JP2022139449A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2022139449A
JP2022139449A JP2021039842A JP2021039842A JP2022139449A JP 2022139449 A JP2022139449 A JP 2022139449A JP 2021039842 A JP2021039842 A JP 2021039842A JP 2021039842 A JP2021039842 A JP 2021039842A JP 2022139449 A JP2022139449 A JP 2022139449A
Authority
JP
Japan
Prior art keywords
image
image signal
scanning direction
sub
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021039842A
Other languages
English (en)
Inventor
出 堀内
Izuru Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021039842A priority Critical patent/JP2022139449A/ja
Publication of JP2022139449A publication Critical patent/JP2022139449A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

【課題】スペクトラム拡散された変調クロックを用いて露光ヘッドの発光部の点灯を制御する構成において、主走査方向の画像の濃度ムラを抑制することができる画像形成装置を提供する。【解決手段】感光ドラム1の表面に露光ヘッド6によって光を照射して静電潜像を形成する画像形成装置において、画像信号生成部71によって生成された第1画像信号を処理し、第2画像信号を生成する副走査フィルタ75と、スペクトラム拡散の変調周期のn+1/2倍(nは正の整数)の周期で複数の発光部50が発光を開始するタイミングの制御に用いられる第2ライン同期信号を生成する同期信号生成部74と、を備え、複数の発光部50は、副走査方向に隣接する2以上のm個の走査線を感光ドラム1の表面に形成することで主走査方向に並ぶ複数の画素を形成し、副走査フィルタ75は、第1画像信号において副走査方向に隣接するm個の画像信号を合成した合成データに基づいて、m個の走査線を形成するための第2画像信号を生成する。【選択図】図14

Description

本発明は、電子写真画像形成方式を用いてシートに画像を形成する電子写真複写機、電子写真プリンタなどの画像形成装置に関する。
電子写真方式の画像形成装置で画像を形成する場合、まず感光体の表面に画像信号に応じた光を照射することにより感光体の表面に静電潜像を形成する。その後、現像装置によって感光体の表面の静電潜像にトナーを付着させてトナー像を形成し、トナー像をシートに転写し、定着装置によりシートに転写されたトナー像を加熱しシートに定着させる。
また画像形成装置において、露光ヘッドにより感光体に光を照射して静電潜像を形成する構成が知られている。露光ヘッドは、感光体の回転軸線方向に配列された複数の発光部と、複数の発光部から出射された光を感光体の表面に結像させるレンズを備え、複数の発光部が順番に発光することにより主走査方向に延びる1ラインの走査線を形成し、これを繰り返すことで静電潜像を形成する。発光部にはLEDや有機ELなどが用いられる。このような露光ヘッドを用いることで、レーザ光を回転多面鏡により偏向走査して静電潜像を形成するレーザ走査方式の構成と比較して、部品点数の削減を図ることができ、画像形成装置の小型化や製造コストの削減を図ることができる。
ここで露光ヘッドは、発光部を駆動させる駆動信号を伝送する配線がアンテナの役割をして、放射ノイズの発生源になり易い構造となっている。これに対し特許文献1では、放射ノイズ対策としてSSCG(Spread Spectrum Clock Generator)によってシステムクロックをスペクトラム拡散して放射ノイズ成分のピーク周波数ゲインを抑える構成が記載されている。しかしスペクトラム拡散を行う場合、変調クロックの周期変動に起因して露光時間が変動し、画像の濃度ムラが発生する可能性がある。以下、これについて説明する。
図18(a)は、露光ヘッドが1ラインの走査線を形成する周期である露光周期とスペクトラム拡散の変調周期と画像の濃度変動との関係を示す図である。図18(b)は、発光部の主走査方向の位置と変調クロックの周波数偏差との関係を示す図である。図18に示す様に、変調クロックの周波数偏差が負の場合、変調クロックの周期が長くなるため、露光時間が長くなって画像が濃くなる。また変調クロックの周波数偏差が正の場合、変調クロックの周期が短くなるため、露光時間が短くなって画像が薄くなる。また露光ヘッドの露光周期をスペクトラム拡散の変調周期のn倍(nは正の整数)とする場合、副走査方向に同じ濃度の画像が並ぶことになり、主走査方向における画像の濃度ムラが目立ちやすくなる。
これに対し特許文献1の構成は、副走査方向に隣接する二つの走査線によって主走査方向に並列する複数の画素を形成する。また図19に示す様に、露光ヘッドの露光周期をスペクトラム拡散の変調周期のn+1/2倍(nは正の整数)とし、副走査方向に隣接する走査線を形成する際の変調クロックの位相を反転させる。これにより図20(a)に示す様に、副走査方向に隣接する2つの走査線の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分が釣り合って両者が打ち消し合い、主走査方向の画像の濃度ムラを目立ちにくくすることができる。
特開2015-229246号公報
図20(a)に示す様に、特許文献1の構成では、1ライン目の走査線を形成するための画像信号に対応する画像の濃度と2ライン目の走査線を形成するための画像信号に対応する画像の濃度が同じ場合に露光時間の増加分と減少分が釣り合う。しかしながら、図20(b)に示す様に、1ライン目の走査線を形成するための画像信号に対応する画像の濃度と2ライン目の走査線を形成するための画像信号に対応する画像の濃度が異なる場合、一つの画素を形成するための副走査方向に隣接する2つの露光スポットの間で理想的な露光量が異なるため、変調クロックの周波数変動に起因する露光時間の増加分と減少分が異なることになる。この場合、副走査方向に隣接する二つの走査線の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分とが完全に打ち消しあわずに残差成分が残り、主走査方向の画像の濃度ムラが目立ちやすくなる。
そこで本発明は、スペクトラム拡散された変調クロックを用いて露光ヘッドの発光部の点灯を制御する構成において、主走査方向の画像の濃度ムラを抑制することができる画像形成装置を提供することを目的とする。
上記目的を達成するための本発明に係る画像形成装置の代表的な構成は、感光体の表面に光を照射して静電潜像を形成し、該静電潜像にトナーを付着させて画像を形成する画像形成装置において、基準クロックを生成する基準クロック生成部と、前記基準クロックを変調してスペクトラム拡散された変調クロックを周期的に生成する変調クロック生成部と、前記画像形成装置に入力されたデータに基づいて第1画像信号を生成する画像信号生成部と、前記第1画像信号に基づいて第2画像信号を生成する画像信号処理部と、前記感光体の表面に光を照射して前記静電潜像を形成する露光ヘッドであって、主走査方向に並列して配置され、前記第2画像信号に基づいて発光して前記感光体の表面に主走査方向に延びる一つの走査線を形成し、該走査線を周期的に形成することにより前記感光体の表面に前記静電潜像を形成する複数の発光部と、前記変調クロックに基づいて設定される発光時間、前記複数の発光部を発光させる駆動部と、を備える露光ヘッドと、前記変調クロックをカウントし、前記複数の発光部が発光を開始するタイミングの制御に用いられる制御信号を周期的に生成する制御信号生成部であって、前記スペクトラム拡散の変調周期のn+1/2倍(nは正の整数)の周期で前記制御信号を生成する制御信号生成部と、を備え、前記複数の発光部は、副走査方向に隣接する2以上のm個の前記走査線を前記感光体の表面に形成することで、前記感光体の表面に前記主走査方向に並ぶ複数の画素を形成し、前記画像信号処理部は、前記第1画像信号において前記副走査方向に隣接する前記m個の画像信号を合成した合成データに基づいて、前記m個の前記走査線を形成するための前記第2画像信号を生成することを特徴とする。
本発明によれば、スペクトラム拡散された変調クロックを用いて露光ヘッドの発光部の点灯を制御する画像形成装置において、主走査方向の画像の濃度ムラを抑制することができる。
画像形成装置の断面概略図である。 感光ドラムと露光ヘッドの斜視図と断面図である。 露光ヘッドが備えるプリント基板の実装面を示す図である。 画像コントローラ部と露光ヘッドのシステム構成を示すブロック図である。 LUTの構成を示す図である。 発光素子アレイチップの回路を説明する図である。 シフトサイリスタのゲート電位の分布状態を説明する図である。 発光素子アレイチップの駆動信号波形を示す図である。 副走査フィルタの構成を示すブロック図と、チップデータ変換部の構成を示すブロック図である。 チップデータ変換部とチップデータシフト部の動作を示すタイミングチャートである。 チップデータ変換部の動作を示す図である。 露光ヘッドの露光周期と変調クロックの周期と発光部の主走査方向の位置との関係を示すグラフである。 露光ヘッドの露光スポットと画素との関係を示す模式図である。 感光ドラムの表面における副走査方向の位置と露光分布との関係を示すグラフである。 副走査フィルタの構成を示すブロック図と、露光ヘッドの露光スポットと画素との関係を示す模式図である。 感光ドラムの表面における副走査方向の位置と露光分布との関係を示すグラフである。 副走査フィルタの構成を示すブロック図である。 従来技術における露光ヘッドの露光周期とスペクトラム拡散の変調周期と画像の濃度変動との関係を示す図である。 従来技術における露光ヘッドの露光周期とスペクトラム拡散の変調周期と画像の濃度変動との関係を示す図である。 従来技術における副走査方向に隣接する走査線の理想の露光量に対する増加量と減少量を示す図である。
<画像形成装置>
以下、本発明に係る画像形成装置Aの全体構成を画像形成時の動作とともに図面を参照しながら説明する。なお、以下に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
画像形成装置Aは、イエローY、マゼンダM、シアンC、ブラックKの4色のトナーをシートに転写して画像を形成するフルカラー画像形成装置である。なお、以下の説明において、上記各色のトナーを使用する部材には添え字としてY、M、C、Kを付するものの、各部材の構成や動作は使用するトナーの色が異なることを除いて実質的に同じであるため、区別を要する場合以外は添え字を適宜省略する。
図1は、画像形成装置Aの断面概略図である。図1に示す様に、画像形成装置Aは、画像を形成する画像形成部を有する。画像形成部は、感光体としての感光ドラム1(1Y、1M、1C、10K)、帯電装置2(2Y、2M、2C、2K)、露光ヘッド6(6Y、6M、6C、6K)、現像装置4(4Y、4M、4C、4K)、転写装置5(5Y、5M、5C、5K)を有する。
次に、画像形成装置Aによる画像形成動作について説明する。画像を形成する場合、まずシートカセット99a又はシートカセット99bに収納されたシートSが、ピックアップローラ91a、91b、給送ローラ92a、92b、搬送ローラ93a~93cによってレジストローラ96に送られる。その後、シートSは、レジストローラ96によって所定のタイミングで搬送ベルト11に送り込まれる。
一方、画像形成部においては、まず帯電装置2Yにより感光ドラム1Yの表面が帯電させられる。次に、画像読取部90によって読み取られた画像データ、又は、不図示の外部機器から送信された画像データに応じて露光ヘッド6Yが感光ドラム1Yの表面に光を照射し、感光ドラム1Yの表面に静電潜像を形成する。その後、現像装置4Yにより感光ドラム1Yの表面に形成された静電潜像にイエローのトナーを付着させ、感光ドラム1Yの表面にイエローのトナー像を形成する。感光ドラム1Yの表面に形成されたトナー像は、転写装置5Yに転写バイアスが印加されることで、搬送ベルト11によって搬送されているシートSに転写される。
同様のプロセスにより、感光ドラム1M、1C、1Kにも、露光ヘッド6M、6C、6Kから光が照射されて静電潜像が形成され、現像装置4M、4C、4Kによってマゼンダ、シアン、ブラックのトナー像が形成される。そして転写装置5M、5C、5Kに転写バイアスが印加されることで、これらのトナー像がシートS上のイエローのトナー像に対して重畳的に転写される。これによりシートSの表面には画像データに応じたフルカラーのトナー像が形成される。
その後、トナー像を担持するシートSは、搬送ベルト97によって定着装置94に搬送され、定着装置94において加熱、加圧処理が施される。これによりシートS上のトナー像がシートSに定着される。その後、トナー像が定着されたシートSは、排出ローラ98によって排出トレイ95に排出される。
<露光ヘッド>
次に、露光ヘッド6の構成について説明する。
図2(a)は、感光ドラム1と露光ヘッド6の斜視図である。図2(b)は、感光ドラム1と露光ヘッド6の断面図である。図3(a)、図3(b)は、露光ヘッド6が備えるプリント基板22の一方側と他方側の実装面を示す図である。図3(c)は、矢印Y方向に隣接する発光素子アレイチップ40の位置関係を示す概略図である。
図2に示す様に、露光ヘッド6は、感光ドラム1の表面と対向する位置に、不図示の固定部材によって固定されている。露光ヘッド6は、光を出射するLEDアレイである発光素子アレイチップ40と、発光素子アレイチップ40を実装するプリント基板22を有する。また発光素子アレイチップ40から出射された光を感光ドラム1上に結像(集光)させるロッドレンズアレイ23と、ロッドレンズアレイ23とプリント基板22が固定されるハウジング24を有する。
図3に示す様に、プリント基板22には、29個の発光素子アレイチップ40が千鳥状に二列に配列されて実装されている。また各々の発光素子アレイチップ40内には、その長手方向(矢印X方向)に所定の解像度ピッチで516個の発光部50(発光素子)が配列されている。
本実施形態において、発光素子アレイチップ40の上記解像度ピッチは1200dpi(約21.16μm)である。また各々の発光素子アレイチップ40が有する発光部50の長手方向の一端部から他端部までの距離は約10.9mmである。つまり露光ヘッド6は、矢印X方向に合計で14964個の発光部50を備えており、これにより約316mm(≒約10.9mm×29チップ)の長手方向の画像幅に対応した露光処理が可能となっている。
発光素子アレイチップ40の長手方向において、隣接する発光素子アレイチップ40の発光部50の間隔L1は約21.16μmとなっている。つまり各々の発光素子アレイチップ40の境界部において発光部50の長手方向のピッチは1200dpiの解像度のピッチとなっている。また発光素子アレイチップ40の短手方向(矢印Y方向)において、隣接する発光素子アレイチップ40の発光部50の間隔L2は約84μm(1200dpiで4画素分、2400dpiで8画素分)となっている。
また発光素子アレイチップ40には、発光素子アレイチップ40に信号を出入力するためのワイヤボンディングパッド48が設けられている。発光素子アレイチップ40の転送部49や発光部50は、ワイヤボンディングパッド48から入力された信号によって駆動する。
またプリント基板22における発光素子アレイチップ40の実装面と反対側の面にはコネクタ21が実装されている。またコネクタ21の矢印X方向の両側には、発光素子アレイチップ40-1~40-15を駆動する駆動部80aと、発光素子アレイチップ40-16~40-29を駆動する駆動部80bが設けられている。
駆動部80a、80bから各々の発光素子アレイチップ40へは、発光素子アレイチップ40を駆動するための配線がプリント基板22の内層を通って接続されている。コネクタ21は、画像コントローラ部70(図4)から送信される駆動部80a、80bの制御信号の伝送、電源ライン、グランド線を接続するために設けられている。
本実施形態において、発光素子アレイチップ40の長手方向である矢印X方向は、感光ドラム1の回転軸線方向であり、主走査方向でもある。また発光素子アレイチップ40の短手方向である矢印Y方向は、感光ドラム1の回転方向であり、副走査方向でもある。また矢印Z方向は、矢印X方向と矢印Y方向に直交する方向である。なお、発光素子アレイチップ40の長手方向は、感光ドラム1の回転軸線方向に対して±1°程度傾いていても構わない。また発光素子アレイチップ40の短手方向も感光ドラム1の回転方向に対して±1°程度傾いていても構わない。
<露光ヘッドのシステム構成>
次に、画像形成装置Aの本体側に設けられた画像コントローラ部70と露光ヘッド6のシステム構成について説明する。以下では、イエロー、マゼンダ、シアン、ブラックの四色のうち単色の処理について説明するものの、画像形成動作を行う場合、上記四色について同様の処理が並列的に行われる。また以下では、駆動部80aと発光素子アレイチップ40-1~40-15との間のシステム構成について説明するものの、駆動部80bと発光素子アレイチップ40-16~40-29との間のシステム構成も同様である。
図4は、画像コントローラ部70と露光ヘッド6のシステム構成を示すブロック図である。図4に示す様に、画像コントローラ部70は、クロック生成部68、SSCLK生成部69、画像信号生成部71、データ送信部72、CPU73、同期信号生成部74、副走査フィルタ75、チップデータ変換部78、チップデータシフト部79を備える。
画像コントローラ部70は、上述した各部により、画像データの処理や画像形成タイミングの処理を行い、露光ヘッド6のプリント基板22に対して露光ヘッド6を制御するための制御信号を送信する。具体的には、制御信号は、画像信号、ライン同期信号、CPU73の通信信号などであり、これらの信号は画像コントローラ部70のコネクタ76からケーブル77a~77cを介して露光ヘッド6のコネクタ21に伝送される。
クロック生成部68(基準クロック生成部)は、基準クロックを生成する。SSCLK生成部69(変調クロック生成部)は、スペクトラム拡散クロックIC(SSCG:SpreadSpectrum Clock Generator)である。SSCLK生成部69は、クロック生成部68により生成された基準クロックに対して周波数変調(スペクトラム拡散)した変調クロックを生成する。図面中では、基準クロックを「CLK」と、変調クロックを「SSCLK」とそれぞれ表記する。CPU73は、SSCLK生成部69により生成される変調クロックの変調の周期と強度を設定する。本実施形態において、変調クロックの周期は発光素子アレイチップ40の矢印X方向の長さの2倍に設定されている。また変調クロックの強度は0.1%から5%の範囲で設定可能であり、放射ノイズを十分に低減できる範囲内でなるべく小さい値に設定される。
クロック生成部68は、画像信号生成部71、CPU73、同期信号生成部74、副走査フィルタ75、チップデータ変換部78に対して基準クロックを入力する。SSCLK生成部69は、同期信号生成部74、チップデータ変換部78、チップデータシフト部79に対して変調クロックを入力する。即ち、同期信号生成部74とチップデータ変換部78には、基準クロックと変調クロックの両方が入力される。同期信号生成部74は、第1ライン同期信号を基準クロックに基づいて生成し、第2ライン同期信号を変調クロックに基づいて生成する(図11参照)。なお、図4において、基準クロックを伝送するための信号線と変調クロックを伝送するための信号線は省略している。
画像信号生成部71には、画像読取部90により読み取られた原稿の画像データや外部機器からネットワークを介して転送された画像データが入力される。画像信号生成部71は、入力された画像データに対して、CPU73により指示された解像度でディザリング処理を行い、画像を出力するための画像信号(第1画像信号)を生成する。
同期信号生成部74(制御信号生成部)は、1ライン分の時間間隔を示す信号であるライン同期信号を周期的に生成する。CPU73は、予め設定された感光ドラム1の回転速度に対し、感光ドラム1の表面が回転方向に画像形成装置Aで形成される画像の副走査方向の解像度に応じた距離を移動する周期を1ライン周期とし、同期信号生成部74に信号周期の時間間隔を指示する。なお、感光ドラム1の回転速度は、不図示の記憶部に記憶された設定値に基づいてCPU73が算出する。
副走査フィルタ75(画像信号処理部)は、ライン同期信号と同期して、画像信号生成部71から画像信号を1ラインずつ受け取り、画像信号に対して所定の処理を行う。副走査フィルタ75の詳しい動作については後述する。
チップデータ変換部78は、ライン同期信号と同期して、副走査フィルタ75から画像信号を1ラインずつ受け取る。チップデータ変換部78は、入力された画像信号を、発光素子アレイチップ40-1~40-29の各々で使用できるように配列する。
チップデータシフト部79は、CPU73から指示された各々の発光素子アレイチップ40の位置補正情報に基づいて、各々の発光素子アレイチップ40毎に2400dpi単位で画像信号を副走査方向にシフトさせる。CPU73は、各々の発光素子アレイチップ40の副走査方向の間隔(本実施形態では2400dpiで8画素分)と、事前に測定された各々の発光素子アレイチップ40の実装位置のずれを加算して位置補正情報を算出してチップデータシフト部79に画像信号のシフト量を指示する。
データ送信部72は、露光ヘッド6のデータ受信部81に対し、画像コントローラ部70で生成された各種の信号をケーブル77a~77cを介して送信する。具体的には、画像信号生成部71から出力された画像信号はケーブル77aを介して送信される。同期信号生成部74で生成されたライン同期信号(第1ライン同期信号及び第2ライン同期信号)はケーブル77bを介して送信される。CPU73で生成された通信信号はケーブル77cを介して送信される。データ送信部72は、データ受信部81に対して、ライン同期信号に同期してライン単位で画像信号を送信する。
データ受信部81で受信された画像信号はLUT82に入力される。図5(a)は、発光素子アレイチップ40の発光部50の特性を示すグラフである。図5(b)は、LUT82が有するLookUp Tableを示すグラフである。図5(a)に示す様に、発光素子アレイチップ40の発光部50は、露光時間と光量との関係が非線形的な特性を持っている。LUT82は、図5(b)に示す様に、露光時間と光量との関係が線形線を持つように、入力された画像信号を補正して出力する。なお、駆動部80aは、発光素子アレイチップ40-1~40-15に対応する画像信号を発光素子アレイチップ40毎に並列に処理する回路を有する。
発光パルス生成部83は、LUT82から入力された画像信号のデータ値に応じて発光素子アレイチップ40が1画素区間内で発光する発光時間に対応したパルス幅信号(PWM信号)を生成する。発光パルス生成部83がPWM信号を出力するタイミングは、タイミング制御部84によって制御される。具体的には、タイミング制御部84は、同期信号生成部74で生成された第2ライン同期信号によって各画素の画素区間に対応した同期信号を生成して発光パルス生成部83に送信し、発光パルス生成部83は受信した同期信号に応じてPWM信号を出力する。
駆動電圧生成部86は、PWM信号に同期して発光素子アレイチップ40を駆動する駆動電圧を生成する。駆動電圧生成部86は、発光素子アレイチップ40の発光部50の光量が所定の光量となるようにCPU73により出力信号の電圧レベルを5V中心に調整可能な構成となっている。本実施形態では、各々の発光素子アレイチップ40は、同時に四つの発光部50を独立して駆動できる構成である。駆動電圧生成部86は、発光素子アレイチップ40毎に駆動信号4ライン、露光ヘッド6全体では、千鳥状構成の1ライン(15チップ)×4=60ラインに駆動信号を供給する。各々の発光素子アレイチップ40に供給される駆動信号は、ΦW1~ΦW4とする(図6参照)。一方、後述するシフトサイリスタ(図6参照)の動作により、順次、発光素子アレイチップ40が駆動される。制御信号生成部85は、タイミング制御部84で生成された画素区間に対応する同期信号より、画素毎にシフトサイリスタを転送するための制御信号Φs、Φ1、Φ2を生成する(図6参照)。
<SLED回路>
次に、SLED回路について説明する。
図6は、本実施形態の自己走査型発光素子(Self-Scanning LED:SLED)チップアレイの一部分を抜き出した等価回路である。図6において、Ra、Rgはそれぞれアノード抵抗、ゲート抵抗であり、Tnはシフトサイリスタ、Dnは転送ダイオード、Lnは発光サイリスタを示す。また、Gnは、対応するシフトサイリスタTn、及びシフトサイリスタTnに接続されている発光サイリスタLnの共通ゲートを表している。ここで、nは2以上の整数とする。Φ1は奇数番目のシフトサイリスタTの転送ライン、Φ2は偶数番目のシフトサイリスタTの転送ラインである。ΦW1~ΦW4は発光サイリスタLの点灯信号ラインであり、それぞれ抵抗RW1~RW4と接続されている。VGKはゲートラインであり、Φsはスタートパルスラインである。図6に示す様に、1個のシフトサイリスタTnに対し、発光サイリスタはL4n-3~L4nまでの4個が接続されており、同時に4個の発光サイリスタL4n-3~L4nが点灯可能な構成となっている。
次に、図6に示すSLED回路の動作について説明する。なお、図6の回路図において、ゲートラインVGKには5Vが印加されているものとし、転送ラインΦ1、Φ2、及び点灯信号ラインΦW1~ΦW4に入力される電圧も、同じく5Vとする。
図6において、シフトサイリスタTnがオン状態にあるとき、シフトサイリスタTn、及びシフトサイリスタTnに接続されている発光サイリスタLnの共通ゲートGnの電位は約0.2Vまで引き下げられる。発光サイリスタLnの共通ゲートGnと発光サイリスタLn+1の共通ゲートGn+1との間は、結合ダイオードDnで接続されているため、結合ダイオードDnの拡散電位に略等しい電位差が発生する。本実施形態では、結合ダイオードDnの拡散電位は約1.5Vであるので、発光サイリスタLn+1の共通ゲートGn+1の電位は、発光サイリスタLnの共通ゲートGnの電位の0.2Vに、拡散電位の1.5Vを加えた1.7V(=0.2V+1.5V)となる。
以下、同様に、発光サイリスタLn+2の共通ゲートGn+2の電位は3.2V(=1.7V+1.5V)、発光サイリスタLn+3(不図示)の共通ゲートGn+3(不図示)の電位は4.7V(=3.2V+1.5V)となる。ただし、発光サイリスタLn+4の共通ゲートGn+4以降の電位は、ゲートラインVGKの電圧が5Vであり、これ以上の高い電圧にはならないので、5Vとなる。また、発光サイリスタLnの共通ゲートGnより前(図6の共通ゲートGnよりも左側)の共通ゲートGn-1の電位については、結合ダイオードDn-1が逆バイアス状態になっているため、ゲートラインVGKの電圧がそのまま印加され、5Vとなっている。
図7(a)は、上述したシフトサイリスタTnがオン状態のときの各発光サイリスタLnの共通ゲートGnのゲート電位の分布を示す図であり、共通ゲートGn-1、Gn、Gn+1・・・は、図6中の発光サイリスタLの共通ゲートを指している。また図7(a)の縦軸は、ゲート電位を示す。
各シフトサイリスタTnがオンするために必要な電圧(以下、「閾値電圧」)は、各々の発光サイリスタLnの共通ゲートGnのゲート電位に拡散電位(1.5V)を加えたものと、略同じ電位である。シフトサイリスタTnがオンしているとき、同じシフトサイリスタTnの転送ラインΦ2のラインに接続されているシフトサイリスタの中で、共通ゲートのゲート電位が最も低いのはシフトサイリスタTn+2である。シフトサイリスタTn+2に接続されている発光サイリスタLn+2の共通ゲートGn+2の電位は、先に説明したように3.2V(=1.7V+1.5V)(図7(a))である。したがって、シフトサイリスタTn+2の閾値電圧は4.7V(=3.2V+1.5V)となる。しかしながら、シフトサイリスタTnがオンしているため、転送ラインΦ2の電位は約1.5V(拡散電位)に引き込まれており、シフトサイリスタTn+2の閾値電圧より低いために、シフトサイリスタTn+2はオンすることができない。同じ転送ラインΦ2に接続されている他のシフトサイリスタは、シフトサイリスタTn+2よりも閾値電圧が高いため、同様にオンすることができず、シフトサイリスタTnのみがオン状態を保つことができる。
また、転送ラインΦ1に接続されているシフトサイリスタについては、閾値電圧が最も低い状態であるシフトサイリスタTn+1の閾値電圧は3.2V(=1.7V+1.5V)である。そして、次に閾値電圧の低いシフトサイリスタTn+3(図6では不図示)は6.2V(=4.7V+1.5V)である。この状態で、転送ラインΦ1に5Vが入力されると、シフトサイリスタTn+1のみがオン状態に遷移できる。この状態では、シフトサイリスタTnとシフトサイリスタTn+1が同時にオンした状態である。そのため、シフトサイリスタTn+1から図6の回路図中、右側に設けられたシフトサイリスタTn+2、Tn+3等のゲート電位は、各々、拡散電位(1.5V)分、引き下げられる。ただし、ゲートラインVGKの電圧が5Vであり、発光サイリスタLの共通ゲートの電圧はゲートラインVGKの電圧で制限されるため、シフトサイリスタTn+5より右側のゲート電位は5Vとなる。図7(b)は、このときの各共通ゲートGn-1~Gn+4のゲート電圧分布を示す図であり、縦軸はゲート電位を示す。
この状態で、転送ラインΦ2の電位を0Vに下げると、シフトサイリスタTnがオフし、シフトサイリスタTnの共通ゲートGnの電位がVGK電位まで上昇する。図7(c)は、このときのゲート電圧分布を示す図であり、縦軸はゲート電位を示す。こうして、シフトサイリスタTnからシフトサイリスタTn+1へのオン状態の転送が完了する。
次に、発光サイリスタの発光動作に関して説明する。シフトサイリスタTnのみがオンしているとき、発光サイリスタL4n-3~L4nまでの4個の発光サイリスタのゲートはシフトサイリスタTnの共通ゲートGnに共通に接続されている。そのため、発光サイリスタL4n-3~L4nのゲート電位は、共通ゲートGnと同じ0.2Vである。したがって、各々の発光サイリスタの閾値は1.7V(=0.2V+1.5V)であり、発光サイリスタの点灯信号ラインΦW1~ΦW4から、1.7V以上の電圧が入力されれば、発光サイリスタL4n-3~L4nは点灯可能である。したがって、シフトサイリスタTnがオンしているときに、点灯信号ラインΦW1~ΦW4に点灯信号を入力することにより、発光サイリスタL4n-3~L4nまでの4個の発光サイリスタを選択的に発光させることが可能である。このとき、シフトサイリスタTnの隣のシフトサイリスタTn+1の共通ゲートGn+1の電位は1.7Vであり、共通ゲートGn+1にゲート接続している発光サイリスタL4n+1~4n+4の閾値電圧は3.2V(=1.7V+1.5V)となる。
点灯信号ラインΦW1~ΦW4から入力される点灯信号は5Vであるので、発光サイリスタL4n-3~4nの点灯パターンと同じ点灯パターンで、発光サイリスタL4n+1~L4n+4も点灯しそうである。ところが、発光サイリスタL4n-3~L4nまでの方が閾値電圧が低いため、点灯信号ラインΦW1~ΦW4から点灯信号が入力された場合には、発光サイリスタL4n+1~L4n+4よりも早くオンする。一旦、発光サイリスタL4n-3~L4nがオンすると、接続されている点灯信号ラインΦW1~ΦW4が約1.5V(拡散電位)に引き下げられる。そのため、点灯信号ラインΦW1~ΦW4の電位が、発光サイリスタL4n+1~L4n+4の閾値電圧よりも低くなるため、発光サイリスタL4n+1~L4n+4はオンすることができない。このように、1個のシフトサイリスタTに複数の発光サイリスタLを接続することで、複数個の発光サイリスタLを同時点灯させることができる。
図8は、図6に示すSLED回路の駆動信号のタイミングチャートである。図8では、上から順に、ゲートラインVGK、スタートパルスラインΦs、奇数番目、偶数番目のシフトサイリスタの転送ラインΦ1、Φ2、発光サイリスタの点灯信号ラインΦW1~ΦW4の駆動信号の電圧波形を表している。なお、各駆動信号は、オン時の電圧は5V、オフ時の電圧は0Vである。また、図8の横軸は時間を示す。また、Tcは、クロック信号Φ1の周期を示し、Tc/2は、周期Tcの半分(=1/2)の周期を示す。
ゲートラインVGKには常に5Vが供給される。また、奇数番目のシフトサイリスタ用のクロック信号Φ1、偶数番目のシフトサイリスタ用のクロック信号Φ2が同じ周期Tcにて入力され、スタートパルスラインの信号Φsは5Vが供給されている。奇数番目のシフトサイリスタ用のクロック信号Φ1が最初に5Vになる少し前に、ゲートラインVGKに電位差をつけるために、スタートパルスラインの信号Φsは0Vに落とされる。これにより、最初のシフトサイリスタTn-1のゲート電位が5Vから1.7Vに引き込まれ、閾値電圧が3.2Vになって、転送ラインΦ1による信号でオンできる状態になる。転送ラインΦ1に5Vが印加され、最初のシフトサイリスタTn-1がオン状態に遷移してから少し遅れて、スタートパルスラインΦsに5Vが供給され、以降、スタートパルスラインΦsには5Vが供給され続ける。
転送ラインΦ1と転送ラインΦ2は互いのオン状態(ここでは5V)が重なる時間Tovを持ち、略相補的な関係になるように構成される。発光サイリスタ点灯用信号ラインΦW1~ΦW4は、転送ラインΦ1、Φ2の周期の半分の周期で送信され、対応するシフトサイリスタがオン状態のときに、5Vが印加されると点灯する。例えば期間aでは同一のシフトサイリスタに接続されている4つの発光サイリスタが全て点灯している状態であり、期間bでは3つの発光サイリスタが同時点灯している。また、期間cでは全ての発光サイリスタは消灯状態であり、期間dでは2つの発光サイリスタが同時点灯している。期間eでは点灯する発光サイリスタは1つのみである。
本実施形態では、1個のシフトサイリスタに接続する発光サイリスタの数は4個としているがこれに限ったものではなく、用途に応じて4個より少なくても多くてもよい。なお、上述した回路では各サイリスタのカソードを共通とする回路について説明したが、アノード共通回路でも適宜極性を反転することで適用可能である。
<副走査フィルタ>
次に、副走査フィルタ75の構成について説明する。
図9(a)は、副走査フィルタ75の構成を示すブロック図である。図9(a)に示す様に、副走査フィルタ75は、ラインバッファ53、加算器54、乗算器55、Dフリップフロップ56を備える。副走査フィルタ75には、画像信号生成部71から画像信号が1ラインずつ入力される。
画像信号生成部71から副走査フィルタ75に入力された1ライン目の画像信号は、ラインバッファ53に入力された後、1ライン分遅延したタイミングで加算器に54に入力される。また画像信号生成部71から副走査フィルタ75に入力された2ライン目の画像信号は、ラインバッファ53から加算器54に1ライン目の画像信号が入力されるタイミングで加算器54に入力される。
加算器54は、入力された1ライン目の画像信号と2ライン目の画像信号を加算し、乗算器55に出力する。乗算器55は、加算器54の出力に対して1/2を乗算し、Dフリップフロップ56に出力する。なお、ラインバッファ53とDフリップフロップ56は、クロック入力(三角マーク)を持っており、基準クロックに同期して動作する。
同様に、副走査フィルタ75は、3ライン目の画像信号と4ライン目の画像信号を加算した後に1/2倍して出力し、5ライン目の画像信号と6ライン目の画像信号を加算した後に1/2倍して出力する。副走査フィルタ75は、7ライン目以降の画像信号に対しても同様の処理を行う。これにより各々の画像信号は、副走査方向に隣接する二つの画像信号が加算された後に半分にされるため、副走査方向に隣接する二個の画像信号が同じデータとなる。
また後述の通り、露光ヘッド6は、副走査方向に隣接する2ラインの走査線によって感光ドラム1の表面に主走査方向に並ぶ複数の画素を形成する。つまり副走査フィルタ75は、画像信号生成部71で生成された画像信号において副走査方向に隣接する二個の画像信号を合成した合成データに基づいて、主走査方向に並ぶ複数の画素を形成する走査線を形成するための画像信号(第2画像信号)を生成する。
なお、本実施形態では、露光ヘッド6は、副走査方向に隣接する2ラインの走査線によって感光ドラム1の表面に主走査方向に並ぶ複数の画素を形成する構成について説明したものの、本発明はこれに限られず、次の構成とすればよい。即ち、発光素子アレイチップ40の発光部50は、副走査方向に隣接する2以上のm個の走査線を感光ドラム1の表面に形成することで、感光ドラム1の表面に主走査方向に並ぶ複数の画素を形成する。そして副走査フィルタ75は、画像信号生成部71で生成された画像信号において副走査方向に隣接するm個の画像信号を合成した合成データに基づいて、m個の走査線を形成するための画像信号を生成する構成とすればよい。
<チップデータ変換部とチップデータシフト部>
次に、チップデータ変換部78とチップデータシフト部79の構成について説明する。
図9(b)は、チップデータ変換部78の構成を示すブロック図である。図10は、チップデータ変換部78とチップデータシフト部79の動作を示すタイミングチャートである。図10に示す1ライン目データは、副走査方向の1ライン目における主走査方向の1ライン分の画像信号を意味する。2ライン目データは、副走査方向の2ライン目における主走査方向の1ライン分の画像信号を意味する。3ライン目データ以降も同様である。
図9(b)、図10に示す様に、チップデータ変換部78は、ラインメモリ61、リード制御部62、カウンタ63、ライト制御部64、メモリ65-1~65-29を備える。メモリ65-1~65-29は、29個のメモリ領域から構成されるFIFOメモリ(First In First Out Memory)である。29個のメモリ領域の各々は、発光素子アレイチップ40-1~40-29でそれぞれ用いられる画像信号が所定の送信順となるように配列される。
カウンタ63は、主走査方向の1ラインの画像信号数(画素数)である14964個の2倍の29928のカウント動作を行う。ここではカウント値が1~14964までの期間を期間Tm1(図10)、カウント値が14965~29928までの期間を期間Tm2(図10)とする。カウンタ63は、同期信号生成部74からライン同期信号が入力されると、カウント値をゼロにリセットした後、基準クロックに同期してカウント値をインクリメントする。
リード制御部62は、カウンタ63のカウント値に応じたデータを読み出して、期間Tm1の間に1ライン分の画像信号(14964個)をラインメモリ61へ格納する。ライト制御部64は、期間Tm2の間に、ラインメモリ61からメモリ65-1~65-29の各々へ1ライン分の画像信号を分割して書き込む。
具体的には、ライト制御部64は、まずラインメモリ61から1ライン分の画像信号を読み出し、発光素子アレイチップ40-1で使用される画像信号を格納するメモリ65-1へ書き込む。次に、ライト制御部64は、発光素子アレイチップ40-2で使用される画像信号を格納するメモリ65-2へ書き込む。このようにしてライト制御部64は、メモリ65-1~65-29に画像信号の書き込みを連続的に行う。
なお、メモリ65-1~65-29には、後述するチップデータシフト部79の副走査方向への画像信号のシフト動作に対応するため、10ライン分の画像信号が格納される。この10ライン分の画像信号は、発光素子アレイチップ40の実装位置ずれに対応するための副走査方向の位置補正用の2ライン分と、副走査方向に隣接する二つの発光素子アレイチップ40の間の間隔である8ライン分の合計10ライン分の画像信号である。
このような動作により、チップデータ変換部78は、副走査フィルタ75から入力された画像信号をラインメモリ61に格納した後、1ライン分の画像信号を発光素子アレイチップ40-1~40-29の各々に対応するメモリ65-1~65-29に分割して格納する。メモリ65-1~65-29に格納された画像信号は、チップデータシフト部79によって所定のタイミングで読み出される。
チップデータシフト部79は、メモリ65-1~65-29から画像信号を読み出すタイミングを制御して画像信号を副走査方向にシフトさせる。具体的には、チップデータシフト部79は、メモリ65-1~65-29から画像信号を読み出すタイミングを早めることでシートSの先端方向に画像信号をシフトさせる。例えばチップデータシフト部79は、ライン同期信号の1周期分、画像信号を読み出すタイミングを早める。これにより1ライン分の画像信号がシフトされる。
図10に示す様に、本実施形態では、チップデータシフト部79は、期間TL2において、奇数番目の発光素子アレイチップ40-1、40-3、…40-29に対応するメモリ65-1、65-3、…65-29から1ライン目の画像信号を読み出す。またチップデータシフト部79は、メモリへの書き込み期間である期間TL1からライン同期信号で9パルス後の期間である期間TL10において、偶数番目の発光素子アレイチップ40-2、40-4、…40-28に対応するメモリ65-2、65-4、…65-28から1ライン目の画像信号を読み出す。これにより千鳥配列(二列)の副走査方向の間隔(2400dpiで8画素分)に応じて露光タイミングが制御される。
なお、本実施形態では、ライン同期信号の一周期中のカウンタ63のカウント値が29928以上(1ラインの画像信号数の2倍の数)となるようにクロック周波数を定めている。これによりライン同期信号の一周期中にラインメモリ61への画像信号の入力、及び、メモリ65-1~65-29への画像信号の入力が可能となる。
またチップデータシフト部79は、ライン同期信号の一周期中にメモリ65-1~65-29からパラレルで1ライン分の画像信号を読み出す。従って、チップデータシフト部79の画像信号の読み出し速度は、ラインメモリ61やメモリ65-1~65-29への画像信号の書き込み速度に対して低速でよい。本実施形態では、ラインメモリ61への画像信号の書き込みと、メモリ65-1~65-29への画像信号の書き込みに要する時間と、チップデータシフト部79がメモリ65-1~65-29から1ライン分の画像信号を読み出す時間が同じに設定されている。つまりチップデータシフト部79は、メモリ65-1~65-29への書き込みクロックの58倍の周期でメモリ65-1~65-29から画像信号を読み出す。
図11は、チップデータ変換部78の動作を示す図である。図11に示すSSCLK周波数は、変調クロックの周波数を基準周波数f0を中心として高低をプロットしたものである。図11に示す第1ライン同期信号は、同期信号生成部74により基準クロックに基づいて生成された信号である。図11に示す第2ライン同期信号は、同期信号生成部74により変調クロックに基づいて生成された信号である。
図11に示す様に、チップデータ変換部78は、ラインメモリ61への画像信号の書き込み、ラインメモリ61から画像信号の読み出し、及び、メモリ65-1~65-29への書き込みを基準クロック信号に基づいて行う。またチップデータ変換部78は、メモリ65-1~65-29からのデータ出力を変調クロックに基づいて行う。
第2ライン同期信号は変調クロックに基づいて生成されるため、第2ライン同期信号の周期(TL1’~TL4’)は、第1ライン同期信号の周期(TL1~TL4)と比較して、変調クロックの周波数が高い期間は短く、周波数が低い期間は長い。従って、メモリ65-1~65-29からのデータ出力タイミングを、第2ライン同期信号を基準としてオフセット(図11に示すCOS)させることで、第1ライン同期信号と同期するメモリ制御の状態Tm1、Tm2と、第2ライン同期信号と同期するメモリ65-1~65-29からのデータ出力の位置関係は変動する。これによりメモリ65-1~65-29に対する書き込み期間、及び、読み出し期間が重ならないように制御される。
<露光周期とスペクトラム拡散の変調周期との関係>
次に、露光ヘッド6が1ラインの走査線を形成する周期である露光周期とSSCLK生成部69のスペクトラム拡散の変調周期との関係について説明する。
上述の通り、タイミング制御部84は、同期信号生成部74が変調クロックに基づいて生成する第2ライン同期信号に応じて同期信号を生成する。発光パルス生成部83は、タイミング制御部84から受信した同期信号に応じてPWM信号を出力する。駆動電圧生成部86は、PWM信号に同期して発光素子アレイチップ40を駆動する駆動電圧を生成する。これにより発光素子アレイチップ40の発光部50が画像信号に応じて点灯し、感光ドラム1の表面には主走査方向に延びる1ラインの走査線が形成される。発光素子アレイチップ40の複数の発光部50は、このように走査線を周期的に形成することで感光ドラム1の表面に静電潜像を形成する。つまり第2ライン同期信号周期は、発光素子アレイチップ40の発光部50が発光を開始するタイミングの制御に用いられる制御信号であり、露光ヘッド6の露光周期は第2ライン同期信号の周期と一致する。
図12(a)は、露光ヘッド6の露光周期と変調クロックの周期との関係を示すグラフである。図12(b)は、図12(a)に示すグラフの横軸を時間から発光素子アレイチップ40の発光部50の主走査方向の位置に変更したグラフである。図12に示す様に、露光ヘッド6の露光周期は、スペクトラム拡散の変調周期の1.5倍に設定されており、これによって副走査方向に隣接する2つの走査線を形成する際の変調クロックの位相が反転されている。また後述する通り、露光ヘッド6は、副走査方向に隣接する2ラインの走査線によって感光ドラム1の表面に主走査方向に並ぶ複数の画素を形成する。このような構成により、画素を形成するための副走査方向に隣接する2ラインの走査線の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分とが打ち消し合うため、主走査方向の画像の濃度ムラが抑制される。
なお、本実施形態においては、露光ヘッド6の露光周期は、スペクトラム拡散の変調周期の1.5倍に設定されているものの、本発明はこれに限られるものではない。即ち、副走査方向に隣接する2つの走査線を形成する際の変調クロックの位相が反転するように露光ヘッド6の露光周期を設定すればよい。つまり同期信号生成部74が、SSCLK生成部69によるスペクトラム拡散の変調周期のn+1/2倍(nは正の整数)の周期で第2ライン同期信号を生成する構成とすればよい。
<露光スポットと画素との関係>
次に、露光ヘッド6の露光スポットと、露光スポットによって形成される画素との関係について説明する。
図13は、露光ヘッド6の露光スポットと画素との関係を示す模式図である。図13において、実線で示す正方形のそれぞれは一つの画素であり、一点鎖線で示す円のそれぞれは一つの露光スポットである。また露光スポットSP1~SP6のスポット径はそれぞれ30μm、露光時の副走査方向の解像度は2400dpi、画素間隔は10μmである。また図13では、濃度が一定の画像を形成する際の露光スポットと画素を示している。
図13に示す様に、副走査方向に隣接する2ラインの露光スポットSP1、SP2は、一つの画素D1を形成する。つまり露光スポットSP1、SP2のスポット径は、画素間隔より大きいため、露光スポットSP1、SP2がオーバーラップした部分に画素D1が形成される。露光スポットSP1、SP2は、画像信号に応じて、感光ドラム1の表面の画像領域における主走査方向の全域を露光して、副走査方向に隣接する2ラインの走査線を形成する。これにより感光ドラム1の表面には、主走査方向に並ぶ複数の画素が形成される。
同様に、副走査方向に隣接する露光スポットSP3、SP4は、一つの画素D2を形成する。露光スポットSP3、SP4は、露光スポットSP1、SP2に対して副走査方向において隣接しておらず、露光スポットSP1、SP2の露光タイミングから所定の時間が経過した後に形成される。また露光スポットSP3、SP4は、変調クロックの周波数が中心周波数の時に形成される露光スポットである。
同様に、副走査方向に隣接する露光スポットSP5、SP6は、一つの画素D3を形成する。露光スポットSP5、SP6は、露光スポットSP1~SP4に対して副走査方向において隣接しておらず、露光スポットSP3、SP4の露光タイミングから所定の時間が経過した後に形成される。
図14は、図13に点線で示す断面における露光分布を示すグラフである。図14に示す様に、露光スポットSP1、SP2の露光分布を重ねた露光分布(SP1+SP2)のピーク位置を中心として画素D1が形成される。露光スポットSP1、SP2のスポット径は画素間隔より大きいため、露光スポットSP1、SP2がオーバーラップして両者の中間位置にピークがある露光分布が形成される。画素D2、D3に関しても同様である。
また露光スポットSP1、SP2は、変調クロックの周波数変動に伴う露光時間の変動によって露光分布が異なる。ここで副走査方向に隣接する画像信号は、副走査フィルタ75によって両者のデータ、即ち副走査方向に隣接する画像信号に対応する画像の理想の濃度が等しくなるように生成されている。従って、変調クロックの周波数が中心周波数の時に形成される露光スポットSP3、SP4のピーク位置に対する、露光スポットSP1のピーク位置の差分と露光スポットSP2のピーク位置の差分とが等しくなる。つまり図14に示す距離W1と距離W2が等しくなる。このため、副走査方向に隣接する2ラインの走査線の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分とが完全に打ち消し合う。露光スポットSP5、SP6に関しても同様である。
また副走査方向に隣接する2ラインの走査線の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分とが完全に打ち消し合うため、濃度が一定の画像を形成する場合において、露光分布(SP1+SP2)、露光分布(SP3+SP4)、露光分布(SP5+SP6)のそれぞれのピーク位置は等しくなる。
このように本実施形態の構成によれば、画像信号生成部71によって生成された画像信号において、一画素を形成するための副走査方向に隣接する画像信号に対応する画像の濃度が異なる場合であっても、副走査方向に隣接する画像信号の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分とを一致させることができる。従って、スペクトラム拡散された変調クロックを用いて露光ヘッド6の発光部50の点灯を制御する画像形成装置Aにおいて、主走査方向の画像の濃度ムラを抑制することができる。
(第2実施形態)
次に、本発明に係る画像形成装置の第2実施形態について説明する。第1実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
本実施形態の構成は、第1実施形態の構成に対し、副走査フィルタ75の構成が異なる。また露光ヘッド6は、副走査方向に隣接する3つの走査線によって感光ドラム1の表面に主走査方向に並ぶ複数の画素を形成する。本実施形態に係る画像形成装置Aのその他の構成は、第1実施形態の構成と同様である。
図15(a)は、本実施形態の副走査フィルタ75の構成を示すブロック図である。図15(a)に示す様に、副走査フィルタ75は、ラインバッファ53a、53b、加算器54、乗算器55a~55c、Dフリップフロップ56、clip58を備える。副走査フィルタ75には、画像信号生成部71から画像信号が1ラインずつ入力される。
画像信号生成部71から副走査フィルタ75に入力された1ライン目の画像信号は、ラインバッファ53aに入力された後、1ライン分遅延したタイミングでラインバッファ53bに入力される。ラインバッファ53bは、ラインバッファ53aから入力された画像信号を更に1ライン分遅延したタイミングで乗算器55bに出力する。乗算器55bは、ラインバッファ53bの出力に対して1/2を乗算し、加算器54に出力する。
また画像信号生成部71から副走査フィルタ75に入力された2ライン目の画像信号は、ラインバッファ53aに入力された後、1ライン分遅延したタイミングで加算器54に出力される。また画像信号生成部71から副走査フィルタ75に入力された3ライン目の画像信号は、乗算器55aに入力される。乗算器55aは、入力された画像信号に対して1/2を乗算し、加算器54に出力する。
加算器54は、入力された1~3ライン目の画像信号を加算し、乗算器55cに出力する。乗算器55cは、加算器54の出力に対して1/2を乗算し、Dフリップフロップ56に出力する。Dフリップフロップ56は、入力された画像信号をclip58に出力する。
clip58は、Dフリップフロップ56から入力された画像信号が予め設定された所定値以下であればそのまま出力し、当該所定値よりも大きい場合には当該所定値に置換して出力する。なお、ラインバッファ53a、53bとDフリップフロップ56は、クロック入力(三角マーク)を持っており、基準クロックに同期して動作する。これにより1~3ライン目の画像信号の各々に対応する画像の濃度の比率は1:2:1となる。
副走査フィルタ75は、4ライン目以降の画像信号に対しても同様の処理を行う。これにより副走査方向に隣接する三つの画像信号に対応する画像の濃度の比率は1:2:1となる。つまり副走査フィルタ75は、画像信号生成部71で生成された画像信号において副走査方向に隣接する三つの画像信号を合成した合成データに基づいて、主走査方向に並ぶ複数の画素を形成する走査線を形成するための画像信号を生成する。
図15(b)は、露光ヘッド6の露光スポットと画素との関係を示す模式図である。図15(b)において、実線で示す正方形のそれぞれは一つの画素であり、一点鎖線で示す円のそれぞれは一つの露光スポットである。露光スポットSP7~SP12のスポット径はそれぞれ30μmである。図15(b)では、濃度が一定の画像を形成する際の露光スポットと画素を示している。
図15(b)に示す様に、本実施形態では、副走査方向に隣接する3つの露光スポットSP7、SP8、SP9によって一つの画素D4を形成する。同様に、副走査方向に隣接する露光スポットSP10、SP11、SP12によって一つの画素D5を形成する。露光スポットSP10、SP11、SP12は、露光スポットSP7、SP8、SP9に対して副走査方向に隣接しておらず、露光スポットSP7、SP8、SP9の露光タイミングから所定の時間が経過した後に感光ドラム1の表面に形成される。
図16(a)は、図15(b)に点線で示す断面における露光分布を示すグラフである。図16(b)は、画素D4、D5を形成する露光スポットの露光分布の累積露光量を示すグラフである。図16(a)に示す様に、露光スポットSP7~SP9の露光分布を重ねた露光分布(SP7+SP8+SP9)のピーク位置を中心として画素D4が形成される。露光スポットSP7~SP9のスポット径は画素間隔より大きいため、露光スポットSP7、SP9がオーバーラップしてこれらの中間位置にピークがある露光分布が形成される。画素D5に関しても同様である。
また副走査方向に隣接する三つの画像信号は、副走査フィルタ75によって画像信号に対応する理想の画像濃度の比率が1:2:1となっている。さらに露光ヘッド6の露光周期は、副走査方向に隣接する2つの走査線を形成する際の変調クロックの位相が反転するように設定されている。従って、露光スポットSP7とSP9の露光分布は同じになり、露光スポットSP10とSP12の露光分布も同じになる。このため、副走査方向に隣接する3ラインの走査線の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分とが打ち消し合う。なお、露光スポットSP7~SP9の露光分布と露光スポットSP10~SP12の露光分布とは、変調クロックの周波数変動に伴う露光時間の変動によって露光分布が異なる。
また副走査方向に隣接する2ラインの走査線の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分とが打ち消し合うため、濃度が一定の画像を形成する場合において、露光分布(SP7+SP8+SP9)と露光分布(SP10+SP11+SP12)のそれぞれのピーク位置はほぼ等しくなる。また図16(b)に示す様に、露光分布(SP7+SP8+SP9)と露光分布(SP10+SP11+SP12)の累積露光量は同じ値に収束する。
このように本実施形態の構成によれば、画像信号生成部71によって生成された画像信号において、一画素を形成するための副走査方向に隣接する画像信号に対応する画像の濃度が異なる場合であっても、副走査方向に隣接する画像信号の間で変調クロックの周波数変動に起因する露光時間の増加分と減少分との差分を小さくすることができる。このため、スペクトラム拡散された変調クロックを用いて露光ヘッド6の発光部50の点灯を制御する画像形成装置Aにおいて、主走査方向の画像の濃度ムラを抑制することができる。
(第3実施形態)
次に、本発明に係る画像形成装置の第3実施形態について説明する。第1実施形態、第2実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
本実施形態の構成は、第1実施形態の構成に対し、副走査フィルタ75の構成が異なる。本実施形態に係る画像形成装置Aのその他の構成は、第1実施形態の構成と同様である。
図17は、本実施形態に係る副走査フィルタ75の構成を示すブロック図である。図17に示す様に、副走査フィルタ75は、ラインバッファ53、加算器54、乗算器55a、55b、Dフリップフロップ56、減算器57を備える。副走査フィルタ75には、画像信号生成部71から画像信号が1ラインずつ入力される。
画像信号生成部71から副走査フィルタ75に入力された1ライン目の画像信号は、ラインバッファ53に入力された後、1ライン分遅延したタイミングで乗算器55bに入力される。乗算器55bは、ラインバッファ53から入力された画像信号に対して1/2を乗算して加算器54に出力する。
また画像信号生成部71から副走査フィルタ75に入力された2ライン目の画像信号は、乗算器55aと減算器57に入力される。乗算器55aは、画像信号生成部71から入力された画像信号に対して1/2を乗算して減算器57に出力する。
減算器57は、画像信号生成部71から副走査フィルタ75に入力された画像信号をPとする場合、乗算器55aの出力との差であるP-(1/2)Pを出力する。量子化誤差を考慮しない場合、減算器57の出力であるP-(1/2)P=(1/2)Pとなる。一方、量子化誤差が発生する場合、P-(1/2)P≠(1/2)Pとなる。
本実施形態では、副走査方向に隣接する二つの画像信号は、1:1の比率に対して量子化誤差が補完し合う関係となり、分配された光量の総和は副走査フィルタ75への入力と等しく保たれる。例えばP=7とする場合、(1/2)P=3.5である。乗算器55a、55bが整数に量子化する場合「4」を出力する。一方、減算器57は、P-(1/2)P=7-4=「3」を出力するものの、それぞれの総和は4+3=7で入力の値と等しくなる。
加算器54は、乗算器55bから入力された1ライン目の画像信号と、減算器57から入力された2ライン目の画像信号を加算し、Dフリップフロップ56に出力する。このように本実施形態の構成によれば、副走査フィルタ75で演算時の量子化誤差が発生した場合であっても、分配された光量の総和を入力と等しく保つことができる。
なお、第1~第3実施形態では、画像信号生成部71によって生成された全ての画像信号に対して副走査フィルタ75による処理を行う構成について説明したものの、本発明はこれに限られるものではない。即ち、例えば一画素を形成するための副走査方向に並列する複数の画像信号に対応する画像の濃度が異なる場合のみ副走査フィルタ75が上述した処理を行う構成等、画像の種類によって副走査フィルタ75による処理のオン、オフを切り替える構成としてもよい。
また第1~第3実施形態では、発光素子アレイチップ40の発光部50としてLEDを用いる構成について説明したものの、本発明はこれに限られるものではない。即ち、発光素子アレイチップ40の発光部50として有機ELなど他の種類の光源を用いる構成としてもよい。
1…感光ドラム(感光体)
6…露光ヘッド
50…発光部
68…クロック生成部(基準クロック生成部)
69…SSCLK生成部(変調クロック生成部)
71…画像信号生成部
74…同期信号生成部(制御信号生成部)
75…副走査フィルタ(画像信号処理部)
80a、80b…駆動部
A…画像形成装置

Claims (4)

  1. 感光体の表面に光を照射して静電潜像を形成し、該静電潜像にトナーを付着させて画像を形成する画像形成装置において、
    基準クロックを生成する基準クロック生成部と、
    前記基準クロックを変調してスペクトラム拡散された変調クロックを周期的に生成する変調クロック生成部と、
    前記画像形成装置に入力されたデータに基づいて第1画像信号を生成する画像信号生成部と、
    前記第1画像信号に基づいて第2画像信号を生成する画像信号処理部と、
    前記感光体の表面に光を照射して前記静電潜像を形成する露光ヘッドであって、主走査方向に並列して配置され、前記第2画像信号に基づいて発光して前記感光体の表面に主走査方向に延びる一つの走査線を形成し、該走査線を周期的に形成することにより前記感光体の表面に前記静電潜像を形成する複数の発光部と、前記変調クロックに基づいて設定される発光時間、前記複数の発光部を発光させる駆動部と、を備える露光ヘッドと、
    前記変調クロックをカウントし、前記複数の発光部が発光を開始するタイミングの制御に用いられる制御信号を周期的に生成する制御信号生成部であって、前記スペクトラム拡散の変調周期のn+1/2倍(nは正の整数)の周期で前記制御信号を生成する制御信号生成部と、
    を備え、
    前記複数の発光部は、副走査方向に隣接する2以上のm個の前記走査線を前記感光体の表面に形成することで、前記感光体の表面に前記主走査方向に並ぶ複数の画素を形成し、
    前記画像信号処理部は、前記第1画像信号において前記副走査方向に隣接する前記m個の画像信号を合成した合成データに基づいて、前記m個の前記走査線を形成するための前記第2画像信号を生成することを特徴とする画像形成装置。
  2. 前記複数の発光部は、前記副走査方向に隣接する2つの前記走査線を前記感光体の表面に形成することで、前記感光体の表面に前記主走査方向に並ぶ複数の画素を形成し、
    前記画像信号処理部は、前記感光体の表面に前記主走査方向に並ぶ複数の画素のうち1つの画素の形成に用いられる、前記副走査方向に隣接する2つの画像信号のデータが等しくなるように前記第2画像信号を生成することを特徴とする請求項1に記載の画像形成装置。
  3. 前記複数の発光部は、前記副走査方向に隣接する3つの前記走査線を前記感光体の表面に形成することで、前記感光体の表面に前記主走査方向に並ぶ複数の画素を形成し、
    前記画像信号処理部は、前記感光体の表面に前記主走査方向に並ぶ複数の画素のうち1つの画素の形成に用いられる、前記副走査方向に隣接する3つの画像信号において、1つ目の画像信号と3つ目の画像信号のデータが等しくなるように前記第2画像信号を生成することを特徴とする請求項1に記載の画像形成装置。
  4. 前記複数の発光部は、自己走査型発光素子であることを特徴とする請求項1乃至3のいずれか1項に記載の画像形成装置。
JP2021039842A 2021-03-12 2021-03-12 画像形成装置 Pending JP2022139449A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021039842A JP2022139449A (ja) 2021-03-12 2021-03-12 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021039842A JP2022139449A (ja) 2021-03-12 2021-03-12 画像形成装置

Publications (1)

Publication Number Publication Date
JP2022139449A true JP2022139449A (ja) 2022-09-26

Family

ID=83399477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021039842A Pending JP2022139449A (ja) 2021-03-12 2021-03-12 画像形成装置

Country Status (1)

Country Link
JP (1) JP2022139449A (ja)

Similar Documents

Publication Publication Date Title
JP7106363B2 (ja) 画像形成装置
JP7187282B2 (ja) 画像形成装置
JP2020175580A (ja) 画像形成装置
US20200004173A1 (en) Image forming apparatus
WO2021039515A1 (ja) 露光ヘッド及び画像形成装置
JP2022096964A (ja) 画像形成装置
JP2022139449A (ja) 画像形成装置
JP3280723B2 (ja) 固体走査ヘッドの駆動装置
US20220066351A1 (en) Image forming apparatus
JP2022168528A (ja) 画像形成装置
JP2005028871A (ja) ビーム光走査装置及び画像形成装置
WO2020004422A1 (ja) 画像形成装置
CN116615340A (zh) 图像形成装置
JP7130455B2 (ja) 画像形成装置
JP2023020189A (ja) 画像形成装置
JP7130469B2 (ja) 画像形成装置
JP7062536B2 (ja) 画像形成装置
WO2020004483A1 (ja) 画像形成装置
US7929006B2 (en) Nonparallel beam scanning apparatus for laser printer
JP2023054510A (ja) 露光ヘッド及び画像形成装置
US9387690B2 (en) Image forming apparatus for performing radiation reducing background exposure processing
JP2023025379A (ja) 画像形成装置
JP2023025382A (ja) 画像形成装置
JP2020001243A (ja) 画像形成装置
JP2023025380A (ja) 画像形成装置