JP2006242804A - Concentration measuring method and device of gas or liquid in mixed gas or liquid - Google Patents

Concentration measuring method and device of gas or liquid in mixed gas or liquid Download PDF

Info

Publication number
JP2006242804A
JP2006242804A JP2005060251A JP2005060251A JP2006242804A JP 2006242804 A JP2006242804 A JP 2006242804A JP 2005060251 A JP2005060251 A JP 2005060251A JP 2005060251 A JP2005060251 A JP 2005060251A JP 2006242804 A JP2006242804 A JP 2006242804A
Authority
JP
Japan
Prior art keywords
liquid
ultrasonic
gas
ultrasonic wave
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005060251A
Other languages
Japanese (ja)
Inventor
Tatsu Kobayakawa
達 小早川
Hideki Toda
英樹 戸田
Sachiko Saito
幸子 斉藤
Mitsuyoshi Aizawa
満芳 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEM TECH KENKYUSHO KK
TEM-TECH KENKYUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
TEM TECH KENKYUSHO KK
TEM-TECH KENKYUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEM TECH KENKYUSHO KK, TEM-TECH KENKYUSHO KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical TEM TECH KENKYUSHO KK
Priority to JP2005060251A priority Critical patent/JP2006242804A/en
Publication of JP2006242804A publication Critical patent/JP2006242804A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level

Abstract

<P>PROBLEM TO BE SOLVED: To realize a higher time resolution than a conventional technology, and to simplify circuit adjustment for measuring a molecular concentration. <P>SOLUTION: An ultrasonic wave having a constant amplitude is propagated as long as a fixed distance in a gas flow 10 comprising a plurality of different gases by an ultrasonic transmitting element 16. The propagated and damped ultrasonic wave is received by an ultrasonic receiving element 18, and the amplitude of the received ultrasonic wave is measured. The concentration of one gas included in the gas flow 10 is determined from the measured amplitude of the ultrasonic wave. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、混合気体又は液体中の気体又は液体の濃度計測方法及び装置に関する。本発明は、化学プラント、エンジン、さらに汚濁検出などの液体・気体を問わず静止体及び流体の分子濃度及びその変化の高時間分解能、高精度計測を行うことが要求される分野(例えば、水素ガスの漏洩検知など)に適用可能である。   The present invention relates to a method and an apparatus for measuring the concentration of a gas or liquid in a mixed gas or liquid. The present invention relates to fields that require high-time resolution and high-precision measurement of molecular concentrations and changes in stationary bodies and fluids regardless of liquids and gases, such as chemical plants, engines, and pollution detection (for example, hydrogen It can be applied to gas leak detection).

従来、例えば、気体の分子濃度及びその変化を計測する手法としては、物質の誘電率の計測を行う「誘電緩和法」、または物質の化学的な性質によりカラムを通過する時間の違いにより物質を判別するガスクロマトグラフ、または電磁波の吸収分布の計測を行う「吸収スペクトル計測」がある。   Conventionally, for example, as a method for measuring the molecular concentration of a gas and its change, the “dielectric relaxation method” for measuring the dielectric constant of a substance, or the substance by the difference in time passing through the column due to the chemical nature of the substance. There is a gas chromatograph to discriminate, or “absorption spectrum measurement” for measuring an electromagnetic wave absorption distribution.

これらの計測方法では、気体分子の種類から濃度まで正確に計測することができるが、装置が複雑となり、高時間分解能・高精度濃度及びその変化の検出能力を持たない。
また、電圧変化が計測に使用する演算増幅器のスルーレート以上の電圧変化を持つような超音波生成信号に応じて超音波を送信し、その超音波を測定対象領域の気体中を通過させ、その通過後の超音波を電気信号に変換して超音波受信信号を生成し、上記超音波生成信号および当該超音波受信信号を上記演算増幅器で増幅し、その増幅で得られた送信側三角波および受信側三角波をそれぞれ所定の閾値電圧と比較して、所定の閾値電圧以上、あるいは以下となる時点を検出し、その所定の閾値電圧以上、あるいは以下となる時点同士の時間差分、即ち通過した超音波の到達時間差を計測することで、気体の濃度(平均分子量)の計測を行う手法を本出願の共同出願人の一人は提案した(特許第3584290号公報参照)。
特許第3584290号公報
Although these measurement methods can accurately measure the type and concentration of gas molecules, the apparatus is complicated and does not have the ability to detect high time resolution, high accuracy concentration and its change.
In addition, an ultrasonic wave is transmitted in response to an ultrasonic wave generation signal such that the voltage change has a voltage change equal to or higher than the slew rate of the operational amplifier used for measurement, and the ultrasonic wave is passed through the gas in the measurement target region. The ultrasonic wave after passing is converted into an electrical signal to generate an ultrasonic reception signal, the ultrasonic generation signal and the ultrasonic reception signal are amplified by the operational amplifier, and the transmission-side triangular wave and the reception obtained by the amplification are received. Each side triangular wave is compared with a predetermined threshold voltage to detect a time point that is equal to or higher than the predetermined threshold voltage, and the time difference between the time points that are equal to or higher than the predetermined threshold voltage, that is, passed ultrasonic waves One of the co-applicants of the present application has proposed a method of measuring the concentration (average molecular weight) of the gas by measuring the difference in arrival time (see Japanese Patent No. 3584290).
Japanese Patent No. 3584290

上記特許第3584290号公報に開示された手法では、500マイクロ秒程度の時間分解能をもつが、それ以上の高い時間分解能の実現は困難であった。また、非常に短い時間差の計測をアナログ回路で行っているため回路調整を行う必要があったが、アナログ回路故にこの回路調整を簡便に扱うことが困難であった。   The technique disclosed in Japanese Patent No. 3584290 has a time resolution of about 500 microseconds, but it has been difficult to achieve a higher time resolution. Further, since the measurement of a very short time difference is performed by an analog circuit, it is necessary to perform circuit adjustment. However, because of the analog circuit, it is difficult to easily handle this circuit adjustment.

従って、本発明の課題は、従来技術より高い時間分解能を実現し、且つ分子濃度の計測のための回路調整を簡便にすることにある。   Therefore, an object of the present invention is to realize a time resolution higher than that of the prior art and simplify circuit adjustment for measuring the molecular concentration.

本発明の上記課題は、複数の異なる気体から成る混合気体又は複数の異なる液体から成る混合液体の中の1つの所定の気体又は液体の濃度を計測する方法であって、一定の大きさの超音波を前記混合気体又は混合液体の中へ送出するステップと、前記超音波を前記混合気体又は混合液体の中を一定の距離伝搬させ、当該伝搬された超音波の大きさを測定するステップと、前記の測定された超音波の大きさに基づいて前記1つの所定の気体又は液体の濃度を求めるステップとを備える本発明の方法により解決される。   The object of the present invention is a method for measuring the concentration of one predetermined gas or liquid in a mixed gas composed of a plurality of different gases or a mixed liquid composed of a plurality of different liquids, which exceeds a certain size. Sending sound waves into the gas mixture or liquid mixture; propagating the ultrasonic waves through the gas mixture or liquid mixture at a certain distance; and measuring the magnitude of the propagated ultrasonic waves; Determining the concentration of the one predetermined gas or liquid based on the measured magnitude of the ultrasonic wave.

本発明の一局面によれば、一連の前記ステップを間欠的又は連続的に行って、前記1つの所定の気体又は液体の濃度の変化を測定することが好ましい。
本発明の別の局面によれば、本発明の方法は、前記1つの所定の気体又は液体を種々の既知の濃度で含む前記混合気体又は混合液体を用いて、前記送出するステップ及び測定するステップを実行して、前記伝搬された超音波の大きさを測定して、当該測定された超音波の大きさを前記1つの所定の気体又は液体の濃度に対して予め較正するステップを更に含むことが好ましい。
According to one aspect of the present invention, it is preferable to measure a change in the concentration of the one predetermined gas or liquid by performing the series of steps intermittently or continuously.
According to another aspect of the present invention, the method of the present invention includes the step of delivering and measuring using the gas mixture or liquid mixture comprising the one predetermined gas or liquid in various known concentrations. To measure the magnitude of the propagated ultrasound and pre-calibrate the measured magnitude of the ultrasound to the concentration of the one predetermined gas or liquid. Is preferred.

本発明の更に別の局面によれば、本発明の方法は、前記異なる気体又は液体の数が2であることが好ましく、また前記混合気体又は混合液体が流体であることが好ましい。
本発明の上記課題は、複数の異なる気体から成る混合気体又は複数の異なる液体から成る混合液体の中の1つの所定の気体1つの液体の濃度を計測する装置であって、一定の大きさの超音波を前記混合気体又は混合液体の中へ送出する超音波送出手段と、前記超音波送出手段から一定の距離離れた位置に配置された超音波受信手段であって、前記超音波送出手段と当該超音波受信手段との間に介在する前記混合気体又は混合液体の中を伝搬して減衰した超音波を受信する超音波受信手段と、前記超音波受信手段で受信された超音波の大きさに基づいて前記1つの所定の気体又は液体の濃度を決定する濃度決定手段とを備える本発明の装置により解決される。
According to still another aspect of the present invention, in the method of the present invention, the number of the different gases or liquids is preferably 2, and the gas mixture or liquid mixture is preferably a fluid.
The above-mentioned problem of the present invention is an apparatus for measuring the concentration of one predetermined gas in a mixed gas composed of a plurality of different gases or a mixed liquid composed of a plurality of different liquids, and having a certain size. Ultrasonic transmission means for transmitting ultrasonic waves into the mixed gas or mixed liquid; and ultrasonic reception means arranged at a certain distance from the ultrasonic transmission means, the ultrasonic transmission means Ultrasonic wave receiving means for receiving ultrasonic waves attenuated by propagating through the mixed gas or mixed liquid interposed between the ultrasonic wave receiving means and the size of the ultrasonic wave received by the ultrasonic wave receiving means And a concentration determining means for determining the concentration of the one predetermined gas or liquid based on the above.

本発明の一曲面によれば、前記超音波受信手段が、超音波を間欠的又は連続的に送出し、前記超音波受信手段が、間欠的又は連続的に送出された超音波を受信し、前記濃度決定手段が更に、間欠的又は連続的に受信された超音波の大きさに基づいて前記1つの所定の気体又は液体の濃度の変化を決定することが好ましい。   According to one curved surface of the present invention, the ultrasonic wave receiving means sends out ultrasonic waves intermittently or continuously, the ultrasonic wave receiving means receives ultrasonic waves sent intermittently or continuously, It is preferable that the concentration determining means further determines a change in the concentration of the one predetermined gas or liquid based on the magnitude of the ultrasonic wave received intermittently or continuously.

本発明の別の局面によれば、前記濃度決定手段は、前記1つの所定の気体又は液体を種々の既知の濃度で含む前記混合気体又は混合液体について、前記装置を用いて、前記伝搬された超音波の大きさを測定して、当該測定された超音波の大きさを前記1つの所定の気体又は液体の濃度に対して較正する較正手段を予め含み、前記超音波受信手段で受信された超音波の大きさを、前記較正手段を用いて前記1つの所定の気体又は液体の濃度を決定する異が好ましい。   According to another aspect of the present invention, the concentration determining means propagates the mixed gas or liquid containing the one predetermined gas or liquid at various known concentrations using the device. Calibration means for measuring the magnitude of the ultrasonic wave and calibrating the measured ultrasonic magnitude with respect to the concentration of the one predetermined gas or liquid is received in advance by the ultrasonic wave receiving means. Preferably, the magnitude of the ultrasound is determined using the calibration means to determine the concentration of the one predetermined gas or liquid.

本発明の更に別の局面によれば、本発明の装置は、前記異なる気体又は液体の数が2であることが好ましく、また前記混合気体又は混合液体が流体であることが好ましい。   According to still another aspect of the present invention, in the apparatus of the present invention, the number of the different gases or liquids is preferably 2, and the mixed gas or mixed liquid is preferably a fluid.

本発明の装置及び方法は、測定対象の混合気体の中を伝搬して減衰した超音波を受信して、その受信超音波の大きさを測定するので、原理的には超音波の周波数の半分の時間で測定でき、例えば、400KHzの超音波を用いた場合、5マイクロ秒という非常に高い時間分解能を得ることが可能である。   The apparatus and method of the present invention receives ultrasonic waves that have been attenuated by propagating through the gas mixture to be measured, and measures the magnitude of the received ultrasonic waves. For example, when an ultrasonic wave of 400 KHz is used, it is possible to obtain a very high time resolution of 5 microseconds.

また、受信超音波の大きさを測定するだけでよいので、分子濃度の計測のための回路調整も殆ど必要ない程度に簡便である。   Further, since it is only necessary to measure the magnitude of the received ultrasonic wave, the circuit adjustment for measuring the molecular concentration is as simple as almost unnecessary.

初めに、図1を参照して本発明の原理を説明する。図1は、チャンバー内のガスの分子濃度を測定することに本発明を適用した場合の構成を概略的に示す。ガス流10はチャンバー12内で矢印14の方向に流れる。矢印12で示すこのガス流10の流れる方向に対して直交する方向にあるチャンバー12の両端の壁の一方に超音波送信素子16が設けられ、また他方の壁に超音波送信素子16に対向するように超音波受信素子18が設けられている。超音波送信素子16と超音波受信素子18の距離は一定に保たれている。超音波送信素子16から送信された超音波は、ガス流10の中を矢印20が示す方向に伝搬或いは通過して、超音波受信素子18で受信される。ガス流10の中を伝搬する超音波は、ガス流での伝搬距離と同じ伝搬距離の真空中を伝搬する場合に比して、ガス流10のため減衰する。従って、ガス流10が存在する場合には、超音波受信素子18で受信される超音波の大きさは、超音波送信素子16から送出される超音波の大きさよりガス流10に起因する減衰分だけ小さい。一般的に、その減衰量は、ガス流10(より一般的に静止状態の気体を含む)の平均分子量が大きいほど大きい。即ち、超音波受信素子18で受信される超音波の大きさは、気体の平均分子量が大きいほど小さくなる。   First, the principle of the present invention will be described with reference to FIG. FIG. 1 schematically shows a configuration when the present invention is applied to measuring the molecular concentration of a gas in a chamber. The gas stream 10 flows in the direction of arrow 14 in the chamber 12. An ultrasonic transmission element 16 is provided on one of the walls at both ends of the chamber 12 in a direction orthogonal to the flow direction of the gas flow 10 indicated by an arrow 12 and faces the ultrasonic transmission element 16 on the other wall. Thus, an ultrasonic receiving element 18 is provided. The distance between the ultrasonic transmission element 16 and the ultrasonic reception element 18 is kept constant. The ultrasonic wave transmitted from the ultrasonic transmission element 16 propagates or passes through the gas flow 10 in the direction indicated by the arrow 20 and is received by the ultrasonic reception element 18. The ultrasonic wave propagating in the gas flow 10 is attenuated due to the gas flow 10 as compared with the case of propagating in a vacuum having the same propagation distance as the propagation distance in the gas flow. Accordingly, when the gas flow 10 exists, the magnitude of the ultrasonic wave received by the ultrasonic wave receiving element 18 is less than the magnitude of the ultrasonic wave transmitted from the ultrasonic wave transmitting element 16 due to the attenuation caused by the gas flow 10. Only small. Generally, the amount of attenuation increases as the average molecular weight of the gas stream 10 (more generally including stationary gas) increases. That is, the magnitude of the ultrasonic wave received by the ultrasonic wave receiving element 18 decreases as the average molecular weight of the gas increases.

ここで、例えば、ガス流10が空気と窒素ガスから成るとして、窒素ガス(空気に含まれる窒素分を除く)の分子濃度(平均分子量における)が測定対象とすると、超音波受信素子18で受信される超音波の大きさは、窒素ガスの分子濃度が高くなる程小さくなる。それは、酸素の方が窒素より分子量が大きく、空気は気体の酸素と窒素の混合であり、そのため窒素ガスの分子濃度が高くなるとガス流10の平均分子量が小さくなるからである。従って、種々の既知の分子濃度の窒素ガスを含むガス流10を用いて、超音波受信素子18により受信された超音波の大きさを予め測定し、当該測定された超音波の大きさと窒素ガスの分子濃度との間の関係(又は変換)を較正しておけば、未知の窒素ガスの分子濃度を含むガス流10について、超音波受信素子18により受信された超音波の大きさを測定し、上記較正を用いて、未知の窒素ガスの分子濃度を求めることができる。なお、上記較正は、較正曲線、較正表、較正(又は換算)式のいずれの形式であってもよい。   Here, for example, assuming that the gas flow 10 is composed of air and nitrogen gas, and the molecular concentration (in average molecular weight) of nitrogen gas (excluding nitrogen contained in the air) is a measurement target, the ultrasonic reception element 18 receives the gas flow 10. The magnitude of the ultrasonic wave that is generated decreases as the molecular concentration of the nitrogen gas increases. This is because oxygen has a higher molecular weight than nitrogen and air is a mixture of gaseous oxygen and nitrogen, so that the average molecular weight of the gas stream 10 decreases as the molecular concentration of the nitrogen gas increases. Accordingly, the magnitude of the ultrasonic wave received by the ultrasonic receiving element 18 is measured in advance using the gas flow 10 containing nitrogen gas having various known molecular concentrations, and the measured ultrasonic magnitude and the nitrogen gas are measured. If the relationship (or conversion) between the molecular concentration of the gas and the gas flow 10 including the molecular concentration of the unknown nitrogen gas is calibrated, the magnitude of the ultrasonic wave received by the ultrasonic receiving element 18 is measured. Using the above calibration, the molecular concentration of the unknown nitrogen gas can be determined. The calibration may be in any form of a calibration curve, a calibration table, and a calibration (or conversion) formula.

また、予め較正しなくても、超音波受信素子18により受信された超音波の大きさの時間的変化を測定すれば、窒素ガスの分子濃度の変化を得ることができる。
以下に図面を参照して本発明の好適な実施形態について説明する。
Further, even if calibration is not performed in advance, a change in the molecular concentration of nitrogen gas can be obtained by measuring a temporal change in the magnitude of the ultrasonic wave received by the ultrasonic receiving element 18.
Preferred embodiments of the present invention will be described below with reference to the drawings.

図2は、本発明の好適な一実施形態の超音波発生回路30の概略的構成を示す回路図である。図2の超音波発生回路30は、図1における超音波送信素子16に対応する。超音波発生回路30は、電気信号発振部32及び超音波発振部34を含む。電気信号発振部32は、発振及び分周機能を有する発振・分周回路36、抵抗群38、及び抵抗群38のうちの抵抗を選択して分周比を指定するスイッチ群40を含む。超音波発振部34は、超音波振動子42、及びその超音波振動子42に電圧を印加するための駆動回路44を含み、この駆動回路44は駆動トランジスタ46を含む。   FIG. 2 is a circuit diagram showing a schematic configuration of the ultrasonic wave generation circuit 30 according to a preferred embodiment of the present invention. The ultrasonic generation circuit 30 in FIG. 2 corresponds to the ultrasonic transmission element 16 in FIG. The ultrasonic generation circuit 30 includes an electric signal oscillation unit 32 and an ultrasonic oscillation unit 34. The electric signal oscillating unit 32 includes an oscillation / frequency dividing circuit 36 having an oscillation and frequency dividing function, a resistance group 38, and a switch group 40 that selects a resistance of the resistance group 38 and designates a frequency division ratio. The ultrasonic oscillator 34 includes an ultrasonic transducer 42 and a drive circuit 44 for applying a voltage to the ultrasonic transducer 42, and the drive circuit 44 includes a drive transistor 46.

発振・分周回路36は、12.8MHzで発振し、スイッチ群40のスイッチの選択により、400KHz又は800KHzの発振周波数の電気信号を出力するよう構成されている。   The oscillating / dividing circuit 36 oscillates at 12.8 MHz, and is configured to output an electrical signal having an oscillation frequency of 400 KHz or 800 KHz depending on the selection of the switches of the switch group 40.

駆動トランジスタ46は、電気信号発振部32から出力された電気信号、例えば、400KHzの電気信号により駆動、即ちスイッチングされ、その駆動トランジスタ46のスイッチング状態に応じた電圧が超音波振動子42に印加されて、超音波振動子42は、400KHzの超音波を発生する。この400KHzの超音波は、超音波振動子42から図1に示されるガス流10に向けて送出される。なお、400KHzの超音波を発生させる場合には、超音波振動子42として400KHz用のものを用い、800KHzの超音波を発振させ、送出する場合には、800KHz用のものを用いる。従って、800KHzの超音波を発生するときには、800KHz用の超音波振動子を用い、そしてスイッチ群40のスイッチの選択により、電気信号発振部32が800KHzの発振周波数の電気信号を発生するようにする。また、本発明は、超音波発生回路30を上記のように複数の発振周波数の超音波を発生するように構成することは必ずしも必要でなく、1つの発振周波数の超音波を発生する構成でよい。   The driving transistor 46 is driven, that is, switched by an electric signal output from the electric signal oscillating unit 32, for example, an electric signal of 400 KHz, and a voltage corresponding to the switching state of the driving transistor 46 is applied to the ultrasonic transducer 42. The ultrasonic transducer 42 generates 400 KHz ultrasonic waves. The 400 KHz ultrasonic waves are sent out from the ultrasonic transducer 42 toward the gas flow 10 shown in FIG. In addition, when generating a 400 KHz ultrasonic wave, the ultrasonic vibrator 42 is used for 400 KHz, and when an 800 KHz ultrasonic wave is oscillated and transmitted, a 800 KHz wave is used. Therefore, when generating an ultrasonic wave of 800 KHz, an ultrasonic vibrator for 800 KHz is used, and by selecting a switch of the switch group 40, the electric signal oscillator 32 generates an electric signal having an oscillation frequency of 800 KHz. . In the present invention, it is not always necessary to configure the ultrasonic wave generation circuit 30 to generate ultrasonic waves having a plurality of oscillation frequencies as described above, and it may be configured to generate ultrasonic waves having one oscillation frequency. .

超音波発生回路30、電気信号発振部32及び超音波発振部34は、当該技術分野における通常の回路形式のものであり、良く知られているので、これ以上の詳細な説明をしない。そして、本発明においては、超音波発生回路30はいずれかの回路形式に限定されるものではなく、任意の回路形式でよい。   The ultrasonic generation circuit 30, the electric signal oscillating unit 32, and the ultrasonic oscillating unit 34 are of ordinary circuit type in the technical field and are well known, and therefore will not be described in further detail. In the present invention, the ultrasonic wave generation circuit 30 is not limited to any circuit format, and may be any circuit format.

図3は、本発明の好適な一実施形態の超音波受信及び分子濃度出力回路50の概略的構成を示す回路図である。超音波受信及び分子濃度出力回路50は、図1に示す超音波受信素子18に対応する。超音波受信及び分子濃度出力回路50は、超音波受信部52、ハイパスフィルタ54、増幅部56、整流部58、ピーク・ホール部60及び判定部62を含む。超音波受信部52は、超音波を受信するための超音波振動子64を含む。図3は、400KHzの超音波を受信する超音波受信及び分子濃度出力回路50を示し、この場合超音波振動子64は400KHz用のものである。超音波受信及び分子濃度出力回路50が800KHzの超音波を受信する場合には、超音波振動子64として800KHz用のものが用いられる。   FIG. 3 is a circuit diagram showing a schematic configuration of the ultrasonic reception and molecular concentration output circuit 50 according to a preferred embodiment of the present invention. The ultrasonic reception and molecular concentration output circuit 50 corresponds to the ultrasonic reception element 18 shown in FIG. The ultrasonic reception and molecular concentration output circuit 50 includes an ultrasonic reception unit 52, a high-pass filter 54, an amplification unit 56, a rectification unit 58, a peak / hole unit 60, and a determination unit 62. The ultrasonic receiving unit 52 includes an ultrasonic transducer 64 for receiving ultrasonic waves. FIG. 3 shows an ultrasonic wave reception and molecular concentration output circuit 50 that receives an ultrasonic wave of 400 KHz, and in this case, the ultrasonic transducer 64 is for 400 KHz. When the ultrasonic wave reception and molecular concentration output circuit 50 receives 800 KHz ultrasonic waves, the ultrasonic vibrator 64 for 800 KHz is used.

図4は、図2の超音波発生回路30から送出、即ち送信される超音波の送信波、及び図3の超音波受信及び分子濃度出力回路50の主要部における信号の状態を表す。なお、図4の(A)及び(B)は、超音波を示しているが、電気信号に換算した形、即ちその振幅を電圧で表記してある。超音波発生回路30における超音波発振部34の超音波振動子42からは、図4の(A)に示す、極めて雑音成分が少ない正弦波状の超音波70が送信される。超音波70は、図1に示すガス流10の中を伝搬するとき、ガス流10により減衰させられて、超音波70より大きさが小さい受信波72が、超音波受信及び分子濃度出力回路50における超音波受信部52の超音波振動子64で受信される。ガス流10の分子量は時間的に揺らいでいるので、受信波72の波形は、図4の(B)に示されるように揺らぎ成分が重畳されている。   FIG. 4 shows the state of signals transmitted from the ultrasonic wave generation circuit 30 in FIG. 2, that is, the transmission wave of the ultrasonic waves, and the signal in the main part of the ultrasonic wave reception and molecular concentration output circuit 50 in FIG. 4A and 4B show ultrasonic waves, the form converted into an electric signal, that is, the amplitude thereof is expressed as a voltage. From the ultrasonic transducer 42 of the ultrasonic oscillator 34 in the ultrasonic generation circuit 30, a sinusoidal ultrasonic wave 70 with very little noise component shown in FIG. 4A is transmitted. When the ultrasonic wave 70 propagates through the gas flow 10 shown in FIG. 1, a received wave 72 having a smaller magnitude than the ultrasonic wave 70 is attenuated by the gas flow 10, and the ultrasonic wave reception and molecular concentration output circuit 50. Is received by the ultrasonic transducer 64 of the ultrasonic receiver 52. Since the molecular weight of the gas flow 10 fluctuates with time, the fluctuation component is superimposed on the waveform of the received wave 72 as shown in FIG.

超音波受信部52の超音波振動子64で受信された超音波の受信波72は、超音波受信部52で電気信号に変換され、ハイパスフィルタ54で揺らぎ成分が除去され、次いで、増幅部56で増幅される。増幅された電気信号は、整流部58のダイオードにより半波整流され、図4の(C)に示されるような波形が得られる。なお、この整流は、全波整流でもよい。半波整流された電気信号は、ピーク・ホール部60でピーク・ホールドされて、ピーク・ホール部60の出力(即ち図3に示すA点)に図4の(D)に示すような波形76が得られる。波形76のピーク電圧値は、受信された超音波72の大きさ、詳細には超音波72の振幅の大きさを表し、従って、ガス流10の中の測定対象ガスの濃度(又は平均分子量)を表すことになる。   The ultrasonic reception wave 72 received by the ultrasonic transducer 64 of the ultrasonic reception unit 52 is converted into an electric signal by the ultrasonic reception unit 52, the fluctuation component is removed by the high-pass filter 54, and then the amplification unit 56. It is amplified by. The amplified electric signal is half-wave rectified by the diode of the rectifying unit 58 to obtain a waveform as shown in FIG. This rectification may be full-wave rectification. The half-wave rectified electric signal is peak-held in the peak hole portion 60, and the waveform 76 as shown in FIG. 4D is output to the output of the peak hole portion 60 (ie, point A shown in FIG. 3). Is obtained. The peak voltage value of the waveform 76 represents the magnitude of the received ultrasound 72, specifically the magnitude of the amplitude of the ultrasound 72, and thus the concentration (or average molecular weight) of the gas to be measured in the gas stream 10. Will be expressed.

なお、図3に示す判定部62は、波形76のピーク電圧値が所定のスレッショルド電圧(ガス流10に含まれる測定対象ガスの所定のスレッショルド濃度に対応)を越えたとき、ガス流10中の測定対象ガスが所定のスレッショルド濃度より多く存在することを知らせる情報をオン/オフで出すもので、判定部62は、用途に応じて任意に設け得るものである。   3 determines when the peak voltage value of the waveform 76 exceeds a predetermined threshold voltage (corresponding to a predetermined threshold concentration of the measurement target gas included in the gas flow 10). Information that informs that the gas to be measured is present more than a predetermined threshold concentration is output on / off, and the determination unit 62 can be arbitrarily provided depending on the application.

また、超音波受信及び分子濃度出力回路50、超音波受信部52、ハイパスフィルタ54、増幅部56、整流部58及びピーク・ホール部60は、当該技術分野において通常の回路形式のものであり、良く知られているので、これ以上の詳細な説明をしない。そして、本発明においては、超音波受信及び分子濃度出力回路50はいずれかの回路形式に限定されるものではなく、任意の回路形式でよい。   Further, the ultrasonic wave reception and molecular concentration output circuit 50, the ultrasonic wave reception unit 52, the high pass filter 54, the amplification unit 56, the rectification unit 58, and the peak hole unit 60 are of a circuit type that is normal in the technical field, As it is well known, no further details will be given. In the present invention, the ultrasonic reception and molecular concentration output circuit 50 is not limited to any circuit format, and may be any circuit format.

図5は、時間当たりの流量を同一にしたまま高速に気体を切り替えることができる気体供給システムを、図1ないし図3に示す本発明の好適な実施形態によるチャンバー内のガスの分子濃度を測定する装置に用いた場合の構成を示す。図5に示される参照番号で図1ないし図3に示される参照番号と同一のものはそれらの図における同一の参照番号により示される構成要素を示す。気体供給システム80は、切り替え用電磁弁を適宜調節することにより、流量を同一にしたままガス流10に含まれる窒素ガスの分子濃度を0%(即ち、空気のみ)から100%(即ち、窒素ガスのみ)まで任意に変えられるよう構成されている。   FIG. 5 shows a gas supply system capable of switching gas at high speed while maintaining the same flow rate per time, and measuring the molecular concentration of the gas in the chamber according to the preferred embodiment of the present invention shown in FIGS. A configuration when used in an apparatus is shown. Reference numerals shown in FIG. 5 that are the same as those shown in FIGS. 1 to 3 indicate components indicated by the same reference numerals in those figures. The gas supply system 80 adjusts the switching solenoid valve appropriately to change the molecular concentration of nitrogen gas contained in the gas flow 10 from 0% (ie, only air) to 100% (ie, nitrogen) while maintaining the same flow rate. (Only gas) can be changed arbitrarily.

図5に示す気体供給システムを用いて、本発明をガスの分子濃度の測定に適用した図1ないし図4に示す装置の気体分離性能を確かめる実験を行った。本実験においては、超音波送信素子16(又は送信側超音波振動子42)と超音波受信素子18(又は受信側超音波振動子64)の距離は3mmとし、空気(分子量28.8)と窒素(分子量28)の濃度及びその変化の検出を行った。詳細には、気体供給システム80の切り替え用電磁弁で空気のみ(空気100%)、即ち窒素0%のガス流10にしておき、次いで、切り替え用電磁弁を切り替えて、ガス流10を窒素のみ(窒素100%)にして、窒素のみを400ミリ秒間流し、再び切り替え用電磁弁を切り替えて空気のみ(空気100%)、即ち窒素0%のガス流10に戻した。   Using the gas supply system shown in FIG. 5, an experiment was conducted to confirm the gas separation performance of the apparatus shown in FIGS. 1 to 4 in which the present invention was applied to the measurement of the gas molecular concentration. In this experiment, the distance between the ultrasonic transmission element 16 (or transmission-side ultrasonic transducer 42) and the ultrasonic reception element 18 (or reception-side ultrasonic transducer 64) is 3 mm, and air (molecular weight 28.8) The concentration of nitrogen (molecular weight 28) and its change were detected. Specifically, the switching solenoid valve of the gas supply system 80 has only air (100% air), that is, a gas flow 10 of 0% nitrogen, and then the switching solenoid valve is switched to change the gas flow 10 to nitrogen only. (Nitrogen 100%), only nitrogen was allowed to flow for 400 milliseconds, and the switching solenoid valve was switched again to return to air only (air 100%), that is, the gas flow 10 with 0% nitrogen.

図6は、上記実験の結果を示す。図6に示す信号出力の曲線100は、図3に示す超音波受信及び分子濃度出力回路50のピーク・ホール部60のA点における出力信号である。図6における、参照番号102で示すバーは、気体供給システム80の切り替え用電磁弁で窒素に切り替えている期間を示し、バー102のSは電磁弁が窒素に切り替えた時点を、Eは電磁弁で空気に切り替えた時点を表す。図6に示す信号出力の曲線には、気体の分子の揺らぎによる変動が見られる。S/N比を測定した結果80dBと、42dB程度である特許文献1に開示の装置に比べて高いS/N比が得られた。図6から高いS/N比の出力が得られていることが分かる。気体供給システム80は、高速で気体を切り換えることができる構造になっているが、気体供給システム80からガス流10が超音波を横切る地点まで距離があるために電磁弁による気体の切り替え時点とその変化による超音波の受信レベルの変化時点との間には約100ms程の遅れがある。従って、曲線100の立ち上がりがやや遅れ、即ち、電磁弁を窒素に切り替えた時点Sから約100ms程遅れて立ち上がり、更に、図6のグラフから、その後、窒素によってチャンバー12内が満たされていく様子(参照番号104参照)も確認することができる。チャンバー12内に窒素しか無い状態ではフラットな領域106が見られ、チャンバー12が窒素に満たされた状態で安定していることが解る。また、再び空気に切り替わる際のリアルタイムな分子濃度の変動をリアルタイムに確認することができる(参照番号108参照)。また、出力信号の電圧値は、空気(分子量28.8)の方が窒素(分子量28)より小さく、平均分子量が大きい気体の方が小さい気体よりそれらを通過する減衰量が大きいことがわかる。   FIG. 6 shows the results of the above experiment. A signal output curve 100 shown in FIG. 6 is an output signal at point A of the peak hole portion 60 of the ultrasonic wave reception and molecular concentration output circuit 50 shown in FIG. In FIG. 6, a bar denoted by reference numeral 102 indicates a period during which the switching solenoid valve of the gas supply system 80 is switched to nitrogen, S in the bar 102 indicates a point in time when the solenoid valve switches to nitrogen, and E indicates a solenoid valve. Represents the point of time when switching to air. The signal output curve shown in FIG. 6 shows fluctuations due to fluctuations of gas molecules. As a result of measuring the S / N ratio, a high S / N ratio was obtained as compared with the apparatus disclosed in Patent Document 1 which is about 80 dB and 42 dB. It can be seen from FIG. 6 that an output with a high S / N ratio is obtained. The gas supply system 80 has a structure capable of switching the gas at high speed. However, since there is a distance from the gas supply system 80 to a point where the gas flow 10 crosses the ultrasonic wave, the gas switching time by the electromagnetic valve and the gas switching system 80 There is a delay of about 100 ms between the change of the ultrasonic wave reception level due to the change. Accordingly, the rising of the curve 100 is slightly delayed, that is, the rising is delayed by about 100 ms from the time S when the solenoid valve is switched to nitrogen, and further, the chamber 12 is filled with nitrogen from the graph of FIG. (See reference numeral 104) can also be confirmed. A flat region 106 is seen when only nitrogen is present in the chamber 12, and it can be seen that the chamber 12 is stable in a state filled with nitrogen. In addition, it is possible to confirm in real time the change in molecular concentration in real time when switching to air again (see reference numeral 108). In addition, it can be seen that the voltage value of the output signal is smaller for air (molecular weight 28.8) than for nitrogen (molecular weight 28), and for gases having a higher average molecular weight, the amount of attenuation passing through them is larger than for gases having a smaller average molecular weight.

このように、窒素と空気の混合気体から成るガス流10における窒素又は空気の分子濃度の変化を測定することができる。また、窒素(又は空気)の既知である種々の分子濃度を持つガス流10で、予め、上記出力信号を測定し、その出力信号特性を対応する既知の分子濃度で較正しておけば、絶対濃度を測定することができる。本発明においては、当該較正は、グラス、表、換算式等、出力信号から分子濃度が換算できればいずれのものでよい。本発明の装置が、例えばマイクロプロセッサを含むようにして、当該マイクロプロセッサにこのような較正手段を組み込むようにしてもよい。   In this way, changes in the molecular concentration of nitrogen or air in the gas stream 10 consisting of a mixture of nitrogen and air can be measured. In addition, if the above output signal is measured in advance with a gas flow 10 having various molecular concentrations of nitrogen (or air) and the output signal characteristics are calibrated with the corresponding known molecular concentrations, absolute The concentration can be measured. In the present invention, the calibration may be any method as long as the molecular concentration can be converted from the output signal, such as a glass, a table, and a conversion formula. The apparatus of the present invention may include a microprocessor, for example, and such a calibration means may be incorporated into the microprocessor.

また、例えば、チャンバー12内にガス流10を流入させた後で、チャンバー12の出入り口を閉じ静止状態で測定することにより静止状態の混合気体の所望の成分気体の分子濃度を測定することができる。本発明は、静止状態の混合気体の生成は、いずれの方法、手段にも依存せず、いずれの要領であってもよい。   Further, for example, after the gas flow 10 is introduced into the chamber 12, the molecular concentration of the desired component gas of the stationary mixed gas can be measured by measuring the stationary state by closing the entrance and exit of the chamber 12. . In the present invention, the production of the gas mixture in a stationary state does not depend on any method and means, and may be in any manner.

図7は、酸素ならびに窒素の混合比を変えた混合気体に対しての本発明のセンサ、即ち図1〜図3に示す本発明の装置の出力信号が超音波の周波数を変えた場合に変化することを示す図である。図7において、参照番号120は、超音波振動子42及び64として200KHz用のものを用い、電気信号発振部32で200KHzの電気信号を発振させて、200KHzの超音波を超音波発振部34から発射した場合の出力信号(図3の超音波受信及び分子濃度出力回路50のピーク・ホール部60のA点の出力)の変化を示し、また参照番号122は、超音波振動子42及び64として400KHz用のものを用い、電気信号発振部32で400KHzの電気信号を発振させて、400KHzの超音波を超音波発振部34から発射した場合の出力信号(図3の超音波受信及び分子濃度出力回路50のピーク・ホール部60のA点の出力)の変化を示す。なお、発射する超音波の周波数の違いによる出力信号の変化、即ち感度の違いが分かり易いように、図7は、200KHzと400KHzの場合出力信号の電圧を相対化し、即ち、酸素濃度10%のときに同じ電圧に合わせて、相対電圧差で示してある。図7から、出力信号が混合比に対してリニアに変化していることがわかる。これは、測定対象の気体、ここではガス流10を照射する、即ちその中を伝搬する超音波の周波数が上がるほど、気体の平均分子量の検知感度が上がることを意味する。   FIG. 7 shows the change in the case where the output signal of the sensor of the present invention, that is, the device of the present invention shown in FIGS. It is a figure which shows doing. In FIG. 7, reference numeral 120 indicates that the ultrasonic vibrators 42 and 64 are for 200 KHz, the electric signal oscillating unit 32 oscillates a 200 KHz electric signal, and the 200 KHz ultrasonic wave is transmitted from the ultrasonic oscillating unit 34. 3 shows the change of the output signal (output of point A of the peak hole portion 60 of the ultrasonic wave reception and molecular concentration output circuit 50 in FIG. 3) when fired, and reference numeral 122 is the ultrasonic vibrators 42 and 64. An output signal when the 400 kHz signal is emitted from the ultrasonic wave oscillating unit 34 after the 400 kHz signal is oscillated by the electric signal oscillating unit 32 (the ultrasonic wave reception and molecular concentration output in FIG. 3) is used. A change in the output of the point A of the peak hole portion 60 of the circuit 50 is shown. In addition, in order to make it easy to understand the change in the output signal due to the difference in the frequency of the emitted ultrasonic wave, that is, the difference in sensitivity, FIG. 7 shows the relative output voltage in the case of 200 KHz and 400 KHz, that is, the oxygen concentration of 10%. Sometimes relative voltage differences are shown to match the same voltage. FIG. 7 shows that the output signal changes linearly with respect to the mixing ratio. This means that the detection sensitivity of the average molecular weight of the gas increases as the frequency of the ultrasonic wave that irradiates the gas to be measured, here, the gas flow 10, that is, propagates through the gas stream 10, increases.

特許文献1に開示された装置では、非常に短い時間差を計測するアナログ回路が必要であったが、本発明では、受信した超音波の大きさ、上記実施形態においては超音波の振幅を検出するだけでよく、従ってチューイングが容易で、安定に測定することができ、また信号処理系を簡便にすることができる。この簡便な信号処理系及び前述の高いS/N比が得られることから、精度の高い分子濃度計測が可能となり、従って高い汎用性を持つ手法となっている。   In the apparatus disclosed in Patent Document 1, an analog circuit that measures a very short time difference is necessary. However, in the present invention, the magnitude of the received ultrasonic wave, in the above embodiment, the amplitude of the ultrasonic wave is detected. Therefore, chewing is easy, stable measurement can be performed, and the signal processing system can be simplified. Since this simple signal processing system and the above-described high S / N ratio can be obtained, it is possible to measure the molecular concentration with high accuracy, and therefore, the technique has high versatility.

時間分解能の精度に関しては、図3に示すピーク・ホール部60、又はサンプルアンドホールド素子等を利用することで、超音波の送信周波数の半分、例えば、400KHzの周波数を用いた場合1/(400k/2)=5マイクロ秒までの時間分解能を原理的に得ることができ、特許文献1に開示された装置の500マイクロ秒のオーダに比して著しく高い時間分解能が得られる。その結果、分子濃度を高速に測定することが可能となる。   With respect to the accuracy of the time resolution, by using the peak / hole unit 60 shown in FIG. 3 or a sample and hold element or the like, 1 / (400 k when a frequency of 400 KHz is used, for example, a frequency of 400 KHz. / 2) = Time resolution up to 5 microseconds can be obtained in principle, and remarkably high time resolution can be obtained as compared with the order of 500 microseconds of the device disclosed in Patent Document 1. As a result, the molecular concentration can be measured at high speed.

送信部(超音波送信素子16)と受信部(超音波受信素子18)との間が距離が数ミリメートル(上記実施形態では3mm)と超音波が通過する測定対象の混合気体の幅が非常に小さくても分子濃度を計測することができる。   The distance between the transmission unit (ultrasonic transmission element 16) and the reception unit (ultrasonic reception element 18) is several millimeters (3 mm in the above embodiment), and the width of the measurement target gas mixture through which the ultrasonic wave passes is very large. Even if it is small, the molecular concentration can be measured.

上記実施形態では、測定対象の混合気体の中を伝搬し、その中で減衰した超音波の振幅を測定しているが、本発明は、当該超音波の大きさを表す、例えば超音波のパワー等のいずれのパラメータを測定してもよい。   In the above embodiment, the amplitude of the ultrasonic wave propagating through the gas mixture to be measured and attenuated therein is measured, but the present invention represents the magnitude of the ultrasonic wave, for example, the power of the ultrasonic wave Any of these parameters may be measured.

本発明の好適な実施形態を、測定対象として気体を例にして上記で説明したが、本発明は、気体に限定されるものではなく、同様の構成で、複数の異なる液体から成る混合液体について流体状態或いは静止状態に関係なく測定対象とすることができる。概略すると、複数の異なる液体から成る混合液体に対して、一定の大きさの超音波を当該混合液体の中を伝搬させて減衰させ、その減衰した超音波の大きさ(例えば、振幅)或いはその変化を測定して、混合液体中の1つの所定の液体の濃度或いはその変化を測定すればよい。   A preferred embodiment of the present invention has been described above by taking a gas as an example of a measurement object. However, the present invention is not limited to a gas, and a mixed liquid composed of a plurality of different liquids in the same configuration. Regardless of the fluid state or the stationary state, the measurement object can be used. In summary, for a mixed liquid composed of a plurality of different liquids, an ultrasonic wave of a certain magnitude is propagated through the mixed liquid and attenuated, and the magnitude (for example, amplitude) of the attenuated ultrasonic wave or its The change may be measured to measure the concentration of one predetermined liquid in the mixed liquid or the change thereof.

本発明は、測定対象の混合気体又は混合液体に含まれる成分の気体又は液体が3つ以上でも、濃度を測定すべき1つの気体又は液体に対して残りの複数の気体又は液体の混合比等の物理的条件が同じであれば、上記1つの気体又は液体の濃度又はその変化を測定することが可能である。   The present invention provides a mixture ratio of a plurality of remaining gases or liquids with respect to one gas or liquid whose concentration is to be measured, even if there are three or more gas or liquid components contained in the mixed gas or liquid mixture to be measured. If the physical conditions are the same, it is possible to measure the concentration or change of the one gas or liquid.

図1は、チャンバー内のガスの分子濃度を測定することに本発明を適用した場合の構成を概略的に示す図である。FIG. 1 is a diagram schematically showing a configuration when the present invention is applied to measuring the molecular concentration of a gas in a chamber. 図2は、本発明の好適な一実施形態の超音波発生回路30の概略的構成を示す回路図である。FIG. 2 is a circuit diagram showing a schematic configuration of the ultrasonic wave generation circuit 30 according to a preferred embodiment of the present invention. 図3は、本発明の好適な一実施形態の超音波受信及び分子濃度出力回路50の概略的構成を示す回路図である。FIG. 3 is a circuit diagram showing a schematic configuration of the ultrasonic reception and molecular concentration output circuit 50 according to a preferred embodiment of the present invention. 図4は、図2の超音波発生回路30から送出、即ち送信される超音波の送信波、及び図3の超音波受信及び分子濃度出力回路50の主要部における信号の状態を表す図である。FIG. 4 is a diagram showing the state of signals transmitted from the ultrasonic wave generation circuit 30 in FIG. 2, that is, the transmission wave of the ultrasonic waves, and signals in the main part of the ultrasonic wave reception and molecular concentration output circuit 50 in FIG. . 図5は、時間当たりの流量を同一にしたまま高速に気体を切り替えることができる気体供給システムを、図1ないし図3に示す本発明の好適な実施形態によるチャンバー内のガスの分子濃度を測定する装置に用いた場合の構成を示す図である。FIG. 5 shows a gas supply system capable of switching gas at high speed while maintaining the same flow rate per time, and measuring the molecular concentration of the gas in the chamber according to the preferred embodiment of the present invention shown in FIGS. It is a figure which shows the structure at the time of using for the apparatus to do. 図6は、図5に示す気体供給システムを用いて、本発明をガスの分子濃度の測定に適用した図1ないし図4に示す装置の気体分離性能を確かめる実験を行った結果を示す図である。FIG. 6 is a diagram showing the results of an experiment for confirming the gas separation performance of the apparatus shown in FIGS. 1 to 4 in which the present invention is applied to the measurement of the molecular concentration of gas using the gas supply system shown in FIG. is there. 図7は、酸素ならびに窒素の混合比を変えた混合気体に対しての図1〜図3に示す本発明の装置の出力信号が超音波の周波数を変えた場合に変化することを示す図である。FIG. 7 is a diagram showing that the output signal of the apparatus of the present invention shown in FIGS. 1 to 3 changes when the frequency of the ultrasonic wave is changed with respect to a mixed gas in which the mixing ratio of oxygen and nitrogen is changed. is there.

符号の説明Explanation of symbols

10 ガス流
12 チャンバー
16 超音波送信素子
18 超音波受信素子
30 超音波発生回路
32 電気信号発振部
34 超音波発振部
36 発振・分周回路
40 スイッチ群
42 超音波振動子
44 駆動回路
46 駆動トランジスタ
50 超音波受信及び分子濃度出力回路
52 超音波受信部
54 ハイパスフィルタ
56 増幅部
58 整流部
60 ピーク・ホール部
62 判定部
80 気体供給システム80
DESCRIPTION OF SYMBOLS 10 Gas flow 12 Chamber 16 Ultrasonic transmitting element 18 Ultrasonic receiving element 30 Ultrasonic generating circuit 32 Electric signal oscillating part 34 Ultrasonic oscillating part 36 Oscillation / frequency dividing circuit 40 Switch group 42 Ultrasonic vibrator 44 Driving circuit 46 Driving transistor DESCRIPTION OF SYMBOLS 50 Ultrasonic reception and molecular concentration output circuit 52 Ultrasonic reception part 54 High pass filter 56 Amplification part 58 Rectification part 60 Peak hole part 62 Determination part 80 Gas supply system 80

Claims (10)

複数の異なる気体から成る混合気体又は複数の異なる液体から成る混合液体の中の1つの所定の気体又は液体の濃度を計測する方法であって、
一定の大きさの超音波を前記混合気体又は混合液体の中へ送出するステップと、
前記超音波を前記混合気体又は混合液体の中を一定の距離伝搬させ、当該伝搬された超音波の大きさを測定するステップと、
前記の測定された超音波の大きさに基づいて前記1つの所定の気体又は液体の濃度を求めるステップと
を備える方法。
A method for measuring the concentration of one predetermined gas or liquid in a mixed gas composed of a plurality of different gases or a mixed liquid composed of a plurality of different liquids, comprising:
Delivering ultrasonic waves of a certain magnitude into the gas mixture or liquid mixture;
Propagating the ultrasonic wave through the gas mixture or liquid for a certain distance, and measuring the magnitude of the propagated ultrasonic wave;
Determining the concentration of the one predetermined gas or liquid based on the measured magnitude of the ultrasonic wave.
一連の前記ステップを間欠的又は連続的に行って、前記1つの所定の気体又は液体の濃度の変化を測定する請求項1記載の方法。   The method according to claim 1, wherein a series of the steps are performed intermittently or continuously to measure a change in the concentration of the one predetermined gas or liquid. 前記1つの所定の気体又は液体を種々の既知の濃度で含む前記混合気体又は混合液体を用いて、前記送出するステップ及び測定するステップを実行して、前記伝搬された超音波の大きさを測定して、当該測定された超音波の大きさを前記1つの所定の気体又は液体の濃度に対して予め較正するステップを更に含む請求項1又は2記載の方法。   Using the mixed gas or liquid containing the one predetermined gas or liquid in various known concentrations, the transmitting step and the measuring step are executed to measure the magnitude of the transmitted ultrasonic wave The method according to claim 1, further comprising the step of pre-calibrating the measured ultrasonic magnitude with respect to the concentration of the one predetermined gas or liquid. 前記異なる気体又は液体の数が2である請求項1から3のいずれか一項に記載の方法。   The method according to claim 1, wherein the number of the different gases or liquids is two. 前記混合気体又は混合液体が流体である請求項1から4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, wherein the mixed gas or liquid is a fluid. 複数の異なる気体から成る混合気体又は複数の異なる液体から成る混合液体の中の1つの所定の気体1つの液体の濃度を計測する装置であって、
一定の大きさの超音波を前記混合気体又は混合液体の中へ送出する超音波送出手段と、
前記超音波送出手段から一定の距離離れた位置に配置された超音波受信手段であって、前記超音波送出手段と当該超音波受信手段との間に介在する前記混合気体又は混合液体の中を伝搬して減衰した超音波を受信する超音波受信手段と、
前記超音波受信手段で受信された超音波の大きさに基づいて前記1つの所定の気体又は液体の濃度を決定する濃度決定手段と
を備える装置。
An apparatus for measuring the concentration of one liquid in a predetermined gas in a mixed gas composed of a plurality of different gases or a mixed liquid composed of a plurality of different liquids,
Ultrasonic transmission means for transmitting ultrasonic waves of a certain size into the mixed gas or mixed liquid;
Ultrasonic wave receiving means disposed at a certain distance from the ultrasonic wave sending means, wherein the mixed gas or mixed liquid interposed between the ultrasonic wave sending means and the ultrasonic wave receiving means Ultrasonic receiving means for receiving ultrasonic waves that have been propagated and attenuated; and
An apparatus comprising: concentration determining means for determining the concentration of the one predetermined gas or liquid based on the magnitude of the ultrasonic wave received by the ultrasonic wave receiving means.
前記超音波受信手段が、超音波を間欠的又は連続的に送出し、
前記超音波受信手段が、間欠的又は連続的に送出された超音波を受信し、
前記濃度決定手段が更に、間欠的又は連続的に受信された超音波の大きさに基づいて前記1つの所定の気体又は液体の濃度の変化を決定する
請求項6記載の装置。
The ultrasonic receiving means sends out ultrasonic waves intermittently or continuously,
The ultrasonic receiving means receives ultrasonic waves transmitted intermittently or continuously;
7. The apparatus according to claim 6, wherein the concentration determining means further determines a change in the concentration of the one predetermined gas or liquid based on the magnitude of the ultrasonic wave received intermittently or continuously.
前記濃度決定手段は、
前記1つの所定の気体又は液体を種々の既知の濃度で含む前記混合気体又は混合液体について、前記装置を用いて、前記伝搬された超音波の大きさを測定して、当該測定された超音波の大きさを前記1つの所定の気体又は液体の濃度に対して較正する較正手段を予め含み、
前記超音波受信手段で受信された超音波の大きさを、前記較正手段を用いて前記1つの所定の気体又は液体の濃度を決定する請求項6又は7記載の装置。
The concentration determining means includes
For the mixed gas or liquid mixture containing the one predetermined gas or liquid in various known concentrations, the device is used to measure the magnitude of the transmitted ultrasonic wave, and the measured ultrasonic wave Pre-calibrating means for calibrating the size of said one against the concentration of said one predetermined gas or liquid;
The apparatus according to claim 6 or 7, wherein the ultrasonic wave received by the ultrasonic wave receiving means is used to determine the concentration of the one predetermined gas or liquid using the calibration means.
前記異なる気体又は液体の数が2である請求項6から8のいずれか一項に記載の装置。   The apparatus according to any one of claims 6 to 8, wherein the number of the different gases or liquids is two. 前記混合気体又は混合液体が流体である請求項6から9のいずれか一項に記載の装置。   The apparatus according to claim 6, wherein the mixed gas or liquid is a fluid.
JP2005060251A 2005-03-04 2005-03-04 Concentration measuring method and device of gas or liquid in mixed gas or liquid Pending JP2006242804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060251A JP2006242804A (en) 2005-03-04 2005-03-04 Concentration measuring method and device of gas or liquid in mixed gas or liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060251A JP2006242804A (en) 2005-03-04 2005-03-04 Concentration measuring method and device of gas or liquid in mixed gas or liquid

Publications (1)

Publication Number Publication Date
JP2006242804A true JP2006242804A (en) 2006-09-14

Family

ID=37049370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060251A Pending JP2006242804A (en) 2005-03-04 2005-03-04 Concentration measuring method and device of gas or liquid in mixed gas or liquid

Country Status (1)

Country Link
JP (1) JP2006242804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217926A (en) * 2008-06-13 2013-10-24 Canon Inc Recording medium determination device and image forming device
RU2550306C1 (en) * 2014-02-12 2015-05-10 Борис Юхимович Каплан Method of measurement of volume concentration of hydrogen
US9134672B2 (en) 2008-06-13 2015-09-15 Canon Kabushiki Kaisha Recording medium determination apparatus and image forming apparatus
CN109283259A (en) * 2018-09-14 2019-01-29 华中科技大学无锡研究院 A kind of ultrasonic scanning device and its application and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310157A (en) * 1989-06-08 1991-01-17 Akita Univ Gas-concentration measuring apparatus
JPH0735589A (en) * 1993-07-16 1995-02-07 Toshiba Joho Seigyo Syst Kk Flowrate and flow concentration measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310157A (en) * 1989-06-08 1991-01-17 Akita Univ Gas-concentration measuring apparatus
JPH0735589A (en) * 1993-07-16 1995-02-07 Toshiba Joho Seigyo Syst Kk Flowrate and flow concentration measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217926A (en) * 2008-06-13 2013-10-24 Canon Inc Recording medium determination device and image forming device
US9134672B2 (en) 2008-06-13 2015-09-15 Canon Kabushiki Kaisha Recording medium determination apparatus and image forming apparatus
RU2550306C1 (en) * 2014-02-12 2015-05-10 Борис Юхимович Каплан Method of measurement of volume concentration of hydrogen
CN109283259A (en) * 2018-09-14 2019-01-29 华中科技大学无锡研究院 A kind of ultrasonic scanning device and its application and method
CN109283259B (en) * 2018-09-14 2021-03-23 华中科技大学无锡研究院 Ultrasonic scanning device and application and method thereof

Similar Documents

Publication Publication Date Title
AU2011295673B2 (en) Multiphase fluid characterization system
RU2659584C2 (en) Methods for measuring properties of multiphase oil-water-gas mixtures
WO2018188429A1 (en) Beat effect-based quartz-enhanced photoacoustic spectroscopy gas detection apparatus and method
KR101113772B1 (en) Ultrasonic flow meter
CA2403862A1 (en) Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
JPH10253339A (en) Method and apparatus for measurement by utilizing sound wave
EP2343548B1 (en) Method and device for acoustically determining characteristics of a medium in a container
JP2006242804A (en) Concentration measuring method and device of gas or liquid in mixed gas or liquid
Koturbash et al. New instrument for measuring the velocity of sound in gases and quantitative characterization of binary gas mixtures
CN109187738A (en) A kind of sulfur hexafluoride gas detection device based on ultrasonic wave principle
Moraga et al. Role of very-high-frequency excitation in single-bubble sonoluminescence
JP3700000B2 (en) Gas concentration measuring apparatus and gas concentration measuring method
JP3584290B2 (en) Gas concentration measuring device and gas concentration measuring method
JP5166999B2 (en) Device measurement device
JPH0310157A (en) Gas-concentration measuring apparatus
JP4635232B2 (en) Optimization method of ultrasonic gas concentration measurement method
US20220034694A1 (en) Flow-rate measuring apparatus capable of accurately measuring flow rate of fluid containing foreign objects
CN109642892B (en) Method and apparatus for compensating coupling non-uniformities in ultrasonic testing
JP2007064792A (en) Ultrasonic flow measuring instrument
JP2012107874A (en) Ultrasonic flowmeter
SU309749A1 (en) DEVICE FOR MEASURING THE SPEED AND DIFFERENTIAL RATE OF ULTRASOUND
SU964543A1 (en) Ultrasonic meter of gaseous media flow rate
JP2004020486A (en) Ultrasonic receiver and ultrasonic flowmeter
JP2001004417A (en) Ultrasonic flowmeter
RU2343474C2 (en) Single-frequency generator for fluid analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A977 Report on retrieval

Effective date: 20100609

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100611

A521 Written amendment

Effective date: 20100728

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100823