JP2022179327A - 基板処理方法及び基板処理装置 - Google Patents

基板処理方法及び基板処理装置 Download PDF

Info

Publication number
JP2022179327A
JP2022179327A JP2022035578A JP2022035578A JP2022179327A JP 2022179327 A JP2022179327 A JP 2022179327A JP 2022035578 A JP2022035578 A JP 2022035578A JP 2022035578 A JP2022035578 A JP 2022035578A JP 2022179327 A JP2022179327 A JP 2022179327A
Authority
JP
Japan
Prior art keywords
gas
substrate
film
layer
process gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022035578A
Other languages
English (en)
Inventor
拓 後平
Taku Gohira
理子 中谷
Masako Nakatani
匡裕 佐藤
Masahiro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to TW111117113A priority Critical patent/TW202303749A/zh
Priority to PCT/JP2022/020086 priority patent/WO2022244678A1/ja
Publication of JP2022179327A publication Critical patent/JP2022179327A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】エッチングにおける凹部の側壁の形状不良を抑制する技術を提供する。【解決手段】例示的実施形態に係る基板処理方法は、エッチング対象膜とエッチング対象膜上に設けられ開口を有するマスクとを備える基板を処理する方法である。当該方法は、(a)開口に対応してエッチング対象膜に設けられた凹部の側壁に、第1処理ガスを用いて、窒素を含有する第1層を形成する工程と、(b)(a)の後、炭素及び水素を含有するガスを含む第2処理ガスを用いて、炭素及び水素を含有する第2層を第1層上に形成する工程と、(c)(b)の後、第3処理ガスを用いて、凹部をエッチングする工程とを含む。【選択図】図3

Description

本開示の例示的実施形態は、基板処理方法及び基板処理装置に関するものである。
特許文献1は、基板上のシリコン含有膜にエッチングにより凹部を形成する方法を開示する。この方法では、エッチング装置により、シリコン含有膜を途中までエッチングする。その後、成膜装置により、シリコン含有膜上にプラズマを生成せずにカーボン含有膜を成膜する。その後、エッチング装置により、シリコン含有膜を更にエッチングする。
特開2018-166223号公報
本開示は、エッチングにおける凹部の側壁の形状不良を抑制する技術を提供する。
一つの例示的実施形態において、基板処理方法が提供される。当該方法は、エッチング対象膜と前記エッチング対象膜上に設けられ開口を有するマスクとを備える基板を処理する方法であって、(a)前記開口に対応して前記エッチング対象膜に設けられた凹部の側壁に、第1処理ガスを用いて、窒素を含有する第1層を形成する工程と、(b)前記(a)の後、炭素及び水素を含有するガスを含む第2処理ガスを用いて、炭素及び水素を含有する第2層を前記第1層上に形成する工程と、(c)前記(b)の後、第3処理ガスを用いて、前記凹部をエッチングする工程とを含む。
一つの例示的実施形態によれば、エッチングにおける凹部の側壁の形状不良を抑制することが可能となる。
図1は、一つの例示的実施形態に係る基板処理装置を概略的に示す図である。 図2は、一つの例示的実施形態に係る基板処理装置を概略的に示す図である。 図3は、一つの例示的実施形態に係る基板処理方法のフローチャートである。 図4は、一例の基板の部分拡大断面図である。 図5は、一つの例示的実施形態に係る基板処理方法の一工程を示す断面図である。 図6は、一つの例示的実施形態に係る基板処理方法の一工程を示す断面図である。 図7は、一つの例示的実施形態に係る基板処理方法の一工程を示す断面図である。 図8は、一つの例示的実施形態に係る基板処理方法を実行することによって得られる一例の基板の部分拡大断面図である。 図9は、第1実験において基板処理方法を実行することによって得られる基板の部分拡大断面図である。 図10は、第2実験において基板処理方法を実行することによって得られる基板の部分拡大断面図である。 図11は、第1実験及び第2実験のそれぞれにおいて基板処理方法を実行することによって得られる保護膜の厚さを示すグラフである。 図12は、第1実験、第3実験~第5実験において基板処理方法を実行することによって得られる保護膜の厚さを示すグラフである。 図13は、第1実験、第6実験~第10実験において基板処理方法を実行することによって得られる保護膜の厚さと温度との関係を示すグラフである。
以下、種々の例示的実施形態について説明する。
一つの例示的実施形態において、基板処理方法は、エッチング対象膜と前記エッチング対象膜上に設けられ開口を有するマスクとを備える基板を処理する方法であって、(a)前記開口に対応して前記エッチング対象膜に設けられた凹部の側壁に、第1処理ガスを用いて、窒素を含有する第1層を形成する工程と、(b)前記(a)の後、炭素及び水素を含有するガスを含む第2処理ガスを用いて、炭素及び水素を含有する第2層を前記第1層上に形成する工程と、(c)前記(b)の後、第3処理ガスを用いて、前記凹部をエッチングする工程と、を含む。
上記実施形態の方法によれば、(c)において、凹部の側壁に保護膜が形成されているので、凹部の側壁のエッチングが抑制される。よって、エッチングにおける凹部の側壁の形状不良を抑制できる。
上記基板処理方法は、前記(c)の前に、前記(a)と前記(b)とを繰り返す工程を更に含んでもよい。この場合、厚い保護膜を形成できる。
上記基板処理方法は、前記(c)の後、前記(a)と前記(b)と前記(c)とを繰り返す工程を更に含んでもよい。この場合、深い凹部を形成できる。
前記(a)及び前記(b)のうち少なくとも1つにおいて、前記基板の温度が30℃未満であってもよい。この場合、低温で保護膜を形成できる。
前記(c)において、前記基板の温度が30℃未満であってもよい。この場合、低温で凹部をエッチングできる。
前記(c)では、前記第3処理ガスから生成されるプラズマを用いてもよい。
前記(b)では、前記第2処理ガスから生成されるプラズマを用いてもよい。
前記(a)では、前記第1処理ガスから生成されるプラズマを用いてもよい。
前記第1層が水素を含有してもよい。
前記第1層は、アンモニア、又はアミノ基を有する化合物を含んでもよい。
前記第1処理ガスが、窒素含有ガスを含んでもよい。
前記第2処理ガスが、ハイドロカーボンガス及びハイドロフルオロカーボンガスのうち少なくとも1つを含んでもよい。
前記エッチング対象膜が、シリコン含有膜及び金属膜のうち少なくとも1つを含んでもよい。
前記(a)、前記(b)及び前記(c)において前記基板がin-situで処理されてもよい。この場合、スループットが向上する。前記(a)、前記(b)及び前記(c)において前記基板がin-systemで処理されてもよい。
一つの例示的実施形態において、基板処理装置は、チャンバと、前記チャンバ内において基板を支持するための基板支持部であり、前記基板は、エッチング対象膜と前記エッチング対象膜上に設けられ開口を有するマスクとを備える、基板支持部と、第1処理ガス、第2処理ガス及び第3処理ガスのそれぞれを前記チャンバ内に供給するように構成されたガス供給部であり、前記第2処理ガスは、炭素及び水素を含有するガスを含む、ガス供給部と、制御部と、を備え、前記制御部は、前記開口に対応して前記エッチング対象膜に設けられた凹部の側壁に、前記第1処理ガスを用いて、窒素を含有する第1層を形成するよう前記ガス供給部を制御するように構成され、前記制御部は、前記第1層を形成した後、前記第2処理ガスを用いて、炭素及び水素を含有する第2層を前記第1層上に形成するよう前記ガス供給部を制御するように構成され、前記制御部は、前記第2層を形成した後、前記第3処理ガスを用いて、前記凹部をエッチングするよう前記ガス供給部を制御するように構成される。
上記実施形態の装置によれば、(c)において、凹部の側壁に保護膜が形成されているので、凹部の側壁のエッチングが抑制される。よって、エッチングにおける凹部の側壁の形状不良を抑制できる。
一つの例示的実施形態において、基板処理方法は、エッチング対象膜と前記エッチング対象膜上に設けられ開口を有するマスクとを備える基板を処理する方法であって、(a)第1処理ガスに前記基板を晒す工程であり、前記第1処理ガスは、前記開口に対応して前記エッチング対象膜に設けられた凹部の側壁に、窒素を含有する第1層を形成可能である、工程と、(b)前記(a)の後、第2処理ガスに前記基板を晒す工程であり、前記第2処理ガスは、炭素及び水素を含有するガスを含み、炭素及び水素を含有する第2層を前記第1層上に形成可能である、工程と、(c)前記(b)の後、第3処理ガスに前記基板を晒す工程であり、前記第3処理ガスは、前記凹部をエッチング可能である、工程と、を含む。
上記実施形態の方法によれば、(c)において、凹部の側壁に保護膜が形成されているので、凹部の側壁のエッチングが抑制される。よって、エッチングにおける凹部の側壁の形状不良を抑制できる。
以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
図1及び図2は、一つの例示的実施形態に係る基板処理装置を概略的に示す図である。本実施形態の基板処理装置は、例えばプラズマ処理システムである。
一実施形態において、プラズマ処理システムは、プラズマ処理装置1及び制御部2を含む。プラズマ処理装置1は、プラズマ処理チャンバ10、基板支持部11及びプラズマ生成部12を含む。プラズマ処理チャンバ10は、プラズマ処理空間を有する。また、プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間に供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。ガス供給口は、後述するガス供給部20に接続され、ガス排出口は、後述する排気システム40に接続される。基板支持部11は、プラズマ処理空間内に配置され、基板を支持するための基板支持面を有する。
プラズマ生成部12は、プラズマ処理空間内に供給された少なくとも1つの処理ガスからプラズマを生成するように構成される。プラズマ処理空間において形成されるプラズマは、容量結合プラズマ(CCP;CapacitivelyCoupledPlasma)、誘導結合プラズマ(ICP;Inductively Coupled Plasma)、ECRプラズマ(Electron-Cyclotron-resonance plasma)、ヘリコン波励起プラズマ(HWP:HeliconWave Plasma)、又は、表面波プラズマ(SWP:Surface Wave Plasma)等であってもよい。また、AC(Alternating Current)プラズマ生成部及びDC(DirectCurrent)プラズマ生成部を含む、種々のタイプのプラズマ生成部が用いられてもよい。一実施形態において、ACプラズマ生成部で用いられるAC信号(AC電力)は、100kHz~10GHzの範囲内の周波数を有する。従って、AC信号は、RF(RadioFrequency)信号及びマイクロ波信号を含む。一実施形態において、RF信号は、200kHz~150MHzの範囲内の周波数を有する。
制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、例えばコンピュータ2aを含んでもよい。コンピュータ2aは、例えば、処理部(CPU:Central Processing Unit)2a1、記憶部2a2、及び通信インターフェース2a3を含んでもよい。処理部2a1は、記憶部2a2に格納されたプログラムに基づいて種々の制御動作を行うように構成され得る。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。
以下に、プラズマ処理システムの構成例について説明する。
プラズマ処理システムは、容量結合プラズマ処理装置1及び制御部2を含む。容量結合プラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間10sに供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。側壁10aは接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10筐体とは電気的に絶縁される。
基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板(ウェハ)Wを支持するための中央領域(基板支持面)111aと、リングアセンブリ112を支持するための環状領域(リング支持面)111bとを有する。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。一実施形態において、本体部111は、基台及び静電チャックを含む。基台は、導電性部材を含む。基台の導電性部材は下部電極として機能する。静電チャックは、基台の上に配置される。静電チャックの上面は、基板支持面111aを有する。リングアセンブリ112は、1又は複数の環状部材を含む。1又は複数の環状部材のうち少なくとも1つはエッジリングである。また、図示は省略するが、基板支持部11は、静電チャック、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路、又はこれらの組み合わせを含んでもよい。流路には、ブラインやガスのような伝熱流体が流れる。また、基板支持部11は、基板Wの裏面と基板支持面111aとの間に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。
シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、導電性部材を含む。シャワーヘッド13の導電性部材は上部電極として機能する。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。
ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。
電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、ソースRF信号及びバイアスRF信号のような少なくとも1つのRF信号(RF電力)を、基板支持部11の導電性部材及び/又はシャワーヘッド13の導電性部材に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ処理チャンバ10において1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。また、バイアスRF信号を基板支持部11の導電性部材に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。
一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して基板支持部11の導電性部材及び/又はシャワーヘッド13の導電性部材に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、13MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、基板支持部11の導電性部材及び/又はシャワーヘッド13の導電性部材に供給される。第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して基板支持部11の導電性部材に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。一実施形態において、バイアスRF信号は、ソースRF信号よりも低い周波数を有する。一実施形態において、バイアスRF信号は、400kHz~13.56MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、基板支持部11の導電性部材に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。
また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、基板支持部11の導電性部材に接続され、第1のDC信号を生成するように構成される。生成された第1のバイアスDC信号は、基板支持部11の導電性部材に印加される。一実施形態において、第1のDC信号が、静電チャック内の電極のような他の電極に印加されてもよい。一実施形態において、第2のDC生成部32bは、シャワーヘッド13の導電性部材に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、シャワーヘッド13の導電性部材に印加される。種々の実施形態において、第1及び第2のDC信号のうち少なくとも1つがパルス化されてもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。
排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。
図3は、一つの例示的実施形態に係る基板処理方法のフローチャートである。図3に示される基板処理方法(以下、「方法MT1」という)は、上記実施形態の基板処理装置により実行され得る。方法MT1は、基板Wに適用され得る。
図4は、一例の基板の部分拡大断面図である。図4に示されるように、一実施形態において、基板Wは、エッチング対象膜REとマスクMKとを備える。マスクMKはエッチング対象膜RE上に設けられる。
エッチング対象膜REは、凹部R1を含んでもよい。凹部R1は、側壁R1s及び底部R1bを有する。凹部R1は、開口であってもよい。凹部R1は例えばホール又はトレンチである。凹部R1は、後述の工程ST4と同様に、プラズマ処理装置1を用いたプラズマエッチングにより形成され得る。エッチング対象膜REは、複数の凹部R1を含んでもよい。
エッチング対象膜REは、シリコン含有膜を含んでもよい。シリコン含有膜は、シリコン酸化膜(SiO膜)、シリコン窒化膜(SiN膜)、シリコン酸化窒化膜(SiON)、シリコン炭化膜(SiC膜)、シリコン炭化窒化膜(SiCN膜)、有機含有シリコン酸化膜(SiOCH膜)、及びシリコン膜(Si膜)のうち、いずれかの単層膜であってよいし、少なくとも2種を含む積層膜であってもよい。シリコン含有膜は、少なくとも2種のシリコン含有膜が交互に配列された多層膜であってもよい。なお、シリコン窒化膜(SiN膜)、シリコン酸化窒化膜(SiON膜)、又はシリコン炭化窒化膜(SiCN膜)は、窒素を含有するシリコン含有膜である。シリコン酸化膜(SiO膜)、シリコン炭化膜(SiC膜)、有機含有シリコン酸化膜(SiOCH膜)、又はシリコン膜(Si膜)は、窒素を含有しないシリコン含有膜である。シリコン膜(Si膜)は、単結晶シリコン膜、多結晶シリコン膜(Poly-Si膜)、又は非結晶シリコン膜(α-Si膜)であってもよい。
エッチング対象膜REは、ゲルマニウム含有膜を含んでもよい。ゲルマニウム含有膜は、ゲルマニウム膜(Ge膜)及びシリコンゲルマニウム膜(SiGe膜)のいずれか1つの単層膜であってもよい。ゲルマニウム含有膜は、ゲルマニウム膜(Ge膜)及びシリコンゲルマニウム膜(SiGe膜)を含む積層膜であってもよい。
エッチング対象膜REは、金属膜を含んでもよい。金属膜は、例えば、タングステン(W)、炭化タングステン(WC)、アルミニウム(Al)、チタン(Ti)、窒化チタン(TiN)及びルテニウム(Ru)のうち少なくとも1つを含有してもよい。
エッチング対象膜REは、有機膜を含んでもよい。有機膜は、例えば、アモルファスカーボン膜(ACL)及びスピンオンカーボン膜(SOC膜:Spin On Carbon膜)の少なくとも一つを含み得る。
マスクMKは、開口OPを有する。開口OPに対応してエッチング対象膜REに凹部R1が設けられる。開口OPの幅は、例えば100nm以下であり得る。隣り合う開口OP間の距離は、例えば100nm以下であり得る。
マスクMKは、有機膜を含んでもよい。有機膜は、スピンオンカーボン膜及びアモルファスカーボン膜の少なくとも一つを含み得る。エッチング対象膜REが有機膜を含む場合、マスクMKは、シリコン酸化膜を含んでもよい。
以下、方法MT1について、方法MT1が上記実施形態の基板処理装置を用いて基板Wに適用される場合を例にとって、図3~図8を参照しながら説明する。図5~図7のそれぞれは、一つの例示的実施形態に係る基板処理方法の一工程を示す断面図である。図8は、一つの例示的実施形態に係る基板処理方法を実行することによって得られる一例の基板の部分拡大断面図である。プラズマ処理装置1が用いられる場合には、制御部2によるプラズマ処理装置1の各部の制御により、プラズマ処理装置1において方法MT1が実行され得る。方法MT1では、図2に示されるように、プラズマ処理チャンバ10内に配置された基板支持部11上の基板Wを処理する。方法MT1により、基板Wはエッチングされ得る。
図3に示されるように、方法MT1は、工程ST1、工程ST2、工程ST3、工程ST4及び工程ST5を含む。工程ST1~工程ST5は、順に実行され得る。工程ST3及び工程ST5のうち少なくとも1つは行われなくてもよい。工程ST4は、工程ST4の後の工程ST1と同時に行われてもよい。工程ST1~工程ST5において、基板Wは、同一のプラズマ処理チャンバ10内で実行される、いわゆるin-situ(インサイチュ)で処理され得る。これにより、スループットが向上する。また、基板Wは各工程の間で大気に晒されることがないため、大気中の水分等による影響を受けることなく安定した処理が可能となる。工程ST1~工程ST5において、基板Wの温度は、30℃未満、10℃以下又は0℃以下であってもよい。基板Wの温度は、基板Wを支持するための基板支持部11の温度によって調整され得る。工程ST1及び工程ST2において、基板Wの温度は、基板支持部11の温度とほぼ同じであり得る。工程ST4において、エッチングにより、基板Wの温度は基板支持部11の温度よりも高くなり得る。
また、工程ST1~工程ST5において、基板Wは、同一の真空搬送系に接続され、真空状態のまま基板Wを搬送可能な異なるプラズマ処理チャンバ10で実行される、いわゆるin-system(インシステム)で処理され得る。これにより、基板Wは各工程の間で大気に晒されることがないため、大気中の水分等による影響を受けることなく安定した処理が可能となる。
図5に示されるように、工程ST1では、例えば第1プラズマP1を用いて、基板Wの凹部R1の側壁R1sに第1層F1を形成する。第1層F1は、凹部R1の底部R1bにも形成され得る。第1層F1は、凹部R1の側壁R1sのうち一部の領域に形成され得る。工程ST1では、第1プラズマP1に基板Wを晒してもよい。第1プラズマP1は、基板Wの凹部R1の側壁R1sに第1層F1を形成可能である。第1プラズマP1は第1処理ガスから生成される。第1処理ガスは、プラズマ処理装置1のガス供給部20からプラズマ処理チャンバ10内に供給され得る。第1プラズマP1は、プラズマ処理装置1のプラズマ生成部12によって生成され得る。
第1処理ガスは、窒素含有ガスを含んでもよい。窒素含有ガスは、水素を含有してもよい。窒素含有ガスは、Nガス、ジアゼン(N)ガス、ヒドラジン(N)ガス、アンモニア(NH)ガス、及び、メチルアミン(CHNH)ガスなどアミノ基(-NH)を含むガスのうち少なくとも1つを含み得る。第1処理ガスは、水素含有ガスを含んでもよい。水素含有ガスは、Hガスを含み得る。第1処理ガスは、ハロゲン化水素を含まなくてもよい。
第1層F1は窒素を含有する。第1層F1は水素を含有してもよい。第1層F1は、アンモニア(NH)、又はアミノ基(-NH)を有する化合物を含んでもよい。第1層F1は、例えばアンモニア吸着層である。第1層F1は、第1プラズマP1とエッチング対象膜REとの相互作用(例えば吸着又は化学反応)の結果として形成される。
なお、アンモニア(NH)ガスは反応性あるいは吸着性が高いため、第1処理ガスにアンモニア(NH)ガスを用いた場合、第1プラズマP1を用いずとも、基板Wの凹部R1の側壁R1sにアンモニア(NH)、又はアミノ基(-NH)を有する化合物を含む第1層F1を形成することが期待できる。
図6に示されるように、工程ST2では、第2処理ガスを用いて、第1層F1上に第2層F2を形成する。これにより、第1層F1及び第2層F2を含む保護膜PRが形成される。第2層F2は、基板Wの凹部R1の側壁R1s及び底部R1bに形成され得る。第2層F2は、凹部R1の側壁R1s及び底部R1bのうち第1層F1が形成されていない領域には形成され難い。工程ST2では、第2処理ガスから生成される第2プラズマP2を用いてもよい。工程ST2では、第2プラズマP2に基板Wを晒してもよい。第2処理ガスは第1処理ガスとは異なる。第2処理ガス又は第2プラズマP2は、第1層F1上に第2層F2を形成可能である。第2処理ガスは、プラズマ処理装置1のガス供給部20からプラズマ処理チャンバ10内に供給され得る。第2プラズマP2は、プラズマ処理装置1のプラズマ生成部12によって生成され得る。
第2処理ガスは、炭素及び水素を含有するガスを含む。第2処理ガスは、ハイドロカーボンガス及びハイドロフルオロカーボンガスのうち少なくとも1つを含んでもよい。ハイドロカーボン(C)ガスは、CHガス及びCガスのうち少なくとも1つを含んでもよい。ハイドロフルオロカーボン(C)ガスは、CHガス、CHFガス及びCHFガスのうち少なくとも1つを含んでもよい。第2処理ガスがフッ素を含有しない場合、意図しない凹部R1のエッチングを抑制できる。
第2層F2は、炭素及び水素を含有する。第2層F2は、例えばアルキル基を有する化合物の層である。第2層F2は、第2処理ガスから生成される第2プラズマP2と第1層F1との相互作用(例えば吸着又は化学反応)の結果として形成される。一例において、第1層F1のアミノ基の水素が第2プラズマP2中のメチルラジカルによって引き抜かれて、N-CH結合が形成され得る。さらに、ラジカル重合により、メチル基の水素がメチルラジカルによって引き抜かれて、CH-CH結合が形成され得る。したがって、保護膜PRはアルキルアミンを含み得る。
なお、条件によって、第2処理ガスと第1層F1とが、直接、相互作用する場合、第2プラズマP2を用いなくてもよい。
工程ST2は、工程ST1から連続的に行われてもよい。すなわち、工程ST1と工程ST2との間に、例えば真空引き工程又はパージ工程等の中間工程が介在しなくてもよい。工程ST1と工程ST2との間に中間工程が介在する場合、中間工程の処理時間は10秒以下であってもよい。中間工程の処理時間が短いと、保護膜PRの厚みの均一性が高くなる。中間工程の処理時間が長いと、凹部R1の底部R1bにおける保護膜PRの厚みが、凹部R1の側壁R1sにおける保護膜PRの厚みに比べて大きくなる傾向にある。これは、中間工程の処理時間が長くなるに連れて、凹部R1の側壁R1sに形成された第1層F1の脱離量が多くなるからと考えられる。
工程ST3では、工程ST1及び工程ST2の実行回数が予め定められた値に到達したかを判定してもよい。判定は、基板処理装置の制御部2によって行われ得る。工程ST1及び工程ST2の実行回数が予め定められた値に到達している場合、工程ST4を実行する。工程ST1及び工程ST2の実行回数が予め定められた値に到達していない場合、工程ST1に戻り、工程ST1と工程ST2とを繰り返す。このように、方法MT1は、工程ST4の前に、工程ST1と工程ST2とを繰り返す工程を更に含んでもよい。これにより、厚い保護膜PRを形成できる。
図7に示されるように、工程ST4では、例えば第3プラズマP3を用いて、凹部R1の底部R1bをエッチングする。工程ST4では、第3プラズマP3に基板Wを晒してもよい。第3プラズマP3は、凹部R1の底部R1bをエッチング可能である。第3プラズマP3は第3処理ガスから生成される。第3処理ガスは、プラズマ処理装置1のガス供給部20からプラズマ処理チャンバ10内に供給され得る。第3プラズマP3は、プラズマ処理装置1のプラズマ生成部12によって生成され得る。第3処理ガスは第2処理ガスとは異なる。第3処理ガスは、第1処理ガスとは異なってもよいし、第1処理ガスと同じであってもよい。
第3処理ガスは、ハロゲン含有ガスを含み得る。ハロゲン含有ガスは、フッ素含有ガスを含み得る。フッ素含有ガスは、フルオロカーボンガス、ハイドロフルオロカーボンガス、フッ化水素ガス及び三フッ化窒素(NF)ガスのうち少なくとも1つを含んでもよい。第3処理ガスは、窒素含有ガスを含み得る。窒素含有ガスは、窒素酸化物ガスを含み得る。
工程ST4において、基板Wを支持するための基板支持部11にバイアス電力が印加されてもよい。バイアス電力は、図2の電源30により印加され得る。バイアス電力により、凹部R1の底部R1bのエッチングレートが増大する。
図8に示されるように、工程ST5では、凹部R1の深さDPが閾値に到達したかを判定してもよい。凹部R1の深さDPは、例えばエンドポイントモニタ等によりモニタされ得る。判定は、基板処理装置の制御部2によって行われ得る。凹部R1の深さDPが閾値に到達している場合、方法MT1を終了する。凹部R1の深さDPが閾値に到達していない場合、工程ST1に戻り、工程ST1~ST5を繰り返す。工程ST5では、工程ST1~工程ST5の繰り返し回数が閾値に到達したかを判定してもよい。このように、方法MT1は、工程ST4の後、工程ST1と工程ST2と工程ST4とを繰り返す工程を更に含んでもよい。これにより、深い凹部R1を形成できる。
工程ST4が、工程ST4の後の工程ST1と同時に行われる場合、第3プラズマP3は第1プラズマP1を兼ねる。その結果、凹部R1の底部R1bのエッチング及び第1層F1の形成は、同時に行われる。
エッチング対象膜REが例えばシリコン窒化膜など窒素を含有するシリコン含有膜を含み、工程ST5の後、ST1が実行される場合、シリコン窒化膜に含まれる窒素が第1層F1の形成に寄与するため、第1処理ガスは窒素原子を含まなくてもよい。また、エッチング対象膜REが、水素原子を含むシリコン窒化膜など窒素及び水素を含有するシリコン含有膜の場合、工程ST4のエッチングによってNHを含む反応生成物が凹部R1の側壁R1sに形成され、第1層F1として作用する。そのため、工程ST5の後、工程ST1の実行は省略されてもよい。
方法MT1の終了後において、凹部R1の深さDPは3μm以上であってもよいし、凹部R1のアスペクト比(凹部R1の幅WDに対する深さDP)は30以上であってもよい。
上記実施形態の方法MT1によれば、工程ST4において、凹部R1の側壁R1sに保護膜PRが形成されているので、凹部R1の側壁R1sのエッチングが抑制される。よって、エッチングにおける凹部R1の側壁R1sの形状不良(ボーイング)を抑制できる。
工程ST1及び工程ST2のうち少なくとも1つにおいて、基板Wの温度が30℃未満であると、低温で保護膜PRを形成できる。工程ST2において基板Wの温度が30℃未満であると、厚い第2層F2を形成できる。工程ST4において基板Wの温度が30℃未満であると、低温で凹部R1をエッチングできる。
以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な追加、省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。
以下、方法MT1の評価のために行った種々の実験について説明する。以下に説明する実験は、本開示を限定するものではない。
(第1実験)
第1実験では、シリコン酸化膜とシリコン酸化膜上のマスクMKとを備える基板Wを準備した。シリコン酸化膜は、マスクMKの開口OPに対して設けられた凹部R1を有している。その後、上記プラズマ処理システムを用いて基板Wに対して工程ST1を実施した。工程ST1において、第1処理ガスは、水素ガス(Hガス)と窒素ガス(Nガス)との混合ガスである。工程ST1では、第1プラズマP1を用いて、凹部R1の側壁R1sに第1層F1を形成した。次に、工程ST2を実施した。工程ST2において、第2処理ガスは、メタン(CH)ガスである。工程ST2では、第2プラズマP2を用いて、第1層F1上に第2層F2を形成した。次に、工程ST1及び工程ST2のそれぞれの実行回数が10に到達するまで工程ST1及び工程ST2を繰り返した。工程ST1及び工程ST2において、基板W及び基板支持部11の温度は-70℃であった。
(第2実験)
第2実験では、工程ST1を行わなかったこと以外は第1実験の方法と同じ方法を実行した。
(第1実験結果)
第1実験及び第2実験において方法が実行された基板Wの凹部R1の断面を観察した。図9及び図10は、それぞれ第1実験及び第2実験において得られる基板の部分拡大断面図である。図9に示されるように、第1実験では、保護膜PRがコンフォーマルに形成された。一方、図10に示されるように、第2実験では、保護膜PR1の厚みが不均一であった。凹部R1の底部R1bにおける保護膜PR1の厚みは、凹部R1の側壁R1sにおける保護膜PR1の厚みよりも大きかった。
図11は、第1実験及び第2実験のそれぞれにおいて基板処理方法を実行することによって得られる保護膜の厚さを示すグラフである。グラフ中、E1及びE2は第1実験及び第2実験の結果をそれぞれ示す。E1s及びE2sは、それぞれ第1実験及び第2実験において、凹部R1の側壁R1sに形成された保護膜PRの厚さを示す。E1b及びE2bは、それぞれ第1実験及び第2実験において、凹部R1の底部R1bに形成された保護膜PRの厚さを示す。
図11に示されるように、第1実験では、凹部R1の側壁R1s及び底部R1bのそれぞれにおける保護膜PRの厚さは20nmであった。一方、第2実験では、凹部R1の側壁R1sにおける保護膜PR1の厚さは0nmであり、凹部R1の底部R1bにおける保護膜PR1の厚さは70nmであった。よって、工程ST1を行わない場合、保護膜PR1が側壁R1sに形成されないことが分かった。これは、第1層F1が形成されないため、第2層F2も形成されないからと考えられる。
さらに、第1実験及び第2実験において方法が実行された基板Wについて工程ST4及び工程ST5を行うことにより、図8に示される凹部R1を形成した。エッチングにおける凹部R1の側壁のボーイングを評価するために、凹部R1の幅WDの最大値を測定した。凹部R1の幅WDの最大値は、第1実験において107nm、第2実験において113nmであった。第1実験では、第2実験と比べて、凹部R1の幅WDの最大値が小さくなった。よって、第1実験では、エッチングにおける凹部R1の側壁のボーイングも抑制されることが分かった。
(第3実験)
第3実験では、第1処理ガスとして、窒素ガス(Nガス)を用いたこと以外は第1実験の方法と同じ方法を実行した。
(第4実験)
第4実験では、第1処理ガスとして、水素ガス(Hガス)を用いたこと以外は第1実験の方法と同じ方法を実行した。
(第5実験)
第5実験では、第1処理ガスとしてアルゴンガス(Arガス)を用いて、プラズマを生成しなかったこと以外は第1実験の方法と同じ方法を実行した。
(第2実験結果)
第1実験、第3実験~第5実験において方法が実行された基板Wの凹部R1の断面を観察した。図12は、第1実験、第3実験~第5実験において基板処理方法を実行することによって得られる保護膜の厚さを示すグラフである。グラフ中、E1及びE3~E5は第1実験及び第3実験~第5実験の結果をそれぞれ示す。E3s~E5sは、それぞれ第3実験~第5実験において、凹部R1の側壁R1sに形成された保護膜PRの厚さを示す。E3b~E5bは、それぞれ第3実験~第5実験において、凹部R1の底部R1bに形成された保護膜PRの厚さを示す。
図12に示されるように、第3実験では、凹部R1の側壁R1s及び底部R1bのそれぞれにおける保護膜PRの厚さは15nmであった。一方、第4実験及び第5実験では、凹部R1の側壁R1sにおける保護膜PR1の厚さは0nmであり、凹部R1の底部R1bにおける保護膜PR1の厚さは70nmであった。よって、第1処理ガスとして水素ガス又はアルゴンガスを用いた場合、保護膜PR1が側壁R1sに形成されないことが分かった。これは、第1層F1が形成されないため、第2層F2も形成されないからと考えられる。
(第6実験~第10実験)
第6実験~第10実験では、工程ST1及び工程ST2における基板W及び基板支持部11の温度をそれぞれ-30℃、-10℃、10℃、30℃及び50℃としたこと以外は第1実験の方法と同じ方法を実行した。
(第3実験結果)
第1実験、第6実験~第10実験において方法が実行された基板Wの凹部R1の断面を観察した。図13は、第1実験、第6実験~第10実験において基板処理方法を実行することによって得られる保護膜の厚さと温度との関係の一例を示すグラフである。縦軸は、凹部R1の側壁R1s及び底部R1bのそれぞれにおける保護膜PRの厚さを示す。横軸は、工程ST1及び工程ST2における基板W及び基板支持部11の温度を示す。グラフ中、実線は凹部R1の側壁R1sにおける保護膜PRの厚さを示す。破線は、凹部R1の底部R1bにおける保護膜PRの厚さを示す。実線及び破線は互いに重なっていた。
図13に示されるように、第6実験では、凹部R1の側壁R1s及び底部R1bのそれぞれにおける保護膜PRの厚さは15nmであった。第7実験では、凹部R1の側壁R1s及び底部R1bのそれぞれにおける保護膜PRの厚さは10nmであった。第8実験では、凹部R1の側壁R1s及び底部R1bのそれぞれにおける保護膜PRの厚さは5nmであった。第9実験及び第10実験では、凹部R1の側壁R1s及び底部R1bのそれぞれにおける保護膜PRの厚さは0nmであった。よって、基板W及び基板支持部11の温度が低下するに連れて保護膜PRの厚さが大きくなることが分かった。これは、基板W及び基板支持部11の温度が低下するに連れて、工程ST1において、吸着又は化学反応による作用が高まり第1層F1が安定して形成され、形成された第1層F1が再び昇華する確率も低いからと考えられる。あるいは、基板W及び基板支持部11の温度が低下するに連れて、工程ST2において、第1層F1へのメタンガスの吸着量が多くなるからと考えられる。なお、第1処理ガスとして、例えばアンモニアガスより沸点が高いメチルアミン又はヒドラジンを用いると、基板W及び基板支持部11の温度を30℃以上とした場合であっても、保護膜PRを形成できる。あるいは、第2処理ガスとして、例えばメタンガスよりも大きい炭素数を有するハイドロカーボンガスを用いると、基板W及び基板支持部11の温度を30℃以上とした場合であっても、保護膜PRを形成できる。
(第11実験)
第11実験では、工程ST2において第2プラズマP2を生成せず第2処理ガスを用いたこと以外は第1実験の方法と同じ方法を実行した。工程ST2において、第2処理ガスは、メタン(CH)ガスである。
(第4実験結果)
第11実験において方法が実行された基板Wの凹部R1の断面を観察した。図9に示される形状と同様に、第11実験では、保護膜PRがコンフォーマルに形成された。これにより、第2プラズマP2を用いずとも保護膜PRが形成可能な場合があることが分かる。ただし、第11実験における保護膜PRの厚みは、図9に示される第1実験における保護膜PRの厚みよりも薄かった。このことから、第2プラズマP2を用いる場合、第2プラズマP2を用いない場合に比べて、保護膜PRを厚くできることが分かる。
以上の説明から、本開示の種々の実施形態は、説明の目的で本明細書で説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。
2…制御部、10…プラズマ処理チャンバ、11…基板支持部、20…ガス供給部、F1…第1層、F2…第2層、MK…マスク、MT1…方法、OP…開口、R1…凹部、R1s…側壁、RE…エッチング対象膜、W…基板。

Claims (17)

  1. エッチング対象膜と前記エッチング対象膜上に設けられ開口を有するマスクとを備える基板を処理する方法であって、
    (a)前記開口に対応して前記エッチング対象膜に設けられた凹部の側壁に、第1処理ガスを用いて、窒素を含有する第1層を形成する工程と、
    (b)前記(a)の後、炭素及び水素を含有するガスを含む第2処理ガスを用いて、炭素及び水素を含有する第2層を前記第1層上に形成する工程と、
    (c)前記(b)の後、第3処理ガスを用いて、前記凹部をエッチングする工程と、
    を含む、方法。
  2. 前記(c)の前に、前記(a)と前記(b)とを繰り返す工程を更に含む、請求項1に記載の方法。
  3. 前記(c)の後、前記(a)と前記(b)と前記(c)とを繰り返す工程を更に含む、請求項1又は2に記載の方法。
  4. 前記(a)及び前記(b)のうち少なくとも1つにおいて、前記基板の温度が30℃未満である、請求項1~3のいずれか一項に記載の方法。
  5. 前記(c)において、前記基板の温度が30℃未満である、請求項1~4のいずれか一項に記載の方法。
  6. 前記(c)では、前記第3処理ガスから生成されるプラズマを用いる、請求項1~5のいずれか一項に記載の方法。
  7. 前記(b)では、前記第2処理ガスから生成されるプラズマを用いる、請求項1~6のいずれか一項に記載の方法。
  8. 前記(a)では、前記第1処理ガスから生成されるプラズマを用いる、請求項1~7のいずれか一項に記載の方法。
  9. 前記第1層が水素を含有する、請求項1~8のいずれか一項に記載の方法。
  10. 前記第1層は、アンモニア、又はアミノ基を有する化合物を含む、請求項9に記載の方法。
  11. 前記第1処理ガスが、窒素含有ガスを含む、請求項1~10のいずれか一項に記載の方法。
  12. 前記第2処理ガスが、ハイドロカーボンガス及びハイドロフルオロカーボンガスのうち少なくとも1つを含む、請求項1~11のいずれか一項に記載の方法。
  13. 前記エッチング対象膜が、シリコン含有膜及び金属膜のうち少なくとも1つを含む、請求項1~12のいずれか一項に記載の方法。
  14. 前記(a)、前記(b)及び前記(c)において前記基板がin-situで処理される、請求項1~13のいずれか一項記載の方法。
  15. 前記(a)、前記(b)及び前記(c)において前記基板がin-systemで処理される、請求項1~13のいずれか一項記載の方法。
  16. チャンバと、
    前記チャンバ内において基板を支持するための基板支持部であり、前記基板は、エッチング対象膜と前記エッチング対象膜上に設けられ開口を有するマスクとを備える、基板支持部と、
    第1処理ガス、第2処理ガス及び第3処理ガスのそれぞれを前記チャンバ内に供給するように構成されたガス供給部であり、前記第2処理ガスは、炭素及び水素を含有するガスを含む、ガス供給部と、
    制御部と、
    を備え、
    前記制御部は、前記開口に対応して前記エッチング対象膜に設けられた凹部の側壁に、前記第1処理ガスを用いて、窒素を含有する第1層を形成するよう前記ガス供給部を制御するように構成され、
    前記制御部は、前記第1層を形成した後、前記第2処理ガスを用いて、炭素及び水素を含有する第2層を前記第1層上に形成するよう前記ガス供給部を制御するように構成され、
    前記制御部は、前記第2層を形成した後、前記第3処理ガスを用いて、前記凹部をエッチングするよう前記ガス供給部を制御するように構成される、基板処理装置。
  17. エッチング対象膜と前記エッチング対象膜上に設けられ開口を有するマスクとを備える基板を処理する方法であって、
    (a)第1処理ガスに前記基板を晒す工程であり、前記第1処理ガスは、前記開口に対応して前記エッチング対象膜に設けられた凹部の側壁に、窒素を含有する第1層を形成可能である、工程と、
    (b)前記(a)の後、第2処理ガスに前記基板を晒す工程であり、前記第2処理ガスは、炭素及び水素を含有するガスを含み、炭素及び水素を含有する第2層を前記第1層上に形成可能である、工程と、
    (c)前記(b)の後、第3処理ガスに前記基板を晒す工程であり、前記第3処理ガスは、前記凹部をエッチング可能である、工程と、
    を含む、方法。

JP2022035578A 2021-05-20 2022-03-08 基板処理方法及び基板処理装置 Pending JP2022179327A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111117113A TW202303749A (zh) 2021-05-20 2022-05-06 基板處理方法及基板處理裝置
PCT/JP2022/020086 WO2022244678A1 (ja) 2021-05-20 2022-05-12 基板処理方法及び基板処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021085498 2021-05-20
JP2021085498 2021-05-20

Publications (1)

Publication Number Publication Date
JP2022179327A true JP2022179327A (ja) 2022-12-02

Family

ID=84239204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022035578A Pending JP2022179327A (ja) 2021-05-20 2022-03-08 基板処理方法及び基板処理装置

Country Status (1)

Country Link
JP (1) JP2022179327A (ja)

Similar Documents

Publication Publication Date Title
US20040072443A1 (en) Method for plasma etching performance enhancement
KR20050118267A (ko) 플라즈마 에칭 성능 강화를 위한 방법
WO2022244678A1 (ja) 基板処理方法及び基板処理装置
JP2015079793A (ja) プラズマ処理方法
TW202213505A (zh) 蝕刻方法及電漿處理裝置
JP2022034956A (ja) エッチング方法及びプラズマ処理装置
US20220319860A1 (en) Etching method and etching processing apparatus
US11501975B2 (en) Substrate processing method and substrate processing apparatus
US20220246440A1 (en) Substrate processing method and substrate processing apparatus
JP7403314B2 (ja) エッチング方法及びエッチング装置
JP2022179327A (ja) 基板処理方法及び基板処理装置
WO2023058582A1 (ja) エッチング方法及びエッチング装置
JP2022036899A (ja) エッチング方法及びプラズマ処理装置
US20220310361A1 (en) Substrate processing method and substrate processing apparatus
JP7250895B2 (ja) エッチング方法及びプラズマ処理装置
WO2024062995A1 (ja) 基板処理方法及び基板処理装置
US20220238348A1 (en) Substrate processing method and substrate processing apparatus
US11798793B2 (en) Substrate processing method, component processing method, and substrate processing apparatus
JP2022158811A (ja) エッチング方法及びエッチング処理装置
US20230100292A1 (en) Plasma processing method and plasma processing system
WO2022220224A1 (ja) エッチング方法及びプラズマ処理装置
JP2024001464A (ja) エッチング方法及びプラズマ処理装置
WO2023234214A1 (ja) エッチング方法及びプラズマ処理装置
JP2023008824A (ja) エッチング方法及びプラズマ処理装置
JP2023002460A (ja) エッチング方法及びプラズマ処理装置