JP2022518221A - 破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素 - Google Patents

破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素 Download PDF

Info

Publication number
JP2022518221A
JP2022518221A JP2021541026A JP2021541026A JP2022518221A JP 2022518221 A JP2022518221 A JP 2022518221A JP 2021541026 A JP2021541026 A JP 2021541026A JP 2021541026 A JP2021541026 A JP 2021541026A JP 2022518221 A JP2022518221 A JP 2022518221A
Authority
JP
Japan
Prior art keywords
diffraction
diffraction structure
optical
grating
periodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021541026A
Other languages
English (en)
Other versions
JPWO2020148277A5 (ja
Inventor
ハイコ フェルトマン
ヴァレンティン ボルシンガー
ドレント ウィリアム ピーター ファン
ヨゼフ ペトラス ヘンリカス ベンショプ
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102019200376.1A external-priority patent/DE102019200376A1/de
Priority claimed from DE102019210450.9A external-priority patent/DE102019210450A1/de
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2022518221A publication Critical patent/JP2022518221A/ja
Publication of JPWO2020148277A5 publication Critical patent/JPWO2020148277A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70158Diffractive optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70166Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7025Size or form of projection system aperture, e.g. aperture stops, diaphragms or pupil obscuration; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

光回折構成要素(60)は、破壊的干渉によって少なくとも1つの目標波長を抑制することに役立つ。光回折構成要素(60)は、少なくとも3つの回折構造レベル(N1,N2,N3,N4)を有する。回折構造レベル(N1,N2,N3,N4)は、少なくとも2つの回折構造グループに割り当て可能である。回折構造グループのうちの第1のもの(35)は、第1の目標波長λ1を抑制するのに役立つ。回折構造グループのうちの第2のものは、第2の目標波長λ2を抑制するのに役立つ。2つの目標波長λ1およびλ2に対して、(λ1-λ2)2/(λ1+λ2)2<20%が当てはまる。回折構造レベル(N1~N4)のトポグラフィーは、2つのバイナリ回折構造グループの重ね合わせとして記述することができる。バイナリ回折構造グループの各々の隣接する表面セクション間の境界領域(N3/N1,N2/N4,N4/N3,N1/N2)は、直線状コースを有し、せいぜい直線状コースのセクションに沿って互いに重ね合わされる。光回折構成要素の1つの変形では、回折構造の配列は、第1の目標波長が周期的格子構造プロファイルによって回折される赤外線波長範囲の第1の目標波長λ1のまわりの波長範囲が、互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分を有するようなものである。回折構造レベルは、ニュートラル回折構造レベル、正回折構造レベル、および負回折構造レベルを有する。その結果は、特に迷光抑制に向けて使用の可能性が広がる光回折構成要素である。【選択図】図16

Description

本特許出願は、ドイツ特許出願DE 10 2018 220 629.5およびDE 10 2019 210 450.9の優先権を主張し、それらの内容は、参照により本明細書に組み込まれる。
本発明は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素に関する。さらに、本発明は、そのような光回折構成要素を含む投影露光装置のEUVコレクタ、そのようなEUVコレクタを含む照明系、そのような照明系を含む光学系、そのような光学系を含む投影露光装置、およびそのような投影露光装置の助けにより構造化構成要素を生成するための方法、およびこのようにして生成された構造化構成要素に関する。
光学格子の形態の光回折構成要素を含むEUVコレクタが、WO 2017/207401およびWO 2014/114405から知られている。EUV投影露光装置のIR波長を抑制するための光学格子の実施形態が、刊行物"Multilayer EUV optics with integrated IR-suppression gratings", T. Feigl et al., 2016 EUVL Workshop, Berkeley, June 13-16, 2016から知られている。EP 1 540 423は、EUVリソグラフィシステムにおいて使用帯域の外の放射線を抑制するための格子ベーススペクトルフィルタを記載している。米国特許出願公開第2014/0131586号は、マスク検査システムのための位相格子を記載している。DE 10 2009 044 462は、EUV照明系内の赤外線を回折するための格子構造を含む光学フィルタ要素を記載している。技術論文"Multilevel blazed gratings in resonance domain: an alternative to the classical fabrication approach" by M. Oliva et al., OPTICS EXPRESS, Vol. 19, No. 15, 2011, pages 1473 to 1475、および技術論文"Highly efficient three-level blazed grating in the resonance domain" by M. Oliva et al., OPTICS LETTERS Vol. 35, No. 16, 2010, pages 2774 to 2776は、ブレーズド格子の様々な変形を記載している。技術論文"Diffractive elements designed to suppress unwanted zeroth order due to surface depth error" by V. Kettunen et al., Journal of Modern Optics 51, 14, 2111-2123, 2004は、プロファイル深さエラーによる不要な0次の回折を抑制するための回折要素を開示している。
DE 195 16 741は、回折光学的に効果的な構造配列を開示している。DE 100 54 503は、光回折バイナリ格子構造を開示している。WO 2007/031 992は、空間的に変化するデューティサイクルを有する回折格子を開示している。
光学格子は、使用光の波長から外れている波長の迷光を抑制するために使用することができる。次いで、迷光を光学格子によって光トラップ(ビームダンプ)の方に回折することができ、その一方で、使用光は異なる経路を取って進む。
本発明の目的は、特に迷光抑制のために使用の可能性を広げるように、冒頭部で述べたタイプの光回折構成要素を開発することである。
この目的は、本発明による第1の態様によれば、光回折構成要素によって達成され、光回折構成要素が、
- 3つの回折構造レベルを有する回折構造を含む周期的格子構造プロファイルを含み、
- 3つの回折構造レベルが、参照平面を基準にして異なる構造深さを事前画定し、
- 回折構造の配列は、第1の目標波長が格子構造プロファイルによって回折される赤外線波長範囲の第1の目標波長λ1のまわりの波長範囲が、第1の目標波長λ1の少なくとも0次および/または±1次の回折で、互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分を有するようなものであり、
- 回折構造レベルが、周期走行方向(period running direction)に沿って規則的に繰り返される格子構造プロファイルの格子周期のトポグラフィー(topography:全体的な様相)を事前画定し、
- 回折構造レベルが、
-- ゼロの参照高さに対応するニュートラル回折構造レベル(neutral diffraction structure level:中立回折構造レベル)と、
-- ニュートラル回折構造レベルを基準にしてλ1/4±20%の光路長だけ高く配列された正回折構造レベル(positive diffraction structure level)と、
-- ニュートラル回折構造レベルを基準にしてλ1/4±20%の光路長だけ低く配列された負回折構造レベル(negative diffraction structure level)と
を含む。
目標波長λ1のまわりで抑制されるべき範囲は、抑制されるべき複数の波長、例えば、EUVプラズマ源のプレパルスおよび主パルスの異なる波長を含むように選ぶことができる。
第1の態様による光回折構成要素の場合、第1に正回折構造レベルおよび第2に負回折構造レベルが、ニュートラル回折構造レベルを基準にしてλ1/4の光路長差を中心として最大20%の許容誤差範囲で具現化される。経路長差λ1/4と比較したこの許容誤差は、±20%未満とすることもでき、例えば、±10%、±5%、±3%、±2%、またはさらに±1%とすることができる。
第1の態様による光回折構成要素の場合、格子構造プロファイルの格子周期は、回折構造レベルの4つの周期セクションに細分することができる。4つの周期セクションのうちの2つは、ニュートラル回折構造レベルを有するニュートラル回折構造セクションとして具現化することができる。4つの周期セクションのうちの1つは、正回折構造レベルを有する正回折構造セクションとして具現化することができる。4つの周期セクションのうちの1つは、負回折構造レベルを有する負回折構造セクションとして具現化することができる。光回折構成要素のこの実施形態の場合、2つのニュートラル回折構造レベルは、格子周期内において、正回折構造レベルによってまたは負回折構造レベルによって互いに分離されるように配列することができる。2つのニュートラル回折構造レベルを互いに分離することにより、回折構造レベルのシーケンスが可能になり、周期走行方向において、各場合に相互に同等の構造高さ差を有する等しい数の下降縁部または側壁(sidewall)(構造深さが増加する、縁部が「谷向き(valleywards)」)および上昇縁部または側壁(構造深さが再び減少する、縁部が「頂上向き(peakwards)」)が存在する。次いで、第1に下降縁部および第2に上昇縁部は、あり得る位相エラーに関する限り、それぞれ互いに補償し、その結果、望ましくない縁部構造化および/または望ましくない縁部位置から生じる可能性がある位相エラー全体が、減じられるかまたは完全に避けられる。
代替として、2つのニュートラル回折構造レベルはまた、格子周期内において、2倍の長さのニュートラル回折構造レベルとして直接連続的に配列されてもよい。
格子構造プロファイルの格子周期を細分することができる4つの周期セクションは、周期走行方向に沿って等しい長さを有することができ、長さの違いが±20%未満である場合、等しい長さが存在する。そのような光回折構成要素は、目標波長に対して特に良好な破壊的に干渉する抑制効果を生じさせる。4つの周期セクションの長さは、20%未満だけ、例えば、15%未満だけ、10%未満だけ、5%未満だけ、2%未満だけ、またはさらに1%未満だけ互いにずれることも可能である。4つの周期セクションの長さは、正確に等しくすることもできる。
格子構造プロファイルの格子周期を細分することができる4つの周期セクションは、以下のシーケンス、すなわち、正回折構造レベル、ニュートラル回折構造レベル、負回折構造レベル、ニュートラル回折構造レベルを有することができる。周期セクションのそのようなシーケンスは特に適切であることが見いだされた。対応するシーケンスは、上述で示されたシーケンスを周期的に交替することによって達成可能であり、それにより、以下のシーケンス、例えば、ニュートラル回折構造レベル、正回折構造レベル、ニュートラル回折構造レベル、負回折構造レベルがもたらされる。
4つの周期セクションの以下のシーケンス、すなわち、負回折構造レベル、ニュートラル回折構造レベル、正回折構造レベル、ニュートラル回折構造レベルも可能である。巡回的交換(cyclic interchange)は、この変形の場合にも可能である。
以下のもの、すなわち、ニュートラル回折構造レベル、ニュートラル回折構造レベル、正回折構造レベル、負回折構造レベルを、4つの周期セクションのシーケンスのさらなる変形として使用することができる。それゆえに、ここで、2つのニュートラル回折構造レベルは、特に2倍の長さの共通ニュートラル回折構造レベルとして互いに直ぐ隣に存在する。巡回的交換は、例えば、この変形の場合でも可能である。
第1の態様による光回折構成要素の場合、回折構造の配列は、格子構造プロファイルによって回折される赤外線波長範囲の目標波長を含む目標波長範囲が、第1の目標波長の少なくとも0次および/または±1次の回折で互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分を有すようにすることができ、目標波長範囲が、第1の目標波長λ1に加えて、それと異なる第2の目標波長λ2をさらに含み、回折構造の配列は、格子構造プロファイルによって回折される赤外線波長範囲の第2の目標波長のまわりの波長範囲が、さらに、第1の目標波長の少なくとも0次および/または±1次の回折で互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分を有するようなものであり、目標波長範囲が、第1の目標波長に加えて、それと異なる目標波長をさらに含み、回折構造の配列が、格子構造プロファイルによって回折される赤外線波長範囲の第2の目標波長のまわりの波長範囲が、第2の目標波長の少なくとも0次および/または±1次の回折で互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分を有するようなものであり、2つの目標波長λ1およびλ2に対して、(λ1-λ22/(λ1+λ22<20%が当てはまる。そのような光回折構成要素の利点は、既に上述で説明されたものに対応する。
2つの目標波長間の差を特徴づける上限値について、(λ1-λ22/(λ1+λ22<10%、<5%、<2%、<1%、<0.5%、<0.2%、<0.1%またはさらに<0.05%が当てはまり得る。上限値は、例えば、0.037%とすることができる。上限値は、著しくさらに小さくする、例えば、0.0002%とすることもできる。光回折構成要素の少なくとも2つの回折構造グループによって抑制される2つの目標波長は、正確に等しくすることができる。2つの目標波長間の差を特徴づけるずれ(λ1-λ22/(λ1+λ22は、0.0001%を超える場合があり、0.001%を超える場合があり、0.01%を超える場合があり、0.1%を超える場合があり、0.2%を超える場合があり、0.5%を超える場合があり、0.7%を超える場合があり、さらに一層大きい場合がある。
目標波長は、IR波長範囲内、例えば、10.6μmのCO2レーザの典型的な発光波長の範囲内とすることができる。代替としてまたは追加として、NIR波長範囲、可視波長範囲、UV波長範囲、またはさもなければDUV波長範囲の波長が、抑制されるべき目標波長となることができる。2つの目標波長の一方は10.2μmとすることができ、2つの目標波長の他方は10.6μmとすることができる。目標波長は、EUVプラズマ源のプレパルスおよび主パルスの波長に適合することができる。
2つの異なる目標波長を抑制するための少なくとも2つの回折構造グループの設計は、抑制設計帯域幅と呼ぶこともできる事前定義可能な波長帯域幅内の波長の抑制をもたらす。この抑制設計帯域幅内にある、すなわち、光回折構成要素で効果的に抑制することができる波長は、目標波長に対応することができる、および/または目標波長間にあり得る、および/または目標波長間の波長範囲の外にあり得る。10.2μmの波長を抑制するために、例として、第1の回折構造グループが設計されている第1の目標波長は、10.25μmとすることができ、第2の回折構造グループが設計されている第2の目標波長は、10.55μmとすることができる。目標波長の選択は、オプションとして複数の異なる波長または波長帯域幅を抑制するために光回折構成要素になされる要件に応じて発生する。この場合、目標波長に加えて破壊的干渉のさらなる最小の位置も、考慮に入れることができ、またはどの波長が抑制されないように故意に意図されているかを考慮に入れることが可能である。
光回折構成要素に関連して既に上述で論じられたことは、ここで、目標波長λ1およびλ2の選択に当てはまり得る。
前記目的は、本発明による第2の態様によれば、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素によって達成され、光回折構成要素が、
- 参照平面を基準にして異なる構造深さを事前画定する少なくとも3つの回折構造レベルを含み、
- 3つの回折構造レベルが、少なくとも2つの回折構造グループに割り当て可能であり、
- 回折構造グループのうちの第1のものが、0次の回折で第1の目標波長λ1を抑制するように具現化され、
- 回折構造グループのうちの第2のものが、0次の回折で第2の目標波長λ2を抑制するように具現化され、
- 2つの目標波長λ1およびλ2に対して、当てはまり、
- 回折構造レベルのトポグラフィーが、2つのバイナリ回折構造グループの重ね合わせとして記述することができ、
- バイナリ回折構造グループの各々が、
-- 第1の構造深さを有する第1の表面セクションと、
-- 第2の構造深さを有し、走行方向に沿って第1の表面セクションと交互になる第2の表面セクションと、を有し、
- バイナリ回折構造グループの各々の隣接する表面セクション間の境界領域が直線状コース(linear course)を有し、
-- 2つのバイナリ回折構造グループのうちの第1のものの第1の境界領域、および
-- 2つのバイナリ回折構造グループのうちの第2のものの第2の境界領域が、
-- せいぜいそれらの直線状コースのセクションに沿って互いに重ね合わされる。
互いにあまり離れてないそれぞれの目標波長を抑制するのに役立つ少なくとも2つの回折構造グループに順番に割り当て可能である少なくとも3つの回折構造レベルを含む光回折構成要素の使用は、驚いたことに、個々の回折構造グループの抑制効果を明確に越える目標波長の抑制の改善をもたらす。先行技術からの光回折構成要素と比較して、これは、光回折構成要素の使用の可能性の柔軟性を向上させるために使用することができる設計の自由度をもたらす。異なる回折構造グループは、光回折構成要素の同じ光学的に使用される区域を占めることができ、すなわち、前記光学的に使用される区域で相互に分離したセクションに配列される必要がない。光回折構成要素は、特に、2つの回折構造グループが同じ目標波長または迷光波長を抑制するように設計されるように設計することができる。代替としてまたは追加として、光回折構成要素は、回折構造グループの適切な設計により複数の目標波長を抑制するように設計することができる。複数の回折構造グループを含むそのような光回折構成要素の場合、回折効果が、正確に1つの回折構造グループを含む光回折構成要素と比較して改善されることが見いだされた。したがって、複数の回折構造グループを含む光回折構成要素の使用により、同じ抑制効果が、先行技術と比較して緩和された製造許容誤差で達成され得る。
回折構造グループは、正確に1つの目標波長を抑制するように配列され作られた少なくとも2つの回折構造レベルの配列である。回折構造グループの1つの例は光学格子である。少なくとも3つの回折構造レベルの少なくとも2つの回折構造グループへの割り当ては、少なくとも1つの回折構造レベルが複数の回折構造グループに割り当てられるように規則的に行われる。
最初に論じられた第1の態様による光回折構成要素は、このタイプの少なくとも1つまたはさもなければ少なくとも2つの回折構造グループをさらに含むこともできる。
2つの目標波長間の最大差に関する利点は、既に上述で説明されたものに対応する。第1の態様による光回折構成要素に関連して既に上述で論じられたことが、ここで、目標波長λ1およびλ2の選択に対して主張することができる。
第2の目標波長λ2についても、後者が、光回折構成要素の回折構造の適切な設計によって破壊的干渉により減衰または抑制されることが当てはまる。
光回折構成要素は、正確に3つの回折構造レベルを含むことができ、正確に2つの回折構造グループを含むことができる。代替として、光回折構成要素は、4つ以上の回折構造レベル、例えば、4つ、5つ、6つ、またはさらにより多くの回折構造レベルをさらに含むことができ、対応して、3つ以上の回折構造グループをさらに含むことができる。
バイナリ構造は、正構造(positive structures)(「頂上」)および負構造(negative structures)(「谷」)を含む構造であり、正構造の全面積は、事前定義された許容誤差内で負構造の全面積に対応する。第1に正構造の全面積と第2に負構造の全面積との間の差は、20%未満である場合があり、10%未満である場合があり、5%未満である場合があり、2%未満である場合があり、さらに1%未満である場合がある。全面積はまた、正確に等しい場合がある。
第1および第2バイナリ構造の境界領域がせいぜい境界領域の直線状コースのセクションに沿って互いに重ね合わされるという事実は、比較的簡単に作られたリソグラフィマスク構造の助けによって光回折構成要素を生成する可能性をもたらす。これにより、第1に回折構造レベルの面積およびさらにその構造深さに対する狭い許容誤差に従った光回折構成要素の精密な生成の可能性がもたらされる。特に、境界領域の望ましい大きさおよび望ましい精密さの側壁の険しさ(急峻さ)(sidewall steepness)を有する回折構造グループを生成することが可能である。
光回折構成要素は、上昇境界領域、すなわち、上昇レベル側壁には、同じ構造深さ、すなわち、同じ構造高さ差をもつ下降境界領域が割り当てられるように作ることができる。
第2の態様による光回折構成要素は、追加として、前出の特許請求項による光回折構成要素を参照して既に上述で論じられた機能を有することができる。
光回折構成要素の場合、2つのバイナリ回折構造グループのうちの第1のものの第1の境界領域と、2つのバイナリ回折構造グループのうちの第2のものの第2の境界領域は、互いに完全に別個に延びることができる。境界領域のそのような完全に分離されたコースは、特に、光回折構成要素のリソグラフィ生成のさらなる単純化をもたらす。
回折構造グループのうちの第1のものは、格子表面に配列された第1の回折格子として具現化することができる。前記第1の回折格子は、第1の格子周期と、これらの第1の構造をそれぞれ囲む格子表面の表面セクションに対して垂直な、第1の回折正構造と第1の回折負構造との間の光路差として測定された第1の構造深さとを有することができる。回折構造グループのうちの第2のものは、格子表面に配列された第2の回折格子として具現化することができる。そのような第2の回折格子は、第2の格子周期と、これらの第2の構造をそれぞれ囲む格子表面の表面セクションに対して垂直な、第2の回折正構造と第2の回折負構造との間の光路差として測定された第2の構造深さとを有することができる。そのような実施形態に関して、互いに基本的に無関係である格子周期と、互いに基本的に無関係である構造深さ(構造深さは、少なくとも回折格子のうちの1つの場合に格子周期と比較して小さい)とを有する少なくとも2つの回折格子を含む光格子の使用は、先行技術の光学格子と比較して、光学格子の使用の可能性の柔軟性を向上させるために使用することができる設計の自由度をもたらす。2つの回折格子は、同じ格子表面を占めることができる、すなわち、そのとき、格子表面の別個のセクションに配列されない。それゆえに、そのとき、2つの回折格子は、格子表面上で互いに重ね合わされるように存在する。光学格子は、2つの回折格子が同一の迷光波長を抑制するように設計されることによって迷光抑制が改善されるように設計することができる。代替としてまたは追加として、光学格子は、複数の迷光波長を抑制できるように設計することができる。その上、驚いたことに、複数の回折格子を含むそのような光学格子の使用により、回折効果、特に、0次の回折の破壊的干渉の結果としての抑制効果が、正確に1つの回折格子を含む光学格子と比較して改善されることが見いだされた。それにより、同じ抑制効果が、複数の回折格子を含む光学格子の使用により緩和された製造許容誤差で達成され得る。
光学格子は、反射型回折格子として具現化することができるが、代替として、透過型回折格子として、例えば、位相格子として具現化することもできる。
格子表面は、平面として、またはさもなければ曲線状、例えば、凸状もしくは凹状として具現化することができる。格子表面は、例えば、ビームコレクタまたはミラー上に他の光学的機能をさらに有する光学構成要素の光学面の一部とすることができる。第1の回折格子および/または第2の回折格子は、正構造の表面積が負構造の表面積と等しいバイナリ格子として具現化することができる。最も簡単な場合には、構造深さは、それぞれの回折正構造と、関連する回折負構造との間の高さ差とすることができる。
光学格子は、追加として、高反射層と、オプションとして、特に、光学格子および/または高反射層を保護するための補助層とを有することができる。高反射層は、多層として具現化することができる。高反射層は、特に、5nmと30nmとの間の波長範囲のEUV光に対して具現化することができる。
光回折構成要素は、対応して配列された回折構造レベルを有する多レベル回折格子として具現化することができる。
この場合、構造深さは、目標波長の6分の1とすることができる。多レベル格子がそれに応じて作られる場合、構造深さは、目標波長の4分の1とすることもできる。
異なる回折構造レベルの数mに応じて、目標波長λNに応じた構造深さは、b=λN/(2m)とすることができる。
格子周期は、ミリメートル範囲内とすることができ、例えば、1mmまたは2mmとすることができる。
回折構造レベルは、平面として具現化することができる。
異なる回折格子の格子周期は、互いに整数比とすることができる。格子周期は、互いに対して、定義された位相オフセットを有することができる。
格子周期の比は、1:2とすることができる。3つの回折格子の使用では、格子周期の比は、1:2:4またはさもなければ1:2:2とすることができる。
第1の回折負構造の表面積に対する第1の回折正構造の表面積の表面積比は、0.9と1.1との間の範囲とすることができる。第2の回折負構造の表面積に対する第2の回折正構造の表面積の表面積比は、0.9と1.1との間の範囲とすることができる。対応して、精密なバイナリ回折構造グループが生じる。
第1の格子周期と第1の構造深さとの間の比は、10よりも大きくすることができる。第2の格子周期と第2の構造深さとの間の比は、10よりも大きくすることができる。
それに対応して、抑制されるべき異なる目標波長が生じる。それにより、2つの目標波長λ1およびλ2に加えて、さらなるより大きく外れた目標波長も抑制することができる。例として、赤外線波長範囲の異なる目標波長および紫外線波長範囲のさらなる目標波長を同時に抑制することが可能である。
第2の格子周期に対する第1の格子周期の周期比は、0.9と1.1の範囲内とすることができる。
そのような周期比を有する光回折構成要素は、適切に製造することができる。第1および第2の回折格子の格子周期は、正確に等しくすることができるが、さらに異なってもよい。
そのような光回折構成要素の利点により、特にEUV波長の良好な反射状態とともに、第2の回折格子の場合に含むより高い波長の良好な迷光抑制が可能になる。
第2の回折格子の構造深さに対する第1の回折格子の構造深さの構造深さ比は、0.9と1.1との間の範囲内とすることができる。第1および第2回折格子の構造深さは、互いに異なってもよいが、等しくすることもできる。1.1と20との間の範囲の2つの回折格子間の著しく大きい構造深さ比、例えば、10の領域の構造深さ比も可能である。
格子表面に配列された2つの回折格子を含む光回折構成要素の場合、第1の格子周期は、第1の回折格子の第1の周期走行方向に沿って延びることができ、第2の格子周期は、第2の回折格子の第2の周期走行方向に沿って延びることができ、2つの周期走行方向は、互いに平行に延びることができない。第1および第2の回折格子の周期走行方向が互いに平行に延びないそのような光回折構成要素は、価値があることが立証された。周期走行方向間の最小角度は90°とすることができ、その結果、2つの周期走行方向は互いに垂直である。例えば60°、55°、45°または30°の領域のより小さい最小角度も可能である。
代替として、少なくとも2つの回折構造グループの2つの周期走行方向が、互いに平行に延びる光回折構成要素の一実施形態も可能である。
格子表面に配列された2つの回折格子を含む光回折構成要素は、格子表面に配列された少なくとも1つのさらなる回折格子を含むことができる。前記さらなる回折格子は、さらなる回折正構造と、さらなる回折負構造とを含むことができ、さらなる回折負構造の表面積に対するさらなる回折正構造の表面積の表面積比は、0.9と1.1との間の範囲にある。前記さらなる回折格子は、さらなる格子周期と、これらのさらなる構造をそれぞれ囲む格子表面の表面セクションに対して垂直な、さらなる回折正構造とさらなる回折負構造との間の光路差として測定されるさらなる構造深さとを有する。少なくとも1つのさらなる回折格子を含むそのような光回折構成要素は、設計の利用可能な自由度の対応するさらなる増加をもたらす。少なくとも3つの回折格子の周期走行方向のうちの少なくとも2つは、相互に異なる方向を有することができる。代替として、少なくとも3つの回折格子のすべての周期走行方向が、互いに平行に延びることも可能である。
第1の回折格子、第2の回折格子、およびさらなる回折格子がすべて格子表面に配列された光回折構成要素の場合、さらなる格子周期とさらなる構造深さとの間の比は、10よりも大きくすることができる。さらなる格子周期に対する第1の格子周期の周期比は、0.9と1.1の範囲内とすることができる。第1の格子周期は、第1の回折格子の第1の周期走行方向に沿って延びることができ、さらなる格子周期は、さらなる回折格子のさらなる周期走行方向に沿って延びることができ、2つの周期走行方向は、互いに平行に延びない。
そのような光回折構成要素の利点は、既に上述で説明されたものに対応する。第1の回折格子およびさらなる回折格子の格子周期は、同一とすることができるが、さらに異なってもよい。0.9と1.1との間の範囲の対応する周期比またはさもなければ同一の格子周期が、第2の回折格子と少なくとも1つのさらなる回折格子との間に存在することもできる。
さらなる回折格子に対する第1の回折格子の構造深さ比は、0.9と1.1との間の範囲内とすることができ、第1およびさらなる回折格子の構造深さは、互いに異なってもよいが、等しくすることもできる。0.9と1.1との間の範囲の対応する構造深さ比またはさもなければ同一の構造深さが、第2の回折格子と少なくとも1つのさらなる回折格子との間に存在することもできる。1.1と20との間の範囲の、例えば、10の領域の、さらなる回折格子の構造深さと第1および/または第2の回折格子の構造深さとの間の著しく大きい構造深さ比も可能である。
第1の回折格子の周期走行方向とさらなる回折格子の周期走行方向との間の最小角度は、20°と25°との間の範囲内とすることができる。例えば、10°と80°との間の範囲の他の最小角度も可能である。対応する走行方向角度はまた、第2の回折格子の周期走行方向と、少なくとも1つのさらなる回折格子の周期走行方向との間に存在することができる。
様々な回折構造グループの回折正構造および回折負構造の表面積は、格子表面全体に同一の寄与をすることができる。そのような同一の表面積寄与は、特に、光回折構成要素の異なる回折構造グループのバイナリ格子をもたらす。これにより、光回折構成要素の適切な設計の場合に0次の回折の領域で高い迷光抑制が保証される。
2つの態様の光回折構成要素の上述で論じられた特徴は、互いに組み合わせることもできる。
上述で論じられた2つの態様のうちの少なくとも1つのタイプの光回折構成要素は、少なくとも1つのマスク構造が使用されるマスクエッチング方法によって生成することができる。マスク領域および/またはマスク間隙(mask gaps)の位置が異なる複数のマスク構造を使用することもできる。次いで、これらの異なるマスクを連続して使用することにより、または少なくとも2つの連続するエッチングステップで全く同一のマスク構造を変位させることによって、基板をエッチングすることができる。3つ以上の異なるマスク構造が、さらに、光回折構成要素を生成するためのそのようなマスクエッチング方法で使用されてもよい。
投影露光装置、特に、EUV投影露光装置で使用することができ、上述の特性を有する光回折構成要素を有するコレクタまたはコレクタミラーの利点は、光回折構成要素を参照して既に上述で説明されたものに対応する。これらの利点は、プラズマがレーザ誘導放電によって生成されるEUV光源と共同で使用する場合に特に明らかである。コレクタまたはコレクタミラーは、特に、5nmと30nmとの間の波長範囲のためのEUVコレクタ/コレクタミラー、および/またはDUV(遠紫外線)コレクタ/コレクタミラー、すなわち、特に、150nmと250nmとの間の波長範囲のためのコレクタミラーとすることができる。
これは、特に、コレクタミラーがEUV放射線を焦点領域の方に導くように具現化されたEUVコレクタミラーに当てはまり、光回折構成要素は、少なくとも1つの目標波長の放射線を焦点領域から離れたところに導くように具現化される。少なくとも1つの目標波長の放射線は迷光とも呼ばれる。
照明系は、そのようなコレクタ、特に、EUVコレクタと、結像(imaged)されるべき物体を配列することができる物体視野(object field)を照明するための照明光学ユニットとを含むことができる。DUVまたはEUV使用光は、照明光として使用することができる。そのような照明系の利点は、本発明によるコレクタを参照して既に上述で説明されたものに対応する。使用光は、光回折構成要素によって的確に抑制されない、すなわち、抑制されるべき迷光の波長と異なる波長を有する。
照明系は、迷光除去場所の領域に、例えば、この目的のために設けられたビームダンプ領域に迷光の均質分布をもたらすために、上述のように具現化された光回折構成要素を用いて作ることができる。代替としてまたは追加として、特に、照明系の照明ビーム経路の特定のセクション、例えば、瞳面の領域における使用光の事前定義された分布関数を保証することが可能である。
光学系は、そのような照明系と、物体視野を像視野(image field)に結像するための投影光学ユニットとを含むことができ、基板は像視野に配列可能であり、結像されるべき物体のセクションは、基板上に結像され得る。投影露光装置は、そのような光学系と、光源、特に、EUV光源とを含むことができる。構造化構成要素を生成するために、レチクルおよびウェハを用意することができる。レチクルの構造は、そのような投影露光装置の助けによってウェハの感光層上に投影することができる。このようにして、ウェハのミクロ構造および/またはナノ構造を生成することが可能である。そのような光学系、そのような投影露光装置、そのような生成方法、およびそのようなミクロ構造化および/またはナノ構造化構成要素の利点は、本発明によるコレクタを参照して既に上述で説明されたものに対応する。
EUV光源が使用される限りでは、それは、EUV波長を発生するプラズマを生成するためのポンプ光源を含むことができる。ポンプ光源は、プレパルス光波長を有するプレパルスを生成するために、および主パルス光源を有する主パルスを生成するために具現化することができる。プレパルス光波長は、主パルス光波長と異なってもよい。投影露光装置のEUV光源のポンプ光源の場合の第1にプレパルス光の波長と第2に主パルスの波長との間の対応する差は、目標波長λ1およびλ2に関連して既に上述で説明された上限値および/または下限値を有することができる。
特に、半導体構成要素、例えば、メモリチップは、投影露光装置を使用して生成することができる。
特に、構造化構成要素の生成中、波長範囲の光は、第1の波長λ1を有する光がコレクタの焦点領域から離れたところに回折されるようにコレクタ上に当てられる(impinged)ことができる。第1の波長λ1は、その波長範囲内にあってもよく、赤外線波長範囲にあってもよい。そのような波長範囲は、少なくとも1次の回折で互いに破壊的に干渉する少なくとも3つの異なる位相を含む放射線成分を含むことができる。そのような少なくとも1次の回折は、第1の波長λ1の0次の回折、第1の波長λ1のプラス1次の回折、または第1の波長λ1のマイナス1次の回折とすることができる。波長範囲は、さらに、第2の波長λ2を含むことができ、方法は、そのような第2の波長λ2を有する光をコレクタの焦点領域から離れたところに回折させることをさらに含むことができる。第2の波長λ2は、第1の波長λ1と異なっていてもよく、赤外線波長範囲にあってもよい。波長範囲は、第2の波長λ2の0次の回折、第2の波長λ2のプラス1次の回折、および第2の波長λ2のマイナス1次の回折であり得る、少なくとも1次の回折で互いに破壊的に干渉する少なくとも3つの追加の異なる位相を含む放射線成分を含むことができる。
本発明の例示的な実施形態が、図面を参照して以下でより詳細に説明される。
EUVマイクロリソグラフィのための投影露光装置を概略的に示す図である。 プラズマ源領域から投影露光装置の照明光学ユニットの視野ファセットミラーまでEUV使用光を導くためのEUVコレクタの環境における投影露光装置の光源の詳細を示す図であり、EUVコレクタは子午線断面で示されている。 図3と比較してより抽象的な図を使って、EUVコレクタの反射/回折の場合の第1にEUV使用光および第2に波長の異なる迷光成分のガイダンスを示す図である。 互いに垂直な周期走行方向および同一の格子周期を有する回折構造グループとして2つの回折格子を含む光学格子の格子表面のセクションの平面図であり、図4において正方形である回折構造の3つの回折構造レベルを事前定義する構造深さが、異なるタイプのハッチングによって示され、光学格子は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素の1つの実施形態を構成する。 計算された理想的な場合、さらなる計算されたより現実的な場合、および本発明によらない参照格子に対して、図4による光学格子の波長依存反射率Rを図式で示す図であり、光学格子の2つの回折格子は、2つの異なる波長を抑制するように具現化されている。 図4による光学格子の場合の関係を図5と同様の図式で示す図であり、2つの回折格子は同一の構造深さを有し、その結果、光学格子は正確に1つの波長を抑制するように具現化されている。 回折構造グループが、互いに対して45°の角度を想定した周期走行方向を有するような2つの回折格子を含む光学格子のさらなる実施形態を図4と同様の説明図で示す図であり、光学格子は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素の1つの実施形態を構成する。 3つの回折格子を回折構造グループとして含み、それらのうちの2つは互いに垂直な周期走行方向を有し、それらのうちの第3の回折格子はその垂直な周期走行方向に対して対角線周期走行方向を有する光学格子のさらなる実施形態を図4および図7と同様の説明図で示す図であり、光学格子は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素の1つの実施形態を構成する。 図8による光学格子の場合の反射関係を図5および図6と同様の図式で示す図であり、すべての3つの回折格子は、全く同一の波長を抑制するように具現化される。 図8からのタイプの光学格子の場合の反射関係を、図9と同様の図式で示す図であり、3つの回折格子が異なる構造深さを有し、その結果、光学格子は異なる波長を抑制するように具現化されている。 ゼロと異なる角度を対で想定するそれぞれの周期走行方向を有する回折構造グループとして3つの回折格子を含む光学格子のさらなる実施形態を図8と同様の説明図で示す図であり、光学格子は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素の1つの実施形態を構成する。 図11による実施形態のものに対応する周期走行方向を有する回折構造グループとして3つの回折格子を含む光学格子のさらなる実施形態を図11と同様の説明図で示す図であり、図12および図13による実施形態の回折構造は、それぞれの周期走行方向において、互いに対してオフセットして、および図11による実施形態に関連して配置されており、光学格子は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態を構成する。 図11による実施形態のものに対応する周期走行方向を有する回折構造グループとして3つの回折格子を含む光学格子のさらなる実施形態を図11と同様の説明図で示す図であり、図12および図13による実施形態の回折構造は、それぞれの周期走行方向において、互いに対してオフセットして、および図11による実施形態に関連して配置されており、光学格子は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態を構成する。 第1の格子周期および第1の構造深さを有するバイナリ格子として具現化された、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態に属する第1の回折構造グループを側面図で示す図である。 光回折構成要素の一部としてのさらなる回折構造グループを図14と同様の説明図で示す図であり、さらなる回折構造グループは、今度は、格子周期および構造深さを有するバイナリ格子として具現化され、この回折構造グループの製造中のあり得るオーバレイエラーが、追加として破線で示されている。 図14および図15による2つの回折構造グループの重ね合わせとして生じる光回折構成要素を示す図である。 2つの回折構造グループと、重ね合わせの結果としてそれらから生じるさらなる光回折構成要素を図14~図16と同様の説明図で示す図である。 2つの回折構造グループと、重ね合わせの結果としてそれらから生じるさらなる光回折構成要素を図14~図16と同様の説明図で示す図である。 2つの回折構造グループと、重ね合わせの結果としてそれらから生じるさらなる光回折構成要素を図14~図16と同様の説明図で示す図である。 2つの回折構造グループと、重ね合わせの結果としてそれらから生じるさらなる光回折構成要素を図14~図16と同様の説明図で示す図である。 2つの回折構造グループと、重ね合わせの結果としてそれらから生じるさらなる光回折構成要素を図14~図16と同様の説明図で示す図である。 2つの回折構造グループと、重ね合わせの結果としてそれらから生じるさらなる光回折構成要素を図14~図16と同様の説明図で示す図である。 図16、図19、または図22からのもののタイプの光回折構成要素の反射率を図式で示す図であり、それぞれの第1の回折構造グループの構造高さは、目標波長を抑制するための値に固定され、反射率が、他方の回折構造グループの構造高さの関数としてプロットされている。 2つの回折構造グループの構造深さの間の差の関数としてプロットされており、第1の回折構造グループの構造深さに正規化されている、再度、第1の回折構造グループの固定された構造物深さを有する光回折構成要素の反射率を再度図式で示す図である。 破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態の一部として、格子周期および構造深さを有するバイナリ格子として具現化された回折構造グループを図14と同様の説明図で示す図であり、前記さらなる実施形態は、3つの回折構造グループの重ね合わせの結果として生じる。 光回折構成要素のこの変形の実施形態ための、再度、バイナリ格子として具現化されたさらなる回折構造グループを示す図である。 光回折構成要素のこの変形の実施形態ための、再度、バイナリ格子として具現化されたさらなる回折構造グループを示す図である。 図25~図27による3つの回折構造グループの重ね合わせとして形成された光回折構成要素を示す図である。 再度各場合に格子周期および構造深さを有するバイナリ格子として具現化された3つの回折構造グループと、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態であって、重ね合わせの結果としてそれらから生じる、前記さらなる実施形態とを図25~図28と同様の説明図で示す図である。 再度各場合に格子周期および構造深さを有するバイナリ格子として具現化された3つの回折構造グループと、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態であって、重ね合わせの結果としてそれらから生じる、前記さらなる実施形態とを図25~図28と同様の説明図で示す図である。 再度各場合に格子周期および構造深さを有するバイナリ格子として具現化された3つの回折構造グループと、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態であって、重ね合わせの結果としてそれらから生じる、前記さらなる実施形態とを図25~図28と同様の説明図で示す図である。 再度各場合に格子周期および構造深さを有するバイナリ格子として具現化された3つの回折構造グループと、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態であって、重ね合わせの結果としてそれらから生じる、前記さらなる実施形態とを図25~図28と同様の説明図で示す図である。 図8、図11~図13、図28、または図32のうちのいずれかによるもののタイプの光回折構成要素の場合の波長依存反射関係を図9および図10と同様の図式で示す図であり、回折構造グループは、異なる構造深さを有し、その結果、光学格子は、異なる波長を抑制するために具現化されるが、但し、異なる波長は、図10による変形と比較して互いに接近している。 回折構造グループとして3つの回折格子を含む光学格子の格子表面のセクションを図4と同様の説明図で示す図であり、格子のうちの2つは平行な周期走行方向を有し、第3の格子はそれらに対して垂直な周期走行方向を有し、同じ周期走行方向を有する回折構造グループは、図16、図19、または図22による実施形態の方法で重ね合わされ、図34では長方形である回折構造の構造深さは、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態として、異なるタイプのハッチングによって示される。 3レベル格子として具現化され、正確に1つの目標波長を抑制するために具現化された、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態を、再度、概略の側面図で示す図である。 再度、2つの回折構造グループに割り当て可能である3つの回折構造レベルで作られた、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態を図35と同様の説明図で示す図であり、少なくとも1つの目標波長の抑制の効率の計算を理論的に説明するために描かれた変数が示されている。 対応する複数の回折構造グループに割り当て可能である4つの回折構造レベルで具現化された、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態を図35および図36と同様の説明図で示す図である。 再度、4つの回折構造レベルで具現化された、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素の2つのさらなる実施形態を図37と同様の説明図で示す図である。 再度、4つの回折構造レベルで具現化された、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素の2つのさらなる実施形態を図37と同様の説明図で示す図である。 例えば、図4、図7、図16、図19、図22、図35、および図36による実施形態のタイプの2つの回折構造グループを含む光回折構成要素の波長依存反射率を図式で示す図であり、2つの回折構造グループは、2つのDUV波長を抑制するための構造深さで具現化されている。 異なる構造深さを有する4つの回折構造グループが割り当て可能である合計で5つの回折構造レベルを含む光回折構成要素の波長依存反射率を図40と同様の説明図で示す図であり、10μmを超えるIR範囲の2つの目標波長と、図40による目標波長に匹敵するDUV範囲の2つの目標波長とが抑制される。 0.1μmと0.4μmとの間のDUV範囲において図41からの拡大された詳細を示す図である。 回折構造グループの異なる側壁の険しさ許容誤差を有する様々な光回折構成要素について10.0μmと11.0μmとの間の波長依存反射率を、再度、図式で示す図である。 光回折構成要素のバイナリ構造の隣接する表面セクション間の境界領域を事前画定するために光回折構成要素の生成で使用することができる2つのリソグラフィマスク構造と一緒に、図16による光回折構成要素を示す図であり、前記バイナリ構造は、互いに重ね合わされる。 再度、回折構造グループの表面セクション間の境界領域を事前画定するために光回折構成要素の生成で使用することができる2つのリソグラフィマスク構造と一緒に、図19による光回折構成要素を図44と同様の説明図で示す図である。 目標波長が破壊的干渉によって抑制されるように配列された3つの回折構造レベルを有する回折構造を含む周期的格子構造プロファイルを含む、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態を示す図である。 図46による光回折構成要素を示す図であり、3つの回折構造レベルは、0次の回折の目標波長の完全な破壊的干渉をもたらす互いに対する高さまたはレベル差を有する。 図46による光回折構成要素の変形を図47と同様の説明図で示す図であり、第1に正回折構造レベルおよび第2に負回折構造レベルが、ニュートラル回折構造レベルと比べて若干大きすぎる高さ差を伴って具現化されており、そのような高さ誤差の場合に生じる回折補償効果を説明する。 図46による実施形態と比較して異なるシーケンスで3つの回折構造レベルを含む光回折構成要素のさらなる実施形態を図46と同様の説明図で示す図である。 光回折構成要素のさらなる実施形態を示す図であり、実質的に1つの格子周期が示されており、光回折構成要素の周期的格子構造プロファイルは、4つの回折構造レベルを有する回折構造を含む。 1つの格子周期内に5つの回折構造レベルを含む光回折構成要素のさらなる実施形態を図50と同様の説明図で示す図である。 2つの回折構造グループに割り当て可能である3つの回折構造レベルをもつ図19、図36、図45、および図46の方法で作られた、光学格子の形態の光回折構成要素の波長依存反射率Rを図5と同様の図式で示す図であり、各場合に回折構造レベル間の構造深さ差がλ/4であり、λは各場合に抑制されるべき目標波長である。 図19、図36、図45、および図46からのタイプの光回折構成要素を、再度、回折構造グループの表面セクションまたは回折構造レベルの間の境界領域を事前画定するために光回折構成要素の生成で使用することができる2つのリソグラフィマスク構造のさらなる実施形態と一緒に、図44および図45と同様の説明図で示す図である。 図19、図36、図45、および図46からのタイプの光回折構成要素を、再度、回折構造グループの表面セクションまたは回折構造レベルの間の境界領域を事前画定するために光回折構成要素の生成で使用することができる2つのリソグラフィマスク構造のさらなる実施形態と一緒に、図44および図45と同様の説明図で示す図である。 図19、図36、図45、および図46からのタイプの光回折構成要素のさらなる実施形態を、再度、回折構造グループの表面セクションまたは回折構造レベルの間の境界領域を事前画定するために光回折構成要素の生成で使用することができる2つのリソグラフィマスク構造のさらなる実施形態と一緒に、図44および図45と同様の説明図で示す図である。 図19、図36、図45、および図46からのタイプの光回折構成要素のさらなる実施形態を、再度、回折構造グループの表面セクションまたは回折構造レベルの間の境界領域を事前画定するために光回折構成要素の生成で使用することができる2つのリソグラフィマスク構造のさらなる実施形態と一緒に、図44および図45と同様の説明図で示す図である。
マイクロリソグラフィ用の投影露光装置1は、以下でさらにより詳細に説明される照明光または結像光3のための光源2を含む。光源2は、EUV光源であり、例えば、5nmと30nmとの間、特に、5nmと15nmとの間の波長範囲の光を生成する。照明光または結像光3は、以下ではEUV使用光とも呼ばれる。
特に、光源2は、13.5nmの波長をもつ光源または6.9nmの波長をもつ光源とすることができる。他のEUV波長、またはさもなければ150nmと250nmとの間のDUV範囲の波長、例えば、193nmの波長も可能である。照明光3のビーム経路は、図1に極めて概略的に示されている。
照明光学ユニット6は、光源2から物体面5の物体視野4に照明光3を導くように機能する。前記照明光学ユニットは、図1に極めて概略的に示された視野ファセットミラーFFと、照明光3のビーム経路の下流に配設され、同様に、極めて非常に概略的に示された瞳ファセットミラーPFとを含む。かすめ入射(grazing incidence)のための視野形成ミラー6b(GIミラー、かすめ入射ミラー)が、照明光3のビーム経路において、照明光学ユニットの瞳面6aに配列された瞳ファセットミラーPFと、物体視野4との間に配列される。そのようなGIミラー6bは必須ではない。
瞳ファセットミラーPFの瞳ファセット(これ以上詳細には図示せず)は、視野ファセットミラーFFの視野ファセット(同様に、図示せず)を互いに重ね合わされるように物体視野4に伝達する、特に、結像する伝達光学ユニット(transfer optical unit)の一部である。先行技術から知られている一実施形態が、一方では視野ファセットミラーFFに使用されてもよく、他方では瞳ファセットミラーPFに使用されてもよい。例として、そのような照明光学ユニットは、DE 10 2009 045 096 A1から知られている。
投影光学ユニットまたは結像光学ユニット7を使用して、物体視野4は、所定の縮尺で像面9の像視野8に結像される。この目的に使用することができる投影光学ユニットは、例えば、DE 10 2012 202 675 A1から知られている。
投影露光装置1と、投影光学ユニット7の様々な実施形態との説明を容易にするために、デカルトxyz座標系が、図面に示され、その座標系から、図に示された構成要素のそれぞれの位置関係は明らかとなる。図1において、x方向は、図面の平面に対して垂直にその中に延びる。y方向は図1において左の方に延び、z方向は図1において上方に延びる。物体面5は、xy面と平行に延びる。
物体視野4および像視野8は長方形である。代替として、物体視野4および像視野8は、曲がったまたは湾曲した実施形態、すなわち、特に、部分的なリング形状を有することも可能である。物体視野4および像視野8は、1よりも大きいx/yアスペクト比を有する。それゆえに、物体視野4は、x方向にはより長い物体視野寸法およびy方向にはより短い物体視野寸法を有する。これらの物体視野寸法は、視野座標xおよびyに沿って延びる。
先行技術から知られている例示的な実施形態のうちの1つを投影光学ユニット7に使用することができる。この場合結像されるものは、レチクルとも呼ばれる反射マスク10の一部分であり、物体視野4と一致する。レチクル10は、レチクルホルダ10aで搬送される。レチクルホルダ10aは、レチクル変位ドライブ10bによって変位される。
投影光学ユニット7を介した結像は、基板ホルダ12によって搬送されるウェハの形態の基板11の表面上で実施される。基板ホルダ12は、ウェハまたは基板変位ドライブ12aによって変位される。
図1は、レチクル10と投影光学ユニット7との間に、前記投影光学ユニットに入る照明光3の光線ビーム13、および投影光学ユニット7と基板11との間に、投影光学ユニット7から出て来る照明光3の光線ビーム14を概略的に示す。投影光学ユニット7の像視野側開口数(NA)は、図1では縮尺通りに再現されていない。
投影露光装置1は、スキャナタイプのものである。レチクル10と基板11の両方は、投影露光装置1の操作中y方向に走査される。レチクル10と基板11のy方向のステップ状変位が基板11の個々の露光の間に実施されるステッパタイプの投影露光装置1も可能である。これらの変位は、変位ドライブ10bおよび12aの適切な作動によって互いに同期して達成される。
図2は、光源2の詳細を示す。
光源2は、LPP(レーザ生成プラズマ)源である。プラズマを生成するために、スズ液滴15が、スズ液滴発生器16によって連続液滴シーケンスとして発生される。スズ液滴15の軌道は、EUV使用光3の主光線方向17に対して横方向に延びる。ここで、スズ液滴15は、スズ液滴発生器16とスズ捕捉デバイス18との間を自由に落下し、前記液滴は、プラズマ源領域19を通過する。EUV使用光3は、プラズマ源領域19によって放出される。スズ液滴15がプラズマ源領域19に到着すると、そこにポンプ光源21からのポンプ光20が当たる。ポンプ光源21は、例えば、CO2レーザの形態の赤外線レーザ源とすることができる。いくつかの他のIRレーザ源、特に、固体レーザ、例えば、Nd:YAGレーザも可能である。ポンプ光源21は、光プレパルスを生成するための光源ユニットと、主光パルスを生成するための光源ユニットとを含むことができる。一方では光プレパルスおよび他方では主光パルスは、異なる光波長を有することができる。
ポンプ光20は、制御された方法で傾斜可能なミラーとすることができるミラー22を介して、および集束レンズ要素23を介してプラズマ源領域19に移送される。EUV使用光3を放出するプラズマは、ポンプ光が当たることによって、プラズマ源領域19に到着するスズ液滴15から生成される。EUV使用光3のビーム経路は、図2において、EUV使用光が、以下でEUVコレクタ24とも呼ばれるコレクタミラー24によって反射される範囲内で、プラズマ源領域19と視野ファセットミラーFFとの間で示される。EUVコレクタ24は、集束レンズ要素23を介してプラズマ源領域19の方に集束されるポンプ光20のための中央通路開口25を含む。コレクタ24は、楕円体ミラーとして具現化され、一方の楕円体焦点に配列されたプラズマ源領域19によって放出されたEUV使用光3を、コレクタ24の他方の楕円体焦点に配列されたEUV使用光3の中間焦点26に移送する。
視野ファセットミラーFFは、EUV使用光3の遠視野の領域において、EUV使用光3のビーム経路中の中間焦点26の下流に配設される。
EUVコレクタ24と、スズ液滴発生器16、スズ捕捉デバイス18、および集束レンズ要素23とすることができる光源2のさらなる構成要素とは、真空ハウジング27に配列される。真空ハウジング27は、中間焦点26の領域に通路開口28を有する。ポンプ光20の真空ハウジング27への入射口の領域において、真空ハウジング27は、光プレパルスおよび主光パルスのためのポンプ光入射窓29を含む。
図3は、第1にEUV使用光、すなわち、照明光3、および第2に迷光30、特に、より長い波長の放射線、例えば、光プレパルスおよび/または主光パルスの波長を有するIR放射線のガイダンスを、光源2のプラズマ源領域19と、中間焦点26が配列されている中間焦点面26aとの間で、極めて抽象的に示す。同時に、図3は、プラズマ源領域19へのポンプ光20の横方向ガイダンスの変形、すなわち、EUVコレクタ24の通路開口25のタイプの通路開口を必要としないガイダンスを示す。使用光3と迷光30の両方は、プラズマ源領域19から発する。使用光3と迷光30の両方は、EUVコレクタ24の当たり表面(impingement surface:作用表面、当たる表面)33全体のうちの表面セクション31、32に入射する。表面セクション31、32は、EUVコレクタ24の格子表面のセクション(図面では同様に33で示される)であり、迷光放射線30を回折的にダンプするための光学格子が、前記格子表面に配列される。光学格子の実施形態が以下で説明される。格子表面は、迷光30が当たる表面セクション31、32の場所に限定して配列することができ、または代替として当たり表面33のより大きいセクションをさらに覆い、さらなる変形では当たり表面33全体を覆うことができる。
図4は、光学格子34の1つの実施形態による格子表面33のセクションを示す。光学格子34は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素を構成する。
光学格子34の格子表面は、平面として具現化することができ、またはさもなければ湾曲として、例えば、図2および図3によるコレクタミラー24の場合の当たり表面33のような凹面もしくはさもなければ凸面として具現化することができる。
光学格子34は、回折構造グループとして、格子表面33に配列された2つの回折格子35、36を有する。回折格子35は、以下、第1の回折格子とも呼ばれる。回折格子36は、以下、第2の回折格子とも呼ばれる。
回折格子35の場合、回折正構造37および回折負構造38が、図4において各場合に交互に水平に延びる。この第1の回折格子35の周期走行方向39は垂直に延びる。したがって、回折構造37、38のこの水平コースについて、周期走行方向39は、図4において垂直に延びる。
図4において、第2の回折格子36は、垂直に延びる回折正構造40と、それとそれぞれ交互になる回折負構造41とを有する。第2の回折格子36の周期走行方向42は、再度、図4において、回折構造40、41に対して垂直に、すなわち、水平に延びる。
光学格子34の2つの回折格子35、36の回折構造37、38、および40、41は、構造深さが異なる4つの回折構造タイプまたは回折構造レベルによって実現され、図4では、異なるタイプのハッチングによって、およびそれぞれの回折構造に付けられた数字1、2、3、4によって示される。回折構造タイプ「1」は、構造深さ0を有する。回折構造タイプ「2」は、構造深さ「dv」を有する。したがって、それぞれの回折構造タイプ「2」によって占められる格子表面のその表面セクションは、図4の図面の平面に対して垂直に構造深さdvだけ、回折構造タイプ「1」よりも深い場所にある。
それぞれの構造深さは、参照平面を基準にして深さ値を割り当てることができ、通例、選ばれる参照平面は、材料が取り除かれていないもの(構造深さ=0)である。
回折構造タイプ「1」~「4」のそれぞれの区域は、各場合に正方形である。格子表面を完全に覆うことになる回折構造タイプの他の境界形状も可能である。
回折構造タイプ「3」は、再度、回折構造タイプ「1」を基準にして、図4の図面の平面に対して垂直に測定された構造深さdhを有する。回折構造タイプ「4」は、対応して測定された構造深さdv+dhを有する。
光学格子34の場合、4つの回折構造タイプ「1」~「4」は、それぞれ、2×2アレイに配列され、回折構造タイプ「1」は左上に配列され、回折構造タイプ「2」は右上に配列され、回折構造タイプ「3」は左下に配列され、回折構造タイプ「4」は右下に配列される。各場合の4つの回折構造タイプのそのようなグループのこれらの2×2アレイは、図4による実施形態では3×3アレイの形態の上部構造(superstructure)に順番に配列されている。一般に、格子表面33の光学格子34は、当然、4つの回折構造タイプ「1」~「4」のさらなる対応する2×2アレイを取り付けることによって、所望の方法で水平および垂直に拡張することができる。
したがって、回折正構造37と、それと比較して構造深さdhだけ深い位置に置かれた回折負構造38とは、第1の回折格子35の周期走行方向39において互いに続く。第2の回折格子36の場合、回折正構造40のうちの1つは、それぞれ、周期走行方向42において、構造深さdvだけ深い位置に置かれた回折負構造41が続く。したがって、互いに重ね合わされ、それぞれの構造深さdhおよびdvを有する2つの回折格子35、36が、光学格子34において実現される。
図4による実施形態の場合、構造深さは、それぞれの回折正構造と、関連する回折負構造との間の高さ差である。より一般的に、構造深さは、回折正構造と、関連する回折負構造との間の光路差として理解することができる。
回折正構造37、40および回折負構造38、41に関して、区域全体にわたって、光学格子34に、およびオプションとして補助層にも高反射コーティングを施すことが可能である。
高反射コーティングの下に配列される補助層は、光学格子34の寿命を向上させる層とすることができる。代替としてまたは追加として、補助層は、高反射コーティングを損傷から保護するために高反射コーティングに付けることもできる。
高反射コーティングは、多層、例えば、特にEUV波長を有する放射線を非常に効果的に反射することで知られているものなどとすることができる。
光学格子34の回折格子35、36は、各場合に、バイナリ格子として具現化される。ここで、回折正構造の表面積は、回折負構造の表面積と等しい。
回折格子35の格子周期は、0.5mmと5mmとの間の範囲、例えば、2mmとすることができる。回折格子36の格子周期は、0.5mmと5mmとの間の範囲、例えば、2mmとすることができる。そのような格子周期は、図4の第2の回折格子36ではPで示されている。それぞれの回折構造37、38、40、41の構造側壁は、それぞれの回折構造の広がり範囲(extension)に対して垂直に、すなわち、それぞれの周期走行方向39~42で測定された、1μmと10μmとの間の範囲、例えば、5μmの領域の程度を有することができる。そのような側壁範囲または側壁広がり範囲は、図4の第2の回折格子36では大幅に誇張されたサイズのFで示されている。
図5は、設計パラメータdv=2.65μmおよびdh=2.55μmでの光学格子34の波長依存反射率の計算の結果を図式で示す。光学格子34の反射率が43でプロットされ、前記反射率は、追加として側壁広がり範囲Fが0であると仮定されている計算の結果として、すなわち、光学格子34が回折構造間に理想的に急峻な側壁を有する場合の結果としてもたらされている。目標波長と呼ばれる対応する迷光波長の抑制設計波長10.2μmおよび10.6μmの場合、その結果によると、反射率曲線43の理想的な場合の光学格子34の反射率抑制は10-8よりも良好である。これらの2つの波長は、ポンプ光源21のプレパルスおよび主パルスの波長に対応する。
2つの目標波長10.2μm(λ1)および10.6μm(λ2)では、
(λ1-λ22/(λ1+λ22=3.77×10-4
が当てはまる。
したがって、この正規化された目標波長比では、
(λ1-λ22/(λ1+λ22<10%
が当てはまる。
この正規化された目標波長比は、20%未満である場合もある。
まず第1に構造深さdvおよびdhの生成の正確さならびにさらに側壁の険しさに関する限り、特定の許容誤差を考慮に入れた反射率曲線R(λ)が図5の44でプロットされている。目標波長10.2μmおよび10.6μmの場合、その結果によれば、反射率抑制は10-6よりも良好である。
参照反射率曲線45も比較のために図5に入られており、前記参照反射率曲線は、厳密に1つの回折格子、すなわち、例えば、水平回折構造を有する回折格子35または垂直回折構造を有する回折格子36のいずれかを含む光学参照格子の抑制結果を表す。ここで、構造深さ生成および側壁の険しさに対して反射率曲線44の場合と同じ許容誤差が考慮に入れられている。同じ許容誤差にもかかわらず、参照反射率曲線45が、10-4の領域の著しく低い最適反射率抑制を示していることは明らかである。その上、参照反射率曲線45が計算された参照格子は1つの回折格子のみを含むので、厳密に1つの波長のみ、すなわち、10.6μmが、ここでは同様に抑制されている。
2つの回折格子35、36は、格子周期(2mm)と構造深さ(2.6μmの領域の)との間の比が、10よりも著しく大きく、実際には500よりも大きく、1000の領域にある。
2つの回折格子35、36のバイナリ格子としての実施形態により、回折負構造38、41の表面積に対する回折正構造37、40の表面積の比は1である。光学格子34の実施形態に応じて、前記表面積比はまた、1から外れてもよく、0.9と1.1との間の範囲にあってもよい。
2つの回折格子35、36は同じ格子周期pを有し、したがって、2つの格子周期の周期比は1である。光学格子34の実施形態に応じて、周期比は、0.9と1.1との間の範囲とすることができる。2つの格子周期の間の差は著しく大きくすることもでき、その結果、例えば、1:2または1:5の周期比が生じる。
光学格子34は、回折構造タイプ1~4に対応する少なくとも3つの回折構造レベルを含む破壊的干渉によって少なくとも1つの目標波長λ1、λ2を抑制するための光回折構成要素を構成する。前記回折構造レベルN1~N4は、参照平面を基準にして異なる構造深さdiを事前画定する。回折構造レベルN1~N4は、2つの回折格子、すなわち、2つの回折構造グループ35、36に割り当てることができ、それらは、その結果として、2つの目標波長λ1、λ2のうちの1つをそれぞれ抑制するのに役立つ。前記回折構造グループのうちの第1のもの、すなわち、回折格子35は、0次の回折の第1の目標波長λ1を抑制するのに役立ち、回折構造グループのうちの第2のもの、すなわち、回折格子36は、0次の回折の第2の目標波長λ2を抑制するのに役立つ。
回折構造レベルN1~N4のトポグラフィーは、2つのバイナリ回折構造グループ35および36の重ね合わせとして記述することができる。これらの2つのバイナリ回折構造グループの各々は、第1の構造深さを有する第1の表面セクションと、第2の構造深さを有し、それぞれの回折構造グループ35、36の走行方向に沿って第1の表面セクションと交互になる第2の表面セクションとを有する。バイナリ回折構造グループの各々のこれらの隣接する表面セクション間の境界領域は、直線状コースを有する。光学格子34の実施形態に応じて、前記直線状コースは、図4のチェッカー盤に似ている回折構造タイプ配列の行および列に対応する。2つのバイナリ回折構造グループ35のうちの第1のものの第1の境界領域、すなわち、図4の行ラインと、2つのバイナリ回折構造グループ36のうちの第2のものの第2の境界領域、すなわち、図4の列ラインとは、せいぜいそれらの直線状コースのセクションに沿って、すなわち、図4による説明図の行ラインと列ラインとの間の交点の領域で、互いに重ね合わされる。
回折格子35は、これらの第1の構造をそれぞれ囲む格子表面33の表面セクションに対して垂直な、第1の回折正構造37と第1の回折負構造38との間の光路差として測定された第1の構造深さを有する第1の格子周期を有する。第2の回折格子36は、第2の格子周期および第2の構造深さを有し、第2の構造深さは、今度は、これらの第2の構造をそれぞれ囲む格子表面33の表面セクションに対して垂直な、第2の回折正構造40と第2の回折負構造41との間の光路差として具現化される。これらの格子35、36の2つの格子周期が延びる2つの周期走行方向は、互いに垂直である、すなわち、互いに平行に延びない。
光学格子34によって、EUVコレクタ24のコレクタミラーは、EUV放射3を焦点領域26の方に導くように具現化され、格子34は、光回折構成要素が、少なくとも1つの目標波長の放射線30、すなわち、迷光を、焦点領域26から離れたところに導くような光回折構成要素として具現化される。
図6は、光学格子34の変形での反射率関係を図5と同様の説明図で示し、構造深さdv、dhは、大きさが等しく、2.65μmの絶対値を有する。次いで、両方の回折格子35、36は、10.6μmの迷光波長の抑制に寄与する。したがって、再度、より良好な抑制関係が、理想的な反射率曲線43の場合に、および設計許容誤差を伴って計算された反射率曲線44の場合に生じる。
図7は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素として図4による光学格子34の代わりに使用することができる光学格子の変形を図4と同様の説明図で示す。図4を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図7による光学格子46は、準備として、第1の回折格子35の周期走行方向39が垂直に延びるのではなく、むしろ水平に対して45°の角度で延びるという点で図4からのものと異なる。したがって、回折構造タイプ「1」~「4」は、菱形の区域で生じる。
図8は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素として上述した光学格子の代替としてまたはそれに加えて使用することができる光学格子47のさらなる実施形態を示す。図1~図7を参照して、特に、図4~図7を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
光学格子47は、回折構造グループとして合計で3つの回折格子を有し、これらの3つの回折格子のうちの2つは、図4による実施形態の回折格子35および36に対応する。図8において、回折格子35の格子周期はphで示され、回折格子36の格子期間はpvで示される。
光学格子47の第3の回折格子48は、最初の2つの回折格子35、36の回折構造37、38、および40、41に対して対角線状に延びる回折正構造49および回折負構造50を有する。回折正構造49と比較して、回折負構造50は、図8にddで示された構造深さを有する。
光学格子47の格子表面の図示のセクション全体にわたる全高さプロファイルは、回折格子35の水平に延びる回折構造37、38および回折格子36の垂直に延びる回折構造40、41の境界によって事前画定される2×4アレイの形態の基本セクションの並置として理解することができる。この2×4アレイの回折構造タイプまたは回折構造レベルは、図8の左上に配列された2×4アレイの「000」、「001」、「010」、「011」、「100」、「101」、「110」、および「111」によって示される。
以下の表は、これらの回折構造タイプの構造深さおよびさらにその表面積比率を格子周期ph、pvの単位で示す。
Figure 2022518221000002
すべての回折構造タイプ「000」~「111」は、光学格子47の全表面積の同じ表面積比率(ph+pv)/4を有する。これにより、光学格子47のすべての3つの回折格子35、36、および48が、バイナリ格子を構成し、その回折正構造37、40、49は、各場合に、その回折負構造38、41、50に対して1の表面積比を有することが保証される。
第3の回折格子48の周期走行方向51は、回折格子35の周期走行方向39に対して約23°の角度で格子周期pdに沿って延びる。この周期走行方向51は、第3の回折格子48の回折構造49、50間の境界が、互いに交差する第1に回折構造37、38および第2に40、41によって形成される互いに水平に隣接して置かれている2つの構造ゾーンの対角線に沿って延びるように、第3の回折格子48の回折構造49、50の配列のオフセットと一緒に選ばれる。図8の両矢印52で示されているように、第3の回折格子48の周期走行方向51に沿った回折構造49、50のこの配列のオフセット変形が可能である。
第3の回折格子48の格子周期pdは、格子周期ph、pvの大きさの程度であり、光学格子47の場合には約1.7mmである。
図9は、構造深さdh、dv、およびddが、各々、大きさにおいて等しく、説明される例では値2.65μmを有する場合の波長依存反射率Rに関するデータを図5および図6と同様の説明図で示す。
回折格子35、36、および48の好ましくは急峻な側壁(側壁広がり範囲0)の理想的な場合の反射率が、図9に53で示される。10.6μmの目標波長の反射率抑制は、桁違いで、10-10よりも良好である。
54は、波長依存反射率の計算結果を示しており、ここで、再度、現実的な許容誤差が、回折構造37、38、40、41、49、50の構造深さおよび側壁広がり範囲に対して仮定されている。3つの回折格子35、36、48を含む光学格子47の結果は、理想的な場合よりも低いが、依然として10-10よりも明確に良好な反射率抑制である。
参照値として、図9はまた、最初に、2つの回折格子35、36を含む光学格子34について、および厳密に1つの回折格子を含む従来の光学格子について、図6による反射率曲線44および45を示している。
図10は、以下の深さの
dh=2.55μm、dv=2.65μm、およびdd=0.26μm
を有する光学格子47の一実施形態の反射率関係を、再度、波長依存図で示す。
このように、対角線状に延びる回折構造49、50の構造深さddは、光学格子47の回折格子35、36の回折構造37、38、40、41の構造深さの約10分の1と小さい。
再度、側壁広がり範囲0のそのような光学格子47の理想的な設計の反射率が、図10に55で示されている。約10.2μm(λ1)および約10.59μm(λ2)の2つの抑制波長と、さらに1.05μmの領域のさらなる波長において、光学格子の反射率抑制は、各場合に、10-8以上良好な領域にある。
光学格子47によって目標波長として抑制される2つのIR波長λ1、λ2について、図4による光学格子34に関連して上述で与えられた説明が、目標波長の正規化された差に同様に当てはまる。
第1に構造深さおよび第2に側壁広がり範囲に対して事前画定された許容誤差を有する反射率曲線が、同様に、図10の56で計算されている。
光学格子47の場合、このように、さらなる格子周期pdおよびさらなる構造深さddを有する回折格子48が存在し、前記構造深さは、これらの2つの構造49、50をそれぞれ囲む格子表面33の表面セクションに対して垂直な、回折正構造49と回折負構造50との間の光路差として測定される。回折格子48の格子周期pdと回折格子48の構造深さddとの間の比pd/ddは10を超える。代替としてまたは追加として、周期比ph/pdは、0.9と1.1との間の範囲とすることができる。代替としてまたは追加として、第1の格子周期phは、第1の回折格子35の第1の周期走行方向39に沿って延びることができ、さらなる格子周期pdは、さらなる回折格子48のさらなる周期走行方向51に沿って延びることができ、2つの周期走行方向39、51は、互いに平行して延びる。
様々な回折構造グループ35、46、48の回折正構造37、40、49および回折負構造38、41、50の表面区域は、格子表面33全体に等しく寄与する。
再度3つの回折格子35、36、48を含む光学格子57のさらなる実施形態が、図11を参照して以下で説明される。図1~図10を参照して、特に、図8を参照して、既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
光学格子57は、主として、上下に(one above another)位置する3つの回折格子35、36、および48の3つの周期走行方向39、42、および51の方位に関して、光学格子47と異なる。第1の回折格子35の周期走行方向39は、図11の垂直線に対して約23°の角度で延びる。第2の回折格子36の周期走行方向42は、水平に延びる。
第3の回折格子48の周期走行方向51もまた、垂直線に対して約23°の角度で延び、第1に第1の回折格子35および第2に第3の回折格子48の2つの周期走行方向39および51は、互いに対して約46°の角度を想定する。
図11は、再度回折構造タイプ「000」~「111」をもつ光学格子47の2×4アレイに対応する光学格子57の菱形の基本セクションを強調表示している。光学格子57のこれらの回折構造タイプ「000」~「111」の場合の構造深さおよびさらに表面積比率の割り当ては、図8に関して表1において上述で示されたものとまったく同じである。
光学格子57の場合、周期走行方向51に沿った第3の回折格子48の構造境界のオフセットは、第1の回折格子35の回折構造37、38間、第2の回折格子36の回折構造40、41間、および第3の回折格子48の回折構造49、50間の構造境界が、各場合に、図11に示された基本セクションの中心の点Pで交差するようなものである。
光学格子57の場合、格子周期phは約3.25mmであり、格子周期pvは2mmであり、格子周期pdは格子周期phと正確に同じ大きさである。
図12および図13は、周期走行方向51に沿った回折構造49、50間の構造境界の配列のオフセットのサイズが単に光学格子57と異なる光学格子58、59のさらなる実施形態を示す。図12による光学格子58の場合、前記オフセットは、様々な回折格子35、36、48の構造境界がそれぞれの基本セクション内の点で交差しないようなものである。図13による光学格子59の場合、オフセットは、3つの回折格子35、36、48の構造境界が、図11による実施形態と比較してそれぞれの基本セクション内の異なる位置で交差し、したがって、その結果として、回折構造タイプ「000」~「111」の異なる分布がもたらされるようなものである。
図12および図13の強調表示された単位セル内に示された回折構造タイプ「000」~「111」の構造深さおよび表面積比率の割り当ては、再度、図8に関して表1に示されたようなものである。
破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素としての光学格子60のさらなる実施形態が、図14~図16を参照して以下で説明される。図1~図13を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号で表され、改めて詳細に論じられない。
光学格子60は、図14(回折格子61)および図15(回折格子62)に個別に示された2つの回折格子61、62の重ね合わせとして具現化される。回折格子61、62は、それぞれの目標波長を抑制するための回折構造グループを構成する。
回折格子61は、構造深さd1および格子周期p1を有する。回折格子62は、構造深さd2および格子周期p2を有する。2つの回折格子61、62は、各場合に、バイナリ格子として具現化される。
2つの回折格子61、62の重ね合わせから生じる光学格子60は、構造深さ0(回折構造レベルN1)、構造深さd2(回折構造レベルN2)、構造深さd1(回折構造レベルN3)、および構造深さd1+d2(回折構造レベルN4)を有する合計で3つの回折構造レベルまたは回折構造タイプを有する。
格子周期p1およびp2は、光学格子60の場合には同一である。構造深さd1、d2は、光学格子60の場合には異なる。回折格子61および62の共通の周期走行方向xに関して、これらの2つの回折格子61および62は、互いに対して共通周期の1/4だけ、すなわち、互いに対してp1/4=p2/4だけ位相シフトされる。
周期走行方向xに沿ったオーバレイエラー(overlay error:重ね誤差)63が、図15および図16に破線で示されている。そのようなオーバレイエラー63は、周期走行方向に沿った2つの回折格子61、62の重ね合わせの位相エラーとして理解することができ、周期走行方向ピクセルxに沿った様々な回折構造レベルN1、N2、N3、N4の広がり範囲の変化をもたらす。
光学格子60の代替実施形態において、2つの構造深さd1およびd2が同一である場合には、2つの回折構造レベルN2、N3は共通の構造レベルに退化し、その結果、同一の構造深さを有する2つの回折格子から構成されるそのような光学格子は、正確に3つの回折構造レベルを有する。
光学格子60の場合、回折構造グループの表面セクションは、61Pおよび61Nによって示される。光学格子60の2つのバイナリ回折構造グループ61、62のうちの第1の61の境界領域、すなわち、回折構造グループ61のレベルNi間の側壁、および2つのバイナリ回折構造グループ61、62のうちの第2の62の境界領域、すなわち、図15のレベル側壁Ni/Njは、互いに完全に別個に延びる。
破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素としての光学格子60のさらなる実施形態が、図17~図19を参照して以下で説明される。図1~図16を参照して、特に図14~図16を参照して、既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図19は、再度、回折格子65(図17)および66(図18)の形態の2つの回折構造グループの重ね合わせとして生じた光学格子64を示す。光学格子64は、光回折構成要素の一例である。
回折格子65、66の場合、
1=p2、およびd1=d2
が当てはまる。
周期走行方向xに沿った互いに対する2つの回折格子65、66の位相オフセットは、p1/4=p2/4である。
第1に、回折格子65、66の回折正構造67、68と、第2に、関連する回折負構造69、70との間の広がり範囲比は、互いに対して正確に反転しており、その結果、回折正構造67は、回折格子66の回折負構造70と同じ周期走行方向xに沿った広がり範囲を有し、回折格子65の回折負構造69は、回折格子66の回折正構造68と同じ周期走行方向xに沿った広がり範囲を有する。したがって、第1に回折正構造67、68の広がり範囲および第2に回折負構造69、70の広がり範囲は、それぞれの回折格子65、66において同一ではなく、したがって、この意味で、2つの回折格子65、66はバイナリ格子ではない。広がり範囲比は、1:1から非常に大きく外れることがあり、回折格子65、66の場合には約1:3である。10:1と1:10との間の範囲で、それぞれの回折格子65、66の第1に回折正構造67、68と第2に回折負構造69、70との間の異なる広がり範囲比も可能である。
オーバレイエラー63が、再度、図18および図19に示されている。光学格子60の場合と異なり、光学格子64の場合のオーバレイエラー63は、周期走行方向xに沿った3つの回折構造レベルN1(構造深さ0)、N2(構造深さd1=d2)、およびN3(構造深さd1+d2)の間の表面積比の変化をもたらさない。
したがって、光学格子64は、参照平面に対して異なる構造深さdiを事前画定した3つの回折構造レベル(N1~N3)を有する回折構造を含む周期的格子構造プロファイルを含む光回折構成要素を構成する。
光学格子64の場合、回折構造の配列は、第1の目標波長が格子構造プロファイルによって回折される赤外線波長範囲の第1の目標波長λ1のまわりの波長範囲が、第1の目標波長λ1の少なくとも0次および/または±1次の回折で互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分を有するようなものである。
回折構造レベルN1~N3は、周期走行方向xに沿って規則的に繰り返される格子構造プロファイルの格子周期のトポグラフィーを事前画定する。回折構造レベルN1~N3は、0の参照高さを有するニュートラル回折構造レベルN2と、ニュートラル回折構造レベルN2に対してλ1/4の光路長だけ高く配列された正回折構造レベルN1であり、±20%の許容誤差が前記光路長に対して可能である、正回折構造レベルN1と、ニュートラル回折構造レベルN2に対してλ1/4±20%の光路長だけ低く配列された負回折構造レベルN3とを含む。
光学格子64の格子構造プロファイルの格子周期は、回折構造レベルN1~N3の4つの周期セクションに細分され、4つの周期セクションのうちの2つ、すなわち、回折構造レベルN2を有する2つのセクションは、ニュートラル回折構造セクションとして具現化され、4つの周期セクションのうちの1つ、すなわち、回折構造レベルN1を有する周期セクションは、正回折構造セクションとして具現化され、4つの周期セクションのうちの1つ、すなわち、回折構造レベルN3を有する周期セクションは、負回折構造セクションとして具現化される。
これらの4つの周期セクション(シーケンス、例えば、N2、N1、N2、N3)は、各場合に、周期走行方向xに沿って同じ長さを有し、再度、±20%の許容誤差範囲が、ここでも可能である。
破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素としての光学格子60のさらなる実施形態が、図20~図22を参照して以下で説明される。図1~図19を参照して、特に、図14~図19を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図22は、2つの回折格子72(図20)および73(図21)の重ね合わせとして生じる光学格子71を示す。
回折格子72は、構造深さd1および格子周期p1を有する。回折格子73は、構造深さd2および格子周期p2=2p1を有する。d1≠d2(d1とd2が等しくない)が当てはまる。
両方の回折格子72、73は、周期走行方向xに沿って回折正構造および回折負構造の同一の広がり範囲を有するバイナリ格子として具現化される。
光学格子71は、4つの回折構造レベル、すなわち、N1(構造深さ0)、N2(構造深さd2)、N3(構造深さd1)、およびN4(構造深さd1+d2)を有する。
図21および図22は、再度、周期走行方向xに沿った2つの回折格子72、73の位相オフセットによるオーバレイエラー63を破線で示す。2つの回折格子72、73の寸法比のために、オーバレイエラー63は、回折構造レベルNおよびN2の相対的広がり範囲に関する限り、実際、各場合に光学格子71の周期p2にわたって見たとき、回折構造レベルN1とN2の広がり範囲の比がオーバレイエラー63のサイズとは関係なく変化しないように際立つ。
2つの回折格子72、73の寸法比のために、レベル変化が生じ、それは、回折格子73によって、それぞれ、回折格子72の1つの回折構造タイプ、この場合にはその回折正構造に対してもたらされる。周期走行方向xに沿った2つの回折格子72、73間の位相関係は、回折格子72、73の側壁Fが周期走行方向xに沿った同じ場所で重ね合わされないようなものである。
図23は、図14~図22を参照して上述された光学格子60、64、または71のもののタイプの光学格子に対して、それぞれの第1の回折格子が破壊的干渉によって10.6μmの目標波長を抑制するように設計された構造深さd1を有する光学格子の反射率Rの、この光学格子が構築されるそれぞれの第2の回折格子の構造深さd2への依存性を示す。目標波長の最大抑制(10-8未満の反射率)は、2.65μmの構造深さd2、すなわち、目標波長の約1/4で生じる。
構造深さおよび/または側壁の険しさの許容誤差が、関連する反射率曲線74では考慮されている。
第2の構造深さd2が2.65μmの固定された第1の構造深さd1に近くなるほど、目標波長の抑制がよくなる。構造深さd1を有する第1の回折格子によって達成される抑制効果の改善は、0と、構造深さd1の約2倍との間の構造深さd2の範囲で、すなわち、図23の約0.2μmと5μmとの間の範囲で既に明白である。2つの構造深さd1およびd2の設計では、2つの構造深さが互いに特定の近さであることから開始して、構造深さd1およびd2を有する2つの回折格子の抑制効果が相互に強化されることが明らかになる。抑制効果が相互に強化されるための2つの目標波長λ1(第1の回折格子の)とλ2(第2の回折格子の)との間の分離の条件として、以下の関係が見いだされた。
|λ2-λ1|/λ1<0.5
2つの目標波長が互いに過度に大きく異ならないと仮定すると、この条件は、第1の波長λ1または第2の波長λ2に関連するかどうかに関係なく、および絶対値なしで以下のように書くことができる。
(λ1-λ22/(λ1+λ22<0.1
この条件が、2つの回折格子、すなわち、光回折構成要素の2つの回折構造グループによって抑制されるように意図された2つの目標波長λ1、λ2に対して満たされる限り、抑制は、2つの目標波長λ1、λ2の場合に相互に強化される。
これが、第1の構造深さに正規化された構造深さ差(d2-d1)/(d1)への反射率の依存性として、-1.0と1.0との間の値の範囲で、図24にプロットされている。この規格化された構造深さ差の-0.5の値と0.5の値との間で、対応する反射率曲線75は、より大きい構造深さ差の漸近反射率値より既に明確に下にある。
破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素としての光学格子60のさらなる実施形態が、図25~図28を参照して以下で説明される。図1~図24を参照して、特に、図14~図22を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図28は、3つの回折格子77(図25)、78(図26)、および79(図27)の重ね合わせとして生じる光学格子76を示す。これらの3つの回折格子77~79の構造深さd1、d2、d3について、
1>d2>d3
が当てはまる。
3つの回折格子77~79は、各場合に、バイナリ格子として具現化される。
3つの回折格子77~79の格子周期p1、p2、およびp3の比について、
1:p2:p3=1:2:4
が当てはまる。
その結果は、原理的に3つの異なる目標波長を破壊的干渉によって抑制することができ、3つの回折格子77~79をもつ3つの回折構造グループを含む光回折構成要素となる。この周期比のために、光学格子76は、オーバレイエラーに、すなわち、周期走行方向xに沿った3つの回折格子77~79の回折構造のあり得る位相オフセットに関して敏感ではない。
光学格子76は、以下の8つ回折構造レベル、すなわち、N1(構造深さ0)、N2(構造深さd3)、N3(構造深さd2)、N4(構造深さd1)、N5(構造深さd2+d3)、N6(構造深さd3+d1)、N7(構造深さd1+d2)、およびN8(構造深さd1+d2+d3)を有する。これらの回折構造レベルは、3つの回折格子77~79の3つの回折構造グループに割り当てることができる。
破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素としての光学格子60のさらなる実施形態が、図29~図32を参照して以下で説明される。図1~図28を参照して、特に、図25~図28を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図32は、3つのバイナリ回折格子81(図29)、82(図30)、および83(図31)の重ね合わせから生じる光学格子80を示す。3つの回折格子81~83の構造深さd1、d2、d3について、
1>d2>d3
が当てはまる。回折格子81~83の格子周期p1、p2、およびp3について、
1:p2:p3=2:2:1
が当てはまる。
周期走行方向xに沿った3つの回折格子81~83の回折構造間の位相関係のオーバレイエラーは、図14~図22および図25~図28による実施形態に関して上述で説明されたことに則して、回折格子81と回折格子82が同じ格子周期を有するので回折格子81と回折格子82との間の比に関してのみ関与する。
光学格子80はまた、対応して、8つの異なる回折構造レベルを有し、それらの回折構造レベルは、3つの回折格子81~83の3つの回折構造グループに割り当てることができる。
図33は、例えば、3つの異なる目標波長を抑制するための3つの回折構造グループを含む図28および図32による実施形態のタイプの光学格子の抑制効果を図5および図10と同様の説明図で示す。
反射率曲線84は、周期走行方向xに沿った0の側壁広がり範囲F、すなわち、関連する回折格子の回折構造の理想的に急峻なコースを仮定して、構造深さd1=2.65μm、d2=2.55μm、およびd3=2.60μmでの波長依存抑制、すなわち、目標波長10.2μm、10.40μm、および10.6μmを抑制するように具現化されたものを示す。10-11よりも良好な抑制が、3つの目標波長に対して生じている。
次には構造深さおよび/または側壁の険しさ許容誤差を考慮に入れた反射率曲線が、図33の85でプロットされている。反射率曲線85の場合、10-9よりも良好な抑制が、端の目標波長10.2μmおよび10.6μmで生じており、10-10の領域の抑制が、中央目標波長10.40μmで生じている。
正確に2つの回折格子を含む光学格子および正確に1つの回折格子を含む光学格子の反射率曲線44および45(図5も参照)が、図33に参照として示されている。
図34は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素としての光学格子86のさらなる実施形態を示す。図1~図33を参照して、特に、図4~図8を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
光学格子86は、合計で3つの回折格子87、88、89の重ね合わせとして生じる。これらの回折格子のうちの2つ、すなわち、回折格子87および88は、図34において水平に延びる周期走行方向xを有する。第3の回折格子89は、図34において垂直に延びる周期走行方向yを有する。図4および図7のものと同様に、光学格子86の場合、回折構造タイプ、すなわち、異なる回折構造レベルが、異なるハッチングによって強調表示されている。3つの回折格子87~89が3の異なる構造深さd1、d2、およびd3を有する場合、結果は、再度、8つの異なるタイプのハッチングに対応する8つの異なる回折構造レベルとなる。回折格子87~89の3つの構造深さd1、d2、およびd3のうちの2つ、またはさもなければすべての3つの構造深さが同一である場合、その結果、対応して、異なる回折構造レベルの数は少なくなる。
光学格子86による実施形態の場合、それぞれの目標波長の抑制は、オーバレイエラーと無関係である。
回折構造レベルの数に関する限り、図28による光学格子76および図32による光学格子80の実施形態に関する上述の説明が参照される。
図35に示されるような3つの回折構造レベルを含む光回折構成要素91の例に基づいて、そのような回折構成要素の基本特性が、さらに、以下で説明される。図1~図34を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。回折構造レベルは、図35においてN1、N2、およびN3によって示される。
抑制されるべき目標波長は、λNの波長を有する。
回折構造レベルN1は、0の構造深さを有する。回折構造レベルN2は、λN/6の構造深さdを有する。最も深い回折構造レベルN3は、2d(=λN/3)の構造深さを有する。
構造深さd1、d2、…dnを有する合計でn個の回折格子の重ね合わせは、合計でn個の目標波長λ1、λ2、…λNを抑制するのに適する。この場合、可能な回折構造レベルの数は2nである。それゆえに、上述で説明されたように、3つの構造深さd1、d2、d3が与えられると、8つの回折構造レベルN1~N8が生じる。好ましくは、様々な回折構造レベルNiは、すべての回折構造レベルNiが、回折構成要素91の全表面積について同一の表面積比率を占めるように配列される。
光回折構成要素91は、変形として、この場合3つのレベル有する、いわゆる、mレベル格子を構成する。そのようなmレベル格子は、各々同一の表面積を占めるm個の異なる回折構造レベルから構成され、各場合に互いに対してd=λN/(2m)の構造高さ差を有する。目標波長λNの良好な抑制は、再度、より低い波長感度を伴って生じる。
図35による3レベル格子には、格子周期pが割り当てられ、それにより、3つの回折構造レベルN1、N2、N3のシーケンスが、全く同じに繰り返される。
図36は、破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素92のさらなる実施形態を示す。この説明図は、最も深い回折構造レベルNnのまわりの領域の回折構造レベルNi、すなわち、回折構造レベルNn-2、Nn-1、Nn、Nn+1、Nn+2を示す。
0次の回折の反射光の強度は、回折遠視野(diffracted far field)のフラウンホーファー近似から、Nレベル周期的位相格子のための簡易化された方法で、以下のように書くことができる。
Figure 2022518221000003
この場合、I(0)は、0次の回折の強度、すなわち、回折遠視野の場の振幅の絶対値の2乗である。
Nは、位相格子のレベルの数である。Lnは、それぞれの格子レベルに割り当てられた位相項である。周期走行方向xに沿ったそれぞれの回折構造レベルNiの広がり範囲に対応するこの位相項Lnが、図36に示される。hnは、それぞれの回折構造レベルの構造深さの尺度である(図36参照)。λは回折光の波長である。
破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素93のさらなる実施形態が、図37を参照して以下で説明される。図1~図36を参照して、特に、図36を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図37は、ここではh0として示された様々な格子レベルの同一の構造深さ、およびこの場合にはRで示された周期走行方向に沿った回折構造レベルN1、N2、N3、およびN4の同一の長さを有する階段状格子のさらなる実施形態を示す。周期走行方向Rは、同心回折構造の半径とすることもでき、この回折構造の中心は、コレクタミラー24の中心と一致することができる。
したがって、回折構成要素93は、合計で4つの回折構造レベルN1~N4を有し、その構造深さは、各場合に、h0だけ異なる。ここで、h0=λN/4が当てはまり、ここで、λNは、抑制されるべき目標波長である。
周期走行方向Rにおける回折構成要素の1つの完全な周期pは、最初に4つの降下する回折構造レベルN1~N4と、次いで2つの続いて再上昇する回折構造レベルN5、N6とを含み、回折構造レベルN5の構造深さは、回折構造レベルN3の構造深さに対応し、回折構造レベルN6の構造深さは、回折構造レベルN2の構造深さに対応する。
破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素94、95のさらなる実施形態が、図38および図39を参照して以下で説明される。図1~図37を参照して、特に、図36および図37を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図38による回折構成要素94は、1つの格子周期p内で周期走行方向Rに沿って互いに続いて、構造深さ0を有する回折構造レベルN1、構造深さh1を有するN2、構造深さh1+h2を有するN3、および構造深さh2を有するN4を有する。h1<h2が当てはまる。
図39による回折構成要素95の場合、1つの周期p内で周期走行方向Rに沿って、以下が互いに続く。構造深さ0を有する回折構造レベルN1、構造深さh1を有する回折構造レベルN2、構造深さh2を有する回折構造レベルN3、および構造深さh1+h2を有する回折構造レベルN4。ここでも、h1<h2が当てはまる。
続いて図36に関連して上述された式から、0次の回折の強度は、
Figure 2022518221000004
として規定することができる。
この場合、λ1およびλ2は、それぞれ、回折構成要素94および95を使って破壊的干渉によって抑制されるように意図された2つの目標波長である。h1=λ1/4およびh2=λ2/4が当てはまる。
λ=λ1、およびさらにλ=λ2では、I(0)=0が当てはまる。したがって、これらの2つの波長は最適に抑制される。
図35~図39の実施形態の格子のタイプのそのような多レベル格子は、破壊的干渉によって目標波長の個数n個の抑制に向けて一般化することができる。n個の波長が抑制されるには、以下の高さ、すなわち、h1、h2、...hn、0、h1+h2、h1+h3、…、h1+hnを有する2n個の異なる回折構造レベルNi個が必要とされ、ここで、その上、異なる構造深さh1~hnは、以下の関係を満たす。
1<hi<hi+1<2h1
上述の光回折構成要素を用いて、赤外線波長範囲で抑制される目標波長の代替としてまたはそれに加えて、例えば、他の波長範囲、例えばDUV波長の範囲の波長も抑制することができる。
図40は、例えば、図16、図19、および図22による光学格子60、64、または71のタイプの2つの構造深さd1およびd2をもつ光回折構成要素の変形の波長依存反射率Rを図式で示す。この場合、構造深さは以下の通りであり、d1=45nmおよびd2=52nmである。この結果は、図40に実線として示された反射率曲線96である。加えて、構造深さd1(反射率曲線97)およびd2(反射率曲線98)で設計された正確に1つの回折格子を含む対応する光学格子の反射率曲線97および98が破線で示されている。
反射率曲線96は、2つの目標波長λ1≒180nm(λ1が180nmにほとんど等しい)およびλ2≒210nm(λ2が210nmにほとんど等しい)に対する抑制を示す。
これらの2つの目標波長λ1、λ2の差の大きさについて、
(λ1-λ22/(λ1+λ22=0.006
が当てはまる。
ここで、これらの2つのDUV波長の抑制は10-5よりも良好である。
図41は、この場合、異なる構造深さd1~d4を有する合計で4つの回折格子の重ね合わせとして作られた、図14~図22、または図25~図32のもののタイプの光回折構成要素の一実施形態の反射率Rを示す。ここで、d1=45nm、d2=2nm、d3=2.55μm、およびd4=2.65μmが当てはまる。
図41に示される波長依存反射率曲線97は、構造深さd3およびd4に対応し、λ3=10.2μmおよびλ4=10.6μmで10-6よりも良好な抑制をもつ2つの反射率最小値を示す。
加えて、2つの構造深さd1およびd2に対応して、反射率曲線97による格子はまた、図42のDUV範囲に拡大された詳細で示されるように、2つのDUV波長180nmにほぼ等しいλ1および210nmにほぼ等しいλ2を10-6よりも良好な抑制で抑制している。
図43は、複数の回折構造グループから構成された光回折構成要素の使用により、構造深さおよび/または側壁の険しさ許容誤差に関する要件が、回折構造グループの数が増加するにつれてどのように緩和されるかを図式で示す。この説明図は、再度、10.0μmと11.0μmとの間の範囲の波長の関数として反射率を示す。この場合、10.6μmの領域の目標波長は、10-4よりも良好な抑制で抑制されるように意図されている。
正確に1つの回折構造グループを含む、すなわち、正確に1つの回折格子を含む光回折構成要素の反射率曲線が、図43に98で示されており、値2.65μmが構造深さdに関して想定されており、構造深さdは、0.5%の許容誤差帯域幅内で変動することが許容される。
99は、2つの回折格子を回折構造グループとして含み、各場合に、2.65μmの同一の構造深さd1=d2を有し、10倍の許容誤差帯域幅の5%が許容される光回折構成要素の反射率曲線を示す。目標波長の領域において、反射率曲線99の場合、許容誤差帯域幅が10倍高いにもかかわらず、反射率曲線98の場合よりも良好な抑制が生じる。
図43において、100は、構造深さが異なり(d1=2.65μm、d2=2.55μm)、各場合に、3.5%の許容誤差帯域幅が許容される2つの回折格子を回折構造グループとして含む光回折構成要素の反射率曲線を示す。反射率曲線99のものに対応する抑制は、目標波長10.6μmで生じる。
図43において、101は、2.65μmの同一の構造深さd1=d2=d3およびその構造深さに対する12%の許容誤差帯域幅を有する3つの回折格子の形態の3つの回折構造グループを含む光回折構成要素の反射率曲線を示す。
目標波長の領域における3つの回折格子の相互に強化する抑制効果のために、その結果として、この非常に高い許容誤差帯域幅は、「10-4よりも良好な抑制」という要件に対応する非常に良好な抑制をもたらす。
図44は、特に図14~図16を参照して既に上述で説明されたような回折構造レベルN1~N4を含む光学格子60を再び示す。図44は、追加として、光学格子60のリソグラフィ生成中に使用することができる2つのリソグラフィマスク構造105、106を示す。
図44において光学格子60に最も接近するように示されたリソグラフィマスク構造105は、エッチング媒体を通さないマスク領域107と、エッチング媒体を通すことができる介在マスク間隙108とを有する。マスク構造105の周期性は、図15による回折格子62の周期性に対応する。マスク構造105は、第1に、回折構造レベルN4とN3との間のレベル側壁N4/N3、および、第2に、回折構造レベルN1とN2との間のレベル側壁N1/N2を画定する。
これに対して周期走行方向xに沿ってオフセットして配列されるのは、マスク領域109およびマスク間隙110を有する第2のリソグラフィマスク構造106である。この第2のリソグラフィマスク構造106の周期性は、図14による回折格子61の周期性に対応する。第2のリソグラフィマスク構造106は、回折構造レベルN3とN1との間のレベル側壁N3/N1、および、第2に、回折構造レベルN2とN4との間のN2/N4の位置を画定する。
光学格子60の回折構造レベルN1~N4のトポグラフィーは、2つのバイナリ構造、すなわち、リソグラフィマスク構造105、106の助けによって生成可能である回折構造グループ61、62の重ね合わせとして記述することができる(図14および図15も参照)。これらのバイナリ構造61、62の各々は、第1の構造深さを有する第1の表面セクション、すなわち、構造グループ61、62の正構造61P、62Pと、第2の構造深さを有する第2の表面セクション、すなわち、周期走行方向xに沿って第1の表面セクション61P、62Pと交互になる負の構造61N、62Nとを有する。バイナリ構造61、62の各々のこれらの隣接する表面セクションの第1に61P/61Nおよび第2に62P/62Nの間の境界領域、すなわち、上述で説明されたレベル側壁Ni/Njは、周期走行方向に垂直で、図14~図16および図44の平面に対して垂直な直線状コースを有する。第1のバイナリ構造61のこれらの境界領域N3/N1、N2/N4および第2のバイナリ構造62の境界領域N4/N3、N1/N2は互いに完全に別個に延びる、すなわち、周期走行方向xに対して垂直なそれらのコースにおいて互いに重ね合わされない。
光学格子60のさらなる特徴は、周期走行方向xに沿って見たとき、各々の上昇レベル側壁、すなわち、第1にN3/N1および第2にN4/N3には、それぞれ、同じ構造深さの下降レベル側壁が割り当てられることである。この場合、上昇レベル側壁N3/N1には、下降レベル側壁N2/N4が割り当てられる。上昇レベル側壁N4/N3には、下降レベル側壁N1/N2が割り当てられる。この場合の第1に割り当てられたレベル側壁N3/N1およびN2/N4は、構造深さd1を有する。互いに同様に割り当てられたレベル側壁N4/N3およびN1/N2は、構造深さd2を有する。
光学格子60の生成中に、最初に、2つのマスク構造105、106のうちの1つ、例えば、マスク構造105が使用され、マスク間隙108の領域において、対応する源(source)で行われる、エッチング領域を使用した第1のエッチングステップにおいて、事前定義された第1のエッチング深さd2を伴ったマスク間隙108の幅を有する負構造が、基板に生成される。その後、マスク構造105は取り除かれ、マスク構造106が使用され、さらなるエッチングステップにおいて、基板は、図44の下部の説明図に対応する回折構造レベルN1~N4が生じるまで深さd1でさらにエッチングされる。したがって、光学格子60のマスク生成は、最初に、基板をリソグラフィでエッチングするために第1のマスク構造を使用することと、次いで、マスク領域およびマスク間隙の位置に関して異なる第2のマスク構造を使用することとを含む。マスク領域/マスク間隙の位置のこの相違は、第1のマスク構造をさらなるマスク構造と交換することによって、および/または走行方向xに沿ってマスク構造を変位させることによって達成することができる。
生成方法は、3つ以上のエッチングステップを含むこともでき、3つ以上の異なるマスク構造および/または3つ以上のエッチングステップを使用することも可能である。
図45は、光学格子64のリソグラフィ生成中の関係を示す(図17~図19も参照)。図1~図44を参照して、特に、図14~図19および図44を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図45において、2つのリソグラフィマスク構造111、112は、光学格子64に対して示されており、前記マスク構造は、再度、周期的に連続するマスク領域およびマスク間隙を有する。この場合、リソグラフィマスク構造111は、マスク領域113およびマスク間隙114を有し、リソグラフィマスク構造112は、マスク領域115およびマスク間隙116を有する。
光学格子64のリソグラフィ生成中に、リソグラフィマスク構造111は、第1にレベル側壁N3/N2および第2にN2/N3を画定し、さらなるリソグラフィマスク構造112は、第1にレベル側壁N2/N1および第2にN1/N2を画定する。ここでも、光学格子64は、2つのバイナリ構造65、66の重ね合わせとして生じ(図17および図18参照)、周期走行方向xに対して垂直なおよび図17~図19および図45の図面の平面に対して垂直なそれらの境界領域、すなわち、レベル側壁Ni/Njは、完全に別個に延び、すなわち、互いに重ね合わされない。
ここでも、周期走行方向xに沿って見たとき、各上昇レベル側壁、すなわち、側壁N2/N1、N3/N2には、再度、同じ構造深さの下降レベル側壁が割り当てられる、すなわち、上昇レベル側壁N2/N1には、下降レベル側壁N1/N2が割り当てられ、上昇レベル側壁N3/N2には、下降レベル側壁N2/N3が割り当てられることが再び当てはまる、
特に、図20~図22、図25~図28、および図29~図32を参照して上述された光学格子71、76、および80は、さらに、バイナリ構造の対応する重ね合わせとして記述することができ、表面セクション間のそれらの境界領域、すなわち、それらのレベル側壁Ni/Njは、光学格子60および64を参照して既に上述で説明されたように、互いに重ね合わされない。光学格子76および80の場合、これらは、それらの境界領域、すなわち、レベル側壁Ni、Njが互いに重ね合わされない3つのバイナリ構造の重ね合わせとして記述することができる。これらの格子71、76、80についても、周期走行方向xに沿って見たとき、各上昇レベル側壁には、同じ構造深さの下降レベル側壁が割り当てられることが当てはまる。
互いに平行でない回折構造グループの周期走行方向を有する上述の光回折構成要素の場合、これは、レベル側壁、すなわち、回折構造の異なる表面セクション間の境界領域の交差をもたらす。この場合も、前記境界領域は、点でのみ、すなわち、せいぜいレベル側壁の直線状コースのセクションに沿って、すなわち、レベル側壁が交差する場所で互いに重ね合わされる。
破壊的干渉によって少なくとも1つの目標波長を抑制するための、再度光学格子の形態の光回折構成要素117のさらなる実施形態が、図46を参照して以下で説明される。図1~図45を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号で表され、改めて詳細に論じられない。
光学格子117は、3つの回折構造レベルN1、N2、N3を有する回折構造を含む、周期走行方向xに沿って周期的である格子構造プロファイルとして具現化される。
中央回折構造レベルN2は、0の参照高さ(d=0)を事前画定し、それゆえに、ニュートラル回折構造レベルとも呼ばれる。さらなる回折構造レベルN1は、参照高さを基準にして測定されたd=+λ/4の構造深さを有し、それゆえに、正回折構造レベルとも呼ばれる。第3の回折構造レベルN3は、参照高さを基準にして測定されたd=-λ/4の構造深さを有し、それゆえに、負回折構造レベルとも呼ばれる。
したがって、3つの回折構造レベルN1~N3は、参照平面d=0を基準にして異なる構造深さを事前画定する。
光学格子117の格子構造プロファイルの格子周期pは、回折構造レベルN1~N3の合計4つの周期セクションに細分される。これらの4つの周期セクションのうちの2つは、ニュートラル回折構造レベルN2として具現化され、4つの周期セクションのうちの1つは、正回折構造レベルN1として具現化され、4つの周期セクションのうちの第4のものは、負回折構造レベルN3として具現化される。図46において選ばれた単位セルに沿ったシーケンスは(前記単位セルは破線によって境界を示されている)、周期走行方向xにおいて、N2、N1、N2、N3である。
周期走行方向xに沿って、1つの格子周期p内の4つの周期セクションは、同じ構造長さxNを有する。
代替として、周期セクションの長さ、すなわち、それぞれの回折構造レベルN1~N3のx-広がり範囲が、互いに対で異なることも可能である。次いで、下記のものが、回折構造レベルN1~N3の周期セクションの長さxNiへの制約として満たされなければならない。
N1+xN3=2xN2
したがって、ニュートラル回折構造レベルから外れたレベルの広がり範囲の合計は、良好な近似で、ニュートラル回折構造レベルの広がり範囲の2倍に等しくなければならない。
回折構造レベルN1~N3の記載された配列、すなわち、周期走行方向xに沿った構造深さおよび長さは、格子構造プロファイルによって回折される赤外線波長範囲の第1の目標波長λ1が、第1の目標波長λ1の0次の回折で互いに破壊的に干渉する3つの異なる位相を有する放射線成分を有するようなものである。それにより、とりわけ図1~図45による他の光回折構成要素に関連して上述で説明されたように、抑制効果が生じる。理論的考察によって明らかにされたように、この抑制効果は、単一のバイナリ格子(図示せず)の抑制と比較して2乗され、その結果、光学格子117は、例えば、正回折構造レベルN1が負回折構造レベルN3の代わりに順番に配列されたバイナリ格子が10-2の抑制を有する場合、10-4の抑制効果を有する。
目標波長は、再度、10μmと11μmとの間の範囲とすることができる。
構造深さエラーの回折効率への影響が、図47および図48を参照して以下で説明される。ここで、抑制されるべき波長λを有する光が、図47および図48において垂直入射で上方から光学格子117に入射することが仮定される。「垂直入射」というこの仮定は、単に以下の考察のモデル仮定として役立つ。実際には、光の入射角は、通常は、垂直入射から外れる。したがって、次いで、ここで説明される光回折構成要素の構造深さは、それぞれの入射角に適応される。この設計適応を実行する方法は、当業者には既知である。実際、光の入射角は、抑制されるべき波長とともに変化し、それにより、光回折構成要素の構造深さもEUVコレクタにわたって変化する。回転対称設計を有するEUVコレクタ24の場合、回折構造グループの構造深さは、EUVコレクタ24の中心からEUVコレクタ24の縁部に向かって連続的に変化することがある。
反射光の波の同一位相P0の領域は、図47および図48に書き込まれた丸点で示される。回折構造レベルの第1にN1および第2にN3が、ニュートラル回折構造レベルN2を基準にして、各場合に、λ/4光路長だけオフセットされているので、図47に示された光学格子117の格子周期の合計4つの周期セクションについて、各場合に、反射光の2つの領域が生じ、その位相P0が、2つのさらなる領域に対して正確に半波長だけ、すなわち、λ/2だけオフセットされるように反射され、それにより、図47の完全なλ/4構造深さの場合、入射光の完全な抑制がもたらされる、すなわち、反射光の破壊的干渉がもたらされることは明らかである。
図47は、正回折構造レベルN1が、λ/4よりも大きい構造深さを有し、負回折構造レベルN3が、正回折構造レベルN1の構造深さと同じ絶対値を有する、すなわち、対応して同様に絶対項でλ/4よりも大きい構造深さを有する場合を示す。したがって、高さエラーが、図47による格子の場合には存在する。
第1に正回折構造レベルN1によっておよび第2に負回折構造レベルN3によって反射された光の同一位相P0,dの領域が、図48に白丸で示されている。
それぞれ、レベルN1およびN3によって反射されたこれらの2つの位相P0,dの反射光のビーム方向の位置を、図47による完全な抑制状態の場合の対応する位相位置P0と比較することによって示されるように、図48による状況の場合、これらの2つの位相P0,dは、正しい位相位置のまわりに、それぞれ、同じ距離だけ上方および下方にシフトされて存在し、その結果、2つのシフトされた位相P0,dの平均値は、図47による完全な位相位置の位置に再度配置された状態になる。この平均化は、3つの回折構造レベルN1~N3を有する格子の場合には、回折構造レベルN1およびN2ならびに対応する高さエラーに対応する2つの回折構造レベルしか有していないバイナリ格子と比較して、抑制の改善をもたらす。
図49は、再度3つの回折構造レベルN1、N2、およびN3を有する、再度、回折構造を含む光学格子118の形態の、少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる変形を示す。図1~図48を参照して、特に、図46~図48を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
図49は、再度、破線を使用して、1つの周期pにわたって周期走行方向xに沿って延びる単位セルを示す。この単位セルにおいて周期走行方向xで最初に存在するニュートラル回折構造レベルN2は、他の2つの回折構造レベルと比較して2倍の長さ2xNを有する。したがって、図示の単位セル内の周期走行方向の回折構造レベルのシーケンスは、2倍の長さ2xNのニュートラル回折構造レベルN2、単一の長さxNを有する正回折構造レベルN1、単一の長さxNを有する負回折構造レベルである。光学格子118の場合、それゆえに、単位セル内で、正回折構造レベルN1は、それに直接続いて負回折構造レベルN3があり、その結果、介在レベル側壁は、λ/2の構造深さを有する。
図50は、少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態を示し、前記光回折構成要素は、再度、4つの回折構造レベルN1~N4を有する回折構造を含む光学格子120として作られる。図1~図49を参照して、特に、図46~図49を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。周期走行方向に沿って、光学格子120は、回折構造レベルの以下のシーケンス、すなわち、構造深さ+λ/4を有する正回折構造レベルN1、ニュートラル回折構造レベルN2、構造深さ-λ/4を有する負回折構造レベルN3、構造深さ-λ/2を有する2倍の負回折構造レベルN4、負回折構造レベルN3、およびニュートラル回折構造レベルN2を有する。このようにして、光学格子120の単位セルは、回折構造レベルシーケンスN1、N2、N3、N4、N3、N2、または対応する巡回的交換を含む。
図51は、少なくとも1つの目標波長を抑制するための光回折構成要素のさらなる実施形態を示し、前記光回折構成要素は、再度、5つの回折構造レベルN1~N5を有する回折構造を含む光学格子121として作られる。図1~図50を参照して、特に、図46~図50を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。周期走行方向に沿って、光学格子121は、回折構造レベルの以下のシーケンス、すなわち、構造深さ+λ/4を有する正回折構造レベルN1、ニュートラル回折構造レベルN2、構造深さ-λ/4を有する負回折構造レベルN3、構造深さ-λ/2を有する2倍の負回折構造レベルN4、構造深さ-3λ/4を有する3倍の負回折構造レベルN5、構造深さ-λ/2を有する2倍の負回折構造レベルN4、構造深さ-λ/4を有する負回折構造レベルN3、およびニュートラル回折構造レベルN2を有する。このようにして、光学格子120の単位セルは、回折構造レベルシーケンスN1、N2、N3、N4、N5、N4、N3、N2、または対応する巡回的交換を含む。
光学格子120の場合の追加の回折構造レベルN4および光学格子121の場合のN4、N5は、回折効果の追加の強化、すなわち、目標波長λの破壊的干渉のさらなる強化をもたらす。
図52は、各場合にλ/4(d≒2.6μm(dが2.6μmにほとんど等しい))構造深さdと周期走行方向xでの回折構造レベルN1~N3の同一の構造長さxN(xN1=xN2=xN3)とを有する回折構造レベルN1、N2、およびN3のシーケンスを有する図46からのタイプの光学格子の反射率曲線125を示す。その結果は、波長λ=10.4μmのまわりで1・10-6の広い反射率最小値を有する反射率曲線125である。10.2μmと10.6μmとの間で、反射率は2・10-6未満である。10.1μmと10.7μmとの間で、反射率は3・10-6未満である。10.0μmと10.8μmとの間で、反射率は5・10-6未満である。これは、図示の波長範囲の妨害波長の非常に良好な抑制をもたらす。
図53は、図44および図45のやり方で、周期p=4xNをもつ光学格子64のリソグラフィ生成中の関係を示す(図17~図19も参照)。
図1~図52を参照して、特に、図14~図19、図44、および図45を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
光学格子64について、図53は、光学格子64のリソグラフィ生成中に使用され、再度、周期的に連続するマスク領域およびマスク間隙を有するリソグラフィマスク構造126、127のさらなる実施形態を示す。この場合、リソグラフィマスク構造126は、連続するマスク領域128および129と、介在マスク間隙130および131とを有し、マスク構造127は、連続するマスク領域132および133と、介在マスク間隙134および135とを有する。
光学格子64のリソグラフィ生成中に、マスク構造126のマスク領域128は、第1にレベル側壁N3/N2および第2にN1/N2を画定する。マスク構造126のさらなるマスク領域129は、周期走行方向xに続く光学格子64の回折構造レベルの次のシーケンスのレベル側壁N2/N1およびN2/N3を画定する。さらなるリソグラフィマスク構造127は、マスク領域132を用いて、周期走行方向xで先行する回折構造レベルNiの周期のレベル側壁N2/N1およびN2/N3を画定し、マスク構造127のマスク領域133は、回折構造レベルNiの次の周期のレベル側壁N3/N2およびN1/N2を画定する。光学格子64は、対応して、周期走行方向xに対して垂直な(図53の図面の平面に対して垂直な)境界領域が、完全に別個に延びる、すなわち、互いに重ね合わされない2つのバイナリ構造の重ね合わせとして生じる。
第1にマスク構造128、129および第2に132、133は、各場合に、同じx-広がり範囲、すなわち各場合に2xNを有する。第1にマスク間隙131および第2に134は、各場合に、同じx-広がり範囲、すなわち各場合にxNを有する。マスク構造130および135は、同様に、各場合に同じx-広がり範囲、すなわち、各場合に3xNを有する。
したがって、マスク構造126、127は、光学格子64のそれぞれ連続する周期pで交互に異なるレベル側壁を事前画定する。周期長pだけシフトすることによって、ほとんどのマスク構造126および127は、互いに転換され得る。
図54は、光学格子64のリソグラフィ生成中の2つのマスク構造136、137の代替実施形態を示す。図1~図53を参照して、特に、図14~図19、図44、および図53を参照して既に上述で説明されたものに対応する構成要素および機能は、同じ参照符号を有し、改めて詳細に論じられない。
マスク構造136は、マスク領域138、139と、介在マスク間隙140、141とを有する。マスク構造137は、マスク領域142、143と、介在マスク間隙144および145とを有する。第1にマスク領域138および第2に143のx-広がり範囲は、3xNであり、したがって、xNである第1にマスク領域139および第2に142のx-広がり範囲の大きさの3倍である。マスク間隙140、141、144、および145は、各場合に、2xNの広がり範囲を有する。
光学格子64のリソグラフィ生成中に、リソグラフィマスク構造136は、マスク領域138を用いて、格子64の回折構造レベルN1~N3の第1の周期pのレベル側壁N3/N2およびN2/N3を画定し、マスク領域139は、回折構造レベルN1~N3の第2の周期pの第1にレベル側壁N2/N1および第2にN1/N2を画定する。さらなるリソグラフィマスク構造137は、マスク領域142を用いて、第1の周期のレベル側壁N2/N1およびN1/N2を画定し、マスク領域143を用いて、回折構造レベルN1~N3の次の周期pのレベル側壁N3/N2およびN2/N3を画定する。
ここでも、図53による実施形態の場合と同様に、マスク構造136および137は、回折構造レベルN1~N3の連続する周期の交互に異なるレベル側壁を事前画定することが当てはまる。マスク構造136および137はまた、周期長p=4xNだけシフトさせることによって互いに転換させることができる。
2つのマスク構造147、148による光学格子146のさらなる実施形態の生成中の関係が、図55を参照して説明される。各々が光学格子64の2つの格子周期を示す図53および図54とは対照的に、1つの格子周期pが図55では示されている。この格子周期p内で、光学格子146は、走行方向xにおいて回折構造レベルNiの以下のシーケンス、すなわち、N1、N2、N1、N2、N3、およびN2を有する。格子周期pは、6xNの広がり範囲を有する。すべての回折レベルN1は、各場合に、xNの広がり範囲を有する。
マスク構造147は、周期pごとに、マスク領域149、150と、介在マスク間隙151、152とを有し、マスク構造148は、周期pごとに、正確に1つの割り当てられたマスク領域153と、1つのマスク間隙154とを有する。マスク領域149およびマスク領域150は、2xNの広がり範囲を有する。マスク間隙151、152は、xNの広がり範囲を有する。マスク領域153は、3xNの広がり範囲を有する。マスク間隙154は、同様に、3xNの広がり範囲を有する。
周期走行方向xに沿った周期pにわたるレベル側壁のシーケンス内で、それぞれのマスク構造のマスク領域によるそれぞれのレベル側壁の事前確定に関する限り、以下の割り当てが当てはまる。
Figure 2022518221000005
2つのマスク構造156、157による光学格子155のさらなる実施形態の生成中の関係が、図56を参照して説明される。各々が光学格子64の2つの格子周期を示す図53および図54とは対照的に、1つの格子周期pが図56では示されている。この格子周期p内で、光学格子155は、回折構造レベルNiの以下のシーケンス、すなわち、N2、N1、N2、N3、N2、およびN3を有する。したがって、6xNの広がり範囲を有する周期pが、格子155の場合にも存在する。回折構造レベルNiは、各場合に、周期走行方向xに沿ってxNの広がり範囲を有する。
光学格子155の生成のために、再度、2つのリソグラフィマスク構造156および157が、図56に示される。この場合、マスク構造156は、マスク領域158および159と、介在マスク間隙160、161とを有し、マスク構造157は、周期ごとに、正確に1つのマスク領域162と1つのマスク間隙163とを有する。マスク領域158および159は、各場合に、広がり範囲xNを有する。マスク間隙160、161は、各場合に、同様に、2xNの広がり範囲を有する。第1にマスク領域162および第2にマスク間隙163は、各場合に、3xNの広がり範囲を有する。
光学格子155のリソグラフィ生成中のレベル側壁へのマスク領域の割り当てには、以下が当てはまる。
Figure 2022518221000006
上述で説明された光学格子の構造化は、例えば、EUVコレクタ24によって反射された赤外線波長を有する迷光放射線が0次で破壊的に干渉し、それにより、迷光強度が0次で抑制されるという効果を有することができる。この場合、上述の光回折構成要素は、一般に、反射性構成要素として使用される。
EUVコレクタ24の本体は、アルミニウムから製造することができる。この本体の代替材料は、銅、成分の銅および/またはアルミニウムを含む合金、あるいは銅と酸化アルミニウムまたはシリコンとの、粉末冶金によって生成される合金である。
ミクロ構造化またはナノ構造化構成要素を生成するために、投影露光装置1は以下のように使用される。最初に、反射マスク10またはレチクルと、基板またはウェハ11とが用意される。続いて、レチクル10の構造が、投影露光装置1の助けによってウェハ11の感光層上に投影される。次いで、ウェハ11のミクロ構造またはナノ構造、したがって、ミクロ構造化構成要素が、感光層を現像することによって生成される。

Claims (22)

  1. 光回折構成要素(64;117;118;119;120;121)であって、
    - 3つの回折構造レベル(N1~N3;N1~N4;N1~N5)を有する回折構造を含む周期的格子構造プロファイルを含み、
    - 前記3つの回折構造レベルが、参照平面を基準にして異なる構造深さを事前画定し、
    - 前記回折構造の配列は、第1の目標波長が前記周期的格子構造プロファイルによって回折される赤外線波長範囲の第1の目標波長λ1のまわりの波長範囲が、前記第1の目標波長λ1の少なくとも0次および/または±1次の回折で、互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分を有するようなものであり、
    - 前記回折構造レベル(N1~N3;N1~N4;N1~N5)が、周期走行方向(x)に沿って規則的に繰り返される前記周期的格子構造プロファイルの格子周期(p)のトポグラフィーを事前画定し、
    - 前記回折構造レベル(N1~N3;N1~N4;N1~N5)が、
    -- ゼロの参照高さに対応するニュートラル回折構造レベル(N2)と、
    -- 前記ニュートラル回折構造レベル(N2)を基準にしてλ1/4±20%の光路長だけ高く配列された正回折構造レベル(N1)と、
    -- 前記ニュートラル回折構造レベル(N2)を基準にしてλ1/4±20%の光路長だけ低く配列された負回折構造レベル(N3;N3,N4;N3,N4,N5)と
    を含む、光回折構成要素。
  2. 前記周期的格子構造プロファイルの格子周期が、前記回折構造レベルの4つの周期セクションに細分され、前記4つの周期セクションのうちの2つが、前記ニュートラル回折構造レベル(N2)を有するニュートラル回折構造セクションとして具現化され、前記4つの格子周期セクションのうちの1つが、前記正回折構造レベルを有する正回折構造セクション(N1)として具現化され、前記4つの周期セクションのうちの1つが、前記負回折構造レベルを有する負回折構造セクション(N3)として具現化されることを特徴とする請求項1に記載の光回折構成要素。
  3. 前記4つの周期セクションが、前記周期走行方向(x)に沿って同じ長さ(xN)±20%を有する
    ことを特徴とする請求項2に記載の光回折構成要素。
  4. 前記4つの周期セクションの以下のシーケンス、すなわち、正回折構造レベル(N1)、ニュートラル回折構造レベル(N2)、負回折構造レベル(N3)、ニュートラル回折構造レベル(N2)を特徴とする請求項2または3に記載の光回折構成要素。
  5. 前記回折構造の前記配列は、前記周期的格子構造プロファイルによって回折される前記赤外線波長範囲の前記第1の目標波長λ1を含む目標波長範囲が、前記第1の目標波長λ1の少なくとも前記0次および/または±1次の回折で、互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分を有するようなものであり、前記目標波長範囲が、前記第1の目標波長λ1に加えて、それと異なる第2の目標波長λ2をさらに含み、前記回折構造の前記配列は、前記周期的格子構造プロファイルによって回折される前記赤外線波長範囲の前記第2の目標波長λ2のまわりの波長範囲が、前記第2の目標波長λ2の少なくとも前記0次および/または±1次の回折で、互いに破壊的に干渉する少なくとも3つの異なる位相を有する放射線成分をさらに有するようなものであり、前記2つの目標波長λ1およびλ2に対して、(λ1-λ22/(λ1+λ22<20%が当てはまることを特徴とする請求項1~4のいずれかに記載の光回折構成要素。
  6. 破壊的干渉によって少なくとも1つの目標波長(λN)を抑制するための光回折構成要素(34;46;47;57;58;59;60;64;71;76;80;86;91;92;93;94;95;117;118;119;120;121)であって、
    - 参照平面を基準にして異なる構造深さ(di)を事前画定する少なくとも3つの回折構造レベル(Ni)を含み、
    - 前記3つの回折構造レベル(Ni)が、少なくとも2つの回折構造グループ(35,36;61,62;65,66;72,73;77,78,79;81,82,83;87,88,89;N1,N2;N2,N3;N3,N1;Nn,Nn+1)に割り当て可能であり、
    - 前記回折構造グループのうちの第1のもの(35;61;65;72;77;81;87;Nn,Nn+1)が、0次の回折で第1の目標波長λ1を抑制するために具現化され、
    - 前記回折構造グループのうちの第2のもの(36;62;66;73;78;82;88;Nn+1,Nn+2)が、前記0次の回折で第2の目標波長λ1を抑制するために具現化され、
    - 前記2つの目標波長λ1およびλ2に対して、(λ1-λ22/(λ1+λ22<20%が当てはまり、
    - 前記回折構造レベル(Ni)のトポグラフィーが、2つのバイナリ回折構造グループ(35,36;61,62;65,66;72,73;77,78,79;81,82,83;87,88,89)の重ね合わせとして記述され得るものであり、
    - 前記バイナリ回折構造グループの各々が、
    -- 第1の構造深さを有する第1の表面セクション(61P;62P)と、
    -- 第2の構造深さを有し、走行方向(x)に沿って前記第1の表面セクション(61P、61N)と交互になる第2の表面セクション(61N;62N)と、
    を有し、
    - 前記バイナリ回折構造グループ(35,36;61,62;65,66;72,73;77,78,79;81,82,83;87,88,89;N1,N2;N2,N3;N3,N1;Nn,Nn+1)の各々の隣接する表面セクション(61P,61N;62P,62N)間の境界領域(N3/N1,N2/N4,N4/N3,N1/N2)が、直線状コースを有し、
    -- 前記2つのバイナリ回折構造グループ(35,36;61,62;65,66;72,73;77,78,79;81,82,83;87,88,89;N1,N2;N2,N3;N3,N1;Nn,Nn+1)のうちの前記第1のものの第1の境界領域(N3/N1,N2/N4)、および
    -- 前記2つのバイナリ回折構造グループ(35,36;61,62;65,66;72,73;77,78,79;81,82,83;87,88,89;N1,N2;N2,N3;N3,N1;Nn,Nn+1)のうちの前記第2のものの第2の境界領域(N4/N3,N1/N2)が、
    -- せいぜいそれらの直線状コースのセクションに沿って互いに重ね合わされる、光回折構成要素。
  7. 前記2つのバイナリ回折構造グループ(61,62;65,66;72,73;77,78,79;81,82,83;87,88,89;N1,N2;N2,N3;N3,N1;Nn,Nn+1)のうちの前記第1のものの前記第1の境界領域(N3/N1,N2/N4)および前記2つのバイナリ回折構造グループ(61,62;65,66;72,73;77,78,79;81,82,83;87,88,89;N1,N2;N2,N3;N3,N1;Nn,Nn+1)のうちの前記第2のものの前記第2の境界領域(N4/N3,N1/N2)が、互いに完全に別個に延びることを特徴とする請求項1に記載の光回折構成要素。
  8. 前記回折構造グループのうちの第1のもの(35;61;65;72;77;81;87)が、第1の回折格子として具現化され、前記第1の回折格子が、格子表面(33)に配列され、
    -- 第1の格子周期(ph;p1)を有し、
    -- 第1の回折正構造(37)と第1の回折負構造(38)との間の、これらの第1の構造(37,38)をそれぞれ囲む前記格子表面(33)の表面セクションに対して垂直な光路差として測定される第1の構造深さ(dh;d1)を有し、
    - 前記回折構造グループのうちの第2のもの(36;62;66;73;78;82;88)が、第2の回折格子として具現化され、前記第2の回折格子が、前記格子表面(33)に配列され、
    -- 第2の格子周期(pv;p2)を有し、
    -- 第2の回折正構造(40)と第2の回折負構造(41)との間の、これらの第2の構造(40,41)をそれぞれ囲む前記格子表面(33)の表面セクションに対して垂直な光路差として測定される第2の構造深さ(dv;d2)を有することを特徴とする請求項1または2に記載の光回折構成要素。
  9. - 前記第1の格子周期(ph)が、前記第1の回折格子(35)の第1の周期走行方向(39)に沿って延び、
    - 前記第2の格子周期(pv)が、前記第2の回折格子(36)の第2の周期走行方向(42)に沿って延び、
    - 前記2つの周期走行方向(39,42)が、互いに平行に延びないことを特徴とする請求項3に記載の光回折構成要素。
  10. 前記格子表面(33)に配列された少なくとも1つのさらなる回折格子(48)であり、
    - さらなる回折正構造(49)およびさらなる回折負構造(50)を有し、前記さらなる回折負構造(50)の表面積に対する前記さらなる回折正構造(49)の表面積の表面積比が0.9と1.1との間の範囲にあり、
    - さらなる格子周期(pd)を有し、
    - 前記さらなる回折正構造(49)と前記さらなる回折負構造(50)との間の、これらのさらなる構造(49,50)をそれぞれ囲む前記格子表面(33)の表面セクションに対して垂直な光路差として測定されるさらなる構造深さ(dd)を有する、
    少なくとも1つのさらなる回折格子(48)を特徴とする請求項3または4に記載の光回折構成要素。
  11. - 10よりも大きい、前記さらなる格子周期(pd)と前記さらなる構造深さ(dd)との間の比(pd/dd)、および/または
    - 0.9と1.1との間の範囲の、前記さらなる格子周期(pd)に対する前記第1の格子周期(ph)の周期比(ph/pd)、および/または
    -- 前記第1の格子周期(ph)が、前記第1の回折格子(35)の第1の周期走行方向(39)に沿って延び、
    -- 前記さらなる格子周期(pd)が、前記さらなる回折格子(48)のさらなる周期走行方向(51)に沿って延び、
    -- 前記2つの周期走行方向(39,51)が、互いに平行に延びないことを特徴とする請求項5に記載の光回折構成要素。
  12. 前記様々な回折構造グループ(35,36,48)の前記回折正構造(37,40,49)および前記回折負構造(38,41,50)の前記表面区域が、前記格子表面(33)全体に等しく寄与することを特徴とする請求項1~6のいずれかに記載の光回折構成要素。
  13. 請求項1~12のいずれかに記載の光回折構成要素(34;46;47;57;58;59;60;64;71;76;80;86;91;92;93;94;95;117;118;119;120;121)を含む、投影露光装置で使用するためのコレクタ(24)。
  14. 請求項1~12のいずれかに記載の光回折構成要素(34;46;47;57;58;59;60;64;71;76;80;86;91;92;93;94;95;117;118;119;120;121)を含む、EUV投影露光装置で使用するためのEUVコレクタとして具現化される、請求項13に記載のコレクタ。
  15. 前記コレクタミラーが、放射線(3)を焦点領域(26)の方に導くように具現化され、前記光回折構成要素が、前記少なくとも1つの目標波長の前記放射線(30)を前記焦点領域(26)から離れたところに導くように具現化されることを特徴とする請求項13または14に記載のコレクタ。
  16. 請求項13~15のいずれかに記載のコレクタ(24)を含み、結像されるべき物体(10)を配列することができる物体視野(4)を照明するための照明光学ユニット(6)を含む照明系。
  17. 請求項16に記載の照明系を含み、基板(11)が配列され得るものであり、結像されるべき物体(10)のセクションが結像され得る像視野(8)に前記物体視野(4)を結像するための投影光学ユニット(7)を含む光学系。
  18. 請求項17に記載の光学系を含み、光源(2)を含む投影露光装置(1)。
  19. 前記光源(2)が、EUV光源として具現化され、EUV波長を発生するプラズマを生成するためにポンプ光源を含み、前記ポンプ光源が、プレパルス光波長を有するプレパルスを生成するために、および主パルス光波長を有する主パルスを生成するために具現化され、前記プレパルス光波長が前記主パルス光波長と異なることを特徴とする請求項18に記載の投影露光装置(1)。
  20. 構造化構成要素を生成するための方法であって、以下の方法ステップ、すなわち、
    - レチクル(10)およびウェハ(11)を用意するステップと、
    - 請求項18または19に記載の前記投影露光装置の助けによって、前記レチクル(10)の構造を前記ウェハ(11)の感光層上に投影するステップと、
    - 前記ウェハ(11)にミクロ構造および/またはナノ構造を生成するステップと
    を含む、方法。
  21. 請求項20に記載の方法に従って生成される構造化構成要素。
  22. 請求項1~12のいずれかに記載の光回折構成要素を生成するための方法であって、以下のステップ、すなわち、
    - 基板を用意するステップと、
    - エッチング媒体のために前記基板と源との間に配列される、エッチング媒体を通さないマスク領域(113,115;128,129,132,133;138,139,142,143;149,150,153;158,159,162)を有し、介在マスク間隙(114,116;130,131,134,135;140,141,144,145;151,152,154;160,161,163)を有する少なくとも1つのマスク構造(105,106;111,112;126,127;136,137;147,148;156,157)を用意するステップと、
    - 前記エッチング媒体によって前記基板の第1のエッチングを行うステップと、
    - 前記マスク構造(111;126;136;147;156)をさらなるマスク構造(112;127;137;148;157)と交換する、および/または前記走行方向(x)に沿って前記マスク構造(105;126)を変位させるステップと、
    - 前記エッチング媒体によって前記基板の第2のエッチングを行うステップと
    を含む、方法。
JP2021541026A 2019-01-15 2020-01-14 破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素 Pending JP2022518221A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102019200376.1A DE102019200376A1 (de) 2019-01-15 2019-01-15 Optische Beugungskomponente zur Unterdrückung mindestens einer Ziel-Wellenlänge durch destruktive Interferenz
DE102019200376.1 2019-01-15
DE102019210450.9 2019-07-16
DE102019210450.9A DE102019210450A1 (de) 2019-07-16 2019-07-16 Optische Beugungskomponente zur Unterdrückung mindestens einer Ziel-Wellenlänge durch destruktive Interferenz
PCT/EP2020/050809 WO2020148277A1 (en) 2019-01-15 2020-01-14 Optical diffraction component for suppressing at least one target wavelength by destructive interference

Publications (2)

Publication Number Publication Date
JP2022518221A true JP2022518221A (ja) 2022-03-14
JPWO2020148277A5 JPWO2020148277A5 (ja) 2023-01-25

Family

ID=69187750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021541026A Pending JP2022518221A (ja) 2019-01-15 2020-01-14 破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素

Country Status (7)

Country Link
US (2) US10852640B2 (ja)
EP (1) EP3912000A1 (ja)
JP (1) JP2022518221A (ja)
KR (1) KR20210112377A (ja)
CN (1) CN113302559A (ja)
TW (1) TWI831898B (ja)
WO (1) WO2020148277A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831898B (zh) 2019-01-15 2024-02-11 德商卡爾蔡司Smt有限公司 藉由破壞性干涉抑制至少一目標波長的光學繞射元件
US11448918B2 (en) * 2019-01-30 2022-09-20 Samsung Electronics Co., Ltd. Grating device, screen including the grating device, method of manufacturing the screen and display apparatus for augmented reality and/or virtual reality including the screen
DE102019213063A1 (de) * 2019-08-30 2021-03-04 Carl Zeiss Smt Gmbh Optische Beugungskomponente
DE102020212367A1 (de) 2020-09-30 2022-03-31 Carl Zeiss Smt Gmbh Optische Komponente
DE102022203745A1 (de) 2022-04-13 2022-09-15 Carl Zeiss Smt Gmbh EUV-Kollektor für eine EUV-Projektionsbelichtungsanlage
DE102022207545A1 (de) 2022-07-25 2023-04-27 Carl Zeiss Smt Gmbh Optische Komponente
DE102022209791B3 (de) 2022-09-19 2023-07-06 Carl Zeiss Smt Gmbh EUV-Kollektor für eine EUV-Projektionsbelichtungsanlage
CN116559986B (zh) * 2023-05-15 2024-05-10 暨南大学 一种点阵投射器装置及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293357A (en) * 1976-01-27 1977-08-05 Rca Corp Original negative for producing color film to reduce diffraction and method of producing same
JP2000299197A (ja) * 1999-04-13 2000-10-24 Agency Of Ind Science & Technol X線発生装置
JP2006091204A (ja) * 2004-09-22 2006-04-06 Shimadzu Corp 回折格子
JP2014236121A (ja) * 2013-06-03 2014-12-15 ギガフォトン株式会社 ミラー装置、極端紫外光生成装置及び極端紫外光生成システム
JP2016509691A (ja) * 2013-01-28 2016-03-31 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のための投影システム、ミラーおよび放射源

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2073409A1 (en) * 1991-10-15 1993-04-16 Paul F. Sullivan Light beam position detection and control apparatus employing diffraction patterns
DE19516741C2 (de) 1995-05-06 1997-05-07 Kurz Leonhard Fa Beugungsoptisch wirksame Strukturanordnung
JP3472103B2 (ja) * 1997-09-10 2003-12-02 キヤノン株式会社 回折光学素子及びそれを用いた光学系
DE10054503B4 (de) 2000-11-03 2005-02-03 Ovd Kinegram Ag Lichtbeugende binäre Gitterstruktur und Sicherheitselement mit einer solchen Gitterstruktur
DE60312871T2 (de) 2002-08-26 2007-12-20 Carl Zeiss Smt Ag Gitter basierter spektraler filter zur unterdrückung von strahlung ausserhalb des nutzbandes in einem extrem-ultraviolett lithographiesystem
FR2864252B1 (fr) * 2003-12-23 2006-04-07 Jobin Yvon Sas Reseau de diffraction a empilements multicouches alternes et son procede de fabrication et dispositifs spectroscopiques comportant ces reseaux
EP1743197B1 (en) * 2004-04-23 2011-08-10 Olivier M. Parriaux High efficiency optical diffraction device
JP4673120B2 (ja) * 2004-04-28 2011-04-20 キヤノン株式会社 回折光学素子及びこれを有する光学系
EP1932050A2 (en) 2005-09-14 2008-06-18 Mirage Innovations Ltd. Diffractive optical device and system
US7710651B2 (en) * 2007-03-23 2010-05-04 Canon Kabushiki Kaisha Contacting two-layer diffractive optical element
JP2010244588A (ja) * 2009-04-01 2010-10-28 Sharp Corp 二波長用回折素子およびこれを用いた光ピックアップ
DE102009044462A1 (de) 2009-11-06 2011-01-05 Carl Zeiss Smt Ag Optisches Element, Beleuchtungssystem und Projektionsbelichtungsanlage
NL2007216A (en) * 2010-09-08 2012-03-12 Asml Netherlands Bv Self-referencing interferometer, alignment system, and lithographic apparatus.
US9151881B2 (en) 2012-11-12 2015-10-06 Kla-Tencor Corporation Phase grating for mask inspection system
JP6357892B2 (ja) * 2014-06-09 2018-07-18 凸版印刷株式会社 光学素子
CN104567695B (zh) * 2015-01-09 2017-06-13 哈尔滨工业大学 一种使用双频激光和衍射光栅的三维位移测量装置
DE102016209359A1 (de) 2016-05-31 2017-11-30 Carl Zeiss Smt Gmbh EUV-Kollektor
CN109479057B (zh) 2016-07-15 2021-11-23 三星电子株式会社 用于管理mcptt通信中的音频切入策略的系统和方法
EP3333633A1 (en) * 2016-12-09 2018-06-13 ASML Netherlands B.V. Methods and apparatus for predicting performance of a measurement method, measurement method and apparatus
US11747528B2 (en) * 2018-08-31 2023-09-05 Samsung Electronics Co., Ltd. Diffraction grating device, method of manufacturing the same, and optical apparatus including the diffraction grating device
TWI831898B (zh) 2019-01-15 2024-02-11 德商卡爾蔡司Smt有限公司 藉由破壞性干涉抑制至少一目標波長的光學繞射元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293357A (en) * 1976-01-27 1977-08-05 Rca Corp Original negative for producing color film to reduce diffraction and method of producing same
JP2000299197A (ja) * 1999-04-13 2000-10-24 Agency Of Ind Science & Technol X線発生装置
JP2006091204A (ja) * 2004-09-22 2006-04-06 Shimadzu Corp 回折格子
JP2016509691A (ja) * 2013-01-28 2016-03-31 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のための投影システム、ミラーおよび放射源
JP2014236121A (ja) * 2013-06-03 2014-12-15 ギガフォトン株式会社 ミラー装置、極端紫外光生成装置及び極端紫外光生成システム

Also Published As

Publication number Publication date
US11194256B2 (en) 2021-12-07
CN113302559A (zh) 2021-08-24
US20210318622A1 (en) 2021-10-14
WO2020148277A1 (en) 2020-07-23
US20200225586A1 (en) 2020-07-16
TW202109197A (zh) 2021-03-01
US10852640B2 (en) 2020-12-01
EP3912000A1 (en) 2021-11-24
TWI831898B (zh) 2024-02-11
KR20210112377A (ko) 2021-09-14

Similar Documents

Publication Publication Date Title
JP2022518221A (ja) 破壊的干渉によって少なくとも1つの目標波長を抑制するための光回折構成要素
US9996012B2 (en) Facet mirror for use in a projection exposure apparatus for microlithography
TWI639850B (zh) 光瞳組合反射鏡、照明光學單元、照明系統、投射曝光設備、用於產生一微結構或奈米結構元件之方法以及微結構或奈米結構元件
CN102804072B (zh) 用于在微光刻中使用的分面反射镜
KR20050044371A (ko) 광학 스폿 그리드 어레이 프린터
JP4538467B2 (ja) マイクロリソグラフィにおける光学システム用フォトンシーブ
JP2015519009A5 (ja)
US9280061B2 (en) Illumination optical unit for EUV projection lithography
KR20110104904A (ko) 투영 리소그라피용 조명 광학 시스템
US20090268189A1 (en) Masks, lithography device and semiconductor component
US20220163897A1 (en) Optical illumination system for guiding euv radiation
JP4476243B2 (ja) 位相シフトマスク撮像性能を向上させる装置およびシステム、ならびにその方法
JP4499582B2 (ja) リソグラフィ装置及びデバイス製造方法
US11520235B2 (en) EUV lithography system with diffraction optics
TWI576613B (zh) 照明光學元件及照明光學元件的設計方法
WO2018168923A1 (ja) 制御装置及び制御方法、露光装置及び露光方法、デバイス製造方法、データ生成方法、並びに、プログラム
KR20230036135A (ko) Euv 복사선을 안내하기 위한 광학 조명 시스템
US20230221648A1 (en) Optical component
Johnson Maskless EUV lithography, an alternative to e-beam
KR20220124709A (ko) Euv 투영 리소그래피용 조명 광학 시스템
CN112596348A (zh) 一种基于相位调制提高投影光刻分辨率的系统及方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240220