JP2022160775A - 蒸発燃料処理装置の故障診断装置 - Google Patents

蒸発燃料処理装置の故障診断装置 Download PDF

Info

Publication number
JP2022160775A
JP2022160775A JP2021065180A JP2021065180A JP2022160775A JP 2022160775 A JP2022160775 A JP 2022160775A JP 2021065180 A JP2021065180 A JP 2021065180A JP 2021065180 A JP2021065180 A JP 2021065180A JP 2022160775 A JP2022160775 A JP 2022160775A
Authority
JP
Japan
Prior art keywords
fuel
canister
case
failure diagnosis
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021065180A
Other languages
English (en)
Inventor
孝典 秋山
Takanori Akiyama
善和 宮部
Yoshikazu Miyabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2021065180A priority Critical patent/JP2022160775A/ja
Priority to PCT/JP2022/010243 priority patent/WO2022215419A1/ja
Publication of JP2022160775A publication Critical patent/JP2022160775A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

【課題】燃料タンク内でキャニスタをケース内に収容した蒸発燃料処理装置の故障診断装置において、キャニスタを収容するケース内へ燃料が流入することを許容し、流入した燃料を排出して故障診断を行う。【解決手段】キャニスタ21を収容して燃料タンク10内に設けられ、燃料タンク10内の燃料からキャニスタ21を遮蔽し、且つキャニスタ21の外表面との間に燃料が流入可能な隙間を備えるケース31と、キャニスタ21内を大気圧より低い負圧とした後のキャニスタ21内の圧力変化によりキャニスタ21の気密性に関する故障診断を行う故障診断手段と、ケース31内でキャニスタ21に触れる燃料の存否を検出する燃料検出手段54と、燃料検出手段54により燃料の存在が検出されると、ケース31内から燃料タンク10内へ燃料を排出する燃料排出手段61とを備え、故障診断手段は、燃料検出手段54により燃料の存在が検出されない状態で故障診断を行う。【選択図】図1

Description

本明細書に開示の技術は、蒸発燃料処理装置の故障診断装置に関する。
燃料タンク内で発生する蒸発燃料をキャニスタで吸着して捕捉し、その蒸発燃料をエンジンで燃焼させて処理するか、燃料タンクに環流させる蒸発燃料処理装置が知られている。この蒸発燃料処理装置において、キャニスタを燃料タンク内に設置してキャニスタから蒸発燃料が漏れるトラブルが生じても、その蒸発燃料が大気中に漏れないようにする構造が考えられている(以下、燃料タンク内設置キャニスタ構造という)。
一方、蒸発燃料処理装置の気密性に関する故障診断を行う故障診断装置がある。燃料タンク内設置キャニスタを用いた蒸発燃料処理装置では、故障診断を行う際にキャニスタ周りに燃料が付着すると、キャニスタ等に検出されるべき孔が開いていても、その孔を燃料が塞いでしまい、キャニスタの気密性に関する故障診断を正確に行うことができない。そこで、燃料タンク内設置キャニスタを用いた蒸発燃料処理装置では、燃料タンク内でキャニスタをケース内に収容してキャニスタ周辺に燃料が付着しないようにしている(特許文献1参照)。
特開2005-54704号公報
しかし、ケース内に燃料タンク内の燃料が流入しないようにするためには、ケースを密封構造とする必要があり、装置が複雑化する。
本明細書が開示する技術の課題は、燃料タンク内でキャニスタをケース内に収容した蒸発燃料処理装置の故障診断装置において、キャニスタを収容するケース内へ燃料が流入することを許容し、流入した燃料を排出して故障診断を行うことにある。
上記課題を解決するために本明細書に開示の蒸発燃料処理装置の故障診断装置は、次の手段をとる。
第1の手段は、燃料タンク内で発生する蒸発燃料を吸着して捕捉するキャニスタと、該キャニスタに燃料タンク内で発生した蒸発燃料を導入するベーパ通路と、該ベーパ通路を開閉するベーパ弁と、前記キャニスタに捕捉された蒸発燃料をパージ処理させるパージ通路と、該パージ通路を開閉するパージ弁と、前記キャニスタを収容して燃料タンク内に設けられ、燃料タンク内の燃料から前記キャニスタを遮蔽し、且つ前記キャニスタの外表面との間に燃料が流入可能な隙間を備えるケースと、前記キャニスタ内に大気圧に対して高低いずれかの空気圧を印加し、該空気圧印加後の前記キャニスタ内の圧力により前記キャニスタの気密性に関する故障診断を行う故障診断手段と、前記ケース内で前記キャニスタに触れる燃料の存否を検出する燃料検出手段と、該燃料検出手段により燃料の存在が検出されると、前記ケース内から燃料タンク内へ燃料を排出する燃料排出手段とを備え、前記故障診断手段は、前記燃料検出手段により燃料の存在が検出されない状態で故障診断を行う。
上記第1の手段によれば、燃料タンク内でキャニスタを収容したケース内に燃料が流入し、その燃料が燃料検出手段により検出されると、その燃料が燃料排出手段によりケース外に排出される。そのため、ケース内に燃料が流入しても、それが検出され排出される。従って、ケースの気密性を高めることなくケース内には燃料がない状態が維持される。その結果、燃料タンク内でキャニスタをケース内に収容した蒸発燃料処理装置の故障診断を、ケースを密封構造とすることなく、従って構造を複雑化することなく行うことができる。
第2の手段は、上述した第1の手段において、前記燃料検出手段は、前記ケース内に設置され、前記ケース内に存在する燃料の液面に浮くフロートの位置により燃料の存在を検出する液位センサを含む。
上記第2の手段によれば、汎用のフロートを用いた燃料検出手段により簡単に燃料の存在を検出することができる。
第3の手段は、上述した第2の手段において、前記ケースは、燃料タンク内の燃料が流入する連通孔を備え、前記液位センサにより満タン状態が検出されると、前記ベーパ弁を閉じるベーパ弁作動手段を備える。
上記第3の手段によれば、燃料タンクが満タンのときベーパ弁を閉じて、燃料タンク内圧を高めることができる。そのため、満タン時に燃料タンク内圧を高めて燃料給油を自動停止させるための満タン検出弁(ORVR弁)を省略することができる。
第4の手段は、上述した第1の手段において、前記ケースは、その底部に燃料を排出する燃料排出口を備え、前記燃料排出手段は、燃料ポンプにより圧送される燃料を受けて負圧を発生し、その負圧により前記ケースの燃料排出口から燃料を排出させるジェットポンプを含む。
上記第4の手段によれば、燃料ポンプがエンジンに燃料を供給するエネルギの一部を利用してジェットポンプを作動させてケース内の燃料を排出する。従って、追加のエネルギなしにケース内の燃料を排出することができる。
第5の手段は、上述した第1の手段において、前記燃料検出手段は、燃料に冷却されて電気抵抗を変化させる検出素子を含み、該検出素子は、前記ケース内で検出されるべき最低レベルの燃料に埋没する位置に設けられている。
上記第5の手段によれば、燃料に冷却されて電気抵抗を変化させる検出素子により可動部なしで簡単に燃料の存在を検出することができる。
第6の手段は、上述した第1の手段において、前記燃料検出手段は、前記キャニスタの気密性に関する故障診断において検出されるべき孔よりも開口面積の大きい開口を介して前記キャニスタを前記ケース内に連通される検出通路を備え、該検出通路の開口は、前記ケース内で検出されるべき最低レベルの燃料に埋没する位置に設けられており、前記検出通路は、前記キャニスタに対する前記検出通路の連通状態を開閉する開閉弁を備え、前記燃料検出手段は、前記キャニスタに連通する通路を全て遮断し、且つ前記開閉弁を開いた状態で、前記故障診断手段によって前記キャニスタ内に大気圧に対して高低いずれかの空気圧が印加され、前記キャニスタ内の圧力変化により前記ケース内の燃料の存否を判定する判定手段を備える。
上記第6の手段によれば、キャニスタに連通する通路を全て遮断する一方、開閉弁を開いた状態で、キャニスタ内に大気圧に対して高低いずれかの空気圧が印加された際の、キャニスタ内の圧力変化により、検出通路の開口が燃料により閉じられているか否かが判定される。従って、キャニスタ内の圧力変化によってケース内に燃料があるか否かを検出することができる。
第7の手段は、上述した第6の手段において、前記ケース内の隙間における燃料の存否を判定するため前記キャニスタ内に大気圧に対して高低いずれかの空気圧を印加する空気圧発生手段は、前記故障診断手段における故障診断のため前記キャニスタ内に大気圧に対して高低いずれかの空気圧を印加する空気圧発生手段と共用されている。
上記第7の手段によれば、ケース内の隙間における燃料の存否を判定するために用いられる空気圧発生手段が、故障診断手段における故障診断のために用いられる空気圧発生手段と共用される。そのため、システム全体の構成を簡素化することができる。
第8の手段は、上述した第1~7の手段のいずれかにおいて、前記ケースの上部には、前記ケース内の隙間を燃料タンク内空間に連通させるための連通孔が設けられており、該連通孔は、燃料タンク内で燃料が満タンとなった際の燃料の液位よりも高い位置に設定されている。
上記第8の手段によれば、ケース内の隙間と燃料タンク内空間とが連通孔を介して連通されるため、ケース内への燃料の流入の検出、若しくはケース内からの燃料の排出をスムーズに行うことができる。
第9の手段は、上述した第1~第8の手段のいずれかにおいて、前記ケースは、その底部に燃料を排出する燃料排出口を備え、該燃料排出口に対応して前記ケース内に設けられ、傾車駐車しても燃料タンク内の燃料が前記燃料排出口を介して前記ケース内に流入するのを抑制する遮液板を備える。
上記第9の手段によれば、傾車駐車に伴う燃料タンクの傾斜により燃料液面が変化したとき、燃料タンク内の燃料が燃料排出口からケース内に流入しようとするが、遮液板により燃料がケース内に流入するのを抑制することができる。
第10の手段は、上述した第1~第9の手段のいずれかの手段において、前記ベーパ通路の燃料タンク側開口部には、前記ベーパ通路内へ燃料タンク内の蒸発燃料が流入するのは許容するが、液体燃料が流入するのは抑制する燃料流入抑制構造を備える。
上記第10の手段によれば、燃料流入抑制構造により燃料タンク内の液体燃料がベーパ通路内に流入するのが抑制される。そのため、ベーパ弁に燃料が付着することによるベーパ弁の劣化を抑制することができる。
第11の手段は、上述した第10の手段において、前記ベーパ弁と燃料流入抑制構造との間の前記ベーパ通路は、前記ケース内の隙間に連通されている。
上記第11の手段によれば、燃料タンク内の燃料が燃料流入抑制構造からベーパ通路内に流入したとき、その燃料はケース内に流入し、ベーパ弁に燃料が付着することを抑制することができる。しかも、ケース内に流入した燃料は、燃料排出手段により排出することができる。また、ケース内の隙間と燃料タンク内空間とが連通されるため、ケース内への燃料の流入の検出、並びにケース内からの燃料の排出をスムーズに行うことができる。
第12の手段は、上述した第1~第11の手段のいずれかの手段において、予め設定した時間以上前記燃料排出手段が作動された状態で、前記燃料検出手段により燃料の存在が検出される状態が継続すると、異常警告を発する警告手段を備える。
上記第12の手段によれば、何らかの原因で燃料排出手段によりケース内の隙間から燃料の排出ができないとき、若しくは燃料検出手段による燃料の検出が正常に行えないとき、警告手段により異常警告を発することができる。
第1実施形態を示すシステム構成図である。 図1における液入り検出モジュー54部分の拡大図である。 第1実施形態における制御回路のブロック図である。 第1実施形態における制御回路の制御内容のうち、給油中制御ルーチンを示すフローチャートである。 図4と同様のフローチャートであり、車両走行中制御ルーチンを示す。 図4と同様のフローチャートであり、駐車中制御ルーチンを示す。 第2実施形態を示すシステム構成図である。 第2実施形態における制御回路の制御内容のうち、車両走行中制御ルーチンを示すフローチャートである。 第3実施形態における制御回路の制御内容のうち、車両走行中制御ルーチンを示すフローチャートである。
<第1実施形態の全体構成>
図1は、第1実施形態のシステム構成を示す。この実施形態は、車両用ガソリンエンジン40に適用した例である。勿論、本件技術は、車両以外のエンジンにも適用可能である。
エンジン40は、吸気管41の先端に設けられたエアクリーナ44を通じて空気を清浄化して吸入している。吸気管41には、吸気の流れで、エアクリーナ44の下流に吸入空気量を制御可能とするスロットル弁43が設けられている。また、吸気管41において、スロットル弁43の下流には、エンジン40のシリンダ内に燃料を供給する燃料噴射弁42が設けられている。
エンジン40に供給する燃料は、燃料タンク10に貯留されている。燃料タンク10の底部には、燃料噴射弁42に燃料を圧送するための燃料ポンプ45が設けられている。燃料ポンプ45は、燃料タンク10内の残留燃料が少ない状態で車両が傾斜しても燃料ポンプ45の燃料吸込口(図示略)に燃料を確保できるようにサブタンク13内に収容されている。サブタンク13は、燃料タンク10の底部に固定される容器である。燃料ポンプ45は、サブタンク13内の燃料を燃料パイプ46を介して燃料噴射弁42に供給している。燃料パイプ46の途中には、燃料噴射弁42に供給される燃料圧力を一定圧力に調整するプレッシャレギュレータ47が設けられている。燃料タンク10は、燃料タンク10内にキャニスタ21を設置した燃料タンク内設置キャニスタ構造を採用している。
燃料タンク10には、燃料タンク10内に燃料給油を行うためのフィラーパイプ11が接続されている。燃料タンク10への燃料の給油は、フィラーパイプ11の上端開口(図示略)に給油ガン(図示略)の先端を挿入して行われる。フィラーパイプ11の上端開口には、フューエルキャップ(図示略)が設けられており、フィラーパイプ11を逆流して燃料タンク10内の燃料が外部に漏れ出ないようにしている。更に、フューエルキャップの外側は、盗難防止等のためフューエルリッド(図示略)により覆われている。フューエルリッドは、フューエルリッド用電磁ロック15(図3参照)により閉じた状態でロックされており、フューエルリッドを開く際は、電気的にロックを解除することにより付勢ばね(図示略)によりフューエルリッドが開放される。また、フューエルリッドは、付勢ばねの付勢力に抗して手動にて閉じることによりフューエルリッド用電磁ロック15がロックされて閉じた状態とされる。
フィラーパイプ11の上端開口部には、エアフィルタ14が設けられている。このエアフィルタ14は、後述のキャニスタ21に大気を供給する大気通路24の先端に接続されており、キャニスタ21に供給される大気中の塵等をエアフィルタ14により除去している。
燃料ポンプ45の外壁には、センダゲージ71が設けられている。センダゲージ71は、燃料ポンプ45の外壁に揺動自在に支持されたフロートアーム71bと、その先端に支持され、燃料の液面に浮く素材により形成されたフロート71aとを備える。燃料タンク10内の燃料の液位に応じてフロート71aが上下動し、その上下動に応じてフロートアーム71bが揺動し、その揺動角度によって燃料タンク10内の燃料残量を検出可能としている。
<蒸発燃料処理装置の構成>
燃料タンク10の上部には、燃料タンク10内に燃料ポンプ45及びキャニスタ21をセットする際に、それらを挿入するための開口が形成されている。この開口には、セットプレート12が被せて設けられており、セットプレート12により開口が閉鎖されている。セットプレート12の下面には、キャニスタ21及びケース31が固定され、燃料タンク10内で、キャニスタ21の側面及び下面をケース31が覆うようにされている。従って、キャニスタ21は、ケース31によって燃料タンク10内の燃料から遮蔽されている。そして、キャニスタ21の外表面とケース31内表面との間には、燃料が流入し得る隙間が形成されている。
キャニスタ21は、内部に収容した活性炭で燃料タンク10内に発生する蒸発燃料を吸着するようにベーパ通路22を介して燃料タンク10内に連通されている。ベーパ通路22は、キャニスタ21とケース31との隙間の上部空間を利用して形成されている。ベーパ通路22の途中には、ステップモータ駆動の封鎖弁26(ベーパ弁に相当)が設けられており、封鎖弁26によりベーパ通路22を開閉するようにされている。また、ベーパ通路22の燃料タンク10側開口部には、迷路構造25(燃料流入抑制構造に相当)が設けられている。迷路構造25は、燃料タンク10からベーパ通路22内へ蒸発燃料が流入するのは許容するが、液体燃料が流入するのは抑制するように構成されている。しかも、上述のように、ベーパ通路22は、ケース3内空間に連通されているため、液体燃料が迷路構造25を通過してベーパ通路22に流入したとしても、液体燃料はケース3内空間下部に落下し、液体燃料が封鎖弁26に付着するのを抑制することができる。
キャニスタ21には、セットプレート12を貫通してパージ通路23及び大気通路24が連通されている。パージ通路23の先端は、スロットル弁43より下流側で吸気管41に連通されている。また、パージ通路23の途中には、電磁弁であるパージ弁27が設けられている。従って、パージ弁27によりパージ通路23は開閉可能とされている。一方、大気通路24の先端は、上述のエアフィルタ14に連通されている。また、大気通路24の途中には、電磁弁であるキャニスタ封鎖弁28及び故障診断モジュール29が設けられている。従って、キャニスタ封鎖弁28により大気通路24は開閉可能とされている。
<ケース31の構成>
ケース31の底部には、キャニスタ21とケース31との隙間に流入した燃料を排出するための燃料排出口31bが設けられている。燃料排出口31bは、ケース31の底部を周りよりも低くして形成された液溜め部31cの底部に設けられている。また、ケース31の上部には、ケース31内の上記隙間を燃料タンク10内空間に連通させるための連通孔31aが設けられている。連通孔31aは、燃料タンク10内の燃料が揺れたとき以外の通常時には、ここから燃料が出入りしない位置に設定されている。従って、連通孔31aは、燃料タンク10内で燃料が満タンとなった際の燃料の液位よりも高い位置に設定されている。ケース31は、連通孔31a、迷路構造25、及び燃料排出口31b以外では開放されておらず、燃料タンク10に対して閉鎖空間とされている。連通孔31aにより、ケース31内の隙間は、燃料タンク10内空間と連通されるため、ケース31内の隙間と燃料タンク10内空間との間に差圧が生じることはない。そのため、ケース31内への燃料の流入、流出の際、上記差圧により燃料の流入、流出が悪影響を受けることは抑制されている。
ケース31内の底部で、燃料排出口31bに対向する位置には、遮液板32が設けられている。遮液板32は、ケース31内側から燃料排出口31bを広範囲に覆っている。傾車駐車すると燃料タンク10も傾斜し、燃料排出口31bからケース31内に燃料が流入し、キャニスタ21の表面に燃料が付着する恐れがある。遮液板32は、燃料がキャニスタ21の表面に向けて流動するのを抑制している。
燃料排出口31bには、ジェットポンプ61が設けられている。ジェットポンプ61は、導入ポート61aが配管62によりプレッシャレギュレータ47に接続され、排出ポート61bがサブタンク13内に開口されている。また、吸引ポート61cは、燃料排出口31bに直結されている。そのため、ジェットポンプ61は、燃料ポンプ45が作動され、プレッシャレギュレータ47から燃料が配管62を通して圧送されると、吸引ポート61cに発生する負圧により燃料排出口31bからケース31内の燃料を排出させる。ジェットポンプ61、プレッシャレギュレータ47、及び燃料ポンプ45は、燃料排出手段に相当する。
ケース31内の上記隙間には、液位センサ53が設けられている。液位センサ53は、セットプレート12を貫通して垂直に支持されたロッド53aと、該ロッド53aに貫通されて摺動自在に支持されたフロート53bとを備える。フロート53bは、燃料の液面に浮く素材で出来ており、フロート53bのロッド53aに対する摺動位置に応じた電気信号は、後述の制御回路51に出力される。液位センサ53は、ケース31内の上記隙間に大量に流入した燃料を検出するように、ケース31内の比較的高い位置に設けられている。ケース31内の上記隙間への燃料の流入は、非作動状態のジェットポンプ61及び燃料排出口31bを介して行われる。そして、ケース31の内壁面とキャニスタ21の外壁面との間には、フロート53bの下限位置を設定するストッパ53cが設けられている。
液位センサ53より下方位置で、キャニスタ21の外壁面には、液入り検出モジュール54(検出通路、燃料検出手段に相当)が設けられている。図2に拡大して示すように、液入り検出モジュール54は、大小2つの容器が上下に連なって構成され、上側の大きい容器が通路部54aを成し、下側の小さい容器が検出部54cを成している。通路部54aは、連通孔21aによりキャニスタ21内に連通されており、連通孔54dにより検出部54cに連通されている。また、検出部54cは、開口54eによりケース31内の隙間に連通されている。
連通孔21aは、通路部54a内に設けられた電磁弁である開閉弁54bにより開閉可能とされている。また、開口54eは、キャニスタ21のリーク故障診断にて検出されるべき最小の孔の径(例えば、直径0.5mm)よりも大きい径(例えば、直径1.5mm)に設定されている。即ち、開口54eの開口面積は、故障診断にて検出されるべき最小の孔の開口面積よりも大きくされている。勿論、連通孔21a、54dは、開口54eの開口面積よりも大きい開口面積とされている(例えば、直径3mm以上)。そして、検出部54cにおいて、開口54eを備えた部位は遮液板32に接近して配置されている。即ち、開口54eは、ケース31内で検出されるべき最低レベルの燃料により埋没する位置とされている。
液入り検出モジュール54は、開閉弁54bが開かれた状態で、キャニスタ21内に大気圧より低い負圧が印加されたとき、キャニスタ21内の空気圧が、印加された負圧に応じて低下するか否かにより開口54eが燃料により閉塞されているか否かを検出する。開口54eの位置に燃料が存在して、開口54eが燃料により閉塞されていると、キャニスタ21内の空気圧が低下する。そのため、開口54eの位置に燃料が存在することを検出することができる。開口54eの位置に燃料が存在せず、開口54eがケース31内の隙間に開放されていると、キャニスタ21内の空気圧が低下しない。そのため、開口54eの位置に燃料が存在しないことを検出することができる。即ち、ケース31内でキャニスタ21に触れる燃料が存在しないことを検出することができる。なお、このように液入り検出モジュール54がケース31内に燃料が存在するか否かを検出するためには、ケース31内の隙間が大気圧、若しくは大気圧に近い圧力となっている必要がある。通常は、燃料タンク10内は大気圧となっているため、ケース31内の隙間も連通孔31aを通じて大気圧となっている。
図1のように、キャニスタ21の底面外壁とケース31の底面及び燃料タンク10のタンク変形抑制部73との間には、複数本(図1では2本)の支柱72が設けられている。支柱72は、2~4本程度が望ましい。タンク変形抑制部73は、概ねキャニスタ21の底面に対応する大きさで燃料タンク10の底面を補強するように底面に固定して設けられている。各支柱72は、ケース31の底部に対して鍔状の接合部72cで溶接接合されて固定されている。各支柱72は、接合部72cより上側が第1の支柱72aとされ、接合部72cより下側が第2の支柱72bとされている。第1の支柱72aは、燃料タンク10の内圧とケース31の内圧との差圧によりケース31の底部がケース31内の隙間の容積を小さくする方向に変形するのを抑制している。また、第2の支柱72bは、燃料タンク10の内圧とケース31の内圧との差圧によりケース31の底部が燃料タンク10の容積を小さくする方向に変形するのを抑制する。更に、燃料タンク10の内圧と大気圧との差圧により燃料タンク10の底部がケース31の底部に向けて変形するのを抑制している。ケース31の底部に対する接合部72cの接合は、溶接による以外、スナップフィット等の別の手段により行われてもよい。
<蒸発燃料処理装置の故障診断装置の構成>
故障診断モジュール29は、電動ポンプである故障診断用ポンプ29a(空気圧発生手段に相当)及びドレンポート圧センサ29bを備える。故障診断用ポンプ29aは、大気通路24を通じてキャニスタ21からエアフィルタ14に向けて空気を圧送可能としている。ドレンポート圧センサ29bは、大気通路24を通じてキャニスタ21内の圧力を検出している。また、セットプレート12には、タンク内圧センサ52が設けられている。タンク内圧センサ52は、燃料タンク10内の気相の圧力を検出している。
<制御回路の構成>
キャニスタ21による蒸発燃料処理装置の制御、及びキャニスタ21の気密性に関する故障診断は、燃料噴射弁42の開弁制御等と共に制御回路51により行われている。図3には、蒸発燃料処理装置の制御及びキャニスタ21の故障診断に関する部分のみを示している。制御回路51の入力回路には、タンク内圧センサ52、ドレンポート圧センサ29b、液位センサ53、フューエルリッドボタン55、及びフューエルリッドセンサ56の各出力信号が入力されている。一方、制御回路51の出力回路には、燃料ポンプ(EFP)45、故障診断用ポンプ(OBDポンプ)29a、封鎖弁26、パージ弁(VSV)27、キャニスタ封鎖弁(CCV)28、液入り検出モジュール54の開閉弁54b、警告灯(MIL)57、及びフューエルリッド用電磁ロック15に各出力信号を出力している。フューエルリッドボタン55は、フューエルリッドを開くために操作されてオンオフ信号を発する操作ボタンである。また、フューエルリッドセンサ56は、フューエルリッドが開かれたとき信号を発するセンサである。更に、警告灯57は、車両運転者に異常警告を発する警告灯である。
<蒸発燃料処理装置の作用>
図4は、制御回路51の制御プログラムの一部である給油中制御ルーチンを示す。この給油中制御ルーチンは、燃料タンク10へ給油を行うべくフューエルリッドボタン55が操作されたとき、その操作信号を受けて実行される。給油中制御ルーチンが実行されると、ステップS2にてキャニスタ封鎖弁28が開かれる。また、ステップS4において封鎖弁26が開かれる。次にステップS6では、タンク内圧センサ52によってタンク内圧Ptが検出され保存される。ステップS8では、燃料タンク10のタンク内圧Ptが大気圧Po以下となっているか否かが判定される。タンク内圧Ptが大気圧Poより高い間は、ステップS8は否定判断され、タンク内圧Ptが大気圧Po以下となると、ステップS8が肯定判断され、ステップS10以降の処理に進む。タンク内圧Ptが大気圧Po以下となるのを待つことにより、ステップS10以降でフューエルキャップを開いたとき燃料タンク10内の蒸発燃料がフィラーパイプ11から大気中に放出されるのを防止している。
ステップS10では、フューエルリッド用電磁ロック15に通電してフューエルリッドを開く。フューエルリッドが開けば、ステップS12のように手動によりフューエルキャップを開いて、給油ガンにより給油を行うことができる。給油中には、燃料タンク10内で蒸発燃料が発生し易く、発生した蒸発燃料は、迷路構造25、ベーパ通路22、及び封鎖弁26を介してキャニスタ21内の活性炭に吸着され、捕捉される。
ステップS14では、給油中、液位センサ53の検出信号により燃料タンク10が満タンとなったか否かが判定されている。燃料ポンプ45が作動せず、ジェットポンプ61が作動していない状態では、ジェットポンプ61及び燃料排出口31b(燃料通流孔に相当)を通じて燃料タンク10内の燃料がケース31内の隙間に流入する。そのため、液位センサ53は、燃料タンク10が満タンとなったか否かを検出することができる。燃料タンク10が満タンとなり、ステップS14が肯定判断されると、ステップS16において、封鎖弁26が閉じられる。給油中に封鎖弁26が閉じられると、燃料タンク10内の圧力が急激に高まり、給油ガンによる燃料注入が給油ガンの自動停止機能により自動的に停止される。給油の自動停止に伴って、給油ガンをフィラーパイプ11から抜き、フューエルキャップを閉じ、手動にてフューエルリッドを閉じると、ステップS18は肯定判断される。そのため、ステップS20でキャニスタ封鎖弁28が閉じられて給油中制御ルーチンの処理を終了する。ステップS14、S16は、ベーパ弁作動手段に相当する。
給油中にベーパ通路22を介してキャニスタ21に吸着され捕捉された蒸発燃料は、エンジン40が作動され、吸気管41が負圧となると、パージ弁27が開かれたとき、エンジン40に吸入され燃焼されて処理される。このとき、封鎖弁26は閉じられているが、キャニスタ封鎖弁28は開かれて、キャニスタ21内には、キャニスタ封鎖弁28を介してエアフィルタ14で取り込んだ大気が供給されて、キャニスタ21に吸着され捕捉された蒸発燃料は脱離されパージされる。
<蒸発燃料処理装置の故障診断装置の作用>
図5は、制御回路51の制御プログラムの一部である車両走行中制御ルーチンを示す。この車両走行中制御ルーチンは、車両走行状態が検出されたとき実行される。車両走行中制御ルーチンが実行されると、ステップS22にて液位センサ53が反応しているか否かが判定される。液位センサ53がケース31内に燃料が存在することを検出すると、ステップS22は肯定判断され、ステップS24にて燃料ポンプ45が駆動される。燃料ポンプ45が駆動されると、ジェットポンプ61が作動されてケース31内の燃料が排出される。一方、液位センサ53がケース31内に燃料が存在することを検出していないと、ステップS22は否定判断され、ステップS24の処理はスキップされる。
ステップS25では、キャニスタ21内の圧力が検出され保存される。キャニスタ21内の圧力検出は、ドレンポート圧センサ29bにより行われる。ステップS26では、故障診断モジュール29の故障診断用ポンプ29aが駆動される。また、ステップS28では、キャニスタ封鎖弁28が開かれる。次のステップS30では、液入り検出モジュール54の開閉弁54bが開かれる。このときの故障診断用ポンプ29aの駆動時間、並びにキャニスタ封鎖弁28及び開閉弁54bの開かれる時間は、予め決められた時間とされている。この時間が経過すると、故障診断用ポンプ29aは駆動停止され、キャニスタ封鎖弁28及び開閉弁54bは閉じられる。ステップS31では、上述のステップS25と同様、再度、キャニスタ21内の圧力が検出され保存される。
ステップS32では、ケース31内に燃料が流入していないか否かが判定される。この判定は、故障診断用ポンプ29aの駆動によってキャニスタ21内の圧力が予め決められた設定値より低くなるか否かによって行われる。液入り検出モジュール54の開口54eがケース31内に流入した燃料によって閉じられていると、キャニスタ21内の圧力は故障診断用ポンプ29aの駆動時間とともに低くなる。一方、ケース31内に燃料の流入がなく、液入り検出モジュール54の開口54eに燃料が付着していない場合は、大気連通路32から供給される大気圧がキャニスタ21内に流入してキャニスタ21内の圧力は殆ど低くならない。従って、ステップS28では、ステップS22及びステップS27で保存された圧力差を求め、その圧力差が予め決められた設定値より小さい場合は、ケース31内に燃料がないとして肯定判断される。また、上記圧力差が予め決められた設定値より大きい場合は、ケース31内に燃料があるとして、ステップS28は否定判断される。ステップS32が肯定判断されると、ステップS34にてキャニスタ21の気密性に関する故障診断が実施される。
上記差圧が設定値より大きく、ケース31内に燃料が存在すると判定され、ステップS32が否定判断されると、ステップS38にて燃料ポンプ45が駆動される。そして、ステップS40では、燃料ポンプ45の駆動後の経過時間Tが予め設定した時間Tt以上か否かが判定される。経過時間Tが設定時間Ttに達するまではステップS40は否定判断されるが、経過時間Tが設定時間Ttに達してステップS40が肯定判断されると、ステップS41にて、上述のステップS25~ステップS31と同じ処理Bが実行される。そして、ステップS42では、再度故障診断用ポンプ29aの駆動によってキャニスタ21内の圧力が低くなるか否かに基づいてケース31内に燃料が存在するか否かが判定される。ステップS42が、ケース31内に燃料が存在しないとして肯定判断されれば、ステップS34にてキャニスタ21の気密性に関する故障診断が実施される。しかし、ステップS42が、ケース31内に燃料が存在するとして否定判断されれば、ステップS44にて警告灯(MIL)(警告手段に相当)57が点灯されて異常警告が行われる。このとき、車両運転者は、何らかの原因でケース31内の燃料が排出できない異常があることを認識することができる。
ステップS34におけるキャニスタ21の気密性に関する故障診断は、封鎖弁26及びパージ弁27が閉じられている状態で、キャニスタ封鎖弁28を開いて故障診断モジュール29の故障診断用ポンプ29aを一定時間作動させる。この結果、キャニスタ21内は大気圧よりも低い負圧となる。この状態で、故障診断用ポンプ29aを作動停止させてキャニスタ封鎖弁28を閉じて、ドレンポート圧センサ29bによって検出されるキャニスタ21内の圧力変化を監視する。予め決められた時間経過後のキャニスタ21内の圧力の変化が所定範囲内か否かにより、キャニスタ21、並びにパージ弁27よりキャニスタ21側のパージ通路23、及びキャニスタ封鎖弁28よりキャニスタ21側の大気通路24に孔あきがないか否かが診断される。ステップS34の処理は、故障診断手段に相当する。また、ステップS32、S42の処理は、燃料検出手段に相当する。また、ステップS24、S38は、燃料排出手段に相当する。
以上のように、ケース31内に燃料が存在する場合には、その燃料を排出して、ケース31内に燃料が存在しない状態として、キャニスタ21の気密性に関する故障診断が行われる。そのため、ケース31の気密性を高めることなくケース31内には燃料がない状態が維持され、燃料タンク10内でキャニスタ21をケース31内に収容した構造の蒸発燃料処理装置の故障診断を行うことができる。従って、ケース31を密封構造とすることなく、従って構造を複雑化することなく蒸発燃料処理装置の故障診断装置を実現することができる。
図6は、制御回路51の制御プログラムの一部である駐車中制御ルーチンを示す。この駐車中制御ルーチンは、車両が駐車されたことが検出されたときに実行される。駐車中制御ルーチンが実行されると、ステップS50にて、図5の車両走行中制御ルーチンと同様の処理が行われる。即ち、ケース31内に燃料が存在しない状態で、キャニスタ21の気密性に関する故障診断が実行される。また、ステップS60にて、燃料タンク10の気密性に関する故障診断が実行される。燃料タンク10の気密性に関する故障診断は、公知であり、詳細な説明は省略する。
<第2実施形態>
図7、8は、第2実施形態を示す。第2実施形態が上述の第1実施形態に対して特徴とする点は、第1実施形態における液位センサ53及び液入り検出モジュール54に代えて、液位センサ58及びサーミスタ59(検出素子及び燃料検出手段に相当)を設けた点である。また、第1実施形態における図5の車両走行中制御ルーチンは、第2実施形態では図8のように変更されている。更に、第2実施形態では、第1実施形態における遮液板32が割愛されている。その他の構成は、第2実施形態においても第1実施形態と同一であり、同一部分についての再度の説明は省略する。
図7のように、液位センサ58は、セットプレート12を貫通して垂直に支持されたロッド58aと、該ロッド58aに貫通されて摺動自在に支持されたフロート58bとを備える。フロート58bは、燃料の液面に浮く素材で出来ており、フロート58bのロッド58aに対する摺動位置は、燃料タンク10の液位信号として第1実施形態と同様の制御回路51に出力される。液位センサ58は、ケース31内の隙間に流入した燃料を検出し、しかもケース31内の高さ方向の全域を検出領域とするように設けられている。
また、ケース31の底部の内壁面には、サーミスタ59が固定して設けられている。サーミスタ59の検出信号は、第1実施形態と同様の制御回路51に電気信号として出力される。サーミスタ59は、正特性のサーミスタ(PTCサーミスタ)であり、ケース31内に検出されるべき最低レベルの燃料が存在すると、その燃料に埋没して冷却されて抵抗値が小さくなる。また、ケース31内に燃料が存在しないと、サーミスタ59は、燃料による冷却が行われないため抵抗値が大きくなる。
図8の車両走行中制御ルーチンが実行されると、ステップS72にてサーミスタ59の抵抗値が所定値以上か否かによりケース31内に燃料が流入していないか否かが判定される。サーミスタ59の抵抗値が所定値より大きく、ケース31内に燃料が存在しないとしてステップS72が肯定判断されれば、ステップS74にてキャニスタ21の気密性に関する故障診断が実施される。しかし、サーミスタ59の抵抗値が所定値より小さいと、ケース31内に燃料が存在すると判定され、ステップS72が否定判断される。そのため、ステップS78にて燃料ポンプ45が駆動される。そして、ステップS80では、燃料ポンプ45の駆動後の経過時間Tが予め設定した時間Tt以上か否かが判定される。経過時間Tが設定時間Ttに達するまではステップS80は否定判断されるが、経過時間Tが設定時間Ttに達してステップS80が肯定判断されると、ステップS82にて、再度サーミスタ59の抵抗値が所定値以上か否かに基づいてケース31内に燃料が存在していないか否かが判定される。ステップS82が、ケース31内に燃料が存在しないとして肯定判断されれば、ステップS74にてキャニスタ21の気密性に関する故障診断が実施される。しかし、ステップS82が、ケース31内に燃料が存在するとして否定判断されれば、ステップS84にて警告灯(MIL)57が点灯されて異常警告が行われる。このとき、車両運転者は、何らかの原因でケース31内の燃料が排出できない異常があることを認識することができる。ステップS76では、燃料ポンプ45が駆動停止される。
以上のように、第2実施形態においても、ケース31内に燃料が存在する場合には、その燃料を排出して、ケース31内に燃料が存在しない状態として、キャニスタ21の気密性に関する故障診断が行われる。そのため、ケース31の気密性を高めることなくケース31内には燃料がない状態が維持され、燃料タンク10内でキャニスタ21をケース31内に収容した構造の蒸発燃料処理装置の故障診断を行うことができる。従って、ケース31を密封構造とすることなく、従って構造を複雑化することなく蒸発燃料処理装置の故障診断装置を実現することができる。
液位センサ58は、第1実施形態と同様の給油中制御ルーチン(図4参照)において、燃料タンク10内で燃料が満タンになったことを検出するための検出信号として用いられる。
<第3実施形態>
図9は、第3実施形態を示す。第3実施形態が上述の第2実施形態(図7、8参照)に対して特徴とする点は、第2実施形態では、ケース31内に燃料が存在するか否かをサーミスタ59の抵抗値により検出したのに対し、第3実施形態では、液位センサ58(燃料検出手段に相当)の検出信号により検出する点である。また、第2実施形態における図8の車両走行中制御ルーチンは、第3実施形態では図9のように変更されている。その他の構成は、第3実施形態においても第2実施形態と同一であり、同一部分についての再度の説明は省略する。
図9の車両走行中制御ルーチンが実行されると、ステップS92にて液位センサ58の検出液位が所定値Le以下か否か判定される。所定値Leは、ケース31内に検出されるべき最低レベルの燃料が存在するときの液位に相当する。ケース31内に燃料が流入していて、ステップS92が否定判断されると、ステップS98にて燃料ポンプ45が駆動される。ケース31内に燃料が存在しないとなれば、ステップS92は肯定判断され、ステップS94にてキャニスタ21の気密性に関する故障診断が実施される。ステップS96では、燃料ポンプ45が駆動停止される。
以上のように、第3実施形態においても、ケース31内に燃料が存在する場合には、その燃料を排出して、ケース31内に燃料が存在しない状態として、キャニスタ21の気密性に関する故障診断が行われる。そのため、ケース31の気密性を高めることなくケース31内には燃料がない状態が維持され、燃料タンク10内でキャニスタ21をケース31内に収容した構造の蒸発燃料処理装置の故障診断を行うことができる。従って、ケース31を密封構造とすることなく、従って構造を複雑化することなく蒸発燃料処理装置の故障診断装置を実現することができる。
<その他の実施形態>
以上、本明細書に開示の技術を特定の実施形態について説明したが、その他各種の形態で実施可能なものである。例えば、上記実施形態では、キャニスタに捕捉された蒸発燃料の処理を、エンジンに吸入させて燃焼させる方式としたが、適宜のポンプにより燃料タンク内に環流させる方式(特許第5318793号等にて公知)を採用してもよい。
上記実施形態では、キャニスタの気密性に関する故障診断を行う際、電動ポンプによりキャニスタ内を大気圧よりも低い負圧とする方式としたが、電動ポンプによりキャニスタ内を大気圧よりも高い正圧とする方式を採用してもよい。また、電動ポンプ以外のエアポンプ(例えば、ジェットポンプ等)によりキャニスタ内を大気圧よりも低い負圧、若しくは大気圧よりも高い正圧とする方式を採用してもよい。更に、エンジンが発生する負圧をキャニスタ内に印加する方式を採用してもよい。これらの各方式は、いずれも特許第5318793号等にて公知である。
上記実施形態では、キャニスタの気密性に関する故障診断を行う際、キャニスタ内を大気圧よりも低い負圧とした後、負圧が大気圧に向けて変化する速度に基づいて故障診断を行うものとした。しかし、キャニスタ内に大気圧よりも高い正圧、若しくは大気圧よりも低い負圧を印加し、その印加開始前後の圧力の変化速度に基づいて故障診断を行うものとしてもよい。また、キャニスタの気密性に関する故障診断は、エバポリークチョックモジュール(特許第3896588号等にて公知)を用いて行ってもよい。エバポリークチョックモジュールを用いた故障診断では、キャニスタ内に大気圧よりも高い正圧、若しくは大気圧よりも低い負圧を印加して故障診断を行うに際して、検出されるべきキャニスタの孔に相当する大きさの基準孔を持った通路に故障診断時と同様の空気圧を印加して、診断のための基準圧力を予め設定するものである。
上記実施形態では、燃料排出手段としてジェットポンプを使用したが、ジェットポンプに代えて電動ポンプを使用してもよい。また、上記実施形態では、ジェットポンプに燃料ポンプから圧送される燃料は、プレッシャレギュレータ経由で送られたが、燃料ポンプから直接送られるようにしてもよい。また、上記実施形態では、燃料タンクの底部にサブタンクを備えるものとしたが、サブタンクなしで構成することもできる。
上記実施形態では、液入り検出モジュール54によりケース31内に燃料が浸入しているか否かを判定する際、故障診断モジュール29の故障診断用ポンプ29aによりキャニスタ21内に負圧を導入するようにした。しかし、キャニスタ21内に負圧を導入するポンプは、故障診断用ポンプ29aを兼用せず、専用のポンプを用いてもよい。また、キャニスタ21内には負圧ではなく正圧を導入するようにしてもよい。更に、ケース31内に燃料が浸入しているか否かの判定は、キャニスタ21内への負圧導入開始前後の圧力変化に基づいて行うのではなく、キャニスタ21内への負圧導入終了後の圧力変化に基づいて行うようにしてもよい。
上記実施形態では、燃料排出口を燃料通流孔としたが、燃料通流孔を満タン時に燃料タンクの燃料をケース内に流入させる孔としてもよい。また、上記実施形態では、検出素子として正特性のサーミスタ(PTCサーミスタ)を使用したが、負特性のサーミスタ(NTCサーミスタ)を使用してもよい。検出素子としてサーミスタ以外のものを使用してもよい。
上記実施形態では、燃料流入抑制構造を迷路構造により構成したが、意図的に通路長を長くし、ベーパ通路の燃料タンク側開口部を下方に傾斜させた通路により構成することもできる。この通路によれば、通路に浸入した液体燃料は、通路内で下方に落下し、蒸発燃料は通路を経てベーパ通路へ通流される。また、上記実施形態では、ベーパ通路の一部をケース内の隙間に連通させたが、ベーパ通路は上位隙間に連通させず、互いに分離されていてもよい。
10 燃料タンク
11 フィラーパイプ
12 セットプレート
13 サブタンク
14 エアフィルタ
15 フューエルリッド用電磁ロック
21 キャニスタ
21a 連通孔
22 ベーパ通路
23 パージ通路
24 大気通路
25 迷路構造(燃料流入抑制構造)
26 封鎖弁(ベーパ弁)
27 パージ弁
28 キャニスタ封鎖弁
29 故障診断モジュール
29a 故障診断用ポンプ(空気圧発生手段)
29b ドレンポート圧センサ
31 ケース
31a 連通孔
31b 燃料排出口(燃料通流孔)
31c 液溜め部
32 遮液板
40 エンジン
41 吸気管
42 燃料噴射弁
43 スロットル弁
44 エアクリーナ
45 燃料ポンプ(燃料排出手段)
46 燃料パイプ
47 プレッシャレギュレータ(燃料排出手段)
51 制御回路
52 タンク内圧センサ
53 液位センサ
53a ロッド
53b フロート
53c ストッパ
54 液入り検出モジュール(検出通路、燃料検出手段)
54a 通路部
54b 開閉弁
54c 検出部
54d 連通孔
54e 開口
55 フューエルリッドボタン
56 フューエルリッドセンサ
57 警告灯(警告手段)
58 液位センサ(燃料検出手段)
58a ロッド
58b フロート
59 サーミスタ(検出素子、燃料検出手段)
61 ジェットポンプ(燃料排出手段)
61a 導入ポート
61b 排出ポート
61c 吸引ポート
62 配管
71 センダゲージ
71a フロート
71b フロートアーム
72 支柱
72a 第1の支柱
72b 第2の支柱
72c 接合部
73 タンク変形抑制部

Claims (12)

  1. 燃料タンク内で発生する蒸発燃料を吸着して捕捉するキャニスタと、
    該キャニスタに燃料タンク内で発生した蒸発燃料を導入するベーパ通路と、
    該ベーパ通路を開閉するベーパ弁と、
    前記キャニスタに捕捉された蒸発燃料をパージ処理させるパージ通路と、
    該パージ通路を開閉するパージ弁と、
    前記キャニスタを収容して燃料タンク内に設けられ、燃料タンク内の燃料から前記キャニスタを遮蔽し、且つ前記キャニスタの外表面との間に燃料が流入可能な隙間を備えるケースと、
    前記キャニスタ内に大気圧に対して高低いずれかの空気圧を印加し、該空気圧印加後の前記キャニスタ内の圧力により前記キャニスタの気密性に関する故障診断を行う故障診断手段と、
    前記ケース内で前記キャニスタに触れる燃料の存否を検出する燃料検出手段と、
    該燃料検出手段により燃料の存在が検出されると、前記ケース内から燃料タンク内へ燃料を排出する燃料排出手段とを備え、
    前記故障診断手段は、前記燃料検出手段により燃料の存在が検出されない状態で故障診断を行う
    蒸発燃料処理装置の故障診断装置。
  2. 請求項1において、
    前記燃料検出手段は、前記ケース内に設置され、前記ケース内に存在する燃料の液面に浮くフロートの位置により燃料の存在を検出する液位センサを含む
    蒸発燃料処理装置の故障診断装置。
  3. 請求項2において、
    前記ケースは、燃料タンク内の燃料が通流する燃料通流孔を備え、
    前記液位センサにより燃料タンクの満タン状態が検出されると、前記ベーパ弁を閉じるベーパ弁作動手段を備える
    蒸発燃料処理装置の故障診断装置。
  4. 請求項1において、
    前記ケースは、その底部に燃料を排出する燃料排出口を備え、
    前記燃料排出手段は、燃料ポンプにより圧送される燃料を受けて負圧を発生し、その負圧により前記ケースの燃料排出口から燃料を排出させるジェットポンプを含む
    蒸発燃料処理装置の故障診断装置。
  5. 請求項1において、
    前記燃料検出手段は、燃料に冷却されて電気抵抗を変化させる検出素子を含み、該検出素子は、前記ケース内で検出されるべき最低レベルの燃料に埋没する位置に設けられている
    蒸発燃料処理装置の故障診断装置。
  6. 請求項1において、
    前記燃料検出手段は、前記キャニスタの気密性に関する故障診断において検出されるべき孔よりも開口面積の大きい開口を介して前記キャニスタを前記ケース内に連通される検出通路を備え、
    該検出通路の開口は、前記ケース内で検出されるべき最低レベルの燃料に埋没する位置に設けられており、
    前記検出通路は、前記キャニスタに対する前記検出通路の連通状態を開閉する開閉弁を備え、
    前記燃料検出手段は、前記キャニスタに連通する通路を全て遮断し、且つ前記開閉弁を開いた状態で、前記キャニスタ内に大気圧に対して高低いずれかの空気圧を印加し、前記キャニスタ内の圧力変化により前記ケース内の燃料の存否を判定する判定手段を備える
    蒸発燃料処理装置の故障診断装置。
  7. 請求項6において、
    前記ケース内の隙間における燃料の存否を判定するため前記キャニスタ内に大気圧に対して高低いずれかの空気圧を印加する空気圧発生手段は、前記故障診断手段における故障診断のため前記キャニスタ内に大気圧に対して高低いずれかの空気圧を印加する空気圧発生手段と共用されている
    蒸発燃料処理装置の故障診断装置。
  8. 請求項1~7のいずれかにおいて、
    前記ケースの上部には、前記ケース内の隙間を燃料タンク内空間に連通させるための連通孔が設けられており、
    該連通孔は、燃料タンク内で燃料が満タンとなった際の燃料の液位よりも高い位置に設定されている
    蒸発燃料処理装置の故障診断装置。
  9. 請求項1~8のいずれかにおいて、
    前記ケースは、その底部に燃料を排出する燃料排出口を備え、
    該燃料排出口に対応して前記ケース内に設けられ、傾車駐車しても燃料タンク内の燃料が前記燃料排出口を介して前記ケース内に流入するのを抑制する遮液板を備える
    蒸発燃料処理装置の故障診断装置。
  10. 請求項1~9のいずれかにおいて、
    前記ベーパ通路の燃料タンク側開口部には、前記ベーパ通路内へ燃料タンク内の蒸発燃料が流入するのは許容するが、液体燃料が流入するのは抑制する燃料流入抑制構造を備える
    蒸発燃料処理装置の故障診断装置。
  11. 請求項10において、
    前記ベーパ弁と燃料流入抑制構造との間の前記ベーパ通路は、前記ケース内の隙間に連通されている
    蒸発燃料処理装置の故障診断装置。
  12. 請求項1~11のいずれかにおいて、
    予め設定した時間以上前記燃料排出手段が作動された状態で、前記燃料検出手段により燃料の存在が検出される状態が継続すると、異常警告を発する警告手段を備える
    蒸発燃料処理装置の故障診断装置。
JP2021065180A 2021-04-07 2021-04-07 蒸発燃料処理装置の故障診断装置 Pending JP2022160775A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021065180A JP2022160775A (ja) 2021-04-07 2021-04-07 蒸発燃料処理装置の故障診断装置
PCT/JP2022/010243 WO2022215419A1 (ja) 2021-04-07 2022-03-09 蒸発燃料処理装置の故障診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021065180A JP2022160775A (ja) 2021-04-07 2021-04-07 蒸発燃料処理装置の故障診断装置

Publications (1)

Publication Number Publication Date
JP2022160775A true JP2022160775A (ja) 2022-10-20

Family

ID=83546054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021065180A Pending JP2022160775A (ja) 2021-04-07 2021-04-07 蒸発燃料処理装置の故障診断装置

Country Status (2)

Country Link
JP (1) JP2022160775A (ja)
WO (1) WO2022215419A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826825B2 (ja) * 1987-02-28 1996-03-21 日本電装株式会社 蒸発燃料処理装置
DE10133400C2 (de) * 2001-07-13 2003-08-07 Siemens Ag Kraftstoffbehälter
JP2004100512A (ja) * 2002-09-06 2004-04-02 Fts:Kk 燃料蒸気処理システムのリーク診断装置
JP4224269B2 (ja) * 2002-09-06 2009-02-12 株式会社エフティエス キャニスタモジュール
JP2005054704A (ja) * 2003-08-06 2005-03-03 Aisan Ind Co Ltd 蒸発燃料処理装置

Also Published As

Publication number Publication date
WO2022215419A1 (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
US6675779B2 (en) Dual float valve for fuel tank vent with liquid carryover filter
JP4483523B2 (ja) 内燃機関の蒸発燃料処理装置
JP5177165B2 (ja) 内燃機関の蒸発燃料処理装置
US8910652B2 (en) Fuel ventilation system valve
JP6642329B2 (ja) 蒸発燃料処理システム
JP2008114845A (ja) 蒸気排出制御システム、及び蒸気排出制御方法
US6973924B1 (en) Evaporative fuel control system for internal combustion engine
JP2004518048A (ja) 燃料蒸発ガスのない燃料系統における燃料漏れの検出装置及び方法
US6964268B2 (en) Fuel tank having a venting system
EP3575587B1 (en) Evaporative emissions control system leak check module including first and second solenoid valves
JP2009036155A (ja) 蒸発燃料処理装置
JP4441498B2 (ja) 燃料タンクシステム
JP2008002383A (ja) 燃料遮断弁およびブリーザパイプ
JP2022160775A (ja) 蒸発燃料処理装置の故障診断装置
JP2022160095A (ja) 蒸発燃料処理装置の故障診断装置
JP2010071199A (ja) インタンクキャニスタシステムの故障診断装置及び故障診断方法
JP4172167B2 (ja) 密閉タンクシステムの給油制御装置
JP4110754B2 (ja) 燃料タンクの蒸発燃料制御装置
JP3284881B2 (ja) 燃料蒸気処理装置の故障診断装置
JP6260771B2 (ja) 燃料蒸発ガス排出抑止装置
US6739361B2 (en) Method and arrangement for obtaining a low-emission tanking operation of a tank system including a tank system of a motor vehicle
JP3777863B2 (ja) 蒸発燃料制御装置
JP2005104394A (ja) 蒸発燃料排出抑制装置
US20220268242A1 (en) Failure Diagnostic Apparatus for Fuel Vapor Treatment Device
JP2007112182A (ja) 燃料タンクの蒸発燃料放出抑制装置