JP5295028B2 - Vibrating density meter - Google Patents

Vibrating density meter Download PDF

Info

Publication number
JP5295028B2
JP5295028B2 JP2009172899A JP2009172899A JP5295028B2 JP 5295028 B2 JP5295028 B2 JP 5295028B2 JP 2009172899 A JP2009172899 A JP 2009172899A JP 2009172899 A JP2009172899 A JP 2009172899A JP 5295028 B2 JP5295028 B2 JP 5295028B2
Authority
JP
Japan
Prior art keywords
temperature
cell
measurement
samp
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009172899A
Other languages
Japanese (ja)
Other versions
JP2011027521A (en
Inventor
武志 松岡
弘晃 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2009172899A priority Critical patent/JP5295028B2/en
Publication of JP2011027521A publication Critical patent/JP2011027521A/en
Application granted granted Critical
Publication of JP5295028B2 publication Critical patent/JP5295028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • G01N2009/006Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis vibrating tube, tuning fork

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、振動式密度計に関し、特に、測定セル(振動子)の温度変更時のドリフト、すなわち、振動周期の一方向への変化を補正する機能を備えた振動式密度計に関する。   The present invention relates to a vibration type density meter, and more particularly to a vibration type density meter having a function of correcting a drift when a temperature of a measurement cell (vibrator) is changed, that is, a change in one direction of a vibration cycle.

振動式密度計は被測定流体を収容したガラス製の測定セルを振動させ、測定した固有振動周期から被測定流体の密度を演算、出力する装置であり、例えば清涼飲料の濃度管理等の各種流体の密度測定に利用されている。   The vibration type density meter is a device that vibrates a measurement cell made of glass containing the fluid to be measured, and calculates and outputs the density of the fluid to be measured from the measured natural vibration period. For example, various fluids such as concentration management of soft drinks It is used for density measurement.

このような振動式密度計で流体を測定する場合、アルコールは15℃、石油は50℃・60℃・70℃等、その他の流体は20℃で測定することが多く、試料が変更になった場合には、測定セルの温度を変更する必要がある。また、特定の試料の密度の温度特性を測定する場合にも、測定セルの温度を変更する必要がある。   When measuring fluid with such a vibratory density meter, alcohol is often measured at 15 ° C, petroleum is measured at 50 ° C / 60 ° C / 70 ° C, etc., and other fluids are often measured at 20 ° C. In some cases, it is necessary to change the temperature of the measurement cell. Also, when measuring the temperature characteristics of the density of a specific sample, it is necessary to change the temperature of the measurement cell.

しかしながら、上記のように測定セルの温度を変更した場合、試料の温度が設定温度になっても、振動周期のドリフト、すなわち、振動周期が長時間ゆっくり一方向に変化する現象が確認されている。これは、ガラス特有の性質により、物性が変化しているためと考えており、電源のON時にも、設定されたセル温度と電源ON時のセル温度が異なっていた場合には、ドリフトが生じる。
有効桁数が5桁〜6桁の高精度の振動式密度計の測定精度に影響を及ぼす変化が10時間程度続くことから、測定セルの温度が設定温度になってから10時間程度経過し、ドリフトが安定した後、測定を行う必要があった。
However, when the temperature of the measurement cell is changed as described above, even if the temperature of the sample reaches the set temperature, drift of the vibration cycle, that is, a phenomenon in which the vibration cycle slowly changes in one direction for a long time has been confirmed. . This is thought to be due to the change in physical properties due to the unique properties of glass. Even when the power is turned on, drift occurs if the set cell temperature and the cell temperature at power on are different. .
Since the change that affects the measurement accuracy of a high-precision vibratory densimeter with 5 to 6 significant digits continues for about 10 hours, about 10 hours have passed since the temperature of the measurement cell reached the set temperature. It was necessary to make measurements after the drift had stabilized.

このような温度変更時のドリフトの補償を行うために、測定セルと熱的に接触状態にあるリファレンスとなるリファレンスセルを設け、測定セルとリファレンスセルの共振振動を比較することにより、セル温度変更によるドリフトに起因する測定セルの測定結果の偏差を補償することが提案されている(例えば、特許文献1参照)。   In order to compensate for drift when changing temperature, a reference cell that is in thermal contact with the measurement cell is provided, and the cell temperature is changed by comparing the resonance vibration of the measurement cell and the reference cell. It has been proposed to compensate for deviations in measurement results of measurement cells caused by drift due to (see, for example, Patent Document 1).

特開平5−215659号公報JP-A-5-215659

上記のように、測定セルの温度変更時のドリフトの影響を除去するためには、ドリフトが安定するのを待ってから測定しなければならず、高精度測定を行うには、セル温度変更後長い待ち時間が必要になる、という問題があった。
このため、上記のように、測定セルの他にリファレンスセルを用意し、温度変更時のドリフトの影響をキャンセルすることが提案されているが、このようにリファレンスセルを設けると、セル内部の形状や、振動の駆動回路、受信回路が複雑になる、という問題が生じる。
As described above, in order to eliminate the effect of drift when changing the temperature of the measurement cell, measurement must be performed after waiting for the drift to stabilize. There was a problem that a long waiting time was required.
For this reason, as described above, it has been proposed to prepare a reference cell in addition to the measurement cell and cancel the influence of drift at the time of temperature change. In addition, there is a problem that the vibration driving circuit and the receiving circuit become complicated.

本発明は、上記の課題を解決するために創案されたものであり、リファレンスセルを用いることなく、セル温度変更後に必要な待ち時間を短縮できるとともに、セル温度変更直後の試料密度測定値の繰り返し性を向上できる振動式密度計を提供することを目的とする。   The present invention was devised to solve the above-mentioned problems, and without using a reference cell, the waiting time required after the cell temperature change can be shortened, and the sample density measurement value immediately after the cell temperature change is repeated. An object of the present invention is to provide a vibratory densimeter capable of improving the performance.

請求項1に係る発明の振動式密度計は、試料で満たされた測定セルの振動周期に基づいて試料の密度を算出する制御装置を備えた振動式密度計であって、上記制御装置が、上記測定セル温度の変更前、変更後の温度、温度変更からの経過時間に基づき、T SAMP を試料を測定した振動周期、Xを温度変更後の経過時間、Δtを温度変更前後の温度差としたとき、補正関数f(X、Δt)を用いて、補正した振動周期T COMP をT COMP =T SAMP /f(X、Δt)により求めることを特徴とする。 The vibration type density meter of the invention according to claim 1 is a vibration type density meter provided with a control device that calculates the density of the sample based on the vibration period of the measurement cell filled with the sample, wherein the control device comprises: before changing the measuring cell temperature, the temperature after the change,-out based on the elapsed time from the temperature change, vibration cycle of T SAMP measured sample, the elapsed time after the temperature change X, a temperature around the temperature change Δt When the difference is taken, the corrected vibration period T COMP is obtained by T COMP = T SAMP / f (X, Δt) using the correction function f (X, Δt) .

本発明に係る振動式密度計によれば、測定セル温度下降時には、TCOMP=TSAMP/f(X、Δt)、例えば、TSAMP/{β・Δt・(logX−1)+1}により、また、測定セル温度上昇時には、TCOMP=TSAMP/{β・Δt・logX+1}により測定した振動周期が補正されるので、リファレンスセルを用いることなく、セル温度変更後のドリフトを補償でき、セル温度変更後に必要な待ち時間を短縮することができるとともに、セル温度変更直後の試料密度測定値の繰り返し性を向上することができる。 According to the vibration type density meter according to the present invention, when the measurement cell temperature decreases, T COMP = T SAMP / f (X, Δt), for example, T SAMP / {β 1 · Δt · (logX−1) +1} In addition, when the measured cell temperature rises, the vibration period measured by T COMP = T SAMP / {β 2 · Δt · logX + 1} is corrected, so that drift after changing the cell temperature can be compensated without using a reference cell. The waiting time required after the cell temperature change can be shortened, and the repeatability of the sample density measurement value immediately after the cell temperature change can be improved.

本発明の振動式密度計のセンサ部の構造を示す図である。It is a figure which shows the structure of the sensor part of the vibration type density meter of this invention. 図1のセンサ部を取り付けた振動式密度計の概念図である。It is a conceptual diagram of the vibration type density meter which attached the sensor part of FIG. セル温度を20℃に12時間保った後、セル温度を0℃に変更した場合の純水の密度測定値への影響を示すグラフである。It is a graph which shows the influence on the density measured value of a pure water at the time of changing a cell temperature to 0 degreeC after keeping a cell temperature at 20 degreeC for 12 hours. セル温度を30℃に12時間保った後、セル温度を10℃に変更した場合の純水の密度測定値への影響を示すグラフである。It is a graph which shows the influence on the density measured value of the pure water at the time of changing a cell temperature to 10 degreeC after keeping a cell temperature at 30 degreeC for 12 hours. セル温度を20℃に12時間保った後、セル温度を10℃に変更した場合の純水の密度測定値への影響を示すグラフである。It is a graph which shows the influence on the density measured value of the pure water at the time of changing a cell temperature to 10 degreeC after keeping a cell temperature at 20 degreeC for 12 hours. セル温度を30℃に12時間保った後、セル温度を20℃に変更した場合の純水の密度測定値への影響を示すグラフである。It is a graph which shows the influence on the density measured value of a pure water at the time of changing a cell temperature to 20 degreeC after keeping a cell temperature at 30 degreeC for 12 hours. セル温度を0℃に12時間保った後、セル温度を30℃に変更した場合の純水の密度への影響の12時間の測定値のグラフである。It is a graph of the measured value for 12 hours of the influence on the density of pure water at the time of changing a cell temperature to 30 degreeC after keeping a cell temperature at 0 degreeC for 12 hours. セル温度を20℃に1時間保った後、セル温度を30℃に変更した場合の純水の密度測定値への影響を示すグラフである。It is a graph which shows the influence on the density measured value of the pure water at the time of changing a cell temperature to 30 degreeC after keeping a cell temperature at 20 degreeC for 1 hour. 温度下降時の測定振動周期のドリフトの状態を示すグラフである。It is a graph which shows the state of drift of the measurement vibration period at the time of temperature fall. 図9のグラフの時間軸を対数表示したグラフである。It is the graph which displayed the time axis of the graph of FIG. 9 logarithmically. 図10のグラフの傾きAの温度差Δtに対する変化を示すグラフである。It is a graph which shows the change with respect to temperature difference (DELTA) t of the inclination A of the graph of FIG. 温度上昇時の測定振動周期のドリフトの状態を示すグラフである。It is a graph which shows the state of drift of the measurement vibration period at the time of a temperature rise. 図12のグラフの時間軸を対数表示したグラフである。It is the graph which displayed the time axis of the graph of FIG. 12 logarithmically. 図13のグラフの傾きAの温度差Δtに対する変化を示すグラフである。It is a graph which shows the change with respect to temperature difference (DELTA) t of the inclination A of the graph of FIG. ドリフト対策ルーチンを実行する場合の作用を示すフローチャートである。It is a flowchart which shows an effect | action when performing a drift countermeasure routine.

図1は本発明の振動式密度計のセンサ部の構造を示す図であり、図1(a)はセンサ部の側面図、図1(b)はセンサ部の上面図である。このセンサ部は測定セル1、永久磁石2、ホルダ3a、3b、温度センサ4、ガラス製の外筒5により構成されている。   FIG. 1 is a diagram showing the structure of a sensor unit of a vibration type densitometer according to the present invention. FIG. 1 (a) is a side view of the sensor unit, and FIG. 1 (b) is a top view of the sensor unit. This sensor part is composed of a measurement cell 1, a permanent magnet 2, holders 3a and 3b, a temperature sensor 4, and a glass outer cylinder 5.

測定セル1は、肉厚0.2mm程度のガラスで作成した細いU字管であり、その先端部には永久磁石の薄板2が接着剤により固着されている。また、この測定セル1の基端部はホルダ3a、3bに固定され、このホルダ3a、3bは図1(a)に示すように、外筒5に設けられた突起6により固定されている。また、温度センサ4は、ガラス管の内部にサーミスタが挿入されたものであり、試料の温度を測定する。このセンサ部は、組み立て後、ヘリウム注入口7を介して内部にヘリウムが注入された後、封止される。   The measurement cell 1 is a thin U-shaped tube made of glass having a wall thickness of about 0.2 mm, and a thin plate 2 of a permanent magnet is fixed to the tip of the tube with an adhesive. Further, the base end portion of the measurement cell 1 is fixed to holders 3a and 3b, and the holders 3a and 3b are fixed by projections 6 provided on the outer cylinder 5 as shown in FIG. The temperature sensor 4 has a thermistor inserted in the glass tube, and measures the temperature of the sample. This sensor part is sealed after helium is injected into the inside through the helium inlet 7 after assembly.

一方、図2は上記のセンサ部を取り付けた振動式密度計の概念図であり、センサ部が断熱材11の内部に収容されるとともに、ペルチェ素子(図示せず)を備えた銅ブロック12がセンサ部、すなわち、測定セル1内の被測定試料の温度を設定温度に保つように制御される。また、測定セル1の先端部に固定された永久磁石2に対向する位置に、駆動コイルと検出コイルを内蔵した測定ヘッド13が配置されている。また、図に示すように、温度センサ4内にサーミスタ14が配置され、測定セル1の先端付近の温度、すなわち、被測定試料の温度を測定する。
一方、測定セル1の一方の開口端は被測定流体を導入するサンプリングチューブ15に接続され、他方の開口端は測定の完了した被測定流体を排出する排液チューブ16に接続されている。
On the other hand, FIG. 2 is a conceptual diagram of the vibration type density meter to which the above-described sensor unit is attached. The sensor unit is housed in the heat insulating material 11 and a copper block 12 having a Peltier element (not shown) is provided. Control is performed so that the temperature of the sample to be measured in the sensor unit, that is, the measurement cell 1 is maintained at the set temperature. In addition, a measurement head 13 incorporating a drive coil and a detection coil is disposed at a position facing the permanent magnet 2 fixed to the tip of the measurement cell 1. Further, as shown in the figure, a thermistor 14 is arranged in the temperature sensor 4 and measures the temperature near the tip of the measurement cell 1, that is, the temperature of the sample to be measured.
On the other hand, one open end of the measurement cell 1 is connected to a sampling tube 15 that introduces a fluid to be measured, and the other open end is connected to a drain tube 16 that discharges the measured fluid that has been measured.

制御装置17は、制御部21、駆動部22、検出部23、表示部24及び記憶部25を備え、制御部21には上記サーミスタ14の温度検出出力が入力され、サーミスタ14の温度が測定設定温度となるように、銅ブロック12のペルチェ素子を制御する。また、駆動部22は測定ヘッド13の駆動コイルに駆動電流を流し、検出部23は測定ヘッド13の検出コイルの出力を検出して測定セル1の振動周期を検出する。さらに、制御部21は、表示部24に測定の設定画面や密度の測定値を表示するとともに、ユーザが設定した測定条件や検出した振動周期等を記憶部25に記憶する。   The control device 17 includes a control unit 21, a drive unit 22, a detection unit 23, a display unit 24, and a storage unit 25. The temperature detection output of the thermistor 14 is input to the control unit 21, and the temperature of the thermistor 14 is measured and set. The Peltier element of the copper block 12 is controlled so that the temperature is reached. The drive unit 22 supplies a drive current to the drive coil of the measurement head 13, and the detection unit 23 detects the output of the detection coil of the measurement head 13 to detect the vibration cycle of the measurement cell 1. Furthermore, the control unit 21 displays the measurement setting screen and the density measurement value on the display unit 24, and stores the measurement condition set by the user, the detected vibration cycle, and the like in the storage unit 25.

測定にあたっては、まずサンプリングチューブ15を通じて測定セル1内に被測定流体を導入し、制御装置17の駆動部22より測定ヘッド13の駆動コイルに駆動電流を入力し、永久磁石2に電磁力を作用させることにより、測定セル1に振動を開始させる。
このときの振動を測定ヘッド13の検出コイルが検出して検出信号を検出部23に入力し、この振動周期に同期した駆動信号を引き続き、測定ヘッド13の駆動コイルに入力することにより、測定セル1を一定の周期で振動させ、固有振動周期を求める。
In measurement, first, a fluid to be measured is introduced into the measurement cell 1 through the sampling tube 15, a drive current is input to the drive coil of the measurement head 13 from the drive unit 22 of the control device 17, and an electromagnetic force is applied to the permanent magnet 2. As a result, the measurement cell 1 starts to vibrate.
The detection coil of the measurement head 13 detects the vibration at this time, and a detection signal is input to the detection unit 23, and a drive signal synchronized with this vibration cycle is continuously input to the drive coil of the measurement head 13, thereby allowing the measurement cell to 1 is vibrated at a constant period, and the natural vibration period is obtained.

次に、検出した固有振動周期に基づいて被測定流体の密度を制御部21が算出して表示部24に表示するが、以下、固有振動周期から被測定試料の密度を算出する方法について説明する。
測定セルの固有振動周期をTとし、被測定流体の密度をρとすると、ρは、
ρ=PT/4πV−M/V・・・(1)
で求めることができる。ただし、上記のPは振動系の振動定数、Vは被測定流体の体積(測定セル1の容積)、Mは測定セル1及び永久磁石2の質量である。
上記各P、V、Mはセンサ部の構造によって決定される定数であるから、P/4πV=K、M/V=Kとすると、
ρ=K−K・・・(2)
で表すことができる。
Next, the control unit 21 calculates the density of the fluid to be measured based on the detected natural vibration period and displays it on the display unit 24. Hereinafter, a method for calculating the density of the sample to be measured from the natural vibration period will be described. .
When the natural vibration period of the measurement cell is T and the density of the fluid to be measured is ρ,
ρ = PT 2 / 4π 2 VM / V (1)
Can be obtained. Where P is the vibration constant of the vibration system, V is the volume of the fluid to be measured (volume of the measurement cell 1), and M is the mass of the measurement cell 1 and the permanent magnet 2.
Since each P, V, and M is a constant determined by the structure of the sensor unit, when P / 4π 2 V = K 1 and M / V = K 2 ,
ρ = K 1 T 2 −K 2 (2)
It can be expressed as

ここで、既知の密度をもつ2種類の物質、例えば純水(ρWATER)と空気(ρAIR)を測定セル1で測定した固有振動周期をTWATER、TAIRとすると、
ρWATER =KWATER −K・・・(3)
ρAIR =KAIR 2 −K・・・(4)
であり、上記(3)、(4)式より定数K、Kは、
=(ρAIR―ρWATER)/(TAIR −TWATER )・・・(5)
=TAIR ・(ρAIR―ρWATER)/(TAIR −TWATER )−ρAIR・・・(6)
となる。
Here, when two natural substances having a known density, for example, pure water (ρ WATER ) and air (ρ AIR ) are measured in the measurement cell 1 are T WATER and T AIR ,
ρ WATER = K 1 T WATER 2 −K 2 (3)
ρ AIR = K 1 T AIR 2 −K 2 (4)
From the above equations (3) and (4), the constants K 1 and K 2 are
K 1 = (ρ AIR −ρ WATER ) / (T AIR 2 −T WATER 2 ) (5)
K 2 = T AIR 2 · (ρ AIR −ρ WATER ) / (T AIR 2 −T WATER 2 ) −ρ AIR (6)
It becomes.

上記(5)、(6)式より、(2)式は、
ρ=ρAIR+(ρAIR−ρWATER)*(T―TAIR )/(TAIR −TWATER )・・・(7)
となり、純水と空気の設定温度での密度ρWATER及びρAIRは既知であるので、純水と空気を測定した振動周期TAIR、TWATER、被測定流体を測定した振動周期Tから被測定流体の密度ρを算出することができる。
From the above formulas (5) and (6), formula (2) is
ρ = ρ AIR + (ρ AIR −ρ WATER ) * (T 2 −T AIR 2 ) / (T AIR 2 −T WATER 2 ) (7)
Since the density ρ WATER and ρ AIR at a set temperature of pure water and air are already known, the measurement is performed from the vibration periods T AIR and T WATER that measure pure water and air, and the vibration period T that measures the fluid to be measured. The density ρ of the fluid can be calculated.

次に、本発明によるセル温度変更時のドリフトの補正について説明する。
図3〜図8はセル温度変更時の純水の密度への影響、すなわち、純水の密度の測定値の時間変化とドリフトの影響がなくなったときの値との差異εのセル温度変更時からの経過時間に対する変化を図示したグラフである。
図3のグラフは、セル温度を20℃に12時間保った後、セル温度を0℃に変更した場合の純水の密度への影響の12時間の測定値であり、図4のグラフは、セル温度を30℃に12時間保った後、セル温度を10℃に変更した場合の純水の密度への影響の12時間の測定値である。
Next, correction of drift at the time of changing the cell temperature according to the present invention will be described.
FIGS. 3 to 8 show the influence on the density of pure water when the cell temperature is changed, that is, the difference between the time change of the measured value of the pure water and the value when the influence of drift disappears when the cell temperature is changed. It is the graph which illustrated the change with respect to the elapsed time from.
The graph of FIG. 3 is a measured value for 12 hours of the influence on the density of pure water when the cell temperature is changed to 0 ° C. after maintaining the cell temperature at 20 ° C. for 12 hours. The graph of FIG. It is a measured value for 12 hours of the influence on the density of pure water when the cell temperature is changed to 10 ° C. after maintaining the cell temperature at 30 ° C. for 12 hours.

また、図5のグラフは、セル温度を20℃に12時間保った後、セル温度を10℃に変更した場合の純水の密度への影響の12時間の測定値であり、図6のグラフは、セル温度を30℃に12時間保った後、セル温度を20℃に変更した場合の純水の密度への影響の12時間の測定値である。さらに、図7のグラフは、セル温度を0℃に12時間保った後、セル温度を30℃に変更した場合の純水の密度への影響の12時間の測定値であり、図8は、セル温度を20℃に1時間保った後、セル温度を30℃に変更した場合の純水の密度への影響の12時間の測定値である。   The graph of FIG. 5 is a measurement value of 12 hours of the influence on the density of pure water when the cell temperature is changed to 10 ° C. after maintaining the cell temperature at 20 ° C. for 12 hours. Is a measured value for 12 hours of the influence on the density of pure water when the cell temperature is changed to 20 ° C. after maintaining the cell temperature at 30 ° C. for 12 hours. Furthermore, the graph of FIG. 7 is a measurement value of 12 hours of the influence on the density of pure water when the cell temperature is changed to 30 ° C. after maintaining the cell temperature at 0 ° C. for 12 hours. This is a 12-hour measurement of the effect on the density of pure water when the cell temperature is changed to 30 ° C. after keeping the cell temperature at 20 ° C. for 1 hour.

図3〜図8において、εはセル温度を下降または上昇させた場合の純水の密度の測定値の時間変化とドリフトの影響がなくなったときの値との差異であり、tはセル温度の測定値であるが、図に示すように、セル温度変更直後にセル温度の測定値tは設定値に到達するが、純水の密度の測定値には、セル温度下降時には10時間程度、セル温度上昇時には1時間程度ドリフトが生じている。
このように、セル温度変更によるドリフトの現象は、温度変更の方向によって影響が異なり、温度下降時に影響が大であり、温度上昇時には、影響が小である。
3 to 8, ε is the difference between the time change of the measured value of the density of pure water when the cell temperature is lowered or raised and the value when the effect of drift is eliminated, and t is the cell temperature. As shown in the figure, the measured value t of the cell temperature reaches the set value immediately after the cell temperature change, but the measured value of the density of pure water is about 10 hours when the cell temperature falls. When the temperature rises, drift occurs for about one hour.
As described above, the effect of the drift due to the cell temperature change differs depending on the direction of the temperature change, has a large effect when the temperature decreases, and has a small effect when the temperature increases.

本発明では、セル温度変更によるドリフトの影響の補正方法として、測定セルの振動周期変化を補正式で補正するが、以下、この補正式の作成方法について説明する。
まず、セル温度変更によるドリフトがある状態からない状態、すなわち、生の振動周期を測定している状態に変化した場合にも、校正ファクタを変更せずに使用できるようにするため、比率によって補正し、補正後の振動周期TCOMPを算出するための補正式fΔt(X)を作成する。すなわち試料の測定周期をTSAMPとすると、
COMP=TSAMP/fΔt(X)・・・(8)
となる。
In the present invention, as a method for correcting the influence of drift due to cell temperature change, the change in the vibration period of the measurement cell is corrected by a correction formula. Hereinafter, a method for creating this correction formula will be described.
First, even if there is no drift due to changes in cell temperature, that is, when the raw vibration period is changed to a measurement state, correction is made with a ratio so that it can be used without changing the calibration factor. Then, a correction formula f Δt (X) for calculating the corrected vibration period T COMP is created. That is, if the sample measurement period is T SAMP ,
T COMP = T SAMP / f Δt (X) (8)
It becomes.

一方、温度下降時のX時間後の振動周期をTとすると、Txは
=a・(logX−1)+b・・・(9)
で表せ、この温度下降時には、セル温度変更後10時間でドリフトの影響がなくなるため、10時間後の振動周期T10を基準とし、上記の(9)式を基準値T10で割ると、振動周期変化の比率の式(8)となり、
Δt(X)=T/T10=A・(logX−1)+B・・・(10)
となる。ただし、A=a/T10、B=b/T10である。
On the other hand, if the vibration period after X time during temperature fall and T X, Tx is T X = a · (logX- 1) + b ··· (9)
When the temperature drops, the influence of drift disappears 10 hours after the cell temperature is changed. Therefore, when the above equation (9) is divided by the reference value T 10 based on the vibration period T 10 after 10 hours, the vibration Expression (8) of the ratio of period change
f Δt (X) = T X / T 10 = A · (logX−1) + B (10)
It becomes. However, A = a / T 10 and B = b / T 10 .

図9はセル温度の変更前、変更後の温度を様々に変えて温度を降下させた場合の、純水の振動周期の時間変化である測定値TをT10で基準化した値を時間軸に対してグラフ化したものであり、温度変更前のセル温度に関わりなく、温度変更前後の温度差が同じであれば、同じグラフとなることが判明した。図9のグラフの時間軸を対数表示すると、図10に示すようになり、この図10の各温度差における傾きAの温度差Δtに対する変化をグラフにすると、図11に示すようになって、傾きAがセル温度変更前後の温度差Δtに比例する。したがって、A=a/T10=β・Δtであり、また、X=10を入力時、基準である10時間後の仮想振動周期T10となるので、b=T10であり、B=b/T10=1となる。そして、製造した密度測定装置により温度変更前後の温度差を変えて純水の振動周期を測定した結果に基づいて算出した傾きβは0.0000007であった。 FIG. 9 shows a value obtained by standardizing the measured value T X , which is a time change of the vibration cycle of pure water, by T 10 when the temperature is lowered by changing the temperature after changing the cell temperature variously. The graph was plotted against the axis, and it was found that the same graph was obtained if the temperature difference before and after the temperature change was the same regardless of the cell temperature before the temperature change. When the time axis of the graph of FIG. 9 is logarithmically displayed, it is as shown in FIG. 10. When the change of the slope A with respect to the temperature difference Δt in each temperature difference of FIG. 10 is graphed, it is as shown in FIG. The slope A is proportional to the temperature difference Δt before and after the cell temperature change. Therefore, A = a / T 10 = β 1 · Δt, and when X = 10 is input, the virtual vibration period T 10 after 10 hours as a reference is obtained, so b = T 10 and B = b / T 10 = 1. The slope β 1 calculated based on the result of measuring the vibration period of pure water by changing the temperature difference before and after the temperature change by the manufactured density measuring device was 0.0000007.

したがって、温度差Δtが−10℃差、温度差Δtが−20℃差、温度差Δtが−30℃差、温度差Δtが−40℃差のときのfΔt(X)は、
−10(X)=T/T10=-0.0000070・(logX−1)+1
−20(X)=T/T10=-0.0000140・(logX−1)+1
−30(X)=T/T10=-0.0000210・(logX−1)+1
−40(X)=T/T10=-0.0000280・(logX−1)+1
となる。
Therefore, f Δt (X) when the temperature difference Δt is −10 ° C., the temperature difference Δt is −20 ° C., the temperature difference Δt is −30 ° C., and the temperature difference Δt is −40 ° C. is
f −10 (X) = T X / T 10 = −0.0000070 · (logX−1) +1
f −20 (X) = T X / T 10 = −0.0000140 · (logX−1) +1
f −30 (X) = T X / T 10 = −0.0000210 · (logX−1) +1
f −40 (X) = T X / T 10 = −0.0000280 · (logX−1) +1
It becomes.

よって、セル温度変更によるドリフトの影響補正式は、温度差Δtが−10℃差の場合、
COMP=TSAMP/f−10(X)=TSAMP/{-0.0000070・(logX−1)+1}
温度差Δtが−20℃差の場合、
COMP=TSAMP/f−20(X)=TSAMP/{-0.0000140・(logX−1)+1}
温度差Δtが−30℃差の場合、
COMP=TSAMP/f−30(X)=TSAMP/{-0.0000210・(logX−1)+1}
温度差Δtが−40℃差の場合、
COMP=TSAMP/f−40(X)=TSAMP/{-0.0000280・(logX−1)+1}
となる。
Therefore, the drift correction equation for cell temperature change is as follows when the temperature difference Δt is −10 ° C. difference:
T COMP = T SAMP / f −10 (X) = T SAMP /{−0.0000070·(logX−1)+1}
When the temperature difference Δt is −20 ° C.,
T COMP = T SAMP / f −20 (X) = T SAMP /{−0.0000140·(logX−1)+1}
When the temperature difference Δt is −30 ° C.,
T COMP = T SAMP / f −30 (X) = T SAMP /{−0.0000210·(logX−1)+1}
When the temperature difference Δt is −40 ° C.,
T COMP = T SAMP / f −40 (X) = T SAMP /{−0.0000280·(logX−1)+1}
It becomes.

一方、温度上昇時のX時間後の振動周期をTxとすると、Txは
Tx=a・logX+b・・・(11)
で表せ、温度上昇時には、セル温度変更後1時間でセル温度変更によるドリフトの影響がなくなるため、1時間後の振動周期Tを基準とし、上記の(11)式を基準値Tで割ると、振動周期変化の比率の式(8)となり、
Δt(X)=T/T=A・logX+B・・・(12)
となる。ただし、A=a/T、B=b/Tである。
On the other hand, assuming that the vibration period after X hours when the temperature rises is Tx, Tx is Tx = a · logX + b (11)
When the temperature rises, the influence of drift due to the cell temperature change disappears in 1 hour after the cell temperature change, so the above equation (11) is divided by the reference value T 1 based on the vibration period T 1 after 1 hour. And the ratio of the vibration period change (8)
f Δt (X) = T X / T 1 = A · log X + B (12)
It becomes. However, A = a / T 1 and B = b / T 1 .

図12はセル温度の変更前、変更後の温度を様々に変えて温度を上昇させた場合の、純水の振動周期の時間変化である測定値TをTで基準化した値を時間軸に対してグラフ化したものであり、温度下降時と同様に、温度変更前のセル温度に関わりなく、温度変更前後の温度差が同じであれば、同じグラフとなることが判明した。図12のグラフの時間軸を対数表示すると、図13に示すようになり、この図13の各温度差における傾きAの温度差Δtに対する変化をグラフにすると、図14に示すようになって、傾きAがセル温度変更前後の温度差Δtに比例する。したがって、A=a/T=β・Δtであり、また、X=1を入力時、基準である1時間後の仮想振動周期Tとなるので、b=Tであり、B=b/T=1となる。そして、製造した密度測定装置により温度変更前後の温度差を変えて純水の振動周期を測定した結果に基づいて算出した傾きβは0.0000005であった。 FIG. 12 shows a value obtained by standardizing the measured value T X , which is a time change of the vibration cycle of pure water, by T 1 when the temperature is raised by changing the temperature after changing the cell temperature variously. It was graphed with respect to the axis, and it was found that the same graph was obtained if the temperature difference before and after the temperature change was the same regardless of the cell temperature before the temperature change, as in the case of the temperature drop. When the time axis of the graph of FIG. 12 is logarithmically displayed, it is as shown in FIG. 13. When the change of the slope A with respect to the temperature difference Δt in each temperature difference of FIG. 13 is graphed, as shown in FIG. The slope A is proportional to the temperature difference Δt before and after the cell temperature change. Therefore, A = a / T 1 = β 2 · Δt, and when X = 1 is input, the virtual vibration period T 1 after 1 hour as a reference is obtained, so b = T 1 and B = b / T 1 = 1. And the inclination (beta) 2 computed based on the result of having measured the vibration period of the pure water by changing the temperature difference before and after temperature change with the manufactured density measuring apparatus was 0.0000005.

したがって、温度差Δtが+10℃差、温度差Δtが+20℃差、温度差Δtが+30℃差、温度差Δtが+40℃差のときのfΔt(X)は、
+10(X)=T/T=+0.0000050・logX+1
+20(X)=T/T=+0.0000100・logX+1
+30(X)=T/T=+0.0000150・logX+1
+40(X)=T/T=+0.0000200・logX+1
となる。
Therefore, f Δt (X) when the temperature difference Δt is + 10 ° C., the temperature difference Δt is + 20 ° C., the temperature difference Δt is + 30 ° C., and the temperature difference Δt is + 40 ° C.
f +10 (X) = T X / T 1 = + 0.0000050 · logX + 1
f +20 (X) = T X / T 1 = + 0.0000100 · logX + 1
f +30 (X) = T X / T 1 = + 0.0000150 · logX + 1
f +40 (X) = T X / T 1 = + 0.0000200 · logX + 1
It becomes.

よって、セル温度変更によるドリフトの影響補正式は、温度差Δtが+10℃差の場合、
COMP=TSAMP/f+10(X)=TSAMP/{+0.0000050・logX+1}
温度差Δtが+20℃差の場合、
COMP=TSAMP/f+20(X)=TSAMP/{+0.0000100・logX+1}
温度差Δtが+30℃差の場合、
COMP=TSAMP/f+30(X)=TSAMP/{+0.0000150・logX+1}
温度差Δtが+40℃差の場合、
COMP=TSAMP/f+40(X)=TSAMP/{+0.0000200・logX+1}
となる。
Therefore, the drift correction equation for the cell temperature change is calculated when the temperature difference Δt is + 10 ° C.
T COMP = T SAMP / f +10 (X) = T SAMP /{+0.0000050·logX+1}
When the temperature difference Δt is + 20 ° C difference,
T COMP = T SAMP / f +20 (X) = T SAMP /{+0.0000100·logX+1}
When the temperature difference Δt is + 30 ° C difference,
T COMP = T SAMP / f +30 (X) = T SAMP /{+0.0000150·logX+1}
When the temperature difference Δt is + 40 ° C,
T COMP = T SAMP / f +40 (X) = T SAMP /{+0.0000200·logX+1}
It becomes.

次に、ドリフト対策ルーチンを実行する場合の手順について、図15のフローチャートにより説明する。
ドリフト対策ルーチンが起動されると、制御装置17の制御部21は、まず、温度変更時のドリフト影響対策ルーチンが起動されたか否かを判定し(ステップ101)、温度変更時のドリフト影響対策ルーチンが起動されたと判定した場合、セル設定温度の変更前温度(t1)、変更後温度(t2)を取得し、記憶部25に記憶する(ステップ102)。
Next, the procedure for executing the drift countermeasure routine will be described with reference to the flowchart of FIG.
When the drift countermeasure routine is activated, the control unit 21 of the control device 17 first determines whether or not the drift influence countermeasure routine at the time of temperature change has been activated (step 101), and the drift influence countermeasure routine at the time of temperature change. If it is determined that the cell setting temperature has been activated, the cell setting temperature before the change (t1) and the temperature after the change (t2) are acquired and stored in the storage unit 25 (step 102).

一方、ステップ101で温度変更時のドリフト影響対策ルーチンが起動されたのではない、すなわち、電源ON時のドリフト影響対策ルーチンが起動されたと判定した場合、制御部21はセルの電源ON直後の温度(t1)、セル設定温度(t2)を取得し、記憶部25に記憶する(ステップ103)。
温度を取得した後、制御部21は、温度差Δt=t2−t1を算出し、温度差Δtの正負を判定することにより、温度上昇か、温度下降かを判定する(ステップ104)。
On the other hand, if it is determined in step 101 that the drift effect countermeasure routine at the time of temperature change is not started, that is, if it is determined that the drift effect countermeasure routine at the time of power ON is started, the control unit 21 detects the temperature immediately after the cell power is turned on. (T1) The cell set temperature (t2) is acquired and stored in the storage unit 25 (step 103).
After acquiring the temperature, the control unit 21 calculates temperature difference Δt = t2−t1 and determines whether the temperature difference Δt is positive or negative by determining whether the temperature difference Δt is positive or negative (step 104).

ステップ104で温度下降と判定した場合、制御部21は、温度差Δtを用いて温度下降時補正式の傾きA
=β・Δt=0.0000007・Δt
により算出し、記憶部25に記憶する(ステップ105)。
次に、制御部21はユーザにセル温度変更後の空気・純水校正をユーザに促す画面を表示部24に表示する(ステップ106)。
If it is determined in step 104 that the temperature has dropped, the control unit 21 uses the temperature difference Δt to change the gradient A 1 of the temperature drop correction equation to A 1 = β 1 · Δt = 0.0000007 · Δt
And is stored in the storage unit 25 (step 105).
Next, the control unit 21 displays a screen for prompting the user to perform air / pure water calibration after changing the cell temperature on the display unit 24 (step 106).

そして、ユーザが空気・純水校正を実行した場合、空気測定時の振動周期TX・AIR、その時の温度変更後の経過時間tAIR、純水測定時の振動周期TX・WATER、その時の温度変更後の経過時間tWATERを記憶部25に記憶し、温度変更後10時間時点での空気、純水の振動周期T10・AIR、T10・WATERを下記式により算出し、この値を校正ファクタとして記憶部25に記憶する。
10・AIR=TX・AIR/{A・(logtAIR−1)+1}
10・WATER=TX・WATER/{A・(logtWATER−1)+1}
When the user performs air / pure water calibration, the vibration period T X · AIR at the time of air measurement, the elapsed time t AIR after the temperature change at that time, the vibration period T X · WATER at the time of pure water measurement, The elapsed time t WATER after the temperature change is stored in the storage unit 25, and the vibration periods T 10 · AIR and T 10 · WATER at 10 hours after the temperature change are calculated by the following formula, and this value is Stored in the storage unit 25 as a calibration factor.
T 10 · AIR = T X · AIR / {A 1 · (logt AIR −1) +1}
T 10 · WATER = T X · WATER / {A 1 · (logt WATER -1) + 1}

この後、制御部21は、被測定流体の測定が実行されたか否かを判定し(ステップ107)、被測定流体の測定が実行された場合、被測定流体の振動周期TX・SAMP、被測定流体測定時の温度変更後の経過時間tSAMPを記憶部25に記憶する(ステップ108)。 Thereafter, the control unit 21 determines whether or not the measurement of the fluid to be measured has been executed (step 107). When the measurement of the fluid to be measured is executed, the vibration period T X · SAMP of the fluid to be measured, The elapsed time t SAMP after the temperature change during measurement fluid measurement is stored in the storage unit 25 (step 108).

次に、制御部21は、経過時間tSAMPが10時間以内か否かを判定することにより、被測定流体の測定時が測定セルの温度変更後10時間以内か否かを判定する(ステップ109)。被測定流体の測定時が測定セルの温度変更後10時間以内であると判定した場合、制御部21は、測定した振動周期TX・SAMPを温度変更10時間後の値T10・SAMPに下記式により補正する(ステップ110)。
10・SAMP=TX・SAMP/{A・(logtSAMP−1)+1}
Next, the control unit 21 determines whether or not the measurement time of the fluid to be measured is within 10 hours after the temperature change of the measurement cell by determining whether or not the elapsed time t SAMP is within 10 hours (step 109). ). When it is determined that the measurement time of the fluid to be measured is within 10 hours after the temperature change of the measurement cell, the control unit 21 sets the measured vibration period TX / SAMP to the value T10 / SAMP 10 hours after the temperature change. Correction is performed using an equation (step 110).
T 10 · SAMP = T X · SAMP / {A 1 · (logt SAMP −1) +1}

また、ステップ109で経過時間tSAMPが10時間を越えていると判定した場合、制御部21は、測定した振動周期TX・SAMPを温度変更10時間後の値T10・SAMPに補正する(ステップ111)。ただし、このときtSAMP=10として処理を行う。すなわち、
10・SAMP=TX・SAMP/{A・(log10−1)+1}=TX・SAMP
となり、補正しない振動周期となる。
When it is determined in step 109 that the elapsed time t SAMP exceeds 10 hours, the control unit 21 corrects the measured vibration period T X · SAMP to a value T 10 · SAMP 10 hours after the temperature change ( Step 111). However, at this time, processing is performed with t SAMP = 10. That is,
T 10 · SAMP = T X · SAMP / {A 1 · (log10-1) +1} = T X · SAMP
Thus, the vibration cycle is not corrected.

振動周期の補正後、制御部21は、上記の(7)式に基づいて、
ρ=ρAIR+(ρAIR−ρWATER)*(T10・SAMP ―T10・AIR )/(T10・AIR −T10・WATER
により被測定流体の密度ρを算出し、表示部24に表示する(ステップ112)。なお、測定温度での純水と空気の密度ρWATER及びρAIRは既知であるので、純水と空気を測定した振動周期の補正値T10・WATER、T10・AIR及び被測定流体を測定した振動周期の補正値T10・SAMPから被測定流体の密度ρを算出することができる。
After correcting the vibration period, the control unit 21 is based on the above equation (7).
ρ = ρ AIR + (ρ AIR −ρ WATER ) * (T 10 · SAMP 2 −T 10 · AIR 2 ) / (T 10 · AIR 2 −T 10 · WATER 2 )
To calculate the density ρ of the fluid to be measured and display it on the display unit 24 (step 112). Since the density ρ WATER and ρ AIR of the pure water and air at the measurement temperature are known, the correction values T 10 · WATER , T 10 · AIR and the fluid under measurement are measured for the pure water and air. The density ρ of the fluid to be measured can be calculated from the corrected oscillation period T 10 · SAMP .

一方、ステップ104で温度上昇と判定した場合、制御部21は、温度差Δtを用いて温度上昇時補正式の傾きA
=β・Δt=0.0000005・Δt
により算出し、記憶部25に記憶する(ステップ113)。
次に、制御部21は、上記と同様に、ユーザにセル温度変更後の空気・純水校正をユーザに促す画面を表示部24に表示する(ステップ114)。
On the other hand, when it is determined in step 104 that the temperature has risen, the control unit 21 uses the temperature difference Δt to change the gradient A 2 of the temperature rise correction equation to A 2 = β 2 · Δt = 0.00000000 · Δt
And is stored in the storage unit 25 (step 113).
Next, similarly to the above, the control unit 21 displays a screen for prompting the user to perform air / pure water calibration after changing the cell temperature on the display unit 24 (step 114).

そして、ユーザが空気・純水校正を実行した場合、空気測定時の振動周期TX・AIR、その時の温度変更後の経過時間tAIR、純水測定時の振動周期TX・WATER、その時の温度変更後の経過時間tWATERを記憶部25に記憶し、温度変更後1時間時点での空気、純水の振動周期T1・AIR、T1・WATERを下記式により算出し、この値を校正ファクタとして記憶部25に記憶する。
1・AIR=TX・AIR/{A・log(tAIR)+1}
1・WATER=TX・WATER/{A・log(tWATER)+1}
When the user performs air / pure water calibration, the vibration period T X · AIR at the time of air measurement, the elapsed time t AIR after the temperature change at that time, the vibration period T X · WATER at the time of pure water measurement, The elapsed time t WATER after the temperature change is stored in the storage unit 25, and the vibration periods T 1 · AIR and T 1 · WATER at 1 hour after the temperature change are calculated by the following formula, and this value is Stored in the storage unit 25 as a calibration factor.
T 1 · AIR = T X · AIR / {A 2 · log (t AIR ) +1}
T 1 · WATER = T X · WATER / {A 2 · log (t WATER ) +1}

この後、制御部21は、被測定流体の測定が実行されたか否かを判定し(ステップ115)、被測定流体の測定が実行された場合、被測定流体の振動周期TX・SAMP、被測定流体測定時の温度変更後の経過時間tSAMPを記憶部25に記憶する(ステップ116)。 Thereafter, the control unit 21 determines whether or not measurement of the fluid to be measured has been executed (step 115). When measurement of the fluid to be measured is executed, the vibration period T X · SAMP of the fluid to be measured, The elapsed time t SAMP after the temperature change during measurement fluid measurement is stored in the storage unit 25 (step 116).

次に、制御部21は、経過時間tSAMPが1時間以内か否かを判定することにより、被測定流体の測定時が測定セルの温度変更後1時間以内か否かを判定する(ステップ117)。被測定流体の測定時が測定セルの温度変更後1時間以内であると判定した場合、制御部21は、測定した振動周期TX・SAMPを温度変更1時間後の値T1・SAMPに下記式により補正する(ステップ118)。
1・SAMP=TX・SAMP/{A・log(tSAMP)+1}
Next, the control unit 21 determines whether or not the measured time of the fluid to be measured is within 1 hour after the temperature change of the measurement cell by determining whether or not the elapsed time t SAMP is within 1 hour (step 117). ). When it is determined that the measurement time of the fluid to be measured is within one hour after the temperature change of the measurement cell, the control unit 21 sets the measured vibration period T X · SAMP to the value T 1 · SAMP one hour after the temperature change. Correction is performed by the equation (step 118).
T 1 · SAMP = T X · SAMP / {A 2 · log (t SAMP ) +1}

また、ステップ117で経過時間tSAMPが1時間を越えていると判定した場合、制御部21は、測定した振動周期TX・SAMPを温度変更1時間後の値T1・SAMPに補正する(ステップ119)。ただし、このときtSAMP=1として処理を行う。すなわち、
1・SAMP=TX・SAMP/{A・(log1)+1}=TX・SAMP
となり、補正しない振動周期となる。
When it is determined in step 117 that the elapsed time t SAMP exceeds 1 hour, the control unit 21 corrects the measured vibration cycle T X · SAMP to a value T 1 · SAMP after 1 hour of temperature change ( Step 119). However, at this time, processing is performed with t SAMP = 1. That is,
T 1 · SAMP = T X · SAMP / {A 2 · (log 1) +1} = T X · SAMP
Thus, the vibration cycle is not corrected.

振動周期の補正後、制御部21は、上記と同様に、
ρ=ρAIR+(ρAIR−ρWATER)*(T1・SAMP ―T1・AIR )/(T1・AIR −T1・WATER
により被測定流体の密度を算出し、表示部24に表示する(ステップ112)。なお、測定温度での純水と空気の密度ρWATER及びρAIRは既知であるので、純水と空気を測定した振動周期の補正値T1・WATER、T1・AIR及び被測定流体を測定した振動周期の補正値T1・SAMPから被測定流体の密度ρを算出することができる。
After correcting the vibration cycle, the control unit 21 performs the same as described above.
ρ = ρ AIR + (ρ AIR −ρ WATER ) * (T 1 · SAMP 2 −T 1 · AIR 2 ) / (T 1 · AIR 2 −T 1 · WATER 2 )
Thus, the density of the fluid to be measured is calculated and displayed on the display unit 24 (step 112). Since the density ρ WATER and ρ AIR of the pure water and air at the measurement temperature are known, the vibration period correction values T 1 · WATER and T 1 · AIR and the fluid to be measured are measured. The density ρ of the fluid to be measured can be calculated from the corrected vibration period T 1 · SAMP .

以上のように、測定セル温度下降時には、TCOMP=TSAMP/{β・Δt・(logX−1)+1}により、また、測定セル温度上昇時には、TCOMP=TSAMP/{β・Δt・logX+1}により振動周期が補正されるので、リファレンスセルを用いることなく、セル温度変更後のドリフトを補償でき、セル温度変更後に必要な待ち時間を短縮することができる。なお、図3〜図8において、compは上記の補正を行った振動周期を用いて算出した純水の密度の測定値の時間変化とドリフトの影響がなくなったときの値との誤差であり、セル温度変更後のドリフトが補償されていることがわかる。 As described above, T COMP = T SAMP / {β 1 · Δt · (logX−1) +1} when the measurement cell temperature is lowered, and T COMP = T SAMP / {β 2 · Since the vibration period is corrected by Δt · logX + 1}, the drift after the cell temperature change can be compensated without using the reference cell, and the waiting time required after the cell temperature change can be shortened. In FIGS. 3 to 8, comp is an error between the time change of the measured value of the density of pure water calculated using the vibration period subjected to the above correction and the value when the influence of drift disappears, It can be seen that the drift after the cell temperature change is compensated.

なお、上記の実施例で使用した傾きβ、βの値、0.0000007、0.0000005は使用した装置での測定結果であり、密度測定装置の構造、材料が変更になれば、再度算出し直す必要がある。
また、上記の実施例では、f(X、Δt)として、測定セル温度下降時には、β・Δt・(logX−1)+1を採用し、また、測定セル温度上昇時には、β・Δt・logX+1を採用したが、この関数f(X、Δt)は測定セルの温度変化時のドリフトの影響がなくなる時間に応じて適宜変更することが可能であり、例えば、β・Δt・(logX−γ)+1(γは一定値)とすることができ、さらに、logXの代わりに多項式で表現することも可能である。
Note that the values of the slopes β 1 and β 2 , 0.0000007, and 0.0000005 used in the above examples are the measurement results of the used apparatus. If the structure and material of the density measuring apparatus are changed, it is necessary to recalculate them. There is.
In the above-described embodiment, β 1 · Δt · (logX−1) +1 is adopted as f (X, Δt) when the measurement cell temperature is lowered, and β 2 · Δt · is adopted when the measurement cell temperature is raised. Although logX + 1 is adopted, this function f (X, Δt) can be appropriately changed according to the time when the influence of drift at the time of temperature change of the measurement cell is eliminated. For example, β 1 · Δt · (logX− [gamma]) + 1 ([gamma] is a constant value) and can be expressed by a polynomial instead of logX.

さらに、上記の実施例では、被測定流体の密度算出時に空気と純水による校正を実施したが、当該測定温度で使用できる校正ファクタが装置内に記憶されていれば、空気と純水による校正を実施することなく密度を算出することも可能である。   Furthermore, in the above embodiment, calibration with air and pure water was performed at the time of calculating the density of the fluid to be measured. It is also possible to calculate the density without performing the above.

1 測定セル
2 永久磁石
3a、3b ホルダ
4 温度センサ
5 外筒
6 突起
7 ヘリウム注入口
11 断熱材
12 銅ブロック
13 測定ヘッド
14 サーミスタ
15 サンプリングチューブ
16 排液チューブ
17 制御装置
21 制御部
22 駆動部
23 検出部
24 表示部
25 記憶部
DESCRIPTION OF SYMBOLS 1 Measurement cell 2 Permanent magnet 3a, 3b Holder 4 Temperature sensor 5 Outer cylinder 6 Protrusion 7 Helium inlet 11 Heat insulating material 12 Copper block 13 Measuring head 14 Thermistor 15 Sampling tube 16 Drainage tube 17 Controller 21 Control part 22 Drive part 23 Detection unit 24 Display unit 25 Storage unit

Claims (1)

試料が満たされた測定セルの振動周期に基づいて試料の密度を算出する制御装置を備えた振動式密度計であって、
上記制御装置が、上記測定セル温度の変更前、変更後の温度、温度変更からの経過時間に基づき、T SAMP を試料を測定した振動周期、Xを温度変更後の経過時間、Δtを温度変更前後の温度差としたとき、補正関数f(X、Δt)を用いて、補正した振動周期T COMP をT COMP =T SAMP /f(X、Δt)により求めることを特徴とする振動式密度計。
A vibratory densimeter equipped with a control device that calculates the density of a sample based on the vibration period of a measurement cell filled with the sample,
The control device, before the change of the measurement cell temperature, the temperature after the change,-out based on the elapsed time from the temperature change, vibration cycle of T SAMP measured sample, the elapsed time after the temperature change X, a Δt When the temperature difference before and after the temperature change is used, a vibration equation characterized by obtaining a corrected vibration period T COMP by T COMP = T SAMP / f (X, Δt) using a correction function f (X, Δt). Density meter.
JP2009172899A 2009-07-24 2009-07-24 Vibrating density meter Active JP5295028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009172899A JP5295028B2 (en) 2009-07-24 2009-07-24 Vibrating density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009172899A JP5295028B2 (en) 2009-07-24 2009-07-24 Vibrating density meter

Publications (2)

Publication Number Publication Date
JP2011027521A JP2011027521A (en) 2011-02-10
JP5295028B2 true JP5295028B2 (en) 2013-09-18

Family

ID=43636443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172899A Active JP5295028B2 (en) 2009-07-24 2009-07-24 Vibrating density meter

Country Status (1)

Country Link
JP (1) JP5295028B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6966787B2 (en) * 2016-12-21 2021-11-17 京都電子工業株式会社 Alcohol concentration measurement method
AT520632B1 (en) * 2018-01-29 2019-06-15 Anton Paar Gmbh Method for measuring the density of a medium flowing through a pipe or located in a pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104249B2 (en) * 1986-12-29 1995-11-13 京都電子工業株式会社 Predictive calculation method of convergent vibration period in vibration type densimeter

Also Published As

Publication number Publication date
JP2011027521A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
US8220313B2 (en) Apparatus for ascertaining and/or monitoring a process variable of a meduim
US9970828B2 (en) Device for measuring the temperature of a medium through a wall
JP5473455B2 (en) Vibrating density meter
JP5355278B2 (en) Calibration parameter determination method and density calculation method for vibration type density meter
JP5389502B2 (en) Gas property value measurement system, gas property value measurement method, calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
US5477726A (en) Apparatus for determining the density of liquids and gases from a period of an oscillator filled with a test sample
JP5420456B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
JP5295028B2 (en) Vibrating density meter
EP1109012A2 (en) Measurement method and system for a humidity of gas concentration sensor
JP5335722B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
JP5220890B2 (en) Accurate measurement method of sample density
JPH11153575A (en) Carbon deoxide detector
JP2011203050A (en) Calorific value calculation formula creation system, method of creating calorific value calculation formula, calorific value measurement system, and method of measuring calorific value
JP2006214842A (en) Liquid physical property value measuring instrument and liquid physical property value measuring method
JP2012202772A (en) Density measuring system and density measuring method
JP5690003B2 (en) Specific heat capacity measurement system and flow rate measurement system
JP3756919B2 (en) How to measure dead volume fluctuation
EP3348969B1 (en) Measurement of a fluid parameter and sensor device therefore
JP5361602B2 (en) Vibration density measuring method and vibration density meter
JP2015045602A (en) Thermometer and temperature predication method of thermometer
KR20090096065A (en) Measurement method for very low frost point using quartz crystal microbalance dew-point sensor
JP4418343B2 (en) A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus.
KR102011569B1 (en) Device for measuring viscosity of minute volume liquids and method thereof
JP7473198B2 (en) Vibration type density meter and method for determining whether air bubbles are present in the vibration type density meter
JPH0658862A (en) Temperature compensation for oscillating density meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5295028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250