ユニット3061は、サンプルに対して補正信号を送信するために使用される。この補正信号は、サンプルのフィードバック信号を励起しないが、信号チャンネルモジュール303の動作状態を検出することで、信号チャンネルモジュール303が最適な動作状態にあるか否かを判断することができる。前記補正信号送信ユニット3061は、電気的な信号検出に対応して電圧、電流または電荷のトリガー手段であり、光学的な信号検出に対応してレーザ、LEDなどの光源手段である。
前記補正信号割当ユニット3062は、補正信号送信ユニット3061が送信した補正信号を汎用信号割当ユニット3031に伝達したり、汎用信号割当ユニット3031からフィードバックされた補正信号を受信し、フィードバックされた補正信号を信号補正ユニット3063にフィードバックしたりして、信号補正ユニット3063によって汎用信号送受信ユニット3032に対する微調整が必要か否かを判断する。前記補正信号割当ユニット3062は、電気的な信号検出に対応して整形、フィルタリング等の機能を有する回路モジュールであってもよく、光学的な信号検出に対応してレンズ、反射ミラー、フィルタ、またはその組み合わせ等の光学デバイスであってもよい。
前記信号補正ユニット3063は、励振信号とフィードバック信号の送受信効果が最適化されるように、汎用信号送受信ユニット3032の微調整を制御するためのものである。前記信号補正ユニット3063は、電気的な信号検出に対応して整形、フィルタリング等の機能を有する回路モジュールであり、光学的な信号検出に対応してオートフォーカス機能を有する光学デバイスであってもよい。
図3において、実線は励振信号またはフィードバック信号が各ユニット間で伝送されるチャンネルを示している。本実施形態では、3つの重要な伝達チャンネルがある。第1の伝達チャンネルは励振信号が励振信号送信モジュール3011から、励振信号整理ユニット3012、汎用励振信号割当ユニット3013、汎用信号割当ユニット3031、汎用信号送受信ユニット3032を順に経て最終的にフローセル38に至り、励振信号の被測定サンプルへの励振がなされる。第2の伝達チャンネルは、フィードバック信号がフローセル38から出発し、汎用信号送受信ユニット3032、汎用信号割当ユニット3031、汎用フィードバック信号割当ユニット3053、フィードバック信号整理ユニット3052を順に経由して、最終的にフィードバック信号受信モジュール3051に到達し、サンプルが励起されて発するフィードバック信号を受信する。第3の伝達チャンネルは、補正信号が補正信号送信ユニット3061から、補正信号割当ユニット3062、汎用信号割当ユニット3031、汎用信号送受信ユニット3032を経てフローセル38に到達してリターンされる。リターンされた補正信号は、汎用信号送受信ユニット3032、汎用信号割当ユニット3031、補正信号割当ユニット3062を経て信号補正ユニット3063に到達し、補正信号による信号チャンネルモジュール303の動作状態の検出及び評価がなされる。
図3において、破線は信号補正ユニット3063による汎用信号送受信ユニット3032へのフィードバックを表しており、信号補正ユニット3063が戻された補正信号に基づいて、汎用信号送受信ユニット3032の状態を調整することを意味する。電気的な信号検出に対応して、汎用信号送受信ユニット3032に対する調整は、電子プローブや他の電子デバイスのサンプルに対する位置を調整したり、汎用信号送受信ユニット3032がサンプルに対して放出する電圧、電流などの電子指標を調整したりすることである。汎用信号送受信ユニット3032に対する調整は、光学的な信号検出に対応して、オートフォーカスや対物レンズの材料位置の微調整などでよい。
図4は、本実施形態における流体輸送モジュール322の模式的なより詳細な図である。この流体輸送モジュール322は、動力ユニット3220、保護ユニット3221、検出ユニット3222、サンプル貯留ユニット3223、割当ユニット3224、及び総割当ユニット3225などのユニットを備えている。上記各ユニットの詳細を以下に述べる。
動力ユニット3220は、流体システム33において圧力勾配(圧力差)を作り、流体システム33において検出流体が動かされるように駆動するためのものである。前記動力ユニット3220は、各種タイプの液体運動を駆動するためのポンプであってよく、例えば、シリンジポンプ、プランジャーポンプ、ダイヤフラムポンプ、ギヤポンプ、ペリスタルティックポンプ等の一般的な種類のポンプであってよく、高圧空気等の気体圧力源であってもよい。
保護ユニット3221は、流体システム33を安全に運転するためのものであり、流体システム33に異常が発生したときに、流体システム33内の他の部品が損傷しないように保護メカニズムを起動する。前記保護ユニット3221は、各種タイプのバルブ、例えば、ソレノイドバルブ、チェックバルブ、リリーフバルブ等であってもよく、ハンドスイッチ等のダクトの開閉を制御するものであってもよい。
検出ユニット3222は、流体システム33の所定の指標を検出し、流体システム33の所定の指標が異常であるか否かを検出する。検出ユニット3222は、圧力センサー、流量センサー、速度センサー、気泡センサー等の各種タイプのセンサーであってもよい。
前記サンプル貯留ユニット3223は、検出流体を一時的に貯留するためのものである。前記サンプル貯留ユニット3223は、所定の形状を有する1つの容器であってもよいし、1本の配管のみであってもよい。
前記割当ユニット3224は、流体システム33の異なる配管や部品をオンデマンドで連通させるためのものである。前記割当ユニット3224は、各種タイプの電磁弁であってもよく、例えば、多通路の直動式電磁弁、多通路のパイロット式電磁弁等、或いは、各種タイプの回転弁であってもよく、複数の電磁弁及び/又は回転弁からなる集合であってもよい。
図4に示す実施形態では、この流体輸送モジュール322が、少なくとも1つの動力ユニットと、1つの保護ユニット3221と、1つの検出ユニット3222と、1つのサンプル貯留ユニット3223と、1つの割当ユニット3224と、を含む流体輸送用作業グループ3226をM個備えており、温度制御貯留ユニット326及び/又は非温度制御貯留ユニット324から検出流体の一部を吸引してサンプル貯留ユニット3223へ一時的に格納できるようになっている。検出流体を一時的に格納するサンプル貯留ユニット3223を設けるという有利な効果は、1つの流体輸送用作業グループ3226が総割当ユニット3225を介して検出反応モジュール318及びフローセル38の中に検出流体を注入する際に、残りの流体輸送用作業グループ3226がその時間隙間を利用して検出流体を吸引して準備でき、検出流体の注入前の準備時間を節約できることである。そこで、本実施形態では、流体輸送モジュール322が、M個の保護ユニット3221と、M個の検出ユニット3222と、M個のサンプル貯留ユニット3223と、M個の割当ユニット3224と、を有している。全ての流体輸送用作業グループ3226は、検出反応モジュール318に対してどの流体輸送用作業グループ3226を一括して分配するかを纏めて分配するために、総割当ユニット3225に接続されている。また、他の実施形態では、保護ユニット3221、検出ユニット3222、サンプル貯留ユニット3223の位置を入れ替えても、上記の機能は依然として実現可能である。
この総割当ユニット3225は、割当ユニット3224と同様の機能を有しており、流体システム33内の異なる配管と部品を必要に応じて連通させるためのものである。前記総割当ユニット3225は、各種タイプの電磁弁であってもよく、例えば、多通の直動式電磁弁、多通のパイロット式電磁弁等、又は、各種タイプの回転弁であってもよく、複数の電磁弁及び/又は回転弁からなる集合であってもよい。
図4において、矢印付きの点線は、流体輸送モジュール322の1つの流体輸送用作業グループ3226が検出流体を準備する際の液体の運動方向を検知して、動力ユニット3220によって作られる圧力勾配により、温度制御貯留ユニット326又は非温度制御貯留ユニット324の中の検出流体が割当ユニット3224を介してサンプル貯留ユニット3223に一時的に貯留されることを表している。
図4において、矢印付きの実線は、流体輸送モジュール322の1つの流体輸送用作業グループ3226が、検出反応モジュール318及びフローセル38に検出流体を送り出す際の液体の移動方向に対して、動力ユニットによって作られた圧力勾配を利用して、サンプル貯留ユニット3223の中に一時的に貯留された検出流体がサンプル貯留ユニット3223の中から流出し、割当ユニット3224及び総割当ユニット3225を経て、検出反応モジュール318の流路に出力されることを表している。なお、非温度制御貯留ユニット324から動力ユニット3220に接続された実線の矢印は、動力ユニット3220が圧力勾配を作り続ける際に、非温度制御貯留ユニット324における検出流体で流体を補充する必要がある。この流体は、非温度制御貯留ユニット324の中に保存されたある液体や高圧の気体であってもよい。
他の実施形態では、前記動力ユニット3220は、非温度制御貯留ユニット324に接続されるのではなく、液体または高圧ガスである流体を収容した別の貯留装置に接続される。前記動力ユニット3220は、圧力勾配を持続的に作ってサンプル貯留ユニット3223に貯留された流体をフローセルに注入させる際に、前記貯留装置内の流体は動力ユニット3220に対して流体を補充する。
図4において、矢印付きの長い点線は、保護ユニット3221とスクラップ処理システム34、及び温度制御貯留ユニット326とスクラップ処理システム34をそれぞれ接続している。保護ユニット3221とスクラップ処理システム34との接続は、流体輸送用作業グループ3226に不具合が生じた場合に、保護ユニット3221が作業を開始し、保護ユニット3221からスクラップ処理システム34に余分な流体を排出する可能性があることを表している。温度制御貯留ユニット326とスクラップ処理システム34との接続は、温度制御貯留ユニット326の温度が外気温度と温度差があるため、温度制御貯留ユニット326の温度が外界よりも低くなると凝縮液が発生し、この凝縮液がスクラップ処理システム34に収集されることを意味する。
図5は、本実施形態における検出反応モジュール318の模式的なより詳細な図である。前記検出反応モジュール318は、入口開閉素子3181、出口開閉素子3182、バイパス開閉素子3183及び総開閉素子3184などの素子を含む。前記検出反応モジュール318の各素子の詳細は以下のとおりである。
前記入口開閉素子3181は、フローセル38の入口の配管の開閉を制御するものであり、多通路の直動式電磁弁、多通路のパイロット式電磁弁、または各種タイプの回転弁であってよく、複数の電磁弁及び/または回転弁からなる集合であってもよい。フローセル38の入口数が複数である場合、フローセル38の個々の入口は1つの入口開閉素子3181に対応し、フローセル38の個々の入口には制御用の入口開閉素子3181が1つあり、且つ個々の入口開閉素子3181は独立して制御可能である。
出口開閉素子3182は、フローセル38の出口の配管の開閉を制御するものである。前記出口開閉素子3182は、各種タイプの電磁弁であってもよく、例えば、多通路の直動式電磁弁、多通路のパイロット式電磁弁、又は各種タイプの回転弁であってもよく、複数の電磁弁や回転弁からなる集合であってもよい。フローセル38の出口数が複数である場合、フローセル38の個々の出口は1つの出口開閉素子3182に対応し、フローセル38の各出口には1つの出口開閉素子3182が制御可能とされ、且つ各出口開閉素子3182が独立して制御可能とされている。
バイパス開閉素子3183は、フローセル38の入口の配管の開閉を制御するものであり、多通路の直動式電磁弁、多通路のパイロット式電磁弁、又は各種タイプの回転弁等の各種タイプの電磁弁であってもよく、複数の電磁弁及び/または回転弁からなる集合であってもよい。
総開閉素子3184は、検出反応モジュール318の出口全体の配管の開閉を制御する。前記総開閉素子3184は、各種タイプの電磁弁であってもよく、例えば、多通路の直動式電磁弁、多通路のパイロット式電磁弁または各種タイプの回転弁であってもよく、複数の電磁弁及び/または回転弁からなる集合であってもよい。
図5において、検出反応モジュール318は、M個の入口開閉素子3181と、N個の出口開閉素子3182と、X個のバイパス開閉素子3183とを同時に設置することができる。各々の入口開閉素子3181及びバイパス開閉素子3183は、流体輸送モジュール322から接続してきた1本の通路を独立して制御する。全ての出口開閉素子3182は、一括して総開閉素子3184にまとめて接続される。
図5において、矢印付きの実線は、流体輸送モジュール322から順に、バイパス開閉素子3183、総開閉素子3184を接続し、最終的にスクラップ処理システム34に到達する。この過程は、流体輸送モジュール322から検出反応モジュール318に注入された流体のうち、何らかの流体がフローセル38に入力されて検出反応に供されなくなったときに、スクラップ処理システム34へ直接排出するのに必要な経路を表すものである。これらの流体には、流体輸送モジュール322におけるサンプル貯留ユニット3223やその他の配管を洗浄するための流体や、クロス汚染のリスクで排除される必要がある流体や、何らかの検査反応工程後に残留した検出流体などが含まれる。
図5において、矢印付きの点線は、流体輸送モジュール322から順に、入口開閉素子3181、フローセル入口381、フローセル出口382、出口開閉素子3182及び総開閉素子3184を接続し、最終的にスクラップ処理システム34に到達する。この過程は、流体輸送モジュール322が検出反応モジュール318に検出流体を注入して検出反応に関与する際に、検出流体がフローセル入口381からフローセル38に入り、且つフローセル出口382からフローセル38を流出するまでに必要な経路を表している。これらの流体は、主に検出流体などのフローセル38に注入される必要がある流体である。
矢印付きの実線と矢印付きの点線が表す過程は、総開閉素子3184を経由してはじめて、スクラップ処理システム34に入ることができる。その動力は、流体輸送モジュール322の動力ユニット3220に由来する。
図5において、矢印付きの長い点線は2つの経路を有する。第1の経路は、流体輸送モジュール322から、入口開閉素子3181、フローセル入口381を順に接続しており、フローセル入口381にハッチングされた周辺領域Yを経て、最終的にスクラップ処理システム34に到達する。第2の経路は、流体輸送モジュール322から順に、バイパス開閉素子3183、出口開閉素子3182及びフローセル出口382を接続しており、フローセル出口382にハッチングされた周辺領域Zを経て、最終的にスクラップ処理システム34に到達する。なお、第2の経路は、実行する際に、総開閉素子3184を閉じる必要があるが、フローセル入口381とフローセル出口382におけるハッチングの領域は、検出反応モジュール318とフローセル入口381又はフローセル出口382との間の密封領域を表している。フローセル38の検出が定期的に転移する必要があるので、この密封領域の洗浄をタイムリーに行い、検出流体の残留を防止する必要がある。以上の解析から、これらの2つのプロセスは、それぞれ流体輸送モジュール322が検出反応モジュール318に対して幾つかの流体を注入して、検出反応モジュール318とフローセル入口381又はフローセル出口382との密封領域Y、Zを洗浄する時に、洗浄流体がスクラップ処理システム34に排出されるのに必要な経路を表す。なお、これら2つのプロセスは、洗浄流体がフローセル38内のサンプルを汚染しないように、フローセル38が移転された後にしか実行することができない。この密封領域Y、Zが開放状態であれば、スクラップ処理システム34がフローセル入口381とフローセル出口382から溢れ出た洗浄流体を移送するための動力ユニットを供給する必要がある。この密封領域Y、Zが密閉状態であれば、スクラップ処理システム34が動力ユニットを供給する必要はなく、このような領域Y、Zを密封するとともに入出液通路を保持するための追加の工具が必要である。
図6は、本実施形態のスクラップ収集モジュール330及びスクラップ輸送モジュール332の模式的なより詳細な図である。このスクラップ収集モジュール330は、スクラップ収集動力ユニット3301、スクラップ貯留ユニット3302及びスクラップ検出ユニット3303等のユニットを備えている。スクラップ輸送モジュール332は、スクラップ排出動力ユニット3321及びスクラップ中継ユニット3322等を有している。
スクラップ収集動力ユニット3301は、動力駆動に乏しいスクラップに動力を与えるためのものであり、液体運動を駆動するための各種タイプのポンプ、例えば、シリンジポンプ、プランジャーポンプ、ダイヤフラムポンプ、ギヤポンプ、ペリスタルティックポンプ等の一般的な種類のポンプであってもよいし、高圧ガス等の気体圧力源であってもよい。
スクラップ貯留ユニット3302は、検出反応のスクラップを溜めるものであり、遺伝子シーケンサ1内の全ての流体システム33のスクラップを一時的に溜めることができる。スクラップ貯留ユニット3302は、所定の形状を有する容器であってもよい。
スクラップ検出ユニット3303は、スクラップ貯留ユニット3302の中に格納されているスクラップ量を検出し、スクラップ貯留ユニット3302におけるスクラップ量が予め設定された量に達したときに、スクラップ輸送モジュール332によりスクラップをスクラップ貯留装置4に排出して格納するものである。前記スクラップ検出ユニット3303は、重力により既に収集されたスクラップ量を判断する重力検出装置であってもよいし、体積により既に収集されたスクラップ量を判断する体積検出装置であってもよいし、液面高さにより既に収集されたスクラップ量を判断する高さ検出装置であってもよい。
スクラップ排出動力ユニット3321は、スクラップをスクラップ貯留ユニット3302からスクラップ貯留装置4に搬送するための動力を提供する。スクラップ排出動力ユニット3321は、各種タイプの液体運動を駆動するためのポンプであってよく、例えば、シリンジポンプ、プランジャーポンプ、ダイヤフラムポンプ、ギヤポンプ、ペリスタルティックポンプなどの一般的な種類のポンプであってよく、高圧ガスなどの気体圧力源であってもよい。
前記スクラップ中継ユニット3322は、遺伝子シーケンサ1の筐体2に設けられ、機内ダクトと機外ダクトとを中継するユニットである。前記スクラップ中継ユニット3322は、各種タイプのジョイント、例えばスループレートジョイント等であってもよい。
図6において、矢印付きの点線は、流体システム33から順次に、スクラップ収集動力ユニット3301を接続し、最終的にスクラップ貯留モジュール3302に到達する。この過程は、流体システム33の一部のスクラップが駆動動力に欠ける時に、スクラップ収集モジュール330に接続されるスクラップ収集動力ユニット3301が当該スクラップに動力を与えて、それをスクラップ貯留モジュール3302に流れ込ませて一時的に格納するのに必要な経路を表している。このスクラップには、温度制御貯留ユニット326が外界よりも低温となることで生じた凝縮液や、検出反応モジュール318が密封された周辺領域Y、Zを洗浄する時にこれらの周辺領域Y、Zに押し付ける洗浄流体を含むが、これらに限らない。
図6において、矢印付きの長破線は、流体システム33から、直接にスクラップ貯留モジュール3302に到達する。この過程は、流体システム33が動力を供給できる場合に、スクラップを直接にスクラップ貯留モジュール3302内に押し込むのに必要な経路を表している。この工程の動力は、流体システム33内の流体輸送モジュール322の動力ユニット3220によって提供されるので、そのままスクラップ貯留モジュール3302の中に排出できる。このスクラップは、フローセル38の検出反応によるスクラップ、流体システム33がサンプル貯留ユニット3223やその他の配管を洗浄して排出されたスクラップを含むが、これらに限らない。
図6において、矢印付きの実線は、スクラップ貯留ユニット3302から、スクラップ中継ユニット3322を経てスクラップ貯留装置4に到達する。この過程は、スクラップ貯留ユニット3302に格納されたスクラップが所定の閾値を超えた場合に、スクラップをスクラップ貯留ユニット3302からスクラップ貯留装置4に搬送するのに必要な経路を表している。このスクラップは、全流体システム33が一定期間稼働することによって発生したあらゆるスクラップとなる。
図6において、点線は、スクラップ検出ユニット3303によるスクラップ貯留ユニット3302内のスクラップ量の測定を表す。スクラップ検出ユニット3303がスクラップ貯留ユニット3302のスクラップ量が設定された閾値を超えたことが検出されると、制御システム36は、スクラップ輸送モジュール332のスクラップ排出動力ユニット3321の作動を開始し、スクラップ貯留ユニット3302内のスクラップをスクラップ貯留装置4へ搬送して格納する。
図7は、本実施形態における転移システム35の実行ロジックを示している。転移システム35が転移する対象はフローセル38であり、フローセル38はサンプルを載せて検出反応を行う容器である。フローセル38は、閉じたシーケンシングチップであってもよいし、サンプルをロードするための開放的なベースであってもよい。本実施形態では、フローセル38の主な転移先は、フローセル開始位置O、N番目の流体システム33、M番目の信号検出システム31、フローセル一時保管場所T、及びフローセル廃棄位置Dであり、ただし、M、Nは、それぞれ、遺伝子シーケンサ1内に複数の流体システム33と信号検出システム31が同時にあるときの、流体システム33と信号検出システム31の任意の番号を表す。
フローセル開始位置Oは、フローセル38内のサンプルの検出を開始する開始位置である。本実施形態では、前記フローセル開始位置Oは、フローセル投入口203である。ユーザは、サンプルを積載したフローセル38をフローセル開始位置Oに置き、ユーザインタラクティブシステム37にて確認された後、転移システム35にて機内に移して検出反応を行う。
フローセル38は、N番目の流体システム33での位置がN番目の流体システム33の検出反応モジュール318に位置する。この位置にフローセル38が装着されると、制御システム36は、検出流体をフローセル38に入力して検出反応させるように制御する。
M番目の信号検出システム31におけるフローセル38の位置は、M番目の信号検出システム31の検出固定ユニット308に位置している。この位置にフローセル38が装着されると、制御システム36は、M番目の信号検出システム31を制御してサンプルに励起信号を印加し、その後、サンプルのフィードバック信号を収集する。
フローセル一時保管場所Tは、遺伝子シーケンサ1内の固定した位置に設置され、フローセル38一時的に配置するために使用される。
フローセル廃棄位置Dは、検出反応が全て終了するか又は廃棄が中断された後、フローセル38が廃棄されて置かれる位置である。転移システム35は、廃棄されたフローセル38をその位置に置いた後、ユーザによる収集及び処理が行われる。
図7において、矢印付きの実線は、フローセル開始位置Oから、N番目の流体システム33と、M番目の信号検出システム31と、フローセル廃棄位置Dとをそれぞれ接続している。ここで、フローセル開始位置OとN番目の流体システム33とM番目の信号検出システム31との間はそれぞれ双方向に接続されているが、N番目の流体システム33とM番目の信号検出システム31とフローセル廃棄位置Dとの間は単方向に接続されている。この経路は、ユーザが作成したフローセル38をフローセル開始位置Oに置いてから、機械全体でフローセル38を制御し、N番目の流体システム33とM番目の信号検出システム31との間でそれぞれ検出反応と信号検出を行うフローを示しているが、一旦フローセル38が廃棄されると、転移システム35に戻り、使い続けることができない。検出反応における具体的な実行経路は、検出反応の異なる原理によってカスタマイズすることができる。
図7において、矢印付きの点線は、フローセル開始位置Oから、フローセル一時保管場所Tとフローセル廃棄位置Dとを接続している。ここで、フローセル開始位置Oとフローセル一時保管場所TとN番目の流体システム33との間はそれぞれ双方向接続であるが、フローセル一時保管場所Tとフローセル廃棄位置Dとの間は単方向接続である。この経路は、フローセル38がフローセル開始位置O又はN番目の流体システム33からフローセル一時保管場所Tまで移動して一時的に格納される過程や、ユーザが使用する何らかのツールがフローセル開始位置Oから転移システム35に入り、N番目の流体システム33の検出反応モジュール318とフローセル38との密封領域Y、Zを洗浄するためのフローを示しているが、一旦フローセル38又はこれらのツールが廃棄されると、転移システム35に戻り使い続けることができない。具体的な実行経路は、異なるニーズに応じてカスタマイズされてもよい。
図8は、本実施形態における信号伝送モジュール312、信号処理モジュール314及びデータ記憶モジュール316の模式的なより詳細な図である。前記信号伝送モジュール312は、信号伝送ユニット3121と信号バッファユニット3122等を含む。前記信号処理モジュール314は、データ分析ユニット3141を含む。前記データ記憶モジュール316は、データ圧縮ユニット3161及びデータ記憶ユニット3162等を含む。
前記信号伝送ユニット3121は、信号検出システム31から得られたフィードバック信号を収集して伝送するためのものである。前記信号伝送ユニット3121は、データ採取カードなどの電圧、電流などの電気信号をタイミングで採取するデバイスであってもよい。
前記信号バッファユニット3122は、フィードバック信号が処理される前にフィードバック信号をバッファリングする手段である。フィードバック信号は、バッファリング中にオンになってから呼び出しや処理を待つことができる。前記信号バッファユニット3122は、コンピュータのメモリやその他の各段のバッファであってもよい。
このデータ分析ユニット3141は、信号バッファユニット3122に一時的に書き込まれたフィードバック信号を抽出して、変換やフィルタリングなどの操作を実行して、フィードバック信号を解析可能なデータと生成シーケンシングレポートにするためのものである。前記データ分析ユニット3141は、例えば、メモリ、CPU、GPUなどのコンピュータが処理に用いるハードウェアであり、処理及び解析するプログラムに連携して実行される。
前記データ圧縮ユニット3161は、処理後のデータに対して格納する前に圧縮を行い、格納スペース及びライト格納の時間を短縮するためのものである。データ圧縮ユニット3161は、例えば、メモリ、CPU、GPUなどのコンピュータが処理に用いるハードウェアであり、処理と分析のプログラムに合わせて実行処理を行う。
前記データ記憶ユニット3162は、圧縮されたデータと生成されたシーケンシングレポートを格納し、解析された検出結果を保存及びバックアップするためのものである。前記データ記憶ユニット3162は、各種のコンピュータ記憶媒体であってよく、例えば、ハードディスク、フラッシュメモリ、磁気ディスクなどのハードウェアが挙げられる。
図8において、矢印付きの実線は、信号検出システム31から、信号伝送ユニット3121、信号バッファユニット3122、データ分析ユニット3141及びデータ圧縮ユニット3161を順次に接続し、最終的にデータ記憶ユニット3162に到達する。この過程は、信号検出システム31からサンプルのフィードバック信号を受信してから、フィードバック信号を段階的に解析可能なデータに変換し、分析して検出結果を得て記憶するのに要する経路を表している。この過程では、電気的方式の信号検出に対応して、電圧、電流などの電気信号が読み書き解析可能なデジタルデータに逐次に変換されて記憶され、光学的方式の信号検出に対応して、デジタル写真などのデータが読み書き解析可能なデジタルデータに逐次に変換されて記憶される。
図8において、矢印付きの長破線は、データ分析ユニット3141から、ユーザインタラクティブシステム37に直接到達する。この過程は、信号処理システム32がデータを取得して処理するときにユーザに対するリアルタイムフィードバックを表す。
他の実施形態では、前記信号処理システム32は、信号伝送ユニット3121のみを含み、信号伝送ユニット3121により信号検出システム31が取得したフィードバック信号を収集し、且つフィードバック信号を遺伝子シーケンサ1の外に設けられたデータ処理装置に伝送する。
他の実施形態では、前記信号処理システム32は、信号バッファユニット3122及びデータ分析ユニット3141を含まなくてもよい。信号伝送ユニット3121は、信号検出システム31が取得したフィードバック信号を収集した後に、フィードバック信号をデータ圧縮ユニット3161に伝送し、データ圧縮ユニット3161で圧縮してデータ記憶ユニット3162の中に記憶する。その後、データ記憶ユニット3162は、前記遺伝子シーケンサ1から取り外され、且つ遺伝子シーケンサ1の外のデータ処理装置に設けられて、シーケンシングレポートを生成する。
他の実施形態では、前記信号処理システム32は、信号バッファユニット3122、データ分析ユニット3141及びデータ記憶ユニット3162を含まず、信号伝送ユニット3121により信号検出システム31が取得したフィードバック信号を収集した後に、フィードバック信号をデータ圧縮ユニット3161に伝送して、データ圧縮ユニット3161により圧縮されて、遺伝子シーケンサ1の外に設けられたデータ処理装置に伝送する。
図9は、本発明の実施形態2に係る生化学物質分析システムの概略図である。この生化学物質分析システム5は、フローセルを取り込み、フローセル内のサンプルの遺伝子配列である生物的特徴の検出を完了するものである。前記生化学物質分析システム5は、検出システム51、スケジューリングシステム53、生化学反応システム55及び制御システム57を含む。スケジューリングシステム53は、検出システム51内に位置する箇所及び生化学反応システム55内に位置する箇所を含む異なる箇所に前記フローセルをスケジューリングする。生化学反応システム55は、前記フローセル内のサンプルを反応させ、例えば、前記フローセル内のサンプルを反応させるように反応物質を前記フローセルに注入する。検出システム51は、反応したサンプルについて信号検出を行って、前記サンプルの生物的特徴を表す信号を取得する。制御システム57は、検出システム51とスケジューリングシステム53と生化学反応システム55との協同作業を制御するためのものである。具体的には、検出システム51は、実施形態1における信号検出システム31を含むか又は実施形態1における信号検出システム31と信号処理システム32とを同時に含んでもよい。サンプルの生物的特徴を示す信号は、信号検出システム31から得られるフィードバック信号、又は前記フィードバック信号が信号処理システム32により処理された後に得られる解析可能なデータであってもよい。スケジューリングシステム53は、実施形態1における転移システム35を含んでもよい。生化学反応システム55は、実施形態1における流体システム33を含むか又は実施形態1における流体システム33とスクラップ処理システム34とを同時に含んでもよい。制御システム57は、実施形態1における制御システム36を含んでもよい。
図10は、本発明の実施形態3に係る生化学物質分析方法のフローチャートである。この生化学物質分析方法は、以下のステップを備える。
ステップS1001では、フローセルを受け取り、受け取った前記フローセルを生化学反応システムに転移する。
ステップS1003では、生化学反応システム内で前記フローセルに反応物質を入力して、前記フローセル内のサンプルに生化学反応を起こさせる。
ステップS1005では、サンプルが生化学反応を終えたフローセルを検出システムに転移する。
ステップS1007では、検出システム内で前記フローセル内のサンプルに対して信号検出を行なって、サンプルの生物学的特徴に応じた信号を得る。
さらに、他の態様において、前記生化学物質分析方法は、前記生化学反応システムに前記フローセルを転移する前に、前記生化学反応システムにおけるフローセルを積載する箇所が空いているかどうかを判定し、1又は複数の箇所が空いている場合に何れかの空いている箇所に前記フローセルを載せて、箇所が何れも空いていない場合にフローセルの一時保管場所に前記フローセルを置くステップをさらに含む。
さらに、他の態様において、前記生化学物質分析方法は、前記フローセルを前記検出システムに転移する前に、検出システムにおいてフローセルを積載する箇所が空いているかどうかを判定し、1又は複数の箇所が空いている場合に何れかの空いている箇所に前記フローセルを積載し、箇所が何れも空いていない場合にフローセルの一時保管場所に前記フローセルを置くステップをさらに含む。
さらに、他の態様において、前記生化学物質分析方法は、前記フローセルを受け取る前に、前記フローセルを受け取る箇所にフローセルが存在するか否かを検知し、前記フローセルを受け取る箇所にフローセルが存在する場合に前記フローセルを受け取るステップをさらに含む。
さらに、他の態様において、前記生化学物質分析方法は、前記検出の終了後に、検出が完了した前記フローセルを再び生化学反応システムに転移させ、反応-転移-検出という全体の処理を繰り返すことをさらに含む。
さらに、他の態様において、検出の終了後に、検出が完了した前記フローセルを廃棄フローセルを受け入れるフローセル廃棄位置に転移させることをさらに含む。
さらに、他の態様において、前記ステップS1003は、流体を貯留する貯留モジュールから流体を吸引してサンプル貯留ユニットに一時貯留し、且つ前記サンプル貯留ユニットの中に一時貯留された流体を前記フローセルに押し込み、前記フローセル内のサンプルを反応させることをさらに含む。
さらに、他の態様において、前記ステップS1003は、流体を前記サンプル貯留ユニットに一時保存した後に、前記流体が前記フローセルに入る通路が占有されているか否かを判断し、前記通路が占有されている場合に、前記流体を前記サンプル貯留ユニットに引き続き一時保存し、前記通路が占有されていない場合に、前記一時保存された流体を前記通路を介して前記フローセルに押し込むことをさらに含む。
さらに、他の態様において、前記反応ステップは、第1の流体を一時貯留するサンプル貯留ユニットから前記第1の流体を前記フローセルに押し込むと同時に、第2の流体を貯留する貯留モジュールの中から前記第2の流体を吸引して、前記第2の流体を対応するサンプル貯留ユニットに一時的に貯留させることをさらに含む。
さらに、他の態様において、前記検出ステップは、前記信号を処理して、解析可能なデータ又は検出レポートを取得することをさらに含む。
図11は、本発明の実施形態4に係る生化学物質分析システムを適用した生化学物質分析装置の模式図である。前記生化学物質分析装置6は、少なくとも生化学物質分析システム61を含み、前記生化学物質分析システム61は、実施形態2において提供される生化学物質分析システム5であってもよい。
図12は、本発明の実施形態5に係る生化学物質分析方法を用いた生化学物質分析装置の模式図である。この生化学物質分析装置7は、実施形態3に係る生化学物質分析方法を実行することにより、反応フローセル内のサンプルの生物学的特徴の信号、解析可能なデータ又は検出レポートを取得する。
以上説明したように、本発明の実施形態による遺伝子シーケンシングシステム、生化学物質分析システム、方法、及び、生化学物質分析システムまたは方法を応用した装置について、ユーザがシーケンシングに必要な検出流体、洗浄流体、及び、サンプルを積載したフローセルを、遺伝子シーケンサにおけるインターフェースを介して遺伝子シーケンサに入れるだけで、ユーザインタラクティブシステムを介して関連パラメータを設けることにより、遺伝子シーケンサ及び遺伝子シーケンシングシステムが遺伝子シーケンシングを自動的に完了することができる。
本発明の実施形態による遺伝子シーケンサ及び遺伝子シーケンシングシステムは、さらに、複数の信号検出システム及び/または複数の流体システムを設けることにより、複数のフローセルを同時に検出することを実現し、遺伝子シーケンサ及び遺伝子シーケンシングシステムの検出量を高めた。
本発明の実施形態による遺伝子シーケンサ及び遺伝子シーケンシングシステムは、さらに、複数の流体輸送用作業グループを設けて、流体輸送用作業グループごとに1つのサンプル貯留ユニットを備え、1つの流体輸送用作業グループが検出反応モジュール及びフローセルに流体を注入する際に、他の流体輸送用作業グループがこの時間隙間により流体を吸引して準備できるようにしたので、フローセルに流体が注入されるまでの準備時間が節約され、遺伝子シーケンサ及び遺伝子シーケンシングシステムの検出量も同様に高められる。
最後に、上述の実施形態は、本発明の技術的態様を説明するためにのみ使用され、本発明を限定するものではない。より好ましい実施形態を参照して本発明を詳細に説明したが、本発明の精神および範囲から逸脱することなく、本発明の技術的態様を修正または均等に置換することができることを当業者は理解すべきである。
1 遺伝子シーケンサ
2 筐体
3 遺伝子シーケンシングシステム
4 スクラップ貯留装置
201 表示インターフェース
203 フローセル投入インターフェース
205 カートリッジ置換インターフェース
31 信号検出システム
32 信号処理システム
33 流体システム
34 スクラップ処理システム
35 転移システム
36、57 制御システム
37 ユーザインタラクティブシステム
38 フローセル
301 励振信号送信モジュール
303 信号チャンネルモジュール
305 フィードバック信号受信モジュール
306 受信信号補正モジュール
308 検出固定ユニット
310 移動ユニット
312 信号伝送モジュール
314 信号処理モジュール
316 データ記憶モジュール
318 検出反応モジュール
320 反応温度制御ユニット
322 流体輸送モジュール
324 非温度制御貯留ユニット
326 温度制御貯留ユニット
328 記憶温度制御ユニット
330 スクラップ収集モジュール
332 スクラップ輸送モジュール
334 検出制御モジュール
336 温度制御モジュール
338 流体制御モジュール
340 スクラップ制御モジュール
342 転移制御モジュール
344 システム制御モジュール
346 視覚インタラクティブモジュール
348 入力モジュール
3011 励振信号送信モジュール
3012 励振信号整理ユニット
3013 汎用励振信号割当ユニット
3051 フィードバック信号受信モジュール
3052 フィードバック信号整理ユニット
3053 汎用フィードバック信号割当ユニット
3031 汎用信号割当ユニット
3032 汎用信号送受信ユニット
3061 補正信号送信ユニット
3062 補正信号割当ユニット
3063 信号補正ユニット
3220 動力ユニット
3221 保護ユニット
3222 検出ユニット
3223 サンプル貯留ユニット
3224 割当ユニット
3225 総割当ユニット
3226 流体輸送用作業グループ
3181 入口開閉素子
3182 出口開閉素子
3183 バイパス開閉素子
3184 総開閉素子
381 フローセル入口
382 フローセル出口
Y、Z 周辺領域
3301 スクラップ収集動力ユニット
3302 スクラップ貯留ユニット
3303 スクラップ検出ユニット
3321 スクラップ排出動力ユニット
3322 スクラップ中継ユニット
О フローセル
T フローセル一時保管場所
D フローセル廃棄位置
3121 信号伝送ユニット
3122 信号バッファユニット
3141 データ分析ユニット
3161 データ圧縮ユニット
3162 データ記憶ユニット
5、61 生化学物質分析システム
51 検出システム
53 スケジューリングシステム
55 生化学反応システム
S1001、S1003、S1005、S1007 ステップ
6、7 生化学物質分析装置

Claims (39)

  1. フローセル内のサンプルの生物学的特徴を検出するための生化学物質分析システムであって、
    検出システムと、スケジューリングシステム、生化学反応システム及び制御システムを備え、
    前記スケジューリングシステムは、前記フローセルを異なる箇所でスケジューリングするためのものであり、
    前記箇所は、検出システムに位置する箇所と生化学反応システムに位置する箇所を含み、
    前記生化学反応システムは、前記フローセル内のサンプルを反応させ、
    前記検出システムは、既に反応したサンプルに対して信号検出を行なって、前記サンプルの生物学的特徴を表す信号を取得し、
    前記制御システムは、前記検出システムと前記スケジューリングシステムと前記生化学反応システムとの連携作業を制御することを特徴とする生化学物質分析システム。
  2. 前記スケジューリングシステムは、前記フローセルを異なる箇所に移動させるための転移システムを含むことを特徴とする請求項1に記載の生化学物質分析システム。
  3. 前記生化学反応システムは、前記フローセルに反応物質を入力して、前記フローセル内のサンプルを反応させるための流体システムを含むか、又は前記フローセルに反応物質を入力して、前記フローセル内のサンプルを反応させるための流体システムと、前記流体システムから排出されるスクラップを収集するためのスクラップ処理システムとを含むことを特徴とする請求項1または2に記載の生化学物質分析システム。
  4. 前記検出システムは、検出反応が発生した前記サンプルに対して信号検出を行なって、前記サンプルの生物学的特徴を表す信号であるフィードバック信号を前記サンプルから取得するための信号検出システムを含むか、又は信号検出システムと前記フィードバック信号がシーケンシングレポートを生成するために使用できるように、前記フィードバック信号を収集するための信号処理システムとを含むことを特徴とする請求項1乃至3の何れか一項に記載の生化学物質分析システム。
  5. 前記生物質分析システムは、遺伝子シーケンサに内蔵され、且つ前記遺伝子シーケンサに設けられたフローセル投入インターフェースを介して検出対象サンプルが入れられたフローセルを受け取ることを特徴とする請求項1に記載の生化学物質分析システム。
  6. 前記流体システムが1つ又は複数があり、及び/又は、前記信号検知システムが1つ又は複数であることを特徴とする請求項3に記載の生化学物質分析システム。
  7. 前記流体システムは、前記フローセルを着脱可能に装着するための検出反応モジュールと、前記貯留モジュールに貯留された流体を前記フローセルに注入するための流体輸送モジュールと、流体を貯留するための貯留モジュールとを備えることを特徴とする請求項3、4または6の何れか一項に記載の生化学物質分析システム。
  8. 前記流体輸送モジュールは、前記流体システムのスクラップを前記スクラップ処理システムに排出するために用いられることを特徴とする請求項7に記載の生化学物質分析システム。
  9. 前記流体輸送モジュールは、動力ユニット、サンプル貯留ユニット及び割当ユニットを含む流体輸送用作業グループを備え、
    前記動力ユニットは、圧力勾配を提供して、前記貯留モジュールの中から流体を吸引し、
    前記動力ユニットは、前記貯留モジュールの中から流体を吸引するための圧力勾配を提供するために使用され、前記流体は、前記割当ユニットを介して前記サンプル貯留ユニットの中に一時的に格納され、
    前記動力ユニットは、前記サンプル貯留ユニットの中に貯留された流体を前記割当ユニットを介して前記フローセルに注入させるための圧力勾配も提供することを特徴とする請求項7または8に記載の生化学物質分析システム。
  10. 前記割当ユニットは、前記フローセル、前記貯留モジュール及び前記サンプル貯留ユニットにそれぞれ接続され、前記サンプル貯留ユニットは、前記割当ユニットと前記動力ユニットとの間に配置されることを特徴とする請求項9に記載の生化学物質分析システム。
  11. 前記動力ユニットは、さらに前記貯留モジュールまたは他のストレージ装置に接続され、前記貯留モジュールまたは他のストレージ装置は、前記動力ユニットが圧力勾配を作って前記サンプル貯留ユニットに貯留された流体を前記フローセルに注入させる際に、流体補充を提供することを特徴とする請求項10に記載の生化学物質分析システム。
  12. 前記流体輸送用作業グループは、検出ユニット及び保護ユニットをさらに含み、前記検出ユニットは、前記流体システムの予め設定された指標を検出して、係る流体システムの予め設定された指標が異常であるか否かを検出し、前記保護ユニットは、前記流体システムに異常が発生する時に、前記流体システムが損傷を受けないように保護メカニズムを起動することを特徴とする請求項9に記載の生化学物質分析システム。
  13. 流体輸送用作業グループの数は、複数であり、前記流体システムは、総割当ユニットをさらに含み、
    複数の前記流体輸送用作業グループは、何れも前記総割当ユニットに接続され、前記総割当ユニットによって、必要に応じて異なる流体輸送用作業グループと前記フローセルとを連通することを特徴とする請求項9に記載の生化学物質分析システム。
  14. 1つの前記流体輸送用作業グループが前記総割当ユニットを介して前記フローセルに流体を注入するときに、他の1つ又は複数の前記流体輸送用作業グループは、前記貯留モジュールの中から流体を吸引して、前記サンプル貯留ユニットの中に蓄積させることを特徴とする請求項13に記載の生化学物質分析システム。
  15. 前記信号検出システムは、励振信号送信モジュールと、信号チャンネルモジュールと、フィードバック信号受信モジュールと、検出固定ユニットとを含み、前記検出固定ユニットは、前記フローセルを取り外し可能に装着して固定するために用いられ、前記励振信号送信モジュールは、前記フローセルの中のサンプルに励起信号を印加するために用いられ、前記フィードバック信号受信モジュールは、サンプルが励起信号により励起された後に発するフィードバック信号を受信するために用いられ、前記信号チャンネルモジュールは、前記励振信号送信モジュールから送信された励振信号を予め定められた経路で前記フローセルに到達させ、且つフィードバック信号を前記フローセルから出発して予め定められた経路で前記フィードバック信号受信モジュールに到達させるために用いられることを特徴とする請求項4に記載の生化学物質分析システム。
  16. 前記信号検出システムは、前記フローセルの異なる位置のサンプルの信号検出を行うために、前記検出固定ユニットを一定範囲内で移動させるための移動ユニットをさらに含むことを特徴とする請求項15に記載の生化学物質分析システム。
  17. 前記信号検出システムは、前記フィードバック信号受信モジュールにより受信されたフィードバック信号と前記励振信号送信モジュールにより送信された励振信号とが一致するように、前記信号チャンネルモジュールを調整するための受信信号補正モジュールをさらに含むことを特徴とする請求項15に記載の生化学物質分析システム。
  18. 前記信号チャンネルモジュールは、汎用信号割当ユニット及び汎用信号送受信ユニットを含み、前記受信信号補正モジュールは、補正信号送信ユニット、補正信号割当ユニット及び信号補正ユニットを含み、
    前記汎用信号割当ユニットは、励起信号とフィードバック信号をグループ化するために使用され、前記汎用信号送受信ユニットは、前記信号チャンネルモジュールからサンプルへの励振信号の遷移と、サンプルから前記信号チャンネルモジュールへのフィードバック信号の遷移とを実現し、
    前記補正信号送信ユニットは、サンプルに対して補正信号を送信するために使用され、前記補正信号は、サンプルのフィードバック信号を励起せず、前記補正信号割当ユニットは、補正信号を前記汎用信号割当ユニットに伝達したり、前記汎用信号割当ユニットからフィードバックされた補正信号を受信して、フィードバックされた補正信号を前記信号補正ユニットにフィードバックしたり、
    前記信号補正ユニットは、フィードバックされた補正信号に基づいて、励振信号とフィードバック信号の送受信効果が最適化されるように、前記汎用信号送受信ユニットの微調整を制御することを特徴とする請求項17に記載の生化学物質分析システム。
  19. 前記検出反応モジュールは、入口開閉素子と、出口開閉素子と、バイパス開閉素子と、総開閉素子とを含み、前記入口開閉素子は、前記流体輸送モジュールと前記フローセルのフローセル入口との間に接続され、前記出口開閉素子は、前記バイパス開閉素子と前記総開閉素子と前記前記フローセルのフローセル出口との間に接続され、前記総開閉素子は、前記スクラップ処理システムに接続されることを特徴とする請求項7に記載の生化学物質分析システム。
  20. 前記流体輸送モジュールが前記検出反応モジュールに検出反応に関与する流体を注入するときに、前記流体は、前記入口開閉素子と前記フローセル入口を通って前記フローセルに入り、且つ前記フローセル出口、前記出口開閉素子及び前記総開閉素子から前記スクラップ処理システムに流入し、
    前記流体輸送モジュールは、前記検出反応モジュールに前記フローセルに入力して検知反応を行なうことができない流体を注入するときに、前記流体は前記バイパス開閉素子及び前記総開閉素子を介して前記スクラップ処理システムに流入し、
    前記流体輸送モジュールは、前記検出反応モジュールに前記検出反応モジュールと前記フローセル入口との間の密封領域を洗浄するための流体を注入するときに、前記流体は前記入口開閉素子及び前記密封領域を介して前記スクラップ処理システムに流入し、及び/又は、
    前記流体輸送モジュールは、前記検出反応モジュールに前記検出反応モジュールと前記フローセル出口との間の密封領域を洗浄するための流体を注入するときに、前記流体が前記バイパス開閉素子、前記出口開閉素子及び前記密封領域を経由して前記スクラップ処理システムに流入することを特徴とする請求項19に記載の生化学物質分析システム。
  21. 前記スクラップ処理システムは、前記流体システムのスクラップを収集するためのスクラップ収集モジュールを具備し、
    前記スクラップ収集モジュールは、動力駆動が欠如しているスクラップに動力を与えるスクラップ収集動力ユニットと、収集したスクラップを貯留するスクラップ貯留ユニットとを具備することを特徴とする請求項3に記載の生化学物質分析システム。
  22. 前記スクラップ処理システムは、前記スクラップ収集モジュールの中に貯留されたスクラップを排出するためのスクラップ輸送モジュールを含むことを特徴とする請求項21に記載の生化学物質分析システム。
  23. 前記スクラップ輸送モジュールは、スクラップ排出動力ユニット及びスクラップ中継ユニットを含み、前記スクラップ排出動力ユニットは、スクラップを前記スクラップ貯留ユニットから排出させる動力を提供し、前記スクラップ中継ユニットは、前記遺伝子シーケンシングシステムの外の配管に接続するための配管継ぎてユニットであることを特徴とする請求項22に記載の生化学物質分析システム。
  24. 前記スクラップ収集モジュールは、前記スクラップ貯留ユニットに蓄積されたスクラップ量を検出するためのスクラップ検出ユニットをさらに含むことを特徴とする請求項23に記載の生化学物質分析システム。
  25. 前記制御システムは、前記スクラップ検出ユニットが前記スクラップ貯留ユニットのスクラップ量が所定の閾値を超えたことを検出すると、前記スクラップ排出動力ユニットによる前記スクラップの排出を制御することを特徴とする請求項24に記載の生化学物質分析システム。
  26. 前記信号処理システムは、前記信号検出システムのフィードバック信号を収集してバッファリングするための信号伝送モジュールを含むことを特徴とする請求項4に記載の生化学物質分析システム。
  27. 前記信号処理システムは、前記信号伝送モジュールからバッファリングされたフィードバック信号を取得し、且つ前記フィードバック信号を解析可能なデータに変換して、このデータをさらに解析してシーケンシングレポートを生成するための信号処理モジュールをさらに含むことを特徴とする請求項26に記載の生化学物質分析システム。
  28. 前記信号処理システムは、前記信号処理モジュールの処理済みのデータとシーケンシングレポートとを圧縮して格納するためのデータ記憶モジュールをさらに含むことを特徴とする請求項27に記載の生化学物質分析システム。
  29. 視覚インタラクティブモジュールを含むユーザインタラクティブシステムを備え、前記信号処理モジュールは、さらに、前記視覚インタラクティブモジュールに前記シーケンシングレポートを出力してユーザに提示することを特徴とする請求項27に記載の生化学物質分析システム。
  30. フローセルを受け取り、且つ受け取った前記フローセルを生化学反応システムへ転移するステップと、
    生化学反応システム内で前記フローセル内のサンプルを反応させるステップと、
    生化学反応が完了したサンプルのフローセルを検出システムへ転移するステップと、
    前記検出システム内で前記フローセル内のサンプルに対して信号検出を行なって、前記サンプルの生物的特徴を反映する信号を得るステップと、を備えることを特徴とする生化学物質分析方法。
  31. 前記フローセルを前記生化学反応システムに転移する前に、前記生化学物質分析方法は、前記生化学反応システムにおいてフローセルを積載する箇所が空いているか否かを判断し、1つ又は複数の箇所が空いている場合に前記フローセルを1つの空いている箇所に積載し、且つ前記箇所が何れも空いていない場合に前記フローセルを一時保管場所に置くステップをさらに備えることを特徴とする請求項30に記載の生化学物質分析方法。
  32. 前記フローセルを前記検出システムに転移する前に、前記生化学物質分析方法は、前記検出システムにおけるフローセルを積載する箇所が空いているかどうかを判定し、1つ又は複数の箇所が空いている場合に前記フローセルを何れかの空いている箇所に積載し、且ついずれの箇所も空いていない場合に前記フローセルを一時保管場所に置くステップをさらに備えることを特徴とする請求項30に記載の生化学物質分析方法。
  33. 前記フローセルを受け取る前に、前記生化学物質分析方法は、前記フローセルを受け取る箇所にフローセルが存在するかどうかを検知し、且つ前記フローセルを受け取る箇所にフローセルが存在する場合に前記フローセルを受け取るステップをさらに備えることを特徴とする請求項30に記載の生化学物質分析方法。
  34. 検出完了後、前記生化学物質分析方法は、検出済みの前記フローセルを再び生化学反応システムへ転移して、反応-転移-検出という全体の処理を繰り返すか、または、検出済みの前記フローセルを廃棄フローセルを受け入れるフローセル廃棄位置へと転移させることを特徴とする請求項30に記載の生化学物質分析方法。
  35. 前記反応ステップは、流体を貯留する貯留モジュールの中から流体を吸引してサンプル貯留ユニットに一時的に貯留し、前記サンプル貯留ユニットに一時的に貯留された流体を前記フローセルに押し込んで、前記フローセル内のサンプルを反応させることをさらに含むことを特徴とする請求項30に記載の生化学物質分析方法。
  36. 前記反応ステップは、前記サンプル貯留ユニットに流体を一時的に貯留した後、前記流体が前記フローセルに入る通路が占有されているか否かを判断し、前記通路が占有されている場合に、前記流体を前記サンプル貯留ユニットに引き続き一時保存し、前記通路が占有されていない場合に、前記一時保存された流体を前記通路を介して前記フローセルに押し込むことをさらに含むことを特徴とする請求項35に記載の生化学物質分析方法。
  37. 前記反応ステップは、第1の流体を一時貯留するサンプル貯留ユニットから前記第1の流体を前記フローセルに押し込むと同時に、第2の流体を貯留する貯留モジュールの中から前記第2の流体を吸引して、前記第2の流体を対応するサンプル貯留ユニットに一時的に貯留させることをさらに含むことを特徴とする請求項35に記載の生化学物質分析方法。
  38. 前記検出ステップは、さらに、前記信号を処理して解析可能なデータまたは検出レポートを取得することを含むことを特徴とする請求項30に記載の生化学物質分析方法。
  39. 請求項1~29の何れか一項に記載の生化学物質分析システム、または請求項30~38の何れか一項に記載の生化学物質分析方法を用いてフローセル内のサンプルの生物学的特徴を反映する信号、解析可能なデータ又は検出レポートを取得することを特徴とする生化学物質分析装置。
JP2022518312A 2019-09-24 2019-09-24 生化学物質分析システム、方法及び装置 Active JP7457798B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107593 WO2021056208A1 (zh) 2019-09-24 2019-09-24 生化物质分析系统、方法及装置

Publications (2)

Publication Number Publication Date
JP2022550706A true JP2022550706A (ja) 2022-12-05
JP7457798B2 JP7457798B2 (ja) 2024-03-28

Family

ID=75164833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022518312A Active JP7457798B2 (ja) 2019-09-24 2019-09-24 生化学物質分析システム、方法及び装置

Country Status (8)

Country Link
US (1) US20220341848A1 (ja)
EP (1) EP4036554A4 (ja)
JP (1) JP7457798B2 (ja)
KR (1) KR20220066162A (ja)
CN (1) CN114341618B (ja)
AU (2) AU2019467369B2 (ja)
CA (1) CA3151328A1 (ja)
WO (1) WO2021056208A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330358B2 (ja) * 2019-09-27 2023-08-21 深▲セン▼華大智造科技股▲ふん▼有限公司 フローセル及びそれを適用する生化学物質反応装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038881A (ja) * 2005-10-20 2006-02-09 Hitachi Ltd 生体サンプルの自動分析システム
JP2009532031A (ja) * 2006-03-31 2009-09-10 ソレクサ・インコーポレイテッド 合成解析による配列決定システムおよび装置
JP2014153242A (ja) * 2013-02-12 2014-08-25 Hitachi High-Technologies Corp 生体物質分析装置
JP2015514218A (ja) * 2012-04-03 2015-05-18 イラミーナ インコーポレーテッド 核酸シークエンシングに有用な統合化した読取りヘッド及び流体カートリッジ
JP2016532111A (ja) * 2013-08-08 2016-10-13 イラミーナ インコーポレーテッド フローセルへ試薬を送達するための流体システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814933B2 (en) * 2000-09-19 2004-11-09 Aurora Biosciences Corporation Multiwell scanner and scanning method
US20050032072A1 (en) * 2003-08-08 2005-02-10 Perlegen Sciences, Inc. Fragmentation and labelling with a programmable temperature control module
CN101004423B (zh) * 2006-01-19 2011-12-28 博奥生物有限公司 流体样品分析用卡盒系统
US20170022558A1 (en) * 2007-10-30 2017-01-26 Complete Genomics, Inc. Integrated system for nucleic acid sequence and analysis
CN102703312B (zh) * 2012-05-24 2014-03-19 中国科学院北京基因组研究所 一种dna测序仪
CN103336130B (zh) * 2013-06-21 2016-03-16 嘉善加斯戴克医疗器械有限公司 一种全血免疫分析装置及使用此装置的血液分析仪
CN104569462B (zh) * 2013-10-15 2017-12-08 深圳迈瑞生物医疗电子股份有限公司 一种样本容器的搬送装置及方法
CN106967600B (zh) * 2016-01-13 2020-02-21 深圳华大智造科技有限公司 芯片座、芯片固定构件及样品加载仪
CN107828641A (zh) * 2017-08-23 2018-03-23 苏州思维医疗科技有限公司 一种基因测序仪
CN208857264U (zh) * 2018-08-16 2019-05-14 深圳华大智造科技有限公司 加载装置及基因测序系统
CN110161003B (zh) * 2019-05-17 2022-07-22 深圳市刚竹医疗科技有限公司 光学检测装置及实时荧光定量核酸扩增检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038881A (ja) * 2005-10-20 2006-02-09 Hitachi Ltd 生体サンプルの自動分析システム
JP2009532031A (ja) * 2006-03-31 2009-09-10 ソレクサ・インコーポレイテッド 合成解析による配列決定システムおよび装置
JP2015514218A (ja) * 2012-04-03 2015-05-18 イラミーナ インコーポレーテッド 核酸シークエンシングに有用な統合化した読取りヘッド及び流体カートリッジ
JP2014153242A (ja) * 2013-02-12 2014-08-25 Hitachi High-Technologies Corp 生体物質分析装置
JP2016532111A (ja) * 2013-08-08 2016-10-13 イラミーナ インコーポレーテッド フローセルへ試薬を送達するための流体システム

Also Published As

Publication number Publication date
AU2023266236A1 (en) 2023-12-07
AU2019467369A1 (en) 2022-04-21
WO2021056208A1 (zh) 2021-04-01
EP4036554A1 (en) 2022-08-03
JP7457798B2 (ja) 2024-03-28
EP4036554A4 (en) 2023-05-24
US20220341848A1 (en) 2022-10-27
CA3151328A1 (en) 2021-04-01
CN114341618A (zh) 2022-04-12
CN114341618B (zh) 2024-05-14
KR20220066162A (ko) 2022-05-23
AU2019467369B2 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
CN107923839B (zh) 用于测试装置、具有集成的反应和检测机构的站
CN1739071A (zh) 多层次控制器系统
CN104483469B (zh) 样本分析装置、样本分析系统及其的管理方法
JP5032150B2 (ja) 試料処理装置
US9103807B2 (en) Rack collecting unit and sample processing apparatus
US9316658B2 (en) Sample processing apparatus that responds to trouble in a transport unit
EP2299281A2 (en) Rack collecting unit and sample processing apparatus
US20120003121A1 (en) Sample analyzer
JP2016050934A (ja) 検査システムおよび検査方法
US10871474B2 (en) System and method for analyzing biological fluid in multiple cuvettes
CN111650168A (zh) 全自动微流控分析仪
AU2023266236A1 (en) Biochemical substance analysis system, method, and device
JP5805486B2 (ja) 検体分析装置
JP2006162592A (ja) 液体の分析システムおよびカートリッジ
CN107462739A (zh) 向自动化样品分析仪供给消耗品
JP2000105248A (ja) 生体サンプルの取扱い方法及び分析装置
CN212622232U (zh) 全自动微流控分析仪
JP2023513450A (ja) モジュール式反応器のシステムおよび装置、その製造方法、ならびに反応を行う方法
JP2020514677A (ja) 選択的廃液回収システム及び選択的廃液回収方法
CN217766163U (zh) 用于高能光源的原位溶液样品高通量筛选自动化测试系统
JP7307758B2 (ja) 検体分析システムの制御方法および検体分析システム
JP2023171605A (ja) 検体分析システムの精度管理方法および検体分析システム
JP2023176627A (ja) 搬送方法、制御方法及び分析システム
CN112166327A (zh) 自动分析装置及试样的搬送方法
CN115096923A (zh) 用于高能光源的原位溶液样品高通量筛选自动化测试系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7457798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150