JP4418343B2 - A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus. - Google Patents

A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus. Download PDF

Info

Publication number
JP4418343B2
JP4418343B2 JP2004304874A JP2004304874A JP4418343B2 JP 4418343 B2 JP4418343 B2 JP 4418343B2 JP 2004304874 A JP2004304874 A JP 2004304874A JP 2004304874 A JP2004304874 A JP 2004304874A JP 4418343 B2 JP4418343 B2 JP 4418343B2
Authority
JP
Japan
Prior art keywords
specific heat
temperature
time constant
density
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004304874A
Other languages
Japanese (ja)
Other versions
JP2006118894A (en
Inventor
賢治 川口
奈美 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2004304874A priority Critical patent/JP4418343B2/en
Publication of JP2006118894A publication Critical patent/JP2006118894A/en
Application granted granted Critical
Publication of JP4418343B2 publication Critical patent/JP4418343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、所望温度における比熱を求めるための校正直線の取得方法、及び比熱測定装置に関し、特に、所望温度において測定された試料の密度、及び試料の所望温度に至るまでの温度の時間的変化より得られる熱時定数に基づいて、前記所望温度における試料の比熱を求めるための校正直線の取得方法、及びこの方法を採用した比熱測定装置に関する。   The present invention relates to a method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus, and more particularly, the density of a sample measured at the desired temperature and the temporal change in temperature until the desired temperature of the sample is reached. The present invention relates to a method for obtaining a calibration line for obtaining the specific heat of a sample at the desired temperature based on a thermal time constant obtained from the thermal time constant, and a specific heat measuring apparatus employing this method.

物質の比熱を測定することは、当該物質の熱特性を把握する上で非常に有益である。   Measuring the specific heat of a substance is very useful for grasping the thermal characteristics of the substance.

公知のように、比熱は単位質量の物質の温度を単位温度だけ上昇させるのに要する熱量として定義される。しかし、物質に付与された熱量を正確に測定するには厳密な温度制御が必要であるため、測定に多大な時間を要する上、比熱を測定するための装置も非常に大掛かりで高価なものになっている。   As is known, specific heat is defined as the amount of heat required to raise the temperature of a unit mass of material by a unit temperature. However, since precise temperature control is required to accurately measure the amount of heat applied to a substance, it takes a lot of time to measure and the apparatus for measuring specific heat is very large and expensive. It has become.

そこで、本願出願人は、先に出願している特願2004−151978号において、極めて簡便な構成で、かつ高精度に比熱の測定を行うことができる比熱測定方法、及び比熱測定装置を提案した。以下、その測定原理について図6、図7に基づいて簡単に説明する。   Accordingly, the applicant of the present application has proposed a specific heat measurement method and a specific heat measurement apparatus capable of measuring specific heat with a very simple configuration and high accuracy in Japanese Patent Application No. 2004-151978 filed earlier. . The measurement principle will be briefly described below with reference to FIGS.

まず、図6に示すように、第1の温度t1の所定体積の試料Sを、温度t1と異なる温度t0に制御された測定室10に配置された測定セル1に導入し、このときの温度変化を温度測定手段2で測定する。 First, as shown in FIG. 6, by introducing the sample S of a first predetermined volume of temperature t 1, the measuring cell 1 arranged in the measuring chamber 10 which has been controlled to a temperature t 0 which is different from the temperature t 1, the The temperature change is measured by the temperature measuring means 2.

ここで、測定室10の温度が温度制御手段4によって上記温度t0に維持されることを条件とすると、試料は温度t0を終点温度として、所定の時定数に依存して温度変化(上昇あるいは下降)を開始する。このときの時定数(以下、熱時定数という。)は、上記温度測定手段2より得られる温度変化量と経過時間とに基づいて演算手段3によって求めることができ、その値は試料の材質に依存する値となる。 Here, assuming that the temperature of the measurement chamber 10 is maintained at the temperature t 0 by the temperature control means 4, the temperature of the sample changes (increases) depending on a predetermined time constant with the temperature t 0 as the end point temperature. (Or descend). The time constant at this time (hereinafter referred to as the thermal time constant) can be obtained by the computing means 3 based on the temperature change amount and the elapsed time obtained from the temperature measuring means 2, and the value depends on the material of the sample. It depends on the value.

また、上記熱時定数は、密度及び比熱と密接に関連しており、密度と比熱が既知の物質(気体と液体)について、横軸を密度×比熱(密度と比熱の積)、縦軸を温度上昇(下降)時の熱時定数としてグラフ化すると、図7に示すように直線性を示す。   The thermal time constant is closely related to density and specific heat. For substances (gas and liquid) whose density and specific heat are known, the horizontal axis is density x specific heat (product of density and specific heat), and the vertical axis is When graphed as a thermal time constant at the time of temperature rise (fall), linearity is shown as shown in FIG.

つまり、図7に示す直線(以下、校正直線という。)が既知であれば、試料の熱時定数と密度の値を取得することで比熱を算出することができる。なお、前記試料の密度は、例えば、本願出願人が後掲の特許文献1に提案している振動密度計を使用することにより容易に取得することが可能である。また、前記試料の熱時定数は、当該振動式密度計において、例えば、温度t1の試料を温度t0の環境下に導入した際の振動周期の変化に基づいて求めることができる。
特公平07−104249号公報
That is, if the straight line shown in FIG. 7 (hereinafter referred to as a calibration straight line) is known, the specific heat can be calculated by obtaining the thermal time constant and density values of the sample. The density of the sample can be easily obtained by using, for example, a vibration density meter proposed by the applicant of the present invention in Patent Document 1 described later. Further, the thermal time constant of the sample can be determined based on, for example, a change in the vibration period when the sample at the temperature t 1 is introduced into the environment at the temperature t 0 in the vibration densitometer.
Japanese Patent Publication No. 07-104249

上述のように、特定の温度において、密度×比熱と熱時定数は、物質の種類に関わらず、同一の校正直線上に位置する。逆にいえば、上記校正直線は、比熱が既知で、かつ密度×比熱の値が異なる少なくとも2つの試料(以下、基準試料という。)の密度及び熱時定数を測定することによって求めることができる。   As described above, at a specific temperature, density × specific heat and thermal time constant are located on the same calibration line regardless of the type of substance. Conversely, the calibration straight line can be obtained by measuring the density and thermal time constant of at least two samples (hereinafter referred to as reference samples) with known specific heat and different values of density × specific heat. .

また、密度と比熱が温度に依存して変化するため、上記校正直線は温度依存性をもつ。したがって、上述の方法で比熱を求めるには、測定を行う温度に応じた校正直線を予め求めておく必要がある。すなわち、所望の温度における試料の比熱を測定するためには、当該所望温度における比熱が既知である少なくとも2つの基準試料が必要となる。   Further, since the density and specific heat change depending on the temperature, the calibration straight line has temperature dependency. Therefore, in order to obtain the specific heat by the above-described method, it is necessary to obtain in advance a calibration straight line corresponding to the temperature at which the measurement is performed. That is, in order to measure the specific heat of a sample at a desired temperature, at least two reference samples whose specific heat at the desired temperature is known are required.

しかしながら、上述のように、比熱が既知である物質(特に、液体や気体)は限られており、所望温度における比熱が既知である複数の基準試料を準備することが困難である場合、当該温度における上述の方法による比熱測定はできないことになる。   However, as described above, the substances (especially liquids and gases) whose specific heat is known are limited, and it is difficult to prepare a plurality of reference samples whose specific heat is known at a desired temperature. The specific heat cannot be measured by the above-described method.

本発明は上記従来の事情に鑑みて提案されたのもであって、比熱測定の際に必要となる基準試料の数を低減することができ、かつ、任意の温度での正確な比熱を求めることが可能な比熱測定の校正直線の取得方法を提供することを目的とするものである。   The present invention has been proposed in view of the above-described conventional circumstances, and can reduce the number of reference samples required for specific heat measurement and obtain accurate specific heat at an arbitrary temperature. An object of the present invention is to provide a method for obtaining a calibration straight line for possible specific heat measurement.

本発明は、上記目的を達成するために以下の手段を採用している。すなわち、本発明は、所望温度において測定された試料の密度、及び試料の所望温度に至るまでの温度の時間的変化より得られる熱時定数に基づいて、前記所望温度における試料の比熱を求める際に使用される校正直線の取得方法であって、まず、前記所望温度と異なる第1の温度における比熱が既知である第1の試料の熱時定数と密度、並びに、第1の温度における比熱が既知である第2の試料の熱時定数と密度を求める。そして、これらの値から、当該第1の温度における密度×比熱(密度と比熱との積)と熱時定数との関係を示す第1の校正直線を求め、当該第1の校正直線において、熱時定数をゼロとしたときの密度×比熱の値を示す第1の切片値を演算する。   The present invention employs the following means in order to achieve the above object. That is, according to the present invention, the specific heat of the sample at the desired temperature is obtained based on the density of the sample measured at the desired temperature and the thermal time constant obtained from the temporal change of the temperature up to the desired temperature of the sample. First, the thermal time constant and density of the first sample whose specific heat at the first temperature different from the desired temperature is known, and the specific heat at the first temperature are obtained. The known thermal time constant and density of the second sample are determined. Then, from these values, a first calibration line indicating the relationship between the density at the first temperature × specific heat (the product of density and specific heat) and the thermal time constant is obtained, and in the first calibration line, A first intercept value indicating a value of density × specific heat when the time constant is zero is calculated.

次に、所望温度における比熱が既知である第3の試料の熱時定数と密度と、前記第1の切片値とに基づいて、前記所望温度における密度×比熱と熱時定数との関係を示す所望温度の校正直線を取得している。   Next, based on the thermal time constant and density of the third sample whose specific heat at the desired temperature is known, and the first intercept value, the relationship between the density at the desired temperature × specific heat and the thermal time constant is shown. A calibration straight line at the desired temperature is acquired.

上記手順において、上記第1の切片値に代えて、当該第1の切片値に所定の温度補償を行うことにより求めた前記所望温度に対応する当該第1の切片値の補正値を用いて、前記所望温度の校正直線を求めてもよい。   In the above procedure, instead of the first intercept value, using the correction value of the first intercept value corresponding to the desired temperature obtained by performing predetermined temperature compensation on the first intercept value, A calibration straight line at the desired temperature may be obtained.

このようにすれば、試料が充填される測定セルの熱容量の温度依存性(測定セルの材質や構造に起因する)の影響を除去した状態で試料の比熱測定を行うことができる。   In this way, the specific heat of the sample can be measured in a state where the influence of the temperature dependency of the heat capacity of the measurement cell filled with the sample (due to the material and structure of the measurement cell) is removed.

なお、前記所定の温度補償は、例えば、試料の熱時定数を取得する際に内部に前記試料が充填される測定セルの材質の温度依存性に基づいて行えばよい。また、前記所定の温度補償は、上記第1の切片値と、以下で言及する第2の切片値とに基づいて行うこともできる。なお、第2の切片値は、第1の温度とは異なる第2の温度における比熱が既知である第4の試料の熱時定数と密度、並びに、前記第2の温度における比熱が既知である第5の試料の熱時定数と密度に基づいて求められる密度×比熱と熱時定数との関係を示す第2の校正直線において、熱時定数をゼロとしたときの密度×比熱の値である。   The predetermined temperature compensation may be performed based on, for example, the temperature dependence of the material of the measurement cell filled with the sample when acquiring the thermal time constant of the sample. The predetermined temperature compensation can also be performed based on the first intercept value and a second intercept value mentioned below. As for the second intercept value, the thermal time constant and density of the fourth sample whose specific heat at a second temperature different from the first temperature is known, and the specific heat at the second temperature are known. Density x specific heat value when the thermal time constant is zero in the second calibration line showing the relationship between density x specific heat and thermal time constant determined based on the thermal time constant and density of the fifth sample. .

以上のように、予め当該測定セル(測定系)に対する上記第1の校正直線を取得しておくことで、所望温度における比熱が既知の1つの基準試料が用意できれば、所望温度での校正直線を取得することができ、比熱測定を行うことが可能となる。   As described above, by acquiring the first calibration line for the measurement cell (measurement system) in advance, if one reference sample with a known specific heat at the desired temperature can be prepared, the calibration line at the desired temperature can be obtained. The specific heat can be measured.

また、他の観点では、本発明は、上述の校正直線の取得方法を採用する比熱測定装置を提供することができる。   In another aspect, the present invention can provide a specific heat measurement apparatus that employs the above-described calibration straight line acquisition method.

すなわち、本発明に係る比熱測定装置は、試料が充填される測定セルと、前記測定セルが内部に配置されるとともに、内部を所定の温度に制御可能な測定室と、前記試料の温度の時間的変化を測定する温度測定手段と、前記試料の所望温度に至るまでの温度の時間的変化に基づいて、前記試料の熱時定数を算出する熱時定数演算手段とを備える。   That is, the specific heat measurement apparatus according to the present invention includes a measurement cell filled with a sample, a measurement chamber in which the measurement cell is disposed inside, the inside of which can be controlled to a predetermined temperature, and a time of the temperature of the sample. Temperature measuring means for measuring a change in temperature, and a thermal time constant calculating means for calculating a thermal time constant of the sample based on a temporal change in temperature until the sample reaches a desired temperature.

また、第1の温度において比熱がそれぞれ既知である第1の試料及び第2の試料に対して前記熱時定数演算手段が求めた前記第1の温度における熱時定数、並びに、前記各試料の前記第1の温度における密度及び比熱が記憶される第1の記憶手段と、第1の温度とは異なる所望の温度において比熱が既知である第3の試料に対して前記熱時定数演算手段が求めた前記所望温度における熱時定数、並びに、前記第3の試料の前記所望温度における密度及び比熱が記憶される第2の記憶手段とを備える。   In addition, the thermal time constant at the first temperature obtained by the thermal time constant calculating means for the first sample and the second sample whose specific heat is known at the first temperature, respectively, The thermal time constant calculating means for the first storage means for storing the density and specific heat at the first temperature and the third sample whose specific heat is known at a desired temperature different from the first temperature. And a second storage means for storing the obtained thermal time constant at the desired temperature and the density and specific heat of the third sample at the desired temperature.

さらに、前記第1の記憶手段に記憶された情報により定まる、前記第1の温度における密度×比熱(密度と比熱との積)と熱時定数との関係を示す第1の校正直線において熱時定数をゼロとしたときの密度×比熱の値を示す第1の切片値を算出するとともに、当該第1の切片値と前記第2の記憶手段に記憶された情報とに基づいて、前記所望温度での密度×比熱と熱時定数との関係を示す所望温度の校正直線を算出する校正直線演算手段を備える。   Further, in the first calibration straight line showing the relationship between the density at the first temperature × specific heat (product of density and specific heat) and the thermal time constant, which is determined by the information stored in the first storage means, While calculating the 1st intercept value which shows the value of density x specific heat when making a constant zero, based on the 1st intercept value and the information memorized by the 2nd storage means, the desired temperature A calibration straight line calculating means for calculating a calibration straight line at a desired temperature indicating the relationship between the density x specific heat and the thermal time constant is provided.

そして、前記所望温度の校正直線に基づいて、比熱演算手段が、前記所望温度における試料の比熱を算出する。   Then, based on the calibration straight line of the desired temperature, the specific heat calculation means calculates the specific heat of the sample at the desired temperature.

なお、前記校正直線演算手段が、前記第1の切片値に所定の温度補償を行うことで前記所望温度に対応する前記第1の切片値の補正値を求める温度補償手段を備え、前記第1の切片値に代えて、当該補正値に基づいて前記所望温度の校正直線を求める構成であってもよい。   The calibration straight line calculating means includes temperature compensating means for obtaining a correction value of the first intercept value corresponding to the desired temperature by performing predetermined temperature compensation on the first intercept value, Instead of the intercept value, the calibration line for the desired temperature may be obtained based on the correction value.

また、上記構成において、前記測定セルは、所定体積の試料が充填される振動式密度計の細管で構成することができ、当該細管の振動周期を検出する前記振動式密度計の周期検出手段を前記温度測定手段とすることができる。   Further, in the above configuration, the measurement cell can be composed of a thin tube of a vibration type density meter filled with a sample of a predetermined volume, and the period detecting means of the vibration type density meter for detecting the vibration cycle of the thin tube. The temperature measuring means can be used.

この場合、前記密度は、前記振動周期に基づいて前記振動式密度計の密度演算手段によって算出されるとともに、前記熱時定数演算手段が、前記振動周期の時間的変化に基づいて前記熱時定数を算出する。   In this case, the density is calculated by the density calculating means of the vibration-type density meter based on the vibration period, and the thermal time constant calculating means is configured to calculate the thermal time constant based on a temporal change of the vibration period. Is calculated.

本発明によれば、所望の温度における比熱が既知の1つの基準試料により、短時間で正確に当該所望温度における比熱測定に使用する校正直線を得ることができる。   According to the present invention, a calibration straight line used for specific heat measurement at a desired temperature can be accurately obtained in a short time by using one reference sample whose specific heat at the desired temperature is known.

すなわち、比熱測定の際に必要となる基準試料の数を低減することができ、かつ、任意の温度での正確な比熱を求めることが可能となる。   That is, the number of reference samples required for specific heat measurement can be reduced, and accurate specific heat at an arbitrary temperature can be obtained.

以下、本発明に係る校正直線の取得方法を、図面を用いて詳細に説明する。図1は、本発明に係る校正直線の取得方法を説明するための説明図である。   Hereinafter, a calibration straight line acquisition method according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram for explaining a method for obtaining a calibration line according to the present invention.

上述したように、温度を同一にした条件下では、物質の密度×比熱の値と、温度上昇(または、下降)時の熱時定数とは直線性を示す(図7)。すなわち、当該温度(第1の温度)における比熱が既知であり、かつ密度×比熱の値が異なる少なくとも2つの基準試料(第1及び第2の試料)の密度、及び熱時定数を測定すれば、図1(a)に示す、点P1と点P2が定まる。これにより、当該第1の温度における校正直線L1の式を求めることができる。 As described above, under the condition where the temperature is the same, the value of the density × specific heat of the substance and the thermal time constant when the temperature rises (or falls) show linearity (FIG. 7). That is, if the specific heat at the temperature (first temperature) is known and the density of at least two reference samples (first and second samples) having different values of density × specific heat and the thermal time constant are measured. A point P 1 and a point P 2 shown in FIG. Thereby, the equation of the calibration straight line L 1 at the first temperature can be obtained.

ここで、熱時定数をτ、密度をd、比熱をCPとして、上記校正直線L1を式で表すと数1になる。なお、数1においてA、Bはそれぞれ定数である。 Here, when the thermal time constant is τ, the density is d, and the specific heat is C P , the calibration straight line L 1 is expressed by Equation 1. In Equation 1, A and B are constants.

Figure 0004418343
Figure 0004418343

例えば、第1の温度が300Kである場合、水とトルエンの比熱Cpと密度dと熱時定数τは表1のようになる。これらの値に基づいて上記数1中のAとBの値を算出すると、上記数1の式は数2に示す式となる。 For example, when the first temperature is 300 K, the specific heat C p , density d, and thermal time constant τ of water and toluene are as shown in Table 1. When the values of A and B in the above equation 1 are calculated based on these values, the equation of the above equation 1 becomes the equation shown in the equation 2.

Figure 0004418343
Figure 0004418343

Figure 0004418343
Figure 0004418343

さて、本発明に係る校正直線の取得方法では、このようにして求めた校正直線L1において、熱時定数τがゼロとなる点P0を利用している。すなわち、図1(a)に示すように、点P0と、試料の比熱を求めたい温度(以下、所望温度という。)での比熱が既知である1つの基準試料(第3の試料)の密度と熱時定数とを測定することで定まる点P3とに基づいて、所望温度における校正直線L2を求めるのである。 In the calibration line acquisition method according to the present invention, the point P 0 at which the thermal time constant τ is zero is used in the calibration line L 1 thus obtained. That is, as shown in FIG. 1A, a reference sample (third sample) having a known specific heat at the point P 0 and a temperature at which the specific heat of the sample is desired (hereinafter referred to as a desired temperature) is known. The calibration straight line L 2 at the desired temperature is obtained based on the point P 3 determined by measuring the density and the thermal time constant.

ここで、校正直線L1において、熱時定数τがゼロとなる点P0について説明する。 Here, the point P 0 where the thermal time constant τ becomes zero on the calibration line L 1 will be described.

図1(a)に示すように、点P0は密度×比熱の値が負である領域に属している。密度×比熱は、試料の密度と試料の比熱との積であり、試料の単位体積あたりの熱容量C1を示す物理量である。つまり、この値が負であるということは、試料が関与しない熱容量、すなわち、試料以外の測定系の熱容量C2を示していると推定される。この推定は、熱時定数τがゼロの物理的意味、つまり「温度変化に対して遅延なく追従する」からも妥当と判断できる。なお、試料以外の測定系とは、熱時定数τを測定する際に試料が充填される測定セル等であり、試料の温度が上昇(または、下降)するときの熱伝導に関与する部分を指す。したがって、点P0は測定系に固有の点であるといえる。もちろん、測定系が物質で構成されている以上、温度依存性を有するため、点P0は温度に依存してその位置が変わることになる。 As shown in FIG. 1A, the point P 0 belongs to a region where the value of density × specific heat is negative. Density × specific heat is a product of the density of the sample and the specific heat of the sample, and is a physical quantity indicating the heat capacity C 1 per unit volume of the sample. That is, if this value is negative, it is presumed that it indicates the heat capacity at which the sample does not participate, that is, the heat capacity C 2 of the measurement system other than the sample. This estimation can be judged to be appropriate from the physical meaning that the thermal time constant τ is zero, that is, “follow the temperature change without delay”. Note that the measurement system other than the sample is a measurement cell or the like that is filled with the sample when measuring the thermal time constant τ, and the part involved in heat conduction when the temperature of the sample rises (or falls). Point to. Therefore, it can be said that the point P 0 is unique to the measurement system. Of course, as long as the measurement system is made of a substance, it has temperature dependence, so the position of the point P 0 changes depending on the temperature.

そこで、本発明に係る校正直線の取得方法では、以下に示す手順で所望温度における校正直線L2を求めている。すなわち、図1(a)に示すように、校正直線L1において、熱時定数τがゼロとなる点P0の密度×比熱の値(第1の切片値)を求める。そして、当該第1の切片値に対して、必要に応じて所定の温度補償(後述する)を行って所望温度に対応する点P0’の密度×比熱の値を定め、当該点P0’と上述の点P3とで定まる所定温度での校正直線L2を得る。なお、熱容量C2の温度依存性が小さい場合には、図1(b)に示すように、点P0と点P0’を同一点と看做すことも可能である。 Therefore, in the method for obtaining a calibration straight line according to the present invention, the calibration straight line L 2 at a desired temperature is obtained by the following procedure. That is, as shown in FIG. 1A, the density x specific heat value (first intercept value) at the point P 0 at which the thermal time constant τ becomes zero is obtained on the calibration line L 1 . Then, a predetermined temperature compensation (described later) is performed on the first intercept value as necessary to determine the value of the density × specific heat at the point P 0 ′ corresponding to the desired temperature, and the point P 0 ′. And a calibration straight line L 2 at a predetermined temperature determined by the point P 3 described above. When the temperature dependency of the heat capacity C 2 is small, the point P 0 and the point P 0 ′ can be regarded as the same point as shown in FIG.

図2は、数2に示す式から求められる切片値である−1.41と、表2に示す280K、290K、310K、320Kの各温度における水の比熱、及び当該各温度で測定された密度d及び熱時定数τにより定まる点P3を用いて各温度における校正直線L2を求めた結果を示す図である。なお、この例では、点P0に対する温度補償は行っていない。 FIG. 2 shows the intercept value obtained from the equation shown in Equation 2, −1.41, the specific heat of water at each temperature of 280K, 290K, 310K, and 320K shown in Table 2, and the density measured at each temperature. using the point P 3 defined by d and the thermal time constant τ is a diagram illustrating a result of obtaining the calibration straight line L 2 at each temperature. In this example, temperature compensation for the point P 0 is not performed.

また、図2には、表3に示す各温度におけるトルエンの比熱(文献値)、及び測定により得た密度dと熱時定数τとに基づいた点をプロットするとともに、表3には、測定により得た密度dと熱時定数τとに基づいて、図2に示す各温度における校正直線から求めた比熱を示している。   2 plots the specific heat of toluene at each temperature shown in Table 3 (reference value), and points based on the density d and thermal time constant τ obtained by the measurement, and Table 3 shows the measured values. 3 shows the specific heat obtained from the calibration straight line at each temperature shown in FIG. 2 based on the density d and the thermal time constant τ obtained by the above.

図2、表3から、本発明により得られた校正直線L2により求めた比熱と、文献上の比熱がよく一致することが確認できる。 From FIG. 2 and Table 3, it can be confirmed that the specific heat obtained from the calibration straight line L 2 obtained by the present invention and the specific heat in the literature agree well.

Figure 0004418343
Figure 0004418343

Figure 0004418343
Figure 0004418343

ところで、点P0に対する所定の温度補償としては、例えば、試料の熱時定数τを測定する際に、内部に試料が充填される測定セルの材質の温度依存性に基づいて行うことができる。例えば、図4に示すような、測定セルの材質として使用される物質の密度×比熱(文献値)の温度依存性に基づいて、点P0’の位置を補間により求めることが可能である。なお、表4中のほうけい酸ガラスは、図2の例において使用した測定セルの材料である。 By the way, the predetermined temperature compensation for the point P 0 can be performed, for example, based on the temperature dependence of the material of the measurement cell filled with the sample when measuring the thermal time constant τ of the sample. For example, the position of the point P 0 ′ can be obtained by interpolation based on the temperature dependence of the density of the substance used as the material of the measurement cell × specific heat (document value) as shown in FIG. In addition, the borosilicate glass in Table 4 is the material of the measurement cell used in the example of FIG.

Figure 0004418343
Figure 0004418343

また、点P0に対する他の温度補償としては、例えば、上記第1の切片値とは異なる温度(第2の温度)において、当該温度での比熱が既知の2つの基準試料(第4及び第5の試料)を用いて求めた校正直線(第2の校正直線)において、熱時定数をゼロとしたときの密度×比熱の値を示す第2の切片値を求め、当該第2の切片値と上記第1の切片値とに基づいて、所望温度における切片値の補正値を補間により求めてもよい。 In addition, as another temperature compensation for the point P 0, for example, at a temperature (second temperature) different from the first intercept value, two reference samples (fourth and fourth samples) whose specific heat at the temperature is known. In the calibration straight line (second calibration straight line) obtained using the sample No. 5), a second intercept value indicating a value of density × specific heat when the thermal time constant is zero is obtained, and the second intercept value is obtained. Based on the first intercept value, the correction value of the intercept value at a desired temperature may be obtained by interpolation.

なお、温度補償は必ずしも行う必要はなく、測定系の構成や必要とされる比熱の測定精度に応じて、適宜実行すればよい。   Note that temperature compensation is not necessarily performed, and may be appropriately performed according to the configuration of the measurement system and the required measurement accuracy of specific heat.

以上説明したように、点P0は測定系に固有な点であるため1度求めるだけでよい。したがって、本発明によれば、所望温度において比熱の測定を行う際に、当該所望温度での比熱が既知である1つの基準試料の密度dと熱時定数τを測定するだけで、所望温度における校正直線L2を得ることが可能になる。すなわち、比熱測定の際に必要となる基準試料の数を低減することができ、かつ、任意の温度での正確な比熱を求めることが可能となる。 As described above, the point P 0 is unique to the measurement system, and therefore only needs to be obtained once. Therefore, according to the present invention, when the specific heat is measured at the desired temperature, it is only necessary to measure the density d and the thermal time constant τ of one reference sample whose specific heat is known at the desired temperature. it is possible to obtain a calibration straight line L 2. That is, the number of reference samples required for specific heat measurement can be reduced, and accurate specific heat at an arbitrary temperature can be obtained.

なお、上記密度d及び熱時定数τを求める方法は特に限定されるものではなく、公知のいかなる方法により求めてもよい。ただし、熱時定数τを求める際の測定セルは、全ての測定において、同一のものを使用する必要がある。   The method for obtaining the density d and the thermal time constant τ is not particularly limited, and may be obtained by any known method. However, it is necessary to use the same measurement cell for obtaining the thermal time constant τ in all measurements.

以下、これらの値の測定に好適な振動式密度計について簡単に説明する。図3、図4は、振動式密度計を示す図であり、上述の各測定値も本装置により取得している。   A vibration density meter suitable for measuring these values will be briefly described below. FIG. 3 and FIG. 4 are diagrams showing a vibration type density meter, and each of the above measured values is also acquired by this apparatus.

振動式密度計は、図3に示すように、測定室10に、測定セルを構成するU字状の細管1を配置し、当該U字状の細管1に液体、あるいは気体の試料を所定体積導入できるようになっている。   As shown in FIG. 3, the vibration type density meter has a U-shaped tubule 1 constituting a measurement cell arranged in a measurement chamber 10, and a liquid or gas sample is placed in a predetermined volume on the U-shaped tubule 1. It can be introduced.

また、図4に示すように、パルス発生回路13から駆動コイル31にパルス状の駆動電流S2が流されると、細管1の先端に取り付けられた磁性体5を介して細管1に外力が与えられ細管1が振動を開始する。この振動を受けて検出コイル21に発生する正弦波S2を周期検出手段15で処理して上記細管1の振動周期を求め、この結果に基づいて密度演算手段16で試料の密度を求めるようになっている。なお、上記駆動電流S1は、検出された正弦波S2との同期をとりながら所定時間間隔で与えられるようになっている。 As shown in FIG. 4, when a pulsed drive current S 2 flows from the pulse generation circuit 13 to the drive coil 31, an external force is applied to the narrow tube 1 via the magnetic body 5 attached to the tip of the thin tube 1. The narrow tube 1 starts to vibrate. The sine wave S 2 generated in the detection coil 21 in response to this vibration is processed by the period detecting means 15 to obtain the vibration period of the narrow tube 1, and the density calculating means 16 obtains the density of the sample based on this result. It has become. The drive current S 1 is given at predetermined time intervals while synchronizing with the detected sine wave S 2 .

密度dは測定室10を所定の温度t0に保った状態で細管1(もちろん、試料温度も温度t0に保たれている)に上記した駆動力を駆動手段3(駆動コイル31+磁性体5)によって与えて、そのときの固有振動周期Txから数3に示す式で求めることができる。 For the density d, the driving force described above is applied to the capillary tube 1 (of course, the sample temperature is also maintained at the temperature t 0 ) while the measuring chamber 10 is maintained at the predetermined temperature t 0. ) And can be obtained from the natural vibration period T x at that time by the equation shown in Equation 3.

Figure 0004418343
Figure 0004418343

ここで試料は、その試料の保存に必要な温度t1に保たれおり、細管1に導入される前には、その温度t1は、上記測定室の温度t0とは異なっているのが通常である。そこで上記温度t1の試料を別の温度t0に保たれた測定室10に導入すると、温度t1から温度t0に熱時定数τに従って温度変化することになる。このとき、上記振動周期も、温度の変化とともに変化することになるが、この振動周期の変化も当然のことながら上記所定の熱時定数τに依存することになる。 Here, the sample is maintained at a temperature t 1 necessary for storage of the sample, and before being introduced into the narrow tube 1, the temperature t 1 is different from the temperature t 0 of the measurement chamber. It is normal. Therefore, when the sample at the temperature t 1 is introduced into the measurement chamber 10 maintained at another temperature t 0 , the temperature changes from the temperature t 1 to the temperature t 0 according to the thermal time constant τ. At this time, the vibration cycle also changes with a change in temperature, but the change in the vibration cycle naturally depends on the predetermined thermal time constant τ.

したがって、温度t1から温度t0への温度変化を規定する熱時定数τは、上記細管1の振動周期の変化を測定することによって求めることができることになる。なお、熱時定数τは、数4に示す式で定義され、細管1の振動周期も数4にしたがって変動する。 Therefore, the thermal time constant τ defining the temperature change from the temperature t 1 to the temperature t 0 can be obtained by measuring the change in the vibration period of the thin tube 1. The thermal time constant τ is defined by the equation shown in Equation 4, and the vibration period of the thin tube 1 varies according to Equation 4.

Figure 0004418343
Figure 0004418343

また、温度t0での上記振動周期は、温度t0においてのみ求まるものではなく、温度t1の試料が細管1に導入されてからの振動周期の変化(温度変化)を測定すると、最終温度t0でなくても計算によって求めることができる。この計算方法は上述の特許文献1に詳しく記載されている。 Also, the oscillation period of the temperature t 0 is not intended to found only at a temperature t 0, when measured change in the vibration cycle from the sample temperature t 1 is introduced into the capillary 1 (temperature change), final temperature even without a t 0 can be obtained by calculation. This calculation method is described in detail in Patent Document 1 described above.

ところで、上記で説明した振動式密度計を利用することで、上述の校正直線の取得方法を採用した比熱測定装置を構成することができる。   By the way, by using the vibration type density meter described above, it is possible to configure a specific heat measuring apparatus that employs the above-described method for obtaining a calibration straight line.

すなわち、図5に示すように、この比熱測定装置は、上記細管1を測定セルとして使用するとともに、周期検出手段15が検出した振動周期の時間的変化に基づいて、数4に従って、熱時定数τを算出する熱時定数演算手段17を備える。また、本装置が備える密度演算手段16は、周期検出手段15が検出した振動周期に基づいて数3に示す式に従って、細管1に充填された試料の密度を算出する。   That is, as shown in FIG. 5, this specific heat measurement apparatus uses the thin tube 1 as a measurement cell and, based on the temporal change of the vibration period detected by the period detection means 15, the thermal time constant according to Equation 4. Thermal time constant calculating means 17 for calculating τ is provided. Further, the density calculation means 16 provided in the present apparatus calculates the density of the sample filled in the thin tube 1 according to the equation shown in Equation 3 based on the vibration period detected by the period detection means 15.

さらに、本装置には記憶手段18(第1の記憶手段、兼第2の記憶手段)が設けられており、本装置で予め測定された、上記第1の温度における比熱が既知である2つの基準試料(第1及び第2の試料)の熱時定数と密度とが、各試料の比熱とともに記憶されている。   Further, the apparatus is provided with a storage means 18 (first storage means and second storage means), and two specific heats measured at the first temperature and previously measured by the apparatus are known. The thermal time constant and density of the reference sample (first and second samples) are stored together with the specific heat of each sample.

さて、本装置において所望温度における試料の比熱測定を行う場合、まず、当該試料の測定に先立って、当該所望温度における比熱が既知である1つ基準試料(第3の試料)の測定を行い、当該基準試料の熱時定数、密度、及び比熱を記憶手段18に記憶する。   When measuring the specific heat of a sample at a desired temperature in this apparatus, first, prior to measuring the sample, measure one reference sample (third sample) whose specific heat at the desired temperature is known, The thermal time constant, density, and specific heat of the reference sample are stored in the storage means 18.

次に、校正直線演算手段19が、記憶手段18に記憶された第1の温度における各基準試料の熱時定数、密度、及び比熱に基づいて、上記第1の校正直線L1の第1の切片値を算出する。また、校正直線演算手段19は、当該第1の切片値と記憶手段18に記憶された所望温度における基準試料の熱時定数、密度、及び比熱に基づいて、所望温度の校正直線L2を算出する。 Next, the calibration straight line calculation means 19 uses the first time of the first calibration straight line L 1 based on the thermal time constant, density and specific heat of each reference sample at the first temperature stored in the storage means 18. Calculate the intercept value. The calibration straight line calculating means 19 calculates a calibration straight line L 2 of the desired temperature based on the first intercept value and the thermal time constant, density and specific heat of the reference sample at the desired temperature stored in the storage means 18. To do.

そして、所望温度において試料の熱時定数と密度が測定されると、比熱演算手段20が、これらの測定値と、所望温度の校正直線L2に基づいて、当該試料の比熱を算出する。 When the thermal time constant and density of the sample are measured at the desired temperature, the specific heat calculating means 20 calculates the specific heat of the sample based on these measured values and the calibration straight line L 2 of the desired temperature.

この構成によれば、上述のように、比熱測定の際に必要となる基準試料の数を低減することができ、かつ、任意の温度での正確な比熱を求めることができる。   According to this configuration, as described above, the number of reference samples necessary for specific heat measurement can be reduced, and accurate specific heat at an arbitrary temperature can be obtained.

なお、この比熱測定装置において、上述の温度補正を行う場合には、校正直線演算手段19が、上記第1の切片値に所定の温度補償を行って上記第1の切片値の補正値を求める温度補償手段191を備える構成とし、当該温度補償手段191が求めた第1の切片値の補正値に基づいて校正直線演算手段19が、所望温度の校正直線L2を求める構成にすればよい。 In the specific heat measurement apparatus, when the above-described temperature correction is performed, the calibration straight line calculating means 19 obtains a correction value for the first intercept value by performing predetermined temperature compensation on the first intercept value. The temperature compensation means 191 may be provided, and the calibration line calculation means 19 may obtain the desired temperature calibration line L 2 based on the correction value of the first intercept value obtained by the temperature compensation means 191.

また、上記細管1(測定セル)は、図3に示すように、内部を所定の温度に制御可能な測定室10の内部に配置されており、上述の各温度のデータは、当該測定室10の温度を制御する温度制御手段4から取得することができることは言うまでもない。加えて、上述の密度演算手段16、熱時定数演算手段17、及び校正直線演算手段19は、マイクロプロセッサ等のハードウエアや、当該ハードウエア上で実行されるプログラム等により構成することが可能である。   Further, as shown in FIG. 3, the narrow tube 1 (measurement cell) is arranged inside a measurement chamber 10 in which the inside can be controlled to a predetermined temperature, and the data of each temperature described above is stored in the measurement chamber 10. Needless to say, it can be obtained from the temperature control means 4 for controlling the temperature of the liquid crystal. In addition, the density calculating means 16, the thermal time constant calculating means 17, and the calibration straight line calculating means 19 described above can be configured by hardware such as a microprocessor, a program executed on the hardware, or the like. is there.

本発明は、比熱測定の際に必要となる基準試料の数を低減することができ、かつ、任意の温度での正確な比熱を求めることが可能となるという効果を有し、比熱測定に有用である。   The present invention has an effect of reducing the number of reference samples required for specific heat measurement and obtaining an accurate specific heat at an arbitrary temperature, and is useful for specific heat measurement. It is.

本発明の原理を説明する説明図。Explanatory drawing explaining the principle of this invention. 本発明により取得した校正直線を示す図。The figure which shows the calibration straight line acquired by this invention. 振動式密度計の概念図。The conceptual diagram of a vibration type density meter. 振動式密度計の回路部分を示すブロック図。The block diagram which shows the circuit part of a vibration type density meter. 比熱測定装置の回路部分を示すブロック図。The block diagram which shows the circuit part of a specific heat measuring apparatus. 熱時定数を説明する説明図。Explanatory drawing explaining a thermal time constant. 密度×比熱と熱時定数の関係を示す図。The figure which shows the relationship between a density x specific heat and a thermal time constant.

符号の説明Explanation of symbols

1 測定セル(細管)
2 温度測定手段
3 演算手段
15 振動周期検出手段(温度測定手段)
16 密度演算手段
17 熱時定数演算手段
18 記憶手段(第1、及び第2の記憶手段)
19 校正直線演算手段
20 比熱演算手段
1 第1の温度における校正直線
2 所望温度における校正直線
0 第1の切片

1 Measurement cell (narrow tube)
2 Temperature measurement means 3 Calculation means 15 Vibration period detection means (temperature measurement means)
16 Density calculation means 17 Thermal time constant calculation means 18 Storage means (first and second storage means)
19 Calibration straight line calculation means 20 Specific heat calculation means L 1 Calibration straight line at the first temperature L 2 Calibration straight line at the desired temperature P 0 First intercept

Claims (7)

所望温度において測定された試料の密度、及び試料の所望温度に至るまでの温度の時間的変化より得られる熱時定数に基づいて、前記所望温度における試料の比熱を求める際に使用される校正直線の取得方法であって、
前記所望温度と異なる第1の温度における比熱が既知である第1の試料の熱時定数と密度、並びに、第1の温度における比熱が既知である第2の試料の熱時定数と密度に基づいて、前記第1の温度における密度×比熱(密度と比熱との積)と熱時定数との関係を示す第1の校正直線を求めるステップと、
前記第1の校正直線において、熱時定数をゼロとしたときの密度×比熱の値を示す第1の切片値を演算するステップと、
前記所望温度における比熱が既知である第3の試料の熱時定数と密度と、前記第1の切片値とに基づいて、前記所望温度における密度×比熱と熱時定数との関係を示す所望温度の校正直線を求めるステップと、
を有することを特徴とする所望温度における比熱を求めるための校正直線の取得方法。
Calibration straight line used to determine the specific heat of the sample at the desired temperature based on the density of the sample measured at the desired temperature and the thermal time constant obtained from the temporal change in temperature up to the desired temperature of the sample The acquisition method of
Based on the thermal time constant and density of a first sample whose specific heat at a first temperature different from the desired temperature is known, and the thermal time constant and density of a second sample whose specific heat at a first temperature is known Obtaining a first calibration line indicating the relationship between density x specific heat at the first temperature (product of density and specific heat) and a thermal time constant;
Calculating a first intercept value indicating a value of density × specific heat when the thermal time constant is set to zero in the first calibration line;
The desired temperature indicating the relationship between density at the desired temperature × specific heat and the thermal time constant based on the thermal time constant and density of the third sample whose specific heat at the desired temperature is known and the first intercept value. Obtaining a calibration straight line for
A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature.
前記第1の切片値に代えて、当該第1の切片値に所定の温度補償を行うことにより求めた前記所望温度に対応する前記第1の切片値の補正値を用いて、前記所望温度の校正直線を求める請求項1に記載の所望温度における比熱を求めるための校正直線の取得方法。   Instead of the first intercept value, using the correction value of the first intercept value corresponding to the desired temperature obtained by performing predetermined temperature compensation on the first intercept value, the desired temperature The method for obtaining a calibration line for obtaining specific heat at a desired temperature according to claim 1, wherein the calibration line is obtained. 前記所定の温度補償が、試料の熱時定数を取得する際に内部に前記試料が充填される測定セルの材質の温度依存性に基づいて行われる請求項2に記載の所望温度における比熱を求めるための校正直線の取得方法。   3. The specific heat at a desired temperature according to claim 2, wherein the predetermined temperature compensation is performed based on the temperature dependence of the material of the measurement cell filled with the sample when acquiring the thermal time constant of the sample. To obtain a calibration straight line for 前記所定の温度補償が、第2の温度における比熱が既知である第4の試料の熱時定数と密度、並びに、第2の温度における比熱が既知である第5の試料の熱時定数と密度に基づいて求められる密度×比熱と熱時定数との関係を示す第2の校正直線において、熱時定数をゼロとしたときの密度×比熱の値を示す第2の切片値と、前記第1の切片値とに基づいて行われる請求項2に記載の所望温度における比熱を求めるための校正直線の取得方法。   The predetermined temperature compensation is such that the thermal time constant and density of the fourth sample whose specific heat at the second temperature is known, and the thermal time constant and density of the fifth sample whose specific heat at the second temperature are known. In the second calibration line showing the relationship between density × specific heat and thermal time constant determined based on the above, the second intercept value showing the value of density × specific heat when the thermal time constant is zero, and the first The method for obtaining a calibration straight line for obtaining specific heat at a desired temperature according to claim 2, which is performed on the basis of the intercept value. 試料が充填される測定セルと、
前記測定セルが内部に配置されるとともに、内部を所定の温度に制御可能な測定室と、
前記試料の温度の時間的変化を測定する温度測定手段と、
前記試料の所望温度に至るまでの温度の時間的変化に基づいて、前記試料の熱時定数を算出する熱時定数演算手段と、
第1の温度において比熱がそれぞれ既知である第1の試料及び第2の試料に対して前記熱時定数演算手段が求めた前記第1の温度における熱時定数、並びに、前記各試料の前記第1の温度における密度及び比熱が記憶される第1の記憶手段と、
前記第1の温度とは異なる所望の温度において比熱が既知である第3の試料に対して前記熱時定数演算手段が求めた前記所望温度における熱時定数、並びに、前記第3の試料の前記所望温度における密度及び比熱が記憶される第2の記憶手段と、
前記第1の記憶手段に記憶された情報により定まる、前記第1の温度における密度×比熱(密度と比熱との積)と熱時定数との関係を示す第1の校正直線において熱時定数をゼロとしたときの密度×比熱の値を示す第1の切片値を算出するとともに、当該第1の切片値と前記第2の記憶手段に記憶された情報とに基づいて、前記所望温度での密度×比熱と熱時定数との関係を示す所望温度の校正直線を算出する校正直線演算手段と、
前記所望温度の校正直線に基づいて、前記所望温度における試料の比熱を算出する比熱演算手段と、
を備えたことを特徴とする比熱測定装置。
A measurement cell filled with a sample;
The measurement cell is arranged inside, and a measurement chamber capable of controlling the inside to a predetermined temperature;
Temperature measuring means for measuring a temporal change in the temperature of the sample;
A thermal time constant calculating means for calculating a thermal time constant of the sample based on a temporal change in temperature until the sample reaches a desired temperature;
The thermal time constant at the first temperature obtained by the thermal time constant calculating means for the first sample and the second sample whose specific heats are respectively known at the first temperature, and the first time of each sample. First storage means for storing density and specific heat at a temperature of 1,
The thermal time constant at the desired temperature obtained by the thermal time constant calculating means for the third sample whose specific heat is known at a desired temperature different from the first temperature, and the third sample Second storage means for storing density and specific heat at a desired temperature;
The thermal time constant is determined on the first calibration line indicating the relationship between the density at the first temperature x specific heat (product of density and specific heat) and the thermal time constant, which is determined by the information stored in the first storage means. A first intercept value indicating a value of density x specific heat when zero is calculated, and at the desired temperature based on the first intercept value and information stored in the second storage means A calibration straight line calculation means for calculating a calibration straight line at a desired temperature indicating the relationship between density × specific heat and thermal time constant;
Specific heat calculation means for calculating the specific heat of the sample at the desired temperature based on the calibration line of the desired temperature;
A specific heat measuring apparatus comprising:
前記校正直線演算手段が、前記第1の切片値に所定の温度補償を行うことで前記所望温度に対応する前記第1の切片値の補正値を求める温度補償手段を備えるとともに、前記第1の切片値に代えて、当該補正値に基づいて前記所望温度の校正直線を求める請求項5に記載の比熱測定装置。   The calibration straight line calculation means includes temperature compensation means for obtaining a correction value of the first intercept value corresponding to the desired temperature by performing predetermined temperature compensation on the first intercept value, and the first intercept value 6. The specific heat measuring apparatus according to claim 5, wherein a calibration straight line of the desired temperature is obtained based on the correction value instead of the intercept value. 前記測定セルが、所定体積の試料が充填される、振動式密度計の細管であり、
前記温度測定手段が、前記細管の振動周期を検出する、前記振動式密度計の周期検出手段であり、
前記密度が、前記振動周期に基づいて前記振動式密度計の密度演算手段により算出されるとともに、前記熱時定数演算手段が、前記振動周期の時間的変化に基づいて前記熱時定数を算出する請求項5または6に記載の比熱測定装置。

The measuring cell is a capillary tube of a vibrating densimeter filled with a predetermined volume of sample,
The temperature measuring means detects the vibration period of the capillary tube;
The density is calculated by the density calculating means of the vibratory densimeter based on the vibration period, and the thermal time constant calculating means calculates the thermal time constant based on a temporal change of the vibration period. The specific heat measuring device according to claim 5 or 6.

JP2004304874A 2004-10-19 2004-10-19 A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus. Expired - Fee Related JP4418343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304874A JP4418343B2 (en) 2004-10-19 2004-10-19 A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304874A JP4418343B2 (en) 2004-10-19 2004-10-19 A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus.

Publications (2)

Publication Number Publication Date
JP2006118894A JP2006118894A (en) 2006-05-11
JP4418343B2 true JP4418343B2 (en) 2010-02-17

Family

ID=36536929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304874A Expired - Fee Related JP4418343B2 (en) 2004-10-19 2004-10-19 A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus.

Country Status (1)

Country Link
JP (1) JP4418343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853234B2 (en) * 2006-10-31 2012-01-11 横河電機株式会社 Magnetic oxygen meter

Also Published As

Publication number Publication date
JP2006118894A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US10571380B2 (en) Vibronic sensor
Holten et al. Homogeneous nucleation of water between 200 and 240 K: New wave tube data and estimation of the Tolman length
EP1817554B1 (en) Method and apparatus for determining flow pressure using density information
RU2400707C1 (en) Method of calibrating scaling factor of axially symmetrical vibrational rate-gyro sensor
JP5307292B2 (en) Method and apparatus for determining flow rate error of vibratory flow meter
AU2012395800B2 (en) Detection of a change in the cross - sectional area of a fluid tube in a vibrating meter by determining a lateral mode stiffness
US9513150B2 (en) Method for operating a coriolis mass flowmeter
US10078005B2 (en) Method for calibration or adjustment of any oscillatable unit
CN104713606A (en) Method and device for measuring flow of multi-component gas
JP5355278B2 (en) Calibration parameter determination method and density calculation method for vibration type density meter
JP5473455B2 (en) Vibrating density meter
KR20110108255A (en) Calorific value calculation formula generating system, calorific value calculation formula generating method, calorific value calculating system, calorific value calculating method, resistance measuring system and resistance measuring method
JP4795231B2 (en) Specific heat measuring method and apparatus
JP4418343B2 (en) A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus.
JPS5915837A (en) Viscosity measuring apparatus for high temperature fluid
US11630044B2 (en) Oscillator for density measurement of a liquid
JP5295028B2 (en) Vibrating density meter
US20090271130A1 (en) Method for measuring suspended sediment concentration in water
JP3246861B2 (en) Thermal characteristic measuring device and soil moisture content measuring device using the same
JP2003042858A (en) Apparatus and method for dynamic calibration of temperature sensor
Poulis et al. Measurement of gas adsorption with Jäntti's method using continuously increasing pressure
JP2839328B2 (en) Heat dissipation type level sensor
RU147292U1 (en) DEVICE FOR MEASURING VISCOSITY AND LIQUID DENSITY
JPH0658862A (en) Temperature compensation for oscillating density meter
CN117043555A (en) Thermal sensor and method for operating a thermal sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees