JP2022065825A - Vibration type densitometer, and bubble mix-in determination method in vibration type densitometer - Google Patents

Vibration type densitometer, and bubble mix-in determination method in vibration type densitometer Download PDF

Info

Publication number
JP2022065825A
JP2022065825A JP2020174557A JP2020174557A JP2022065825A JP 2022065825 A JP2022065825 A JP 2022065825A JP 2020174557 A JP2020174557 A JP 2020174557A JP 2020174557 A JP2020174557 A JP 2020174557A JP 2022065825 A JP2022065825 A JP 2022065825A
Authority
JP
Japan
Prior art keywords
sample cell
driving force
vibration
sample
vibration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020174557A
Other languages
Japanese (ja)
Other versions
JP7473198B2 (en
Inventor
弘晃 谷口
Hiroaki Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2020174557A priority Critical patent/JP7473198B2/en
Priority to PCT/JP2021/036800 priority patent/WO2022080187A1/en
Priority to CN202180056422.9A priority patent/CN116075707A/en
Publication of JP2022065825A publication Critical patent/JP2022065825A/en
Application granted granted Critical
Publication of JP7473198B2 publication Critical patent/JP7473198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

To provide a vibration type densitometer capable of detecting bubbles mixed in a sample cell without repeatedly introducing a sample to be measured into the sample cell.SOLUTION: A vibration type densitometer 1 that measures density of a sample to be measured stored in a sample cell 10, comprises excitation means 20 of exciting vibration in the sample cell 10, measurement means 30 of measuring a vibration cycle of the excited sample cell 10, drive control means 80 of driving the excitation means 20 with first drive force and second drive force smaller than the first drive force, and determination means 90 of determining the presence or absence of air bubbles in the sample cell 10 on the basis of the difference between a first vibration period of the sample cell 10 excited with the first drive force and a second vibration period of the sample cell 10 excited with the second drive force.SELECTED DRAWING: Figure 1

Description

本発明は、試料セルに収容した被測定試料の密度を測定する振動式密度計、及び振動式密度計における気泡混入判定方法に関する。 The present invention relates to a vibration type densitometer for measuring the density of a sample to be measured housed in a sample cell, and a method for determining bubble contamination in the vibration type densitometer.

振動式密度計は、一端を固定した試料セルに液体の被測定試料を収容して振動させ、その振動周期から被測定試料の密度を演算する装置である(例えば、特許文献1参照)。 The vibration type densitometer is a device that accommodates a liquid sample to be measured in a sample cell with one end fixed and vibrates it, and calculates the density of the sample to be measured from the vibration cycle (see, for example, Patent Document 1).

振動式密度計における演算は、被測定試料を収容した試料セルの振動周期をTとすると、下記の式(1):
ρsample = K × T + K ・・・(1)
によって被測定試料の密度ρsampleを求めるものである。ここで校正パラメータK、Kは、既知の密度をもつ2種類の基準物質をそれぞれ基準温度において試料セルに収容して振動させたときの密度及び振動周期に基づいて決定される定数である。そのため、被測定試料が収容された試料セルの振動周期を、基準温度と異なる温度で測定すると、算出される密度の値に誤差が生じる。
The calculation in the vibration type densitometer is based on the following formula (1): where T is the vibration cycle of the sample cell containing the sample to be measured.
ρ sample = K 1 x T 2 + K 2 ... (1)
The density ρ sample of the sample to be measured is obtained by. Here, the calibration parameters K 1 and K 2 are constants determined based on the density and vibration cycle when two types of reference substances having known densities are housed in a sample cell at a reference temperature and vibrated. .. Therefore, when the vibration cycle of the sample cell containing the sample to be measured is measured at a temperature different from the reference temperature, an error occurs in the calculated density value.

特許文献1の振動式密度計は、断熱材、ペルチェ素子を備えた銅ブロック等の温度制御手段を用いて試料セルの温度を基準温度に保つように制御することで、被測定試料の密度の算出における誤差の発生を抑制することができる。 The vibration type densitometer of Patent Document 1 controls the temperature of the sample cell so as to keep the temperature of the sample cell at the reference temperature by using a temperature control means such as a heat insulating material and a copper block provided with a Pelche element, so that the density of the sample to be measured can be adjusted. It is possible to suppress the occurrence of errors in the calculation.

特開2011-38810号公報Japanese Unexamined Patent Publication No. 2011-38810

振動式密度計における密度の算出では、測定温度だけではなく、試料セルへの気泡の混入も誤差要因となる。そのため、従来は、試料セルへの被測定試料の導入及び振動周期の測定を繰り返すことで、算出される密度に変化がなくなった場合に試料セルから気泡が排出されたことを確認していた。 In the calculation of the density in the vibration type densitometer, not only the measured temperature but also the mixing of air bubbles in the sample cell becomes an error factor. Therefore, conventionally, by repeating the introduction of the sample to be measured into the sample cell and the measurement of the vibration cycle, it has been confirmed that bubbles are discharged from the sample cell when the calculated density does not change.

しかしながら、被測定試料の導入を繰り返すと、そのたびに試料セルの温度変化が生じる。特許文献1の振動式密度計では、被測定試料の導入から試料セルが基準温度に達するまで待機する必要があるため、試料セルからの気泡の排出を確認するために被測定試料の導入を繰り返すと、測定時間が長くなるという問題があった。 However, when the introduction of the sample to be measured is repeated, the temperature of the sample cell changes each time. In the vibration type densitometer of Patent Document 1, since it is necessary to wait from the introduction of the sample to be measured until the sample cell reaches the reference temperature, the introduction of the sample to be measured is repeated in order to confirm the discharge of bubbles from the sample cell. There was a problem that the measurement time became long.

本発明は、上記問題点に鑑みてなされたものであり、試料セルへの被測定試料の導入を繰り返すことなく、試料セルへ混入した気泡を検出することができる振動式密度計、及び振動式密度計における気泡混入判定方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is a vibration type densitometer and a vibration type that can detect bubbles mixed in a sample cell without repeatedly introducing the sample to be measured into the sample cell. It is an object of the present invention to provide a method for determining bubble contamination in a densitometer.

上記課題を解決するための本発明に係る振動式密度計の特徴構成は、
試料セルに収容した被測定試料の密度を測定する振動式密度計であって、
前記試料セルに振動を励起させる励振手段と、
励起された前記試料セルの振動周期を測定する測定手段と、
第一駆動力、及び当該第一駆動力より小さい第二駆動力で前記励振手段を駆動させる駆動制御手段と、
前記第一駆動力で励起された前記試料セルの第一振動周期と前記第二駆動力で励起された前記試料セルの第二振動周期との差に基づいて、前記試料セル内の気泡の有無を判定する判定手段と
を備えることにある。
The characteristic configuration of the vibration type densitometer according to the present invention for solving the above problems is
It is a vibration type densitometer that measures the density of the sample to be measured contained in the sample cell.
Excitation means for exciting vibration in the sample cell,
A measuring means for measuring the vibration cycle of the excited sample cell, and
A drive control means for driving the excitation means with a first driving force and a second driving force smaller than the first driving force.
Presence or absence of bubbles in the sample cell based on the difference between the first vibration cycle of the sample cell excited by the first driving force and the second vibration cycle of the sample cell excited by the second driving force. The purpose is to provide a determination means for determining.

本構成の振動式密度計によれば、試料セルに振動を励起させる励振手段と、励起された試料セルの振動周期を測定する測定手段と、第一駆動力、及び第一駆動力より小さい第二駆動力で励振手段を駆動させる駆動制御手段と、第一駆動力で励起された試料セルの第一振動周期と第二駆動力で励起された試料セルの第二振動周期との差に基づいて、試料セル内の気泡の有無を判定する判定手段とを備えることにより、気泡の排出を確認するために試料セルへの被測定試料の導入及び振動周期の測定を繰り返す必要がなく、試料セルに被測定試料が収容された状態のままで気泡の有無を判定することができる。従って、本構成の振動式密度計では、被測定試料の導入の繰り返しに伴う複数回の試料セルの温度変化が生じることがなく、気泡の有無を短時間で判定することができる。その結果、気泡の混入による誤差の発生を防ぎながら、被測定試料を導入してから密度を測定するまでの時間も短縮することができる。 According to the vibration type densitometer of this configuration, the exciting means for exciting the vibration in the sample cell, the measuring means for measuring the vibration cycle of the excited sample cell, the first driving force, and the first driving force smaller than the first driving force. (2) Based on the difference between the drive control means that drives the excitation means by the driving force and the first vibration cycle of the sample cell excited by the first driving force and the second vibration cycle of the sample cell excited by the second driving force. By providing a determination means for determining the presence or absence of bubbles in the sample cell, it is not necessary to repeat the introduction of the sample to be measured into the sample cell and the measurement of the vibration cycle in order to confirm the discharge of the bubbles, and the sample cell does not need to be repeated. It is possible to determine the presence or absence of air bubbles while the sample to be measured is contained in the device. Therefore, in the vibration type densitometer of this configuration, the presence or absence of bubbles can be determined in a short time without causing the temperature change of the sample cell a plurality of times due to the repeated introduction of the sample to be measured. As a result, it is possible to shorten the time from the introduction of the sample to be measured to the measurement of the density while preventing the occurrence of an error due to the mixing of bubbles.

本発明に係る振動式密度計において、
前記第二駆動力は、前記第一駆動力の1/5~1/2倍の駆動力であることが好ましい。
In the vibration type densitometer according to the present invention
The second driving force is preferably 1/5 to 1/2 times the driving force of the first driving force.

本構成の振動式密度計によれば、第二駆動力が第一駆動力の1/5~1/2倍の駆動力であることにより、第一振動周期と第二振動周期との差が顕著なものとなるため、試料セル内の気泡の有無を正確に判定することが可能となる。 According to the vibration type densitometer of this configuration, the difference between the first vibration cycle and the second vibration cycle is due to the second driving force being 1/5 to 1/2 times the driving force of the first driving force. Since it becomes remarkable, it is possible to accurately determine the presence or absence of air bubbles in the sample cell.

本発明に係る振動式密度計において、
前記第一振動周期は、前記励振手段の駆動力が前記第一駆動力から前記第二駆動力に変更される直前に前記測定手段により測定された振動周期であり、
前記第二振動周期は、前記励振手段の駆動力が前記第二駆動力に変更されてから8~10秒の間の任意の時点で、前記測定手段により測定された振動周期であることが好ましい。
In the vibration type densitometer according to the present invention
The first vibration cycle is a vibration cycle measured by the measuring means immediately before the driving force of the exciting means is changed from the first driving force to the second driving force.
The second vibration cycle is preferably a vibration cycle measured by the measuring means at an arbitrary time point between 8 and 10 seconds after the driving force of the exciting means is changed to the second driving force. ..

本構成の振動式密度計によれば、第一振動周期が、励振手段の駆動力が第一駆動力から第二駆動力に変更される直前に測定手段により測定された振動周期であり、第二振動周期が、励振手段の駆動力が第二駆動力に変更されてから8~10秒の間の任意の時点で測定手段により測定された振動周期であることにより、第一振動周期と第二振動周期との差がより顕著なものとなり、試料セル内の気泡の有無の判定がより正確なものとなる。 According to the vibration type densitometer of this configuration, the first vibration cycle is the vibration cycle measured by the measuring means immediately before the driving force of the exciting means is changed from the first driving force to the second driving force. The second vibration cycle is the first vibration cycle and the first vibration cycle because the vibration cycle is the vibration cycle measured by the measuring means at any time between 8 and 10 seconds after the driving force of the exciting means is changed to the second driving force. The difference from the two vibration periods becomes more remarkable, and the determination of the presence or absence of air bubbles in the sample cell becomes more accurate.

本発明に係る振動式密度計において、
前記判定手段は、前記第一振動周期と前記第二振動周期との差が1.5×10-2μ秒以上である場合、前記気泡が存在すると判定することが好ましい。
In the vibration type densitometer according to the present invention
When the difference between the first vibration cycle and the second vibration cycle is 1.5 × 10 −2 μsec or more, the determination means preferably determines that the bubbles are present.

本構成の振動式密度計によれば、判定手段が、第一振動周期と第二振動周期との差が1.5×10-2μ秒以上である場合、試料セル内の気泡の有無を確実に判定することができる。 According to the vibration type densitometer of this configuration, when the difference between the first vibration cycle and the second vibration cycle is 1.5 × 10-2 μsec or more, the determination means determines the presence or absence of air bubbles in the sample cell. It can be determined with certainty.

本発明に係る振動式密度計において、
前記被測定試料の粘度は、200mPa・s以下であることが好ましい。
In the vibration type densitometer according to the present invention
The viscosity of the sample to be measured is preferably 200 mPa · s or less.

被測定試料の粘度が高いほど、第一振動周期と第二振動周期との差は小さくなる傾向がある。本構成の振動式密度計によれば、被測定試料の粘度が200mPa・s以下であることにより、被測定試料の粘度による影響を抑えて、試料セル内の気泡の有無を判定することができる。 The higher the viscosity of the sample to be measured, the smaller the difference between the first vibration cycle and the second vibration cycle tends to be. According to the vibration type densitometer of this configuration, since the viscosity of the sample to be measured is 200 mPa · s or less, it is possible to suppress the influence of the viscosity of the sample to be measured and determine the presence or absence of bubbles in the sample cell. ..

本発明に係る振動式密度計において、
前記試料セルは、U字管であり、
前記判定手段は、前記U字管の先端から固定端までの1/2以下の区間における前記気泡の有無を判定することが好ましい。
In the vibration type densitometer according to the present invention
The sample cell is a U-shaped tube and has a U-shaped tube.
It is preferable that the determination means determines the presence or absence of the bubbles in a section of 1/2 or less from the tip of the U-shaped tube to the fixed end.

振動式密度計における密度の算出では、U字管の先端から固定端までの1/2以下の区間に気泡が存在すると、誤差が大きくなる。本構成の振動式密度計によれば、試料セルがU字管であり、判定手段がU字管の先端から固定端までの1/2以下の区間における気泡の有無を判定することにより、実用上十分な精度で被測定試料の密度を算出することができる。 In the calculation of the density in the vibration type densitometer, if bubbles are present in the section of 1/2 or less from the tip of the U-shaped tube to the fixed end, the error becomes large. According to the vibration type densitometer of this configuration, the sample cell is a U-shaped tube, and the determination means is practical by determining the presence or absence of bubbles in a section of 1/2 or less from the tip to the fixed end of the U-shaped tube. Above, the density of the sample to be measured can be calculated with sufficient accuracy.

上記課題を解決するための本発明に係る気泡混入判定方法の特徴構成は、
試料セルに収容した被測定試料の密度を測定する振動式密度計において、前記試料セルへの気泡の混入を判定する気泡混入判定方法であって、
第一駆動力で前記試料セルに振動を励起させる第一励振ステップと、
前記第一駆動力で励起された前記試料セルの第一振動周期を測定する第一測定ステップと、
前記第一駆動力より小さい第二駆動力で前記試料セルに振動を励起させる第二励振ステップと、
前記第二駆動力で励起された前記試料セルの第二振動周期を測定する第二測定ステップと、
前記第一振動周期と前記第二振動周期との差に基づいて、前記試料セル内の気泡の有無を判定する判定ステップと
を包含することにある。
The characteristic configuration of the bubble mixing determination method according to the present invention for solving the above problems is
In a vibration type densitometer that measures the density of a sample to be measured housed in a sample cell, it is a bubble mixing determination method for determining the inclusion of bubbles in the sample cell.
The first excitation step of exciting the sample cell to vibrate with the first driving force,
The first measurement step for measuring the first vibration cycle of the sample cell excited by the first driving force, and the first measurement step.
A second excitation step that excites vibration in the sample cell with a second driving force smaller than the first driving force.
The second measurement step of measuring the second vibration period of the sample cell excited by the second driving force, and the second measurement step.
The present invention includes a determination step of determining the presence or absence of bubbles in the sample cell based on the difference between the first vibration cycle and the second vibration cycle.

本構成の気泡混入判定方法によれば、第一駆動力で試料セルに振動を励起させる第一励振ステップと、第一駆動力で励起された試料セルの第一振動周期を測定する第一測定ステップと、第一駆動力より小さい第二駆動力で試料セルに振動を励起させる第二励振ステップと、第二駆動力で励起された試料セルの第二振動周期を測定する第二測定ステップと、第一振動周期と第二振動周期との差に基づいて、試料セル内の気泡の有無を判定する判定ステップとを包含することにより、気泡の排出を確認するために試料セルへの被測定試料の導入及び振動周期の測定を繰り返す必要がなく、試料セルに被測定試料が収容された状態のままで気泡の有無を判定することができる。従って、本構成の気泡混入判定方法では、被測定試料の導入の繰り返しに伴う複数回の試料セルの温度変化が生じることがなく、気泡の有無を短時間で判定することができる。その結果、気泡の混入による誤差の発生を防ぎながら、被測定試料を導入してから密度を測定するまでの時間も短縮することができる。 According to the bubble mixing determination method of this configuration, the first excitation step of exciting the sample cell with vibration by the first driving force and the first measurement of measuring the first vibration cycle of the sample cell excited by the first driving force. A step, a second excitation step in which the sample cell is excited by a second driving force smaller than the first driving force, and a second measurement step in which the second vibration cycle of the sample cell excited by the second driving force is measured. By including a determination step of determining the presence or absence of bubbles in the sample cell based on the difference between the first vibration cycle and the second vibration cycle, the sample cell is measured to confirm the discharge of bubbles. It is not necessary to repeat the introduction of the sample and the measurement of the vibration cycle, and it is possible to determine the presence or absence of bubbles while the sample to be measured is contained in the sample cell. Therefore, in the bubble mixing determination method of the present configuration, the presence or absence of bubbles can be determined in a short time without causing the temperature change of the sample cell a plurality of times due to the repeated introduction of the sample to be measured. As a result, it is possible to shorten the time from the introduction of the sample to be measured to the measurement of the density while preventing the occurrence of an error due to the mixing of bubbles.

図1は、本発明に係る振動式密度計の構成図である。FIG. 1 is a block diagram of a vibration type densitometer according to the present invention. 図2は、測定手段における振動周期の測定結果を示す図である。FIG. 2 is a diagram showing the measurement result of the vibration cycle in the measuring means. 図3は、試料セルにおける気泡の位置を模式的に示す図である。FIG. 3 is a diagram schematically showing the positions of bubbles in the sample cell. 図4は、被測定試料の導入後に温度の変化がある状態での気泡が混入していない試料セルにおける振動周期の測定結果を示す図である。FIG. 4 is a diagram showing a measurement result of a vibration cycle in a sample cell in which bubbles are not mixed in a state where there is a change in temperature after the introduction of the sample to be measured.

以下、本発明の振動式密度計、及び振動式密度計における気泡検出方法について説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。 Hereinafter, the vibration type densitometer of the present invention and the bubble detection method in the vibration type densitometer will be described. However, the present invention is not intended to be limited to the configurations described in the embodiments and drawings described below.

<振動式密度計>
図1は、本発明に係る振動式密度計1の構成図である。振動式密度計1は、液体の被測定試料を収容した試料セル10を振動させて、その振動周期を測定するための測定部100と、測定された振動周期から被測定試料の密度を演算する演算部200とを備える。
<Vibration type density meter>
FIG. 1 is a block diagram of a vibration type densitometer 1 according to the present invention. The vibration type densitometer 1 vibrates a sample cell 10 containing a liquid sample to be measured, and calculates the density of the sample to be measured from the measuring unit 100 for measuring the vibration cycle and the measured vibration cycle. It is provided with a calculation unit 200.

<測定部>
測定部100は、断熱材等からなるケース52内に収容された、試料セル10、励振手段20、及び測定手段30を備える。
<Measurement unit>
The measuring unit 100 includes a sample cell 10, an exciting means 20, and a measuring means 30 housed in a case 52 made of a heat insulating material or the like.

試料セル10は、U字型のガラス管である。試料セル10の先端(ガラス管の曲管部分)10aには薄板状の永久磁石11が接着剤等により固着されている。試料セル10の固定端(ガラス管の両管口部)10bは、ホルダ51によって固定され、このホルダ51は、ケース52に固定されている。試料セル10の一方の管口はホルダ51を介して被測定試料を導入するサンプリングチューブに接続され、他方の管口はホルダ51を介して測定の完了した被測定試料を排出する排液チューブに接続されている。サンプリングチューブ、排液チューブには樹脂チューブ等を使用することができ、試料セル10への被測定試料の導入及び排液は、例えば、排液チューブにベリスタポンプ等のポンプ(不図示)を接続し、このポンプにより吸引することにより実行することができる。また、多くの被測定試料を連続的に自動で測定するために、サンプリングチューブは、自動サンプラに接続することも可能である。 The sample cell 10 is a U-shaped glass tube. A thin plate-shaped permanent magnet 11 is fixed to the tip of the sample cell 10 (the curved tube portion of the glass tube) 10a with an adhesive or the like. The fixed ends (both tube mouths of the glass tube) 10b of the sample cell 10 are fixed by the holder 51, and the holder 51 is fixed to the case 52. One tube port of the sample cell 10 is connected to a sampling tube for introducing the sample to be measured via the holder 51, and the other tube port is connected to a drainage tube for discharging the sample to be measured through the holder 51. It is connected. A resin tube or the like can be used for the sampling tube and the drainage tube, and for introduction and drainage of the sample to be measured into the sample cell 10, for example, a pump (not shown) such as a verista pump is connected to the drainage tube. However, it can be carried out by sucking with this pump. In addition, the sampling tube can also be connected to an automatic sampler in order to continuously and automatically measure many samples to be measured.

試料セル10の先端10a付近には、サーミスタ等の温度センサ40が配されている。試料セル10の温度は、温度センサ40により測定された温度に基づいて、ペルチェ素子(不図示)等の熱電素子を備えたアルミニウム等の金属からなる恒温ブロック53によって、予め定められた基準温度となるようにフィードバック制御されている。 A temperature sensor 40 such as a thermistor is arranged near the tip 10a of the sample cell 10. The temperature of the sample cell 10 is set to a predetermined reference temperature by a constant temperature block 53 made of a metal such as aluminum provided with a thermoelectric element such as a Pelche element (not shown) based on the temperature measured by the temperature sensor 40. The feedback is controlled so as to be.

試料セル10を構成するガラス管の肉厚は、0.2mm以下であることが好ましい。ガラス管の肉厚が0.2mm以下であれば、試料セル10の熱伝導性が優れたものとなるため、基準温度と異なる温度の被測定試料が導入された場合にも、被測定試料の導入から試料セル10が基準温度に達するまでの時間が短くなり、短時間で密度を測定することができる。ガラス管の肉厚が0.2mmを超える場合、ガラス管の熱伝導性が低下し、被測定試料の導入から試料セル10が基準温度に達するまでの時間が長くなることで、密度の測定に比較的長い時間が必要となる虞がある。試料セル10の先端10aから固定端10bまでの長さLは、60~90mmであることが好ましい。長さLが上記の範囲にあれば、被測定試料を収容した状態での振動周期が適切なものとなり、気泡の混入の判定精度を向上させることができる。長さLが上記の範囲から外れる場合、被測定試料を収容した状態での振動周期が過剰に短くなったり、長くなったりすることで、気泡の混入の判定精度が劣るものとなる虞がある。また、振動式密度計1は、浮ひょう型比重計等に比べて少量の被測定試料の密度測定に用いられるため、試料セル10の容積は、1mL以下であることが好ましい。 The wall thickness of the glass tube constituting the sample cell 10 is preferably 0.2 mm or less. If the wall thickness of the glass tube is 0.2 mm or less, the thermal conductivity of the sample cell 10 is excellent. Therefore, even when a sample to be measured having a temperature different from the reference temperature is introduced, the sample to be measured The time from introduction to the sample cell 10 reaching the reference temperature is shortened, and the density can be measured in a short time. When the wall thickness of the glass tube exceeds 0.2 mm, the thermal conductivity of the glass tube decreases, and the time from the introduction of the sample to be measured until the sample cell 10 reaches the reference temperature becomes long, so that the density can be measured. It may take a relatively long time. The length L from the tip 10a to the fixed end 10b of the sample cell 10 is preferably 60 to 90 mm. When the length L is within the above range, the vibration cycle in the state where the sample to be measured is housed becomes appropriate, and the accuracy of determining the mixing of bubbles can be improved. If the length L deviates from the above range, the vibration cycle in the state where the sample to be measured is housed may be excessively shortened or lengthened, and the determination accuracy of air bubble contamination may be deteriorated. .. Further, since the vibration type densitometer 1 is used for measuring the density of a sample to be measured in a smaller amount than that of a floating hydrometer or the like, the volume of the sample cell 10 is preferably 1 mL or less.

励振手段20は、永久磁石11に対向する位置に配置された駆動コイルである。励振手段20は、駆動コイルに所定周波数の駆動電流が流されることによって生じる磁界変化を永久磁石11に作用させることにより、試料セル10に振動を励起させる。この試料セル10の振動は後述する測定手段30によって検出され、さらに、検出信号に基づいて試料セル10の振動周期に同期した駆動電流が駆動コイルに流される。この結果、試料セル10は、駆動コイルに流れる駆動電流の周波数に共振して、固有振動周期で振動することになる。励振手段20は、後述する駆動制御手段80によって駆動コイルに印加される電圧又は駆動コイルに流される電流が制御されることによって駆動力が変更される。 The exciting means 20 is a drive coil arranged at a position facing the permanent magnet 11. The exciting means 20 excites vibration in the sample cell 10 by causing the permanent magnet 11 to act on a magnetic field change caused by a drive current having a predetermined frequency flowing through the drive coil. The vibration of the sample cell 10 is detected by the measuring means 30 described later, and a drive current synchronized with the vibration cycle of the sample cell 10 is passed through the drive coil based on the detection signal. As a result, the sample cell 10 resonates with the frequency of the drive current flowing through the drive coil and vibrates in the natural vibration cycle. The driving force of the exciting means 20 is changed by controlling the voltage applied to the drive coil or the current flowing through the drive coil by the drive control means 80 described later.

測定手段30は、LED31、及び受光素子32からなる。LED31、及び受光素子32は、試料セル10を構成するU字型のガラス管の曲管部分を、延伸方向に挟んで配置されている。LED31から出射され試料セル10を透過する光は、試料セル10が振動すると、その振動周期に合わせて強度が変動する。透過光を連続的に受光している受光素子32が、この透過光の変動を検出した検出信号に基づいて、試料セル10の振動周期が測定される。なお、測定手段30は、光学式の測定に限らず、他の方式で試料セル10の振動周期を測定してもよい。例えば、測定手段30は、試料セル10の先端10aに固定された永久磁石11に対向する位置に配された検出コイルによって構成してもよい。試料セル10の振動にともなう永久磁石11の移動により生じる磁界変化を、この検出コイルで検出することによって、その検出信号から試料セル10の振動周期を測定することができる。 The measuring means 30 includes an LED 31 and a light receiving element 32. The LED 31 and the light receiving element 32 are arranged so as to sandwich the curved tube portion of the U-shaped glass tube constituting the sample cell 10 in the stretching direction. When the sample cell 10 vibrates, the intensity of the light emitted from the LED 31 and transmitted through the sample cell 10 changes according to the vibration cycle. The vibration cycle of the sample cell 10 is measured based on the detection signal that the light receiving element 32 that continuously receives the transmitted light detects the fluctuation of the transmitted light. The measuring means 30 is not limited to the optical measurement, and may measure the vibration cycle of the sample cell 10 by another method. For example, the measuring means 30 may be configured by a detection coil arranged at a position facing the permanent magnet 11 fixed to the tip 10a of the sample cell 10. By detecting the change in the magnetic field caused by the movement of the permanent magnet 11 due to the vibration of the sample cell 10 with this detection coil, the vibration cycle of the sample cell 10 can be measured from the detection signal.

<演算部>
演算部200は、CPU、メモリ、ストレージ等を有するコンピュータにおいて、メモリに記録されているプログラムをCPUが読み出して実行することで、振動式密度計1の動作を制御する機能が実現されるよう構成したり、その一部又は全部の機能を実行する集積回路として構成することができる。演算部200は、従来の振動式密度計において密度演算を実現する手段である周波数検出手段60、及び算出手段70に加えて、励振手段20を駆動させる駆動制御手段80、及び気泡の有無を判定するための判定手段90を備えている。演算部200は、さらに恒温ブロック53のペルチェ素子の動作を制御する。
<Calculation unit>
The arithmetic unit 200 is configured to realize a function of controlling the operation of the vibration type densitometer 1 by reading and executing a program recorded in the memory in a computer having a CPU, a memory, a storage, and the like. It can be configured as an integrated circuit that performs some or all of its functions. The calculation unit 200 determines, in addition to the frequency detection means 60 and the calculation means 70, which are means for realizing the density calculation in the conventional vibration type densitometer, the drive control means 80 for driving the excitation means 20, and the presence or absence of bubbles. The determination means 90 is provided. The arithmetic unit 200 further controls the operation of the Pelche element of the constant temperature block 53.

周波数検出手段60は、水晶発振器(不図示)からのクロック信号を参照して、測定手段30の受光素子32が出力した検出信号から、試料セル10の振動周期を算出する。周波数検出手段60は、算出した試料セル10の振動周期を、算出手段70、及び判定手段90に出力する。 The frequency detecting means 60 calculates the vibration cycle of the sample cell 10 from the detection signal output by the light receiving element 32 of the measuring means 30 with reference to the clock signal from the crystal oscillator (not shown). The frequency detection means 60 outputs the calculated vibration cycle of the sample cell 10 to the calculation means 70 and the determination means 90.

算出手段70は、周波数検出手段60から入力された振動周期を用いて、上述の式(1)によって被測定試料の密度を算出する。算出手段70において算出された被測定試料の密度は、表示部(不図示)への表示や、ストレージへの記録に供される。算出手段70による被測定試料の密度の算出を終了した後、演算部200は、排液チューブに接続したポンプ、サンプリングチューブに接続した自動サンプラ等に測定の完了を通知する。これにより、試料セル10内の被測定試料の排液、及び新たな被測定試料の試料セル10への導入が実行される。 The calculation means 70 calculates the density of the sample to be measured by the above equation (1) using the vibration cycle input from the frequency detection means 60. The density of the sample to be measured calculated by the calculation means 70 is used for display on a display unit (not shown) or for recording in a storage. After completing the calculation of the density of the sample to be measured by the calculation means 70, the calculation unit 200 notifies the pump connected to the drainage tube, the automatic sampler connected to the sampling tube, and the like of the completion of the measurement. As a result, the drainage of the sample to be measured in the sample cell 10 and the introduction of a new sample to be measured into the sample cell 10 are executed.

駆動制御手段80、及び判定手段90は、本発明に特有の構成である。本発明では、駆動制御手段80、及び判定手段90の動作によって、試料セル10への気泡の混入を判定する。 The drive control means 80 and the determination means 90 have a configuration peculiar to the present invention. In the present invention, the mixing of air bubbles into the sample cell 10 is determined by the operation of the drive control means 80 and the determination means 90.

駆動制御手段80は、励振手段20に、試料セル10に振動を励起させる駆動力を変更させる機能を有する。励振手段20が試料セル10を振動させる駆動力は、励振手段20に駆動電流が流されることによって生じる磁界変化の大きさに比例するため、駆動制御手段80は、駆動コイルに印加する電圧又は駆動コイルに流す電流をデジタル-アナログ変換回路(以下、「D/Aコンバータ」と称する。)等によって設定することにより、励振手段20の駆動力を制御することができる。この電圧又は電流の大きさに比例して、試料セル10に生じる振動の振幅も変化する。駆動制御手段80は、このような電圧又は電流による制御によって、被測定試料の密度を測定するための通常の動作時には、励振手段20を第一駆動力で駆動させ、気泡の混入を判定する動作時には、励振手段20を第一駆動力から一時的に第二駆動力で駆動させる。第二駆動力は、第一駆動力の1/5~1/2倍であることが好ましい。第二駆動力が上記の範囲であれば、試料セル10に気泡が存在していないときと、気泡が存在しているときとで、振動周期の変化が大きく異なるものとなり、気泡の有無を正確に判定することができる。第二駆動力が第一駆動力の1/5倍未満である場合、又は第二駆動力が第一駆動力の1/2倍を超える場合、試料セル10に気泡が存在していないときと、気泡が存在しているときとで、振動周期の変化が類似するものとなり、気泡の有無を正確に判定することができない虞がある。 The drive control means 80 has a function of causing the excitation means 20 to change the driving force that excites the vibration in the sample cell 10. Since the driving force for the exciting means 20 to vibrate the sample cell 10 is proportional to the magnitude of the magnetic field change caused by the driving current flowing through the exciting means 20, the drive control means 80 applies a voltage or a drive to the drive coil. The driving force of the exciting means 20 can be controlled by setting the current flowing through the coil by a digital-to-analog conversion circuit (hereinafter, referred to as “D / A converter”) or the like. The amplitude of the vibration generated in the sample cell 10 also changes in proportion to the magnitude of this voltage or current. The drive control means 80 drives the excitation means 20 with the first driving force during normal operation for measuring the density of the sample to be measured by such control by voltage or current, and determines the mixing of bubbles. Occasionally, the exciting means 20 is temporarily driven by the second driving force from the first driving force. The second driving force is preferably 1/5 to 1/2 times the first driving force. If the second driving force is within the above range, the change in the vibration cycle will be significantly different between when bubbles do not exist in the sample cell 10 and when bubbles exist, and the presence or absence of bubbles is accurate. Can be determined. When the second driving force is less than 1/5 times the first driving force, or when the second driving force exceeds 1/2 times the first driving force, when there are no bubbles in the sample cell 10. The change in the vibration cycle is similar to that when bubbles are present, and there is a possibility that the presence or absence of bubbles cannot be accurately determined.

判定手段90は、第一駆動力で駆動する励振手段20によって励起された試料セル10において、測定手段30により測定された振動周期(以下、「第一振動周期」と称する。)と、第二駆動力で駆動する励振手段20によって励起された試料セル10において、測定手段30により測定された振動周期(以下、「第二振動周期」と称する。)とを取得し、第一振動周期と第二振動周期との差の絶対値(以下、「振動周期差」と称する。)に基づいて、試料セル10内の気泡の有無を判定する。具体的には、判定手段90は、第一振動周期と、第二振動周期との振動周期差が1.5×10-2μ秒以上である場合に、気泡の存在を検出する。ここで、第一振動周期は、励振手段20の駆動力が第一駆動力から第二駆動力に変更される直前に測定手段30により測定された振動周期であることが好ましく、第二振動周期は、励振手段20の駆動力が第二駆動力に変更されてから8~10秒の間の任意の時点で測定手段30により測定された振動周期であることが好ましい。 The determination means 90 includes a vibration cycle (hereinafter referred to as “first vibration cycle”) measured by the measuring means 30 in the sample cell 10 excited by the exciting means 20 driven by the first driving force, and a second vibration cycle. In the sample cell 10 excited by the exciting means 20 driven by the driving force, the vibration cycle measured by the measuring means 30 (hereinafter referred to as "second vibration cycle") is acquired, and the first vibration cycle and the first vibration cycle are obtained. (Ii) The presence or absence of air bubbles in the sample cell 10 is determined based on the absolute value of the difference from the vibration cycle (hereinafter referred to as "vibration cycle difference"). Specifically, the determination means 90 detects the presence of bubbles when the vibration cycle difference between the first vibration cycle and the second vibration cycle is 1.5 × 10 −2 μsec or more. Here, the first vibration cycle is preferably a vibration cycle measured by the measuring means 30 immediately before the driving force of the exciting means 20 is changed from the first driving force to the second driving force, and is the second vibration cycle. Is preferably the vibration cycle measured by the measuring means 30 at any time between 8 and 10 seconds after the driving force of the exciting means 20 is changed to the second driving force.

<気泡混入判定動作>
図2は、測定手段30における振動周期の測定結果を示す図である。図3は、試料セル10における気泡の位置を模式的に示す図である。図2(a)に示す測定結果は、被測定試料として水を用い、試料セル10の温度が20℃で安定した状態で、気泡が混入していない試料セル10において振動周期を測定したものである。図2(b)に示す測定結果は、被測定試料として水を用い、試料セル10の温度が20℃で安定した状態で、先端10aの位置(図3における位置A)に気泡が混入している試料セル10において振動周期を測定したものである。図2(a)、及び(b)において、振動周期は1.75秒周期で測定している。
<Foam mixing judgment operation>
FIG. 2 is a diagram showing the measurement result of the vibration cycle in the measuring means 30. FIG. 3 is a diagram schematically showing the positions of bubbles in the sample cell 10. The measurement result shown in FIG. 2A shows the vibration cycle measured in the sample cell 10 containing no air bubbles while the temperature of the sample cell 10 is stable at 20 ° C. using water as the sample to be measured. be. In the measurement result shown in FIG. 2B, water is used as the sample to be measured, and bubbles are mixed in the position of the tip 10a (position A in FIG. 3) in a state where the temperature of the sample cell 10 is stable at 20 ° C. The vibration cycle is measured in the sample cell 10 in the sample cell. In FIGS. 2 (a) and 2 (b), the vibration cycle is measured at a cycle of 1.75 seconds.

図2(a)に示す気泡が混入していない試料セル10における振動周期の測定では、駆動制御手段80は、励振手段20を、時刻t0まで第一駆動力で駆動させた後、時刻t0から8.75秒後のt1までの期間において第二駆動力で駆動させ、時刻t1以降は再び第一駆動力で駆動させる。このとき、第二駆動力での駆動時に励振手段20の駆動コイルに流れる電流が、第一駆動力での駆動時に励振手段20の駆動コイルに流れる電流の1/4倍となるように、D/Aコンバータの出力を設定することによって、第二駆動力を第一駆動力の1/4倍に制御した。このような制御により、気泡が混入していない試料セル10では、励振手段20を第一駆動力で駆動させた時刻t0まで振動周期がおおよそ一定となり、時刻t0に励振手段20の駆動力を第一駆動力から第二駆動力に低下させると、振動周期も一時的に低下し、駆動力の低下からおよそ5測定周期(8.75秒)で、駆動力を変更する直前の時刻t0での振動周期と近い値まで回復する。時刻t1に励振手段20の駆動力を第二駆動力から第一駆動力に上昇させると、振動周期も一時的に上昇し、駆動力の上昇からおよそ5測定周期(8.75秒)で、再び時刻t0での振動周期と近い値まで回復する。このような振動周期の変動パターンに起因して、この測定では、励振手段20の駆動力が第一駆動力から第二駆動力に変更される直前の時刻t0に測定された第一振動周期と、励振手段20の駆動力が第二駆動力に変更されてから8.75秒後の時刻t1に測定された第二振動周期との振動周期差d1は、3.7×10-3μ秒と小さなものとなる。このように、振動周期差d1が、試料セル10における気泡の存在を判定する閾値1.5×10-2μ秒未満となることで、判定手段90は、試料セル10に気泡が混入していないと判定することができる。 In the measurement of the vibration cycle in the sample cell 10 in which bubbles are not mixed as shown in FIG. 2A, the drive control means 80 drives the excitation means 20 with the first driving force until the time t0, and then starts from the time t0. It is driven by the second driving force in the period up to t1 after 8.75 seconds, and is driven by the first driving force again after the time t1. At this time, D so that the current flowing through the drive coil of the exciting means 20 when driven by the second driving force is 1/4 times the current flowing through the driving coil of the exciting means 20 when driven by the first driving force. By setting the output of the / A converter, the second driving force was controlled to 1/4 times the first driving force. Due to such control, in the sample cell 10 in which bubbles are not mixed, the vibration cycle becomes approximately constant until the time t0 when the exciting means 20 is driven by the first driving force, and the driving force of the exciting means 20 becomes the second driving force at the time t0. When the driving force is reduced from the first driving force to the second driving force, the vibration cycle is also temporarily reduced, and the driving force is reduced to about 5 measurement cycles (8.75 seconds) at the time t0 immediately before the driving force is changed. It recovers to a value close to the vibration cycle. When the driving force of the exciting means 20 is increased from the second driving force to the first driving force at time t1, the vibration cycle also temporarily increases, and the increase in the driving force is performed in about 5 measurement cycles (8.75 seconds). It recovers to a value close to the vibration cycle at time t0 again. Due to such a fluctuation pattern of the vibration cycle, in this measurement, the first vibration cycle measured at time t0 immediately before the driving force of the exciting means 20 is changed from the first driving force to the second driving force is used. The vibration cycle difference d1 from the second vibration cycle measured at time t1 8.75 seconds after the driving force of the exciting means 20 is changed to the second driving force is 3.7 × 10 -3 μsec. It becomes a small one. As described above, when the vibration cycle difference d1 is less than the threshold value of 1.5 × 10 −2 μsec for determining the presence of air bubbles in the sample cell 10, the determination means 90 has air bubbles mixed in the sample cell 10. It can be determined that there is no such thing.

一方、図2(b)に示す気泡が混入している試料セル10における振動周期の測定においても、図2(a)の場合と同様に、駆動制御手段80は、励振手段20を、時刻t0まで第一駆動力で駆動させた後、時刻t0から8.75秒後の時刻t1までの期間において第二駆動力で駆動させ、時刻t1以降は再び第一駆動力で駆動させる。このような制御により、気泡が混入している試料セル10では、時刻t0に励振手段20の駆動力を第一駆動力から第二駆動力に低下させると、気泡が混入していない試料セル10とは逆に、振動周期が一時的に上昇する。さらに、気泡が混入していない試料セル10では、駆動力の変更からおよそ5測定周期(8.75秒)で、駆動力を変更する直前の時刻t0での振動周期に近い値まで回復したが、気泡が混入している試料セル10では、駆動力の変更からおよそ5測定周期(8.75秒)経過した時点まで、振動周期が継続して上昇する。このような振動周期の変動パターンに起因して、この測定では、励振手段20の駆動力が第一駆動力から第二駆動力に変更される直前の時刻t0に測定された第一振動周期と、励振手段20の駆動力が第二駆動力に変更されてから8.75秒後の時刻t1に測定された第二振動周期との振動周期差d2は、2.6×10-1μ秒と大きなものとなる。このように、振動周期差d2が、試料セル10における気泡の存在を判定する閾値1.5×10-2μ秒以上となることで、判定手段90は、試料セル10に気泡が混入していると判定することができる。 On the other hand, in the measurement of the vibration cycle in the sample cell 10 in which the bubbles are mixed as shown in FIG. 2 (b), the drive control means 80 sets the exciting means 20 at time t0 as in the case of FIG. 2 (a). After being driven by the first driving force, it is driven by the second driving force in the period from time t0 to time t1 8.75 seconds later, and after time t1, it is driven by the first driving force again. By such control, in the sample cell 10 in which bubbles are mixed, when the driving force of the exciting means 20 is reduced from the first driving force to the second driving force at time t0, the sample cell 10 in which bubbles are not mixed is introduced. On the contrary, the vibration cycle temporarily increases. Further, in the sample cell 10 containing no air bubbles, the value recovered to a value close to the vibration cycle at time t0 immediately before the change of the driving force in about 5 measurement cycles (8.75 seconds) after the change of the driving force. In the sample cell 10 in which bubbles are mixed, the vibration cycle continuously increases from the change of the driving force to the time when about 5 measurement cycles (8.75 seconds) have elapsed. Due to such a fluctuation pattern of the vibration cycle, in this measurement, the first vibration cycle measured at time t0 immediately before the driving force of the exciting means 20 is changed from the first driving force to the second driving force is used. The vibration cycle difference d2 from the second vibration cycle measured at time t1 8.75 seconds after the driving force of the exciting means 20 is changed to the second driving force is 2.6 × 10 -1 μsec. It becomes a big one. As described above, when the vibration cycle difference d2 becomes the threshold value of 1.5 × 10 −2 μsec or more for determining the presence of bubbles in the sample cell 10, the determination means 90 has the bubbles mixed in the sample cell 10. It can be determined that there is.

<測定温度>
試料セル10の温度が、振動周期差に及ぼす影響を検討した。図4は、被測定試料の導入後に温度の変化がある状態での気泡が混入していない試料セル10における振動周期の測定結果を示す図である。図4に示す振動周期の測定では、被測定試料として水を用い、試料セル10の温度を基準温度である20.0℃に維持するように、演算部200が恒温ブロック53のペルチェ素子を制御している状態で、試料セル10に21℃の被測定試料を導入している。駆動制御手段80は、通常は励振手段20を第一駆動力で駆動させたが、被測定試料の導入から試料セル10の温度が基準温度である20.0℃に達するまでに、5つの期間で8.75秒ずつ励振手段20を第二駆動力で駆動させた。このとき、第二駆動力での駆動時に励振手段20の駆動コイルに流れる電流が、第一駆動力での駆動時に励振手段20の駆動コイルに流れる電流の1/4倍となるように、D/Aコンバータの出力を設定することによって、第二駆動力を第一駆動力の1/4倍に制御した。
<Measurement temperature>
The effect of the temperature of the sample cell 10 on the vibration cycle difference was examined. FIG. 4 is a diagram showing the measurement result of the vibration cycle in the sample cell 10 in which bubbles are not mixed in a state where the temperature changes after the introduction of the sample to be measured. In the measurement of the vibration cycle shown in FIG. 4, water is used as the sample to be measured, and the calculation unit 200 controls the Pelche element of the constant temperature block 53 so as to maintain the temperature of the sample cell 10 at the reference temperature of 20.0 ° C. In this state, the sample to be measured at 21 ° C. is introduced into the sample cell 10. The drive control means 80 normally drives the excitation means 20 with the first driving force, but there are five periods from the introduction of the sample to be measured until the temperature of the sample cell 10 reaches the reference temperature of 20.0 ° C. The exciting means 20 was driven by the second driving force for 8.75 seconds each. At this time, D so that the current flowing through the drive coil of the exciting means 20 when driven by the second driving force is 1/4 times the current flowing through the driving coil of the exciting means 20 when driven by the first driving force. By setting the output of the / A converter, the second driving force was controlled to 1/4 times the first driving force.

試料セル10の温度が20.1℃未満であるときに励振手段20を第二駆動力で駆動させた場合、第一駆動力から第二駆動力に変更される直前に測定された第一振動周期と、励振手段20の駆動力が第二駆動力に変更されてから8.75秒後に測定された第二振動周期との振動周期差d13が6.3×10-3μ秒となり、振動周期差d14が0μ秒となり、振動周期差d15が3.7×10-3μ秒となる。これらの振動周期差は、試料セル10における気泡の存在を判定する閾値1.5×10-2μ秒未満であり、気泡が混入していないと判定することができる。このように、本発明の振動式密度計1において、試料セル10への気泡の混入を判定するときの試料セル10の温度は、基準温度との差が0.1℃未満であることが好ましい。 When the exciting means 20 is driven by the second driving force when the temperature of the sample cell 10 is less than 20.1 ° C., the first vibration measured immediately before the change from the first driving force to the second driving force is performed. The vibration cycle difference d13 between the cycle and the second vibration cycle measured 8.75 seconds after the driving force of the exciting means 20 is changed to the second driving force becomes 6.3 × 10 -3 μsec, and the vibration The cycle difference d14 is 0 μsec, and the vibration cycle difference d15 is 3.7 × 10 -3 μsec. These vibration cycle differences are less than the threshold value of 1.5 × 10 −2 μsec for determining the presence of bubbles in the sample cell 10, and it can be determined that no bubbles are mixed. As described above, in the vibration type densitometer 1 of the present invention, the temperature of the sample cell 10 when determining the mixing of bubbles into the sample cell 10 is preferably less than 0.1 ° C. from the reference temperature. ..

一方、試料セル10の温度が20.1℃を超えるときに励振手段20を第二駆動力で駆動させた場合、第一駆動力から第二駆動力に変更される直前に測定された第一振動周期と、励振手段20の駆動力が第二駆動力に変更されてから8.75秒後に測定された第二振動周期との振動周期差d11が8.4×10-2μ秒となり、振動周期差d12が3.3×10-2μ秒となる。このように、試料セル10の温度が、基準温度から0.1℃を超えて高いときは、試料セル10に気泡が混入していなくとも、第一振動周期と第二駆動力との振動周期差が、試料セル10における気泡の存在を判定する閾値1.5×10-2μ秒以上となる。そのため、本発明の振動式密度計1では、試料セル10への気泡の混入の判定を実行するときに試料セル10の温度と基準温度との差が0.1℃以上である場合、試料セル10における気泡の存在を判定する閾値は、温度変化により想定される振動周期の上昇値から1.5×10-2μ秒大きく設定することが好ましい。 On the other hand, when the exciting means 20 is driven by the second driving force when the temperature of the sample cell 10 exceeds 20.1 ° C., the first measured immediately before the change from the first driving force to the second driving force. The vibration cycle difference d11 between the vibration cycle and the second vibration cycle measured 8.75 seconds after the driving force of the exciting means 20 is changed to the second driving force is 8.4 × 10-2 μsec. The vibration cycle difference d12 is 3.3 × 10 −2 μsec. As described above, when the temperature of the sample cell 10 is higher than the reference temperature by more than 0.1 ° C., the vibration cycle of the first vibration cycle and the second driving force is generated even if bubbles are not mixed in the sample cell 10. The difference is a threshold value of 1.5 × 10 −2 μsec or more for determining the presence of bubbles in the sample cell 10. Therefore, in the vibration type densitometer 1 of the present invention, when the difference between the temperature of the sample cell 10 and the reference temperature is 0.1 ° C. or more when the determination of the inclusion of air bubbles in the sample cell 10 is executed, the sample cell is used. It is preferable to set the threshold value for determining the presence of bubbles in No. 10 to be 1.5 × 10 −2 μsec larger than the increase value of the vibration cycle assumed by the temperature change.

<試料セルにおける気泡の位置>
試料セル10における気泡の位置が、振動周期差に及ぼす影響を検討した。被測定試料として水を用い、試料セル10において、図3に示すA~Eの各位置に気泡が存在する状態、及び気泡が存在しない状態で、試料セル10の温度が20℃で安定してから、励振手段20を第一駆動力で駆動させた後、第二駆動力で8.75秒駆動させ、その後に再び第一駆動力で駆動させることにより、第一駆動力から第二駆動力に変更される直前に測定された第一振動周期と、励振手段20の駆動力が第二駆動力に変更されてから8.75秒後に測定された第二振動周期との振動周期差を測定した。このとき、第二駆動力での駆動時に励振手段20の駆動コイルに流れる電流が、第一駆動力での駆動時に励振手段20の駆動コイルに流れる電流の1/4倍となるように、D/Aコンバータの出力を設定することによって、第二駆動力を第一駆動力の1/4倍に制御した。また、図3に示すA~Eの各位置に気泡が存在する状態、及び気泡が存在しない状態で、算出手段70において、密度を算出した。
<Position of bubbles in sample cell>
The influence of the position of the bubble in the sample cell 10 on the vibration cycle difference was examined. Using water as the sample to be measured, the temperature of the sample cell 10 is stable at 20 ° C. in the sample cell 10 in a state where bubbles are present at each of the positions A to E shown in FIG. 3 and in a state where no bubbles are present. Therefore, the exciting means 20 is driven by the first driving force, then driven by the second driving force for 8.75 seconds, and then driven by the first driving force again, whereby the first driving force is driven to the second driving force. Measure the vibration cycle difference between the first vibration cycle measured immediately before the change to and the second vibration cycle measured 8.75 seconds after the driving force of the exciting means 20 is changed to the second driving force. bottom. At this time, D so that the current flowing through the drive coil of the exciting means 20 when driven by the second driving force is 1/4 times the current flowing through the driving coil of the exciting means 20 when driven by the first driving force. By setting the output of the / A converter, the second driving force was controlled to 1/4 times the first driving force. Further, the density was calculated by the calculation means 70 in a state where bubbles exist at each position of A to E shown in FIG. 3 and in a state where bubbles do not exist.

Figure 2022065825000002
Figure 2022065825000002

表1に示すように、試料セル10の先端10aから固定端10bまでの1/2以下の区間の位置A、B、又はCに気泡が存在する場合、算出手段70において算出される密度は、試料セル10に気泡が混入していない場合に算出手段70において算出される密度と比較して、その差は最大で2.0×10-2g/cmとなり、2.0%の誤差が生じている。位置A、B、又はCに気泡が存在する場合、第一振動周期と第二振動周期との振動周期差は、2.5×10-1μ秒以上となる。このように、位置A、B、又はCの何れに気泡が存在する場合にも、振動周期差が、試料セル10における気泡の存在を判定する閾値1.5×10-2μ秒より大きくなる。そのため、判定手段90は、試料セル10の先端10aから固定端10bまでの1/2以下の区間に気泡が存在する場合、試料セル10において気泡が存在していることを検出することができ、算出手段70において算出される密度は、気泡の存在による誤差が生じているものとして取り扱うことが可能となる。 As shown in Table 1, when bubbles are present at positions A, B, or C in a section of 1/2 or less from the tip 10a to the fixed end 10b of the sample cell 10, the density calculated by the calculation means 70 is calculated. Compared with the density calculated by the calculation means 70 when no bubbles are mixed in the sample cell 10, the difference is 2.0 × 10 -2 g / cm 3 at the maximum, and an error of 2.0% is obtained. It is happening. When bubbles are present at positions A, B, or C, the vibration cycle difference between the first vibration cycle and the second vibration cycle is 2.5 × 10 -1 μsec or more. In this way, when bubbles are present at any of the positions A, B, or C, the vibration cycle difference becomes larger than the threshold value of 1.5 × 10 −2 μsec for determining the presence of bubbles in the sample cell 10. .. Therefore, the determination means 90 can detect the presence of bubbles in the sample cell 10 when bubbles are present in a section of 1/2 or less from the tip 10a to the fixed end 10b of the sample cell 10. The density calculated by the calculation means 70 can be treated as if an error has occurred due to the presence of bubbles.

一方、試料セル10の固定端10bから先端10aまでの1/2以下の区間の位置D、Eに気泡が存在する場合、第一振動周期と第二振動周期との振動周期差は、3.3×10-3μ秒以下となる。そのため、判定手段90では、試料セル10における気泡の存在を検出する閾値1.5×10-2μ秒に基づいて、試料セル10において気泡が存在していることを検出することはできない。しかしながら、試料セル10において位置D、又はEに気泡が存在する場合、算出手段70において算出される密度は、試料セル10に気泡が混入していない場合に算出手段70において算出される密度と比較して、その差が1.4×10-3g/cm以下であり、誤差は0.14%以下に留まる。そのため、試料セル10において位置D、又はEに気泡が存在したとしても、その気泡の有無に関わらず、算出手段70において算出される密度は、実用上十分な精度を有するものとして取り扱うことができる。 On the other hand, when bubbles are present at positions D and E in a section of 1/2 or less from the fixed end 10b to the tip 10a of the sample cell 10, the vibration cycle difference between the first vibration cycle and the second vibration cycle is 3. It will be 3 × 10 -3 μsec or less. Therefore, the determination means 90 cannot detect the presence of bubbles in the sample cell 10 based on the threshold value of 1.5 × 10 −2 μsec for detecting the presence of bubbles in the sample cell 10. However, when bubbles are present at positions D or E in the sample cell 10, the density calculated by the calculation means 70 is compared with the density calculated by the calculation means 70 when no bubbles are mixed in the sample cell 10. The difference is 1.4 × 10 -3 g / cm 3 or less, and the error is 0.14% or less. Therefore, even if bubbles are present at positions D or E in the sample cell 10, the density calculated by the calculation means 70 can be treated as having sufficient accuracy for practical use regardless of the presence or absence of the bubbles. ..

<被測定試料の粘度>
被測定試料の粘度が、振動周期差に及ぼす影響を検討した。密度が0.85g/cmであり、粘度が42mPa・sである粘度標準液JS50、密度が0.86g/cmであり、粘度が172mPa・sである粘度標準液JS200、又は密度が0.87g/cmであり、粘度が436mPa・sである粘度標準液JS500を被測定試料として用い、試料セル10において、図3に示すA~Eの各位置に気泡が存在する状態、及び気泡が存在しない状態で、試料セル10の温度が20℃で安定してから、励振手段20を第一駆動力で駆動させた後、第二駆動力で8.75秒駆動させ、その後に再び第一駆動力で駆動させることにより、第一駆動力から第二駆動力に変更される直前に測定された第一振動周期と、励振手段20の駆動力が第二駆動力に変更されてから8.75秒後に測定された第二振動周期との振動周期差を測定した。このとき、第二駆動力での駆動時に励振手段20の駆動コイルに流れる電流が、第一駆動力での駆動時に励振手段20の駆動コイルに流れる電流の1/4倍となるように、D/Aコンバータの出力を設定することによって、第二駆動力を第一駆動力の1/4倍に制御した。また、図3に示すA~Eの各位置に気泡が存在する状態、及び気泡が存在しない状態で、算出手段70において、密度を算出した。表2は、被測定試料として粘度標準液JS50を用いた場合の測定結果を示し、表3は、被測定試料として粘度標準液JS200を用いた場合の測定結果を示し、表4は、被測定試料として粘度標準液JS500を用いた場合の測定結果を示す。
<Viscosity of the sample to be measured>
The effect of the viscosity of the sample to be measured on the vibration cycle difference was investigated. A viscosity standard solution JS50 having a density of 0.85 g / cm 3 and a viscosity of 42 mPa · s, a viscosity standard solution JS200 having a density of 0.86 g / cm 3 and a viscosity of 172 mPa · s, or a density of 0. Using the viscosity standard solution JS500 having a viscosity of .87 g / cm 3 and a viscosity of 436 mPa · s as the sample to be measured, a state in which bubbles are present at each positions A to E shown in FIG. 3 and bubbles in the sample cell 10. After the temperature of the sample cell 10 stabilizes at 20 ° C. in the absence of, the exciting means 20 is driven by the first driving force, then driven by the second driving force for 8.75 seconds, and then again. By driving with one driving force, the first vibration cycle measured immediately before the change from the first driving force to the second driving force and after the driving force of the exciting means 20 is changed to the second driving force 8 The vibration cycle difference from the second vibration cycle measured after .75 seconds was measured. At this time, D so that the current flowing through the drive coil of the exciting means 20 when driven by the second driving force is 1/4 times the current flowing through the driving coil of the exciting means 20 when driven by the first driving force. By setting the output of the / A converter, the second driving force was controlled to 1/4 times the first driving force. Further, the density was calculated by the calculation means 70 in a state where bubbles exist at each position of A to E shown in FIG. 3 and in a state where bubbles do not exist. Table 2 shows the measurement results when the viscosity standard solution JS50 was used as the sample to be measured, Table 3 shows the measurement results when the viscosity standard solution JS200 was used as the sample to be measured, and Table 4 shows the measurement results when the viscosity standard solution JS200 was used as the sample to be measured. The measurement result when the viscosity standard solution JS500 was used as a sample is shown.

Figure 2022065825000003
Figure 2022065825000003

表2に示すように、被測定試料として粘度が42mPa・sである粘度標準液JS50を用いた場合、試料セル10の先端10aから固定端10bまでの1/2以下の区間の位置A、B、又はCに気泡が存在すると、算出手段70において算出される密度は、試料セル10に気泡が混入していない場合に算出手段70において算出される密度と比較して、その差は最大で4.7×10-3g/cmとなり、0.6%の誤差が生じている。位置A、B、又はCに気泡が存在する場合、第一振動周期と第二振動周期との振動周期差は、4.8×10-2μ秒以上となる。このように、被測定試料として粘度標準液JS50を用いた場合、位置A、B、又はCの何れに気泡が存在しても、振動周期差が、試料セル10における気泡の存在を判定する閾値1.5×10-2μ秒より大きくなる。そのため、判定手段90は、被測定試料として粘度が42mPa・sである粘度標準液JS50を用いた場合にも、試料セル10の先端10aから固定端10bまでの1/2以下の区間に気泡が存在すると、試料セル10において気泡が存在していることを検出することができ、算出手段70において算出される密度は、気泡の存在による誤差が生じているものとして取り扱うことが可能となる。 As shown in Table 2, when the viscosity standard solution JS50 having a viscosity of 42 mPa · s is used as the sample to be measured, the positions A and B of a section of 1/2 or less from the tip 10a to the fixed end 10b of the sample cell 10 Or, when bubbles are present in C, the density calculated by the calculation means 70 has a maximum difference of 4 as compared with the density calculated by the calculation means 70 when no bubbles are mixed in the sample cell 10. It is 7.7 × 10 -3 g / cm 3 , and there is an error of 0.6%. When bubbles are present at positions A, B, or C, the vibration cycle difference between the first vibration cycle and the second vibration cycle is 4.8 × 10-2 μsec or more. As described above, when the viscosity standard solution JS50 is used as the sample to be measured, the vibration cycle difference is the threshold value for determining the presence of bubbles in the sample cell 10 regardless of the presence of bubbles at any of the positions A, B, or C. It is larger than 1.5 × 10 -2 μsec. Therefore, even when the determination means 90 uses the viscosity standard solution JS50 having a viscosity of 42 mPa · s as the sample to be measured, bubbles are generated in a section of 1/2 or less from the tip 10a to the fixed end 10b of the sample cell 10. If present, it is possible to detect the presence of bubbles in the sample cell 10, and the density calculated by the calculation means 70 can be treated as if an error has occurred due to the presence of bubbles.

Figure 2022065825000004
Figure 2022065825000004

表3に示すように、被測定試料として粘度が172mPa・sである粘度標準液JS200を用いた場合、試料セル10の先端10aの位置Bに気泡が存在すると、算出手段70において算出される密度は、試料セル10に気泡が混入していない場合に算出手段70において算出される密度と比較して、その差が4.0×10-3g/cmとなり、0.5%の誤差が生じている。位置Bに気泡が存在する場合、第一振動周期と第二振動周期との振動周期差は、3.5×10-2μ秒となる。このように、粘度標準液JS200を用いた場合、位置Bに気泡が存在すると、振動周期差が、試料セル10における気泡の存在を判定する閾値1.5×10-2μ秒より大きくなる。そのため、判定手段90は、被測定試料として粘度が172mPa・sである粘度標準液JS200を用いた場合には、試料セル10の先端10a近傍に気泡が存在すると、試料セル10において気泡が存在していることを検出することができ、算出手段70において算出される密度は、気泡の存在による誤差が生じているものとして取り扱うことが可能となる。 As shown in Table 3, when the viscosity standard solution JS200 having a viscosity of 172 mPa · s is used as the sample to be measured, if bubbles exist at the position B of the tip 10a of the sample cell 10, the density calculated by the calculation means 70. Compared with the density calculated by the calculation means 70 when no air bubbles are mixed in the sample cell 10, the difference is 4.0 × 10 -3 g / cm 3 , and an error of 0.5% is obtained. It is happening. When a bubble is present at the position B, the vibration cycle difference between the first vibration cycle and the second vibration cycle is 3.5 × 10-2 μsec. As described above, when the viscosity standard solution JS200 is used, if bubbles are present at the position B, the vibration cycle difference becomes larger than the threshold value of 1.5 × 10 −2 μsec for determining the presence of bubbles in the sample cell 10. Therefore, when the determination means 90 uses the viscosity standard solution JS200 having a viscosity of 172 mPa · s as the sample to be measured, if bubbles exist in the vicinity of the tip 10a of the sample cell 10, bubbles exist in the sample cell 10. It is possible to detect that the density is high, and the density calculated by the calculation means 70 can be treated as if an error has occurred due to the presence of bubbles.

一方、位置A、C~Eに気泡が存在する場合、第一振動周期と第二振動周期との振動周期差は、8.0×10-3μ秒以下となる。そのため、被測定試料として粘度が172mPa・sである粘度標準液JS200を用いた場合、判定手段90では、試料セル10における気泡の存在を検出する閾値1.5×10-2μ秒に基づいて、試料セル10において気泡が存在していることを検出することはできない。しかしながら、被測定試料として粘度が172mPa・sである粘度標準液JS200を用いた場合、試料セル10において位置A、C~Eに気泡が存在すると、算出手段70において算出される密度は、試料セル10に気泡が混入していない場合に算出手段70において算出される密度と比較して、その差が1.4×10-3g/cm以下であり、誤差は0.17%以下に留まる。そのため、被測定試料として粘度が172mPa・sである粘度標準液JS200を用いた場合、試料セル10において位置A、C~Eに気泡が存在したとしても、その気泡の有無に関わらず、算出手段70において算出される密度は、実用上十分な精度を有するものとして取り扱うことができる。 On the other hand, when bubbles are present at positions A, C to E, the vibration cycle difference between the first vibration cycle and the second vibration cycle is 8.0 × 10 -3 μsec or less. Therefore, when the viscosity standard solution JS200 having a viscosity of 172 mPa · s is used as the sample to be measured, the determination means 90 is based on the threshold value of 1.5 × 10 −2 μsec for detecting the presence of bubbles in the sample cell 10. , It is not possible to detect the presence of air bubbles in the sample cell 10. However, when the viscosity standard solution JS200 having a viscosity of 172 mPa · s is used as the sample to be measured, if bubbles are present at positions A, C to E in the sample cell 10, the density calculated by the calculation means 70 is the sample cell. Compared with the density calculated by the calculation means 70 when no air bubbles are mixed in 10, the difference is 1.4 × 10 -3 g / cm 3 or less, and the error remains 0.17% or less. .. Therefore, when a viscosity standard solution JS200 having a viscosity of 172 mPa · s is used as the sample to be measured, even if bubbles are present at positions A, C to E in the sample cell 10, the calculation means is used regardless of the presence or absence of the bubbles. The density calculated in 70 can be treated as having sufficient accuracy for practical use.

Figure 2022065825000005
Figure 2022065825000005

表4に示すように、被測定試料として粘度が436mPa・sである粘度標準液JS500を用いた場合、試料セル10の先端10aの位置Bに気泡が存在すると、算出手段70において算出される密度は、試料セル10に気泡が混入していない場合に算出手段70において算出される密度と比較して、その差は2.6×10-3g/cmとなり、0.3%のある程度大きい誤差が生じている。しかしながら、被測定試料として粘度が436mPa・sである粘度標準液JS500を用いた場合、位置A~Eの何れに気泡が存在しても、第一振動周期と第二振動周期との振動周期差は、6.3×10-3μ秒以下となり、試料セル10に気泡が存在しない場合の振動周期差3.0×10-3μ秒との極めて近い値となるため、振動周期差に基づいて試料セル10における気泡の有無を判定することは困難である。 As shown in Table 4, when the viscosity standard solution JS500 having a viscosity of 436 mPa · s is used as the sample to be measured, the density calculated by the calculation means 70 when air bubbles are present at the position B of the tip 10a of the sample cell 10. Compared with the density calculated by the calculation means 70 when no air bubbles are mixed in the sample cell 10, the difference is 2.6 × 10 -3 g / cm 3 , which is a certain amount of 0.3%. There is an error. However, when the viscosity standard solution JS500 having a viscosity of 436 mPa · s is used as the sample to be measured, the vibration cycle difference between the first vibration cycle and the second vibration cycle regardless of the presence of bubbles at any of the positions A to E. Is 6.3 × 10 -3 μsec or less, which is extremely close to the vibration cycle difference of 3.0 × 10 -3 μsec when there are no bubbles in the sample cell 10, and is based on the vibration cycle difference. It is difficult to determine the presence or absence of air bubbles in the sample cell 10.

以上の検討から、被測定試料の粘度が振動周期差に及ぼす影響を考慮した場合、本発明の振動式密度計1において、試料セル10への気泡の混入によって算出手段70において算出される密度に誤差が生じる場合に、適切に試料セル10における気泡を検出するためには、被測定試料の粘度は、200mPa・s以下であることが好ましい。 From the above examination, when the influence of the viscosity of the sample to be measured on the vibration cycle difference is taken into consideration, the density calculated by the calculation means 70 due to the mixing of air bubbles in the sample cell 10 in the vibration type densitometer 1 of the present invention is obtained. In order to properly detect bubbles in the sample cell 10 when an error occurs, the viscosity of the sample to be measured is preferably 200 mPa · s or less.

以上のように、本発明に係る振動式密度計1は、励振手段20を第一駆動力で駆動させたときに測定手段30により測定される試料セル10の第一振動周期と、励振手段20の駆動力を第二駆動力に変更した後に測定手段30により測定される試料セル10の第二振動周期との振動周期差に基づいて、試料セル10内の気泡の有無を判定することができるため、被測定試料の密度測定に先立って気泡の排出を確認するために試料セル10への被測定試料の導入及び振動周期の測定を繰り返す必要がなく、試料セル10に被測定試料が収容された状態のままで気泡の有無を判定することができる。従って、被測定試料の導入の繰り返しに伴う複数回の試料セル10の温度変化が生じることがなく、気泡の有無を短時間で判定することができる。その結果、気泡の混入による誤差の発生を防ぎながら、被測定試料を導入してから密度を測定するまでの時間も短縮することができる。 As described above, the vibration type densitometer 1 according to the present invention has the first vibration cycle of the sample cell 10 measured by the measuring means 30 when the exciting means 20 is driven by the first driving force, and the exciting means 20. The presence or absence of air bubbles in the sample cell 10 can be determined based on the vibration cycle difference from the second vibration cycle of the sample cell 10 measured by the measuring means 30 after the driving force of the sample cell 10 is changed to the second driving force. Therefore, it is not necessary to repeat the introduction of the sample to be measured into the sample cell 10 and the measurement of the vibration cycle in order to confirm the emission of bubbles prior to the measurement of the density of the sample to be measured, and the sample to be measured is housed in the sample cell 10. It is possible to determine the presence or absence of air bubbles in the state of being in the state. Therefore, the presence or absence of air bubbles can be determined in a short time without causing the temperature change of the sample cell 10 a plurality of times due to the repeated introduction of the sample to be measured. As a result, it is possible to shorten the time from the introduction of the sample to be measured to the measurement of the density while preventing the occurrence of an error due to the mixing of bubbles.

本発明の振動式密度計は、清涼飲料の濃度管理等の各種試料の密度測定に利用することができる。 The vibration type densitometer of the present invention can be used for density measurement of various samples such as concentration control of soft drinks.

1 振動式密度計
10 試料セル
10a 先端
10b 固定端
20 励振手段
30 測定手段
80 駆動制御手段
90 判定手段
1 Vibration type densitometer 10 Sample cell 10a Tip 10b Fixed end 20 Excitation means 30 Measuring means 80 Drive control means 90 Judgment means

Claims (7)

試料セルに収容した被測定試料の密度を測定する振動式密度計であって、
前記試料セルに振動を励起させる励振手段と、
励起された前記試料セルの振動周期を測定する測定手段と、
第一駆動力、及び当該第一駆動力より小さい第二駆動力で前記励振手段を駆動させる駆動制御手段と、
前記第一駆動力で励起された前記試料セルの第一振動周期と前記第二駆動力で励起された前記試料セルの第二振動周期との差に基づいて、前記試料セル内の気泡の有無を判定する判定手段と
を備える振動式密度計。
It is a vibration type densitometer that measures the density of the sample to be measured contained in the sample cell.
Excitation means for exciting vibration in the sample cell,
A measuring means for measuring the vibration cycle of the excited sample cell, and
A drive control means for driving the excitation means with a first driving force and a second driving force smaller than the first driving force.
Presence or absence of bubbles in the sample cell based on the difference between the first vibration cycle of the sample cell excited by the first driving force and the second vibration cycle of the sample cell excited by the second driving force. A vibration type densitometer provided with a determination means for determining.
前記第二駆動力は、前記第一駆動力の1/5~1/2倍の駆動力である請求項1に記載の振動式密度計。 The vibration type densitometer according to claim 1, wherein the second driving force is 1/5 to 1/2 times the driving force of the first driving force. 前記第一振動周期は、前記励振手段の駆動力が前記第一駆動力から前記第二駆動力に変更される直前に前記測定手段により測定された振動周期であり、
前記第二振動周期は、前記励振手段の駆動力が前記第二駆動力に変更されてから8~10秒の間の任意の時点で前記測定手段により測定された振動周期である請求項1又は2に記載の振動式密度計。
The first vibration cycle is a vibration cycle measured by the measuring means immediately before the driving force of the exciting means is changed from the first driving force to the second driving force.
The second vibration cycle is a vibration cycle measured by the measuring means at any time between 8 and 10 seconds after the driving force of the exciting means is changed to the second driving force. 2. The vibration type densitometer according to 2.
前記判定手段は、前記第一振動周期と前記第二振動周期との差が1.5×10-2μ秒以上である場合、前記気泡が存在すると判定する請求項1~3の何れか一項に記載の振動式密度計。 The determination means is any one of claims 1 to 3 for determining that the bubble is present when the difference between the first vibration cycle and the second vibration cycle is 1.5 × 10 −2 μsec or more. The vibration type densitometer described in the section. 前記被測定試料の粘度は、200mPa・s以下である請求項1~4の何れか一項に記載の振動式密度計。 The vibration type densitometer according to any one of claims 1 to 4, wherein the viscosity of the sample to be measured is 200 mPa · s or less. 前記試料セルは、U字管であり、
前記判定手段は、前記U字管の先端から固定端までの1/2以下の区間における前記気泡の有無を判定する請求項1~5の何れか一項に記載の振動式密度計。
The sample cell is a U-shaped tube and has a U-shaped tube.
The vibration type densitometer according to any one of claims 1 to 5, wherein the determination means determines the presence or absence of the bubbles in a section of 1/2 or less from the tip of the U-shaped tube to the fixed end.
試料セルに収容した被測定試料の密度を測定する振動式密度計において、前記試料セルへの気泡の混入を判定する気泡混入判定方法であって、
第一駆動力で前記試料セルに振動を励起させる第一励振ステップと、
前記第一駆動力で励起された前記試料セルの第一振動周期を測定する第一測定ステップと、
前記第一駆動力より小さい第二駆動力で前記試料セルに振動を励起させる第二励振ステップと、
前記第二駆動力で励起された前記試料セルの第二振動周期を測定する第二測定ステップと、
前記第一振動周期と前記第二振動周期との差に基づいて、前記試料セル内の気泡の有無を判定する判定ステップと
を包含する気泡混入判定方法。
In a vibration type densitometer that measures the density of a sample to be measured housed in a sample cell, it is a bubble mixing determination method for determining the inclusion of bubbles in the sample cell.
The first excitation step of exciting the sample cell to vibrate with the first driving force,
The first measurement step for measuring the first vibration cycle of the sample cell excited by the first driving force, and the first measurement step.
A second excitation step that excites vibration in the sample cell with a second driving force smaller than the first driving force.
The second measurement step of measuring the second vibration period of the sample cell excited by the second driving force, and the second measurement step.
A bubble mixing determination method including a determination step of determining the presence or absence of bubbles in the sample cell based on the difference between the first vibration cycle and the second vibration cycle.
JP2020174557A 2020-10-16 2020-10-16 Vibration type density meter and method for determining whether air bubbles are present in the vibration type density meter Active JP7473198B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020174557A JP7473198B2 (en) 2020-10-16 2020-10-16 Vibration type density meter and method for determining whether air bubbles are present in the vibration type density meter
PCT/JP2021/036800 WO2022080187A1 (en) 2020-10-16 2021-10-05 Vibration-type density meter, and air bubble entrainment determination method in vibration-type density meter
CN202180056422.9A CN116075707A (en) 2020-10-16 2021-10-05 Vibrating densitometer and method for determining bubble mixing in vibrating densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020174557A JP7473198B2 (en) 2020-10-16 2020-10-16 Vibration type density meter and method for determining whether air bubbles are present in the vibration type density meter

Publications (2)

Publication Number Publication Date
JP2022065825A true JP2022065825A (en) 2022-04-28
JP7473198B2 JP7473198B2 (en) 2024-04-23

Family

ID=81207987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020174557A Active JP7473198B2 (en) 2020-10-16 2020-10-16 Vibration type density meter and method for determining whether air bubbles are present in the vibration type density meter

Country Status (3)

Country Link
JP (1) JP7473198B2 (en)
CN (1) CN116075707A (en)
WO (1) WO2022080187A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180680A (en) * 1991-12-27 1993-07-23 Tokico Ltd Vibration-type measuring device
JPH07286880A (en) * 1994-04-20 1995-10-31 Tokico Ltd Vibration-type measuring instrument
JPH09196730A (en) * 1996-01-19 1997-07-31 Tokico Ltd Vibration-type measuring apparatus
JP5180680B2 (en) 2008-05-20 2013-04-10 サンデン株式会社 Refrigeration cycle
JP3181293U (en) 2012-11-16 2013-01-31 京都電子工業株式会社 Density measuring device
JP7286880B2 (en) 2019-12-09 2023-06-05 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Method and associated wireless device for providing information messages including RACH reports

Also Published As

Publication number Publication date
WO2022080187A1 (en) 2022-04-21
JP7473198B2 (en) 2024-04-23
CN116075707A (en) 2023-05-05

Similar Documents

Publication Publication Date Title
JP5177890B2 (en) Ultrasonic flow meter
US10895489B2 (en) Method for monitoring the condition of an electromechanical resonator
US10119895B2 (en) Method, circuit and flexural resonator for measuring the density of fluids
WO2022080187A1 (en) Vibration-type density meter, and air bubble entrainment determination method in vibration-type density meter
JP5355278B2 (en) Calibration parameter determination method and density calculation method for vibration type density meter
JP2002148295A (en) Method and instrument for frequency measurement and analytical equipment
JP2006214842A (en) Liquid physical property value measuring instrument and liquid physical property value measuring method
EP3488193B1 (en) Method and meter electronics for performing temperature compensation of a test tone amplitude during meter verification in a flow meter
Heinisch et al. Resonant steel tuning forks for precise inline viscosity and mass density measurements in harsh environments
JP5292359B2 (en) Sensing device
JP2012058095A (en) Method and device for detecting wavelength, and method and device for evaluating and controlling dissolved gas total amount
ATE518120T1 (en) MEASURING METHOD AND BIOSENSOR SYSTEM WITH RESONATOR
JPH10300651A (en) Chemical analyzed
JP5295028B2 (en) Vibrating density meter
JP2006242804A (en) Concentration measuring method and device of gas or liquid in mixed gas or liquid
JP7170049B2 (en) Method and apparatus for monitoring dissolution
JPH0658862A (en) Temperature compensation for oscillating density meter
SU612160A1 (en) Vibration-type viscosimeter
KR102011569B1 (en) Device for measuring viscosity of minute volume liquids and method thereof
JP2819167B2 (en) Erythrocyte sedimentation velocity measuring method and apparatus
JP2008224386A (en) Dispensing method, dispenser, and autoanalyzer
US20090271130A1 (en) Method for measuring suspended sediment concentration in water
JPS62129755A (en) Apparatus for measuring density of magnetic powder solution
JP2010014587A (en) Measuring object characteristic measuring device
JP2001004417A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240404

R150 Certificate of patent or registration of utility model

Ref document number: 7473198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150