JPH0658862A - Temperature compensation for oscillating density meter - Google Patents

Temperature compensation for oscillating density meter

Info

Publication number
JPH0658862A
JPH0658862A JP21435092A JP21435092A JPH0658862A JP H0658862 A JPH0658862 A JP H0658862A JP 21435092 A JP21435092 A JP 21435092A JP 21435092 A JP21435092 A JP 21435092A JP H0658862 A JPH0658862 A JP H0658862A
Authority
JP
Japan
Prior art keywords
temperature
density
cell
vibration
natural vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21435092A
Other languages
Japanese (ja)
Inventor
Yoshiki Kagaya
孝樹 加賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP21435092A priority Critical patent/JPH0658862A/en
Publication of JPH0658862A publication Critical patent/JPH0658862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide a temperature compensation means for oscillation cycle in a oscillating density meter requiring shorter period for density measurement of an object fluid. CONSTITUTION:A oscillating density meter introduces an object fluid 11 into an oscillation cell 12, and then, based on the specific oscillation cycle of the oscillation cell 12, measures density of the object fluid 11 at a specified reference temperature K0. Then, based on the temperature difference DELTAK (=K-K0) between the temperature K of the oscillation cell 12 after introduction of the object fluid 11 and the reference temperature K0 and the specific oscillation cycle TK of the oscillation cell 12 at the current temperature K, specific oscillation cycle T0 at the reference temperature K0 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は振動式密度計に関し、特
に振動式密度計における温度補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibrating densitometer, and more particularly to a temperature correction method for a vibrating densitometer.

【0002】[0002]

【従来の技術】振動式密度計は被検流体を収容した振動
セルを振動させて、測定した固有振動周期から被検流体
の密度を演算、出力する装置であり、例えば清涼飲料の
濃度管理等の各種流体の密度測定に利用されている。
2. Description of the Related Art A vibrating densitometer is a device for vibrating a vibrating cell containing a fluid to be measured, and calculating and outputting the density of the fluid to be measured from the measured natural vibration period. It is used to measure the density of various fluids.

【0003】図2は上記振動式密度計の要部概念図であ
る。図2に示すように、U字型の振動セル12は、その
基端部が支持管14に固定されるとともに、該振動セル
12の一方の開口端は被検流体11を導入する導入管1
2aに接続され、他方の開口端は測定の完了した被検流
体11を排出する排出管12bに接続されるように支持
管14内部に配置される。また、該振動セル12の先端
部には磁石13が固定され、該磁石13に対向する位置
に駆動部31と検出部32を内蔵したヘッド3が配置さ
れ、さらにその近傍には温度センサ41が配置されてい
る。
FIG. 2 is a conceptual view of the essential part of the above-mentioned vibration type densitometer. As shown in FIG. 2, the U-shaped vibrating cell 12 has its base end fixed to the support tube 14, and one opening end of the vibrating cell 12 has an inlet tube 1 for introducing the test fluid 11.
2a, and the other open end is arranged inside the support pipe 14 so as to be connected to a discharge pipe 12b for discharging the measured fluid 11 whose measurement has been completed. A magnet 13 is fixed to the tip of the vibrating cell 12, a head 3 having a drive unit 31 and a detection unit 32 is disposed at a position facing the magnet 13, and a temperature sensor 41 is provided in the vicinity of the head 3. It is arranged.

【0004】また後述する理由から支持管内部空間を所
定の基準温度K0 に保持するために、恒温媒体21は該
恒温媒体21の温度を測定する温度センサ42を備える
とともに、外面を断熱材23で被覆しており、上記温度
センサ42の出力に基づいて温度制御を行なっている。
In order to keep the inner space of the support tube at a predetermined reference temperature K 0 for the reason described later, the constant temperature medium 21 is provided with a temperature sensor 42 for measuring the temperature of the constant temperature medium 21, and the outer surface of the heat insulating material 23. And is temperature-controlled based on the output of the temperature sensor 42.

【0005】測定にあたっては、まず上記導入管12a
を通じて振動セル12内に被検流体11を導入し、図示
しない制御装置より駆動電流を駆動部31に入力するこ
とによって、上記磁石13に電磁力が作用し、振動セル
12が振動を開始する。
In the measurement, first, the introduction pipe 12a is used.
The fluid to be measured 11 is introduced into the vibrating cell 12 through and the driving current is input to the driving unit 31 from a control device (not shown), whereby electromagnetic force acts on the magnet 13 and the vibrating cell 12 starts vibrating.

【0006】このときの振動周期を検出部32で検出
し、該検出信号を上記制御装置に入力して、該振動周期
に同期した駆動信号を引き続き、駆動部31に入力し
て、該振動セル12を一定の周期で振動させるようにさ
せ、固有振動周期を求めている。
The vibration cycle at this time is detected by the detection unit 32, the detection signal is input to the control device, and a drive signal synchronized with the vibration cycle is continuously input to the drive unit 31 to output the vibration cell. 12 is vibrated at a constant cycle, and the natural vibration cycle is obtained.

【0007】上記固有振動周期をTとし、被検流体11
の密度をρとすると、ρは下記(1)式で求まる。
Let the natural vibration period be T, and the fluid to be measured 11
Let ρ be the density of, then ρ can be obtained by the following equation (1).

【0008】[0008]

【数1】 [Equation 1]

【0009】尚、上記 P:振動系の振動定数 V:被検流体11の体積(振動セル12の容積) M:振動セル12及び磁石13の質量 上記各P,V,Mは測定部の構造によって決定される定
数であるから、
Note that P is the vibration constant of the vibration system, V is the volume of the fluid to be measured 11 (volume of the vibration cell 12), M is the mass of the vibration cell 12 and the magnet 13, and each of the P, V and M is the structure of the measuring part. Is a constant determined by

【0010】[0010]

【数2】 [Equation 2]

【0011】とすると、ρ=AT2 −B …(2) で
表すことができる。ここで、既知の密度(ρw 、ρa
をもつ2種類の物質(例えば純水と空気)より求めたこ
の測定部での固有振動周期をTw 、Ta とすると、下記
(3),(4) 式が成りたつ。
Then, it can be expressed by ρ = AT 2 -B (2) Where the known density (ρ w , ρ a )
Let T w and T a be the natural vibration periods at this measuring part obtained from two types of substances having, for example, pure water and air.
Equations (3) and (4) are satisfied.

【0012】 ρa =ATa 2 −B …(3) ρw =ATw 2 −B …(4) 従って、上記(3),(4) 式より定数A,Bは以下のように
決定される。
Ρ a = AT a 2 −B (3) ρ w = AT w 2 −B (4) Therefore, the constants A and B are determined from the above equations (3) and (4) as follows. It

【0013】[0013]

【数3】 [Equation 3]

【0014】上記(5),(6) 式より、(2) 式は下記(7) 式
のように表され、被検流体11の密度が求まることにな
る。
From the above equations (5) and (6), the equation (2) is expressed as the following equation (7), and the density of the test fluid 11 is obtained.

【0015】[0015]

【数4】 [Equation 4]

【0016】ところで、上記定数A,Bは、ある基準温
度K0 の下での特定の2つの物質の密度及び固有振動周
期に基づいて決定した定数であるので、該基準温度K0
と異なる温度の振動セル12の固有振動周期に基づいて
出力される被検流体11の密度は真の値に誤差が生じ
る。
By the way, the constants A, since B is a constant determined based on the density and the natural vibration period of the two specific materials under a certain reference temperature K 0, the reference temperature K 0
There is an error in the true value of the density of the test fluid 11 that is output based on the natural vibration period of the vibration cell 12 having a different temperature.

【0017】そこで上記のように、上記断熱材23、恒
温媒体21、及び温度センサ42等の温度制御手段を用
いて、支持管内部の温度を基準温度K0 に保持するよう
にし、上記振動セル12の温度を温度センサ41で測定
し、基準温度K0 になった時点での密度を測定するよう
にしている。
Therefore, as described above, the temperature inside the support tube is maintained at the reference temperature K 0 by using the temperature control means such as the heat insulating material 23, the constant temperature medium 21, the temperature sensor 42, etc. The temperature 12 is measured by the temperature sensor 41, and the density at the time when the temperature reaches the reference temperature K 0 is measured.

【0018】[0018]

【発明が解決しようとする課題】ところが、上記温度制
御手段を用いて支持管内部を基準 温度K0 に保持して
も、振動セル12に導入される被検流体11の温度は外
気温に依存しているので、導入直後は基準温度K0 に一
致しない。従って、該導入直後からしばらくの間は振動
セル12の温度は基準温度K0 と異なる温度にあり、通
常は振動セル12への被検流体11の導入から該振動セ
ル12が温度平衡に達するまで一定時間(例えば2〜数
分間程度)待機する必要があった。
However, even if the inside of the support tube is kept at the reference temperature K 0 by using the temperature control means, the temperature of the fluid to be detected 11 introduced into the vibrating cell 12 depends on the ambient temperature. Therefore, immediately after the introduction, the temperature does not match the reference temperature K 0 . Therefore, the temperature of the vibrating cell 12 is different from the reference temperature K 0 for a while immediately after the introduction, and normally, from the introduction of the fluid to be measured 11 into the vibrating cell 12 until the vibrating cell 12 reaches the temperature equilibrium. It was necessary to wait for a fixed time (for example, about 2 to several minutes).

【0019】その結果、密度の測定1回当たりに要する
時間は試験流体の導入から排出、あるいは振動セル内面
に洗浄等、総計で例えば約10分程度を見込まねばなら
ず、多数の被検流体を測定する場合、例えば、ジュース
工場での糖濃度(密度)測定等では多大の時間を要して
いた。
As a result, the time required for each measurement of the density must be expected to be about 10 minutes in total, for example, from the introduction of the test fluid to the discharge of the fluid or the washing of the inner surface of the vibrating cell. In measuring, for example, sugar concentration (density) measurement in a juice factory requires a lot of time.

【0020】本発明は上記従来の事情に鑑みて提案され
たものであって、被検流体の密度測定に要する時間の短
縮を実現した振動式密度計における振動周期の温度補正
方法を提供することを目的とする。
The present invention has been proposed in view of the above conventional circumstances, and provides a temperature correction method for a vibration period in a vibration type densitometer that realizes a reduction in the time required for measuring the density of a fluid to be measured. With the goal.

【0021】[0021]

【課題を解決するための手段】上記の目的を達成するた
めに、図1に示すような振動セル12に被検流体11を
導入した後、該振動セル12の固有振動周期に基づいて
所定の基準温度K0 における被検流体11の密度を出力
する振動式密度計において、本発明は以下の方法を採用
する。
In order to achieve the above object, after introducing a fluid 11 to be measured into a vibrating cell 12 as shown in FIG. The present invention employs the following method in a vibrating densitometer that outputs the density of the test fluid 11 at the reference temperature K 0 .

【0022】すなわち、上記被検流体11を導入した後
の振動セル12の温度Kと基準温度K0 との温度差ΔK
=K−K0 と該振動セル12の現在温度における固有振
動周期TK とに基づいて、基準温度K0 における固有振
動周期T0 に近似させる温度補正方法である。
That is, the temperature difference ΔK between the temperature K of the vibrating cell 12 and the reference temperature K 0 after the test fluid 11 is introduced.
= K−K 0 and the natural vibration period T K of the vibration cell 12 at the current temperature, the temperature correction method approximates the natural vibration period T 0 at the reference temperature K 0 .

【0023】具体的には、例えばT0 =TK ×(1−a
ΔK)〔a:定数〕なる一次近似式を用いることができ
る。
Specifically, for example, T 0 = T K × (1-a
It is possible to use a first-order approximation formula of ΔK) [a: constant].

【0024】[0024]

【作用】上記の構成において、振動セル12の温度K
が、基準温度K0 よりも高い場合には、振動セル12を
含め体積が膨張する等の理由から、該温度Kのもとで測
定される固有振動周期TK は基準温度K0 における固有
振動周期T0 よりも短くなり、逆に上記温度Kが、基準
温度K0 よりも低い場合には、測定される固有振動周期
K は上記固有振動周期T0 よりも長くなる。
In the above structure, the temperature K of the vibrating cell 12 is
However, when the temperature is higher than the reference temperature K 0, the natural vibration period T K measured under the temperature K is the natural vibration at the reference temperature K 0 because the volume including the vibration cell 12 expands. When the temperature K is shorter than the period T 0 and conversely the temperature K is lower than the reference temperature K 0 , the measured natural vibration period T K becomes longer than the natural vibration period T 0 .

【0025】従って、基準温度K0 における固有振動周
期T0 と現在温度Kにおける固有振動周期TK の差は、
基準温度K0 と該温度Kとの温度差ΔKに依存し、適当
な近似式:F(TK ,ΔK)を選定すれば、 T0 =F(TK ,ΔK) …(*) として、測定される固有振動周期TK を固有振動周期T
0 に補正し、誤差の少ない密度を出力することができ
る。
[0025] Thus, the difference in natural vibration period T K at the current temperature K and the natural vibration period T 0 at the standard temperature K 0 is
Depending on the temperature difference ΔK between the reference temperature K 0 and the temperature K, if an appropriate approximate expression: F (T K , ΔK) is selected, then T 0 = F (T K , ΔK) (*) Let the measured natural vibration period T K be the natural vibration period T
It is possible to correct to 0 and output the density with less error.

【0026】ここで、上記近似式:F(TK ,ΔK)=
K ×(1−aΔT)とすることができる。
Here, the above approximation formula: F (T K , ΔK) =
It may be T K × (1-aΔT) .

【0027】[0027]

【実施例】図1は本発明に係る一実施例のフロー図であ
り、この実施例は、図2に示す構成の振動式密度計に適
用しており、その構成の詳細については前述の通りであ
り、詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow chart of an embodiment according to the present invention. This embodiment is applied to a vibration type densitometer having the structure shown in FIG. 2, and the details of the structure are as described above. Therefore, detailed description is omitted.

【0028】この振動式密度計での密度測定は、導入管
12aを通じて被検流体11を導入し、該振動セル12
が被検流体11で満たされた時点で開始される。まず恒
温媒体21中の温度センサ42より出力される媒体温度
検出信号をもとに恒温媒体21の温度K0 を測定する
(F1)とともに、振動セル12近傍に配置した温度セ
ンサ41より出力されるセル温度検出信号をもとに該振
動セル12の温度Kを測定し(F2)、上記温度Kと温
度K0 との差をΔKとする(F3)。
For the density measurement by this vibrating densitometer, the test fluid 11 is introduced through the introducing pipe 12a, and the vibrating cell 12 is introduced.
Is started when the test fluid 11 is filled. First, the temperature K 0 of the constant temperature medium 21 is measured based on the medium temperature detection signal output from the temperature sensor 42 in the constant temperature medium 21 (F1), and is output from the temperature sensor 41 arranged near the vibration cell 12. The temperature K of the vibrating cell 12 is measured based on the cell temperature detection signal (F2), and the difference between the temperature K and the temperature K 0 is set to ΔK (F3).

【0029】この間には、振動セル12は、検出ヘッド
3に内蔵された駆動部31でその固有振動周期TK で駆
動されるとともに、検出ヘッド3の検出部32で上記温
度Kにおける固有振動周期TK が測定される(F4)。
During this period, the vibrating cell 12 is driven by the driving unit 31 incorporated in the detection head 3 at its natural vibration period T K , and the detecting unit 32 of the detection head 3 drives the vibration cycle at the temperature K. TK is measured (F4).

【0030】一般に上記振動セル12の温度Kが、基準
温度K0 よりも高い場合には、振動セル12を含め体積
が膨張する等の理由から、該温度Kのもとで測定される
固有振動周期TK は基準温度K0 における固有振動周期
0 よりも短くなり、逆に上記温度Kが、基準温度K0
よりも低い場合には、測定される固有振動周期TK は上
記固有振動周期T0 よりも長くなるところから、適当な
近似式:F(TK ,ΔK)に、上記温度差ΔK及び温度
Kにおける固有振動周期Tを代入し、該固有振動周期T
K を基準温度K0 における固有振動周期T0 に近似させ
るようにしている(F5)。
In general, when the temperature K of the vibrating cell 12 is higher than the reference temperature K 0, the natural vibration measured under the temperature K is increased because the volume including the vibrating cell 12 expands. period T K is shorter than the natural vibration period T 0 at the reference temperature K 0, the temperature K conversely, the reference temperature K 0
When it is lower than the above, the measured natural vibration period T K becomes longer than the natural vibration period T 0. Therefore, the temperature difference ΔK and the temperature K can be set to an appropriate approximate expression: F (T K , ΔK). Substituting the natural vibration period T in
K is approximated to the natural vibration period T 0 at the reference temperature K 0 (F5).

【0031】本発明では、上記近似式:F(TK ,Δ
K)を限定しないが、固有振動周期T K が温度差ΔKに
対してほぼ直線的に変化することは実験的に確認されて
いる。そこで、近似式:F(TK ,ΔK)=TK ×(1
−aΔK)〔a:定数〕なる一次式で、温度差ΔKと固
有振動周期TK とから上記基準温度K0 における固有振
動周期T0 を求めている。尚、上記定数aは、振動密度
計の構造より最適の値に決定している。
In the present invention, the above approximate expression: F (TK, Δ
K) but not limited to the natural vibration period T KTo the temperature difference ΔK
It has been confirmed experimentally that it changes almost linearly
There is. Therefore, the approximate expression: F (TK, ΔK) = TKX (1
-AΔK) [a: constant] is a linear expression that
Vibration cycle TKFrom the above reference temperature K0Natural vibration in
Motion cycle T0Are seeking. The constant a is the vibration density.
The optimum value is determined based on the structure of the meter.

【0032】そして、上記近似式:F(TK ,ΔK)=
0 として得られた値から、従来より採用されている下
記式(2) 再掲 を用いて密度ρを求める(F6)。 ρ=AT2 −B …(2) ところで、この実施例においては、上記ステップF6に
おいて、例えば被検流体11の導入直後のように温度差
ΔKの絶対値が比較的大きい場合には、該近似式:F
(TK ,ΔK)で、固有振動周期T0 のよい近似値を得
ることができない。そこで、図示のようにステップF6
の後段で、上記密度ρの精度を保証するステップを設け
ている。
Then, the above approximate expression: F (T K , ΔK) =
From the value obtained as T 0 , the density ρ is calculated using the following formula (2), which has been conventionally adopted (F6). ρ = AT 2 −B (2) In this embodiment, when the absolute value of the temperature difference ΔK is relatively large, for example immediately after the introduction of the fluid 11 to be detected, the approximation is performed in step F6. Formula: F
With (T K , ΔK), a good approximation value of the natural vibration period T 0 cannot be obtained. Then, as shown in the figure, step F6
In the latter stage, a step for ensuring the accuracy of the density ρ is provided.

【0033】すなわち、1回目の測定では、得られた密
度ρを一旦密度ρ′として所定の記憶手段に記憶させて
おき(F7YES →F9)、ステップF1に戻る。そし
て、2回目の測定を行って得られた密度ρと上記密度
ρ′とを比較し、その差があれば該2回目の測定で得ら
れた密度ρを更新された密度ρ′として(F7NO→F8
YES →F9)、再度ステップF1に戻る。3回目以降の
測定でも同様に行って、上記密度ρと密度ρ′とを比較
し、その差が零になった時点で測定を終了するようにし
ている(F8YES )。
That is, in the first measurement, the obtained density ρ is once stored in a predetermined storage means as the density ρ ′ (F7YES → F9), and the process returns to step F1. Then, the density ρ obtained by the second measurement is compared with the density ρ ′, and if there is a difference, the density ρ obtained by the second measurement is set as the updated density ρ ′ (F7NO → F8
YES → F9), and returns to step F1 again. The third and subsequent measurements are similarly performed to compare the density ρ and the density ρ ′ and terminate the measurement when the difference becomes zero (F8YES).

【0034】図4はこの実施例及び従来例による純水の
密度測定を行った場合の密度値の経時変化を示したグラ
フであり、図中C1は実施例の密度曲線、C2は上記温
度補正を行わない従来例の密度曲線である。尚、参考ま
でに振動セルの温度曲線をC3として同時に示す。この
実験では導入前の純水の温度25℃、測定空間内温度1
5℃、導入量2cm3 としている。
FIG. 4 is a graph showing the change over time in the density value when the density of pure water was measured according to this example and the conventional example. In the figure, C1 is the density curve of the example, and C2 is the above temperature correction. It is a density curve of the conventional example which does not perform. For reference, the temperature curve of the vibration cell is shown as C3 at the same time. In this experiment, the temperature of pure water before introduction was 25 ° C, the temperature in the measurement space was 1
The temperature is 5 ° C and the amount introduced is 2 cm 3 .

【0035】図から明らかなように、15℃での純水の
理論密度値(0.9991g/cm3)を得るまでの時間は、実施例
では約1.5分であるのに対し、従来例では5.5分も
かかっており、本発明を適用した場合、信頼できる密度
値を表示するまでに要する時間を大幅に短縮できた。
As is clear from the figure, the time required to obtain the theoretical density value (0.9991 g / cm 3 ) of pure water at 15 ° C. is about 1.5 minutes in the embodiment, whereas it is about 1.5 minutes in the prior art. It took 5.5 minutes, and when the present invention was applied, the time required to display a reliable density value could be greatly shortened.

【0036】また別の実験として、外気温度28℃、測
定空間内温度20℃、導入量20cm 3 とし、4種類の被
検流体を対象に行ったところ、下記表1に示す結果とな
った。表1に示すように、いずれの被検流体においても
測定時間を短縮させることができた。尚、各物質によっ
て短縮できた時間が異なるが、これは膨張係数、比熱等
の固有の物性によるものと推定できる。
As another experiment, an outside air temperature of 28 ° C. was measured.
Temperature in constant space 20 ℃, introduction amount 20cm 3And 4 types of cover
When the test fluid was used, the results shown in Table 1 below were obtained.
It was. As shown in Table 1, for all test fluids
The measurement time could be shortened. In addition, depending on each substance
Although the time taken to shorten by the
It can be presumed to be due to the unique physical properties of.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】以上のように、本発明によれば、振動セ
ルに被検流体を導入した後、該振動セルの固有振動周期
に基づいて所定の基準温度における被検流体の密度を測
定する方法において、基準温度と該振動セルとの温度差
に基づいて、得られる振動周期を基準温度下での固有振
動周期に近似させるようにしているので、上記被検流体
を導入から密度の測定までの時間を短縮できる。これに
よって、多数の試料の密度を測定することができる効果
を奏する。
As described above, according to the present invention, after introducing the fluid to be measured into the vibrating cell, the density of the fluid to be measured at a predetermined reference temperature is measured based on the natural vibration period of the vibrating cell. In the method, based on the temperature difference between the reference temperature and the vibrating cell, the obtained vibration cycle is approximated to the natural vibration cycle under the reference temperature. Therefore, from the introduction of the test fluid to the measurement of the density. The time can be shortened. As a result, it is possible to measure the density of many samples.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るフロー図である。FIG. 1 is a flow chart according to an embodiment of the present invention.

【図2】本発明が適用される装置の要部構成図である。FIG. 2 is a main part configuration diagram of an apparatus to which the present invention is applied.

【図3】上記実施例における近似式の概念を示すグラフ
である。
FIG. 3 is a graph showing the concept of an approximate expression in the above embodiment.

【図4】上記実施例と従来例とによって得られる密度の
経時変化を示すグラフである。
FIG. 4 is a graph showing changes with time of the density obtained in the above-mentioned example and the conventional example.

【符号の説明】[Explanation of symbols]

11 被検流体 12 振動セル K0 基準温度 K 振動セルの温度 ΔK 温度差 T0 基準温度における固有振動周期 TK 固有振動周期 ρ 密度 a 比例定数11 fluid to be tested 12 vibration cell K 0 reference temperature K temperature of vibration cell ΔK temperature difference T 0 natural vibration cycle at reference temperature T K natural vibration cycle ρ density a proportional constant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 振動セル(12)に被検流体(11)を導入した
後、該振動セル(12)の固有振動周期に基づいて所定の基
準温度(K0)における被検流体(11)の密度(ρ)を測定する
振動式密度計において、 上記被検流体(11)を導入した後の振動セル(12)の温度
(K) と基準温度(K0)との温度差(ΔK=K-K0)と該振動セル
(12)の現在温度(K) における固有振動周期(TK)とに基づ
いて、基準温度(K0)における固有振動周期(T0)を求める
ことを特徴とする振動式密度計における温度補正方法。
1. A test fluid (11) at a predetermined reference temperature (K 0 ) based on a natural vibration period of the vibration cell (12) after introducing the test fluid (11) into the vibration cell (12). In the vibrating densitometer for measuring the density (ρ) of the
(K) and the temperature difference (ΔK = KK 0 ) between the reference temperature (K 0 ) and the vibration cell
Based on the natural vibration period (T K ) at the current temperature (K) in (12), the temperature correction in the vibration type densitometer characterized by obtaining the natural vibration period (T 0 ) at the reference temperature (K 0 ). Method.
【請求項2】 T0 =TK ×(1−aΔK)〔a:定
数〕なる一次近似式で、基準温度(K0)における固有振動
周期(T0)を求める請求項1に記載の振動式密度計におけ
る温度補正方法。
2. The vibration according to claim 1, wherein the natural vibration period (T 0 ) at the reference temperature (K 0 ) is obtained by a first-order approximation formula of T 0 = T K × (1-aΔK) [a: constant]. Method for temperature compensation in a densitometer
【請求項3】 上記測定を複数回行い、得られた密度
(ρ) と、前回の測定で得られた密度 (ρ′) との差が
零になった場合に測定を終了する請求項1に記載の振動
式密度計における温度補正方法。
3. The density obtained by performing the above measurement a plurality of times
The temperature correction method for a vibrating density meter according to claim 1, wherein the measurement is terminated when the difference between (ρ) and the density (ρ ′) obtained in the previous measurement becomes zero.
JP21435092A 1992-08-11 1992-08-11 Temperature compensation for oscillating density meter Pending JPH0658862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21435092A JPH0658862A (en) 1992-08-11 1992-08-11 Temperature compensation for oscillating density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21435092A JPH0658862A (en) 1992-08-11 1992-08-11 Temperature compensation for oscillating density meter

Publications (1)

Publication Number Publication Date
JPH0658862A true JPH0658862A (en) 1994-03-04

Family

ID=16654319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21435092A Pending JPH0658862A (en) 1992-08-11 1992-08-11 Temperature compensation for oscillating density meter

Country Status (1)

Country Link
JP (1) JPH0658862A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521467A (en) * 2003-09-29 2007-08-02 マイクロ・モーション・インコーポレーテッド Method for detecting corrosion, erosion or product accumulation in vibration element densitometer and Coriolis flow meter, and calibration verification method
US7827844B2 (en) 2003-09-29 2010-11-09 Micro Motion, Inc. Method for detecting corrosion, erosion or product buildup on vibrating element densitometers and Coriolis flowmeters and calibration validation
JP2011027653A (en) * 2009-07-29 2011-02-10 Kyoto Electron Mfg Co Ltd Vibration type densitometer
JP2011038810A (en) * 2009-08-07 2011-02-24 Kyoto Electron Mfg Co Ltd Vibration-type density measuring method and vibration-type densitometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521467A (en) * 2003-09-29 2007-08-02 マイクロ・モーション・インコーポレーテッド Method for detecting corrosion, erosion or product accumulation in vibration element densitometer and Coriolis flow meter, and calibration verification method
US7827844B2 (en) 2003-09-29 2010-11-09 Micro Motion, Inc. Method for detecting corrosion, erosion or product buildup on vibrating element densitometers and Coriolis flowmeters and calibration validation
JP2011027653A (en) * 2009-07-29 2011-02-10 Kyoto Electron Mfg Co Ltd Vibration type densitometer
JP2011038810A (en) * 2009-08-07 2011-02-24 Kyoto Electron Mfg Co Ltd Vibration-type density measuring method and vibration-type densitometer

Similar Documents

Publication Publication Date Title
US4491009A (en) Electronic circuit for vibrating tube densimeter
US4470294A (en) Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density
RU2400707C1 (en) Method of calibrating scaling factor of axially symmetrical vibrational rate-gyro sensor
US3600933A (en) Apparatus for determining the freezing point of a solution
US5477726A (en) Apparatus for determining the density of liquids and gases from a period of an oscillator filled with a test sample
US3971246A (en) Method and apparatus for measuring the coefficient of thermal conductivity of a sample
JPS6382354A (en) Gas testing method and device
US6913383B2 (en) Method and apparatus for thermally investigating a material
US4555932A (en) Method and apparatus for assaying the purity of a gas
US6616330B2 (en) Automatic humidity step control thermal analysis apparatus
JP5355278B2 (en) Calibration parameter determination method and density calculation method for vibration type density meter
US5685192A (en) Apparatus for determining the moisture content of solids over a range of relative humidities and temperatures
JPH0658862A (en) Temperature compensation for oscillating density meter
JP5473455B2 (en) Vibrating density meter
JP4795231B2 (en) Specific heat measuring method and apparatus
Schwarz Simple system using one‐crystal composite oscillator for internal friction and modulus measurements
CN108896654B (en) Energy dissipation factor measuring method based on piezoelectric acoustic wave resonant sensor
JP2002148295A (en) Method and instrument for frequency measurement and analytical equipment
JP3383949B2 (en) Measurement method of dissolved gas amount of fluid
JP5295028B2 (en) Vibrating density meter
SU682796A1 (en) Apparatus for the determination of shear viscosity and elasticity of media
US20090271130A1 (en) Method for measuring suspended sediment concentration in water
WO2022080187A1 (en) Vibration-type density meter, and air bubble entrainment determination method in vibration-type density meter
SU1599711A1 (en) Viscosity vibration pickup
JP4216692B2 (en) Mass sensor