JP2011027653A - Vibration type densitometer - Google Patents

Vibration type densitometer Download PDF

Info

Publication number
JP2011027653A
JP2011027653A JP2009175980A JP2009175980A JP2011027653A JP 2011027653 A JP2011027653 A JP 2011027653A JP 2009175980 A JP2009175980 A JP 2009175980A JP 2009175980 A JP2009175980 A JP 2009175980A JP 2011027653 A JP2011027653 A JP 2011027653A
Authority
JP
Japan
Prior art keywords
temperature
measured
sample
cell
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009175980A
Other languages
Japanese (ja)
Other versions
JP5473455B2 (en
Inventor
Takeshi Matsuoka
武志 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2009175980A priority Critical patent/JP5473455B2/en
Publication of JP2011027653A publication Critical patent/JP2011027653A/en
Application granted granted Critical
Publication of JP5473455B2 publication Critical patent/JP5473455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration type densitometer capable of removing the effect on a density indication value in a case that the temperature distribution in a cell is changed by a change in the outside temperature and a change in the temperature of a sample. <P>SOLUTION: A sample to be measured is introduced into a measuring cell 1 through a sampling tube 16 and the inherent vibration cycle T<SB>SAMP</SB>of the measuring cell 1 is measured and the temperature t<SB>CELL</SB>and joint temperature t<SB>JOINT</SB>of the measuring cell are also obtained on the basis of the outputs of thermistors 14 and 15. Then, at the temperature t<SB>CELL</SB>of the measuring cell=20.00°C and the joint temperature t<SB>JOINT</SB>=20.01°C, 20.01°C is input to the fitting formula read from a memory part 25 to calculate the vibration frequency T<SB>AIR</SB>,<SB>20.01°C</SB><SP>2</SP>and T<SB>WATER</SB>,<SB>20.01°C</SB><SP>2</SP>and the values of the calibration parameters K<SB>120.01°C</SB>and K<SB>220.01°C</SB>at the temperature of 20.01°C are calculated from the calculated T<SB>AIR</SB>,<SB>20.01°C</SB><SP>2</SP>and T<SB>WATER</SB>,<SB>20.01°C</SB><SP>2</SP>. The density ρ<SB>SAMP</SB>of the sample to be measured is calculated according to ρ<SB>SAMP</SB>=K<SB>120.01°C</SB>×T<SB>SAMP</SB><SP>2</SP>+K<SB>220.01°C</SB>to be displayed on a display part 24. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、振動式密度計に関し、特に、測定セル(振動子)への環境温度変化による影響を除去する機能を備えた振動式密度計に関する。   The present invention relates to a vibration type density meter, and more particularly to a vibration type density meter having a function of removing the influence of a change in environmental temperature on a measurement cell (vibrator).

振動式密度計は被測定試料を収容した測定セルを振動させて、測定した固有振動周期から被測定試料の密度を演算、出力する装置であり、例えば清涼飲料の濃度管理等の各種試料の密度測定に利用されている。   The vibration type density meter is a device that vibrates the measurement cell containing the sample to be measured, and calculates and outputs the density of the sample to be measured from the measured natural vibration period. For example, the density of various samples such as concentration management of soft drinks It is used for measurement.

この振動式密度計は、例えば、ガラス製のU字型測定セルを備え、この測定セルの先端部に永久磁石を固定し、永久磁石に対向する位置に駆動コイルと検出部を内蔵した測定ヘッドを配置している。密度測定時には、測定セル内に被測定試料を導入し、測定ヘッドの駆動コイルに駆動電流を流して永久磁石に電磁力を作用させることにより測定セルを振動させ、検出部により検出した測定セルの固有振動周期から被測定試料の密度を求めている。   This vibration-type density meter has, for example, a glass U-shaped measurement cell, a permanent magnet is fixed to the tip of the measurement cell, and a drive head and a detection unit are built in a position facing the permanent magnet. Is arranged. At the time of density measurement, a sample to be measured is introduced into the measurement cell, and the measurement cell is vibrated by applying a driving current to the driving coil of the measurement head and applying an electromagnetic force to the permanent magnet. The density of the sample to be measured is obtained from the natural vibration period.

上記の振動式密度計は他の振動系と同様に、図4に示すように、バネ定数kと質量mで示すことができる。この振動系において、固有振動周期をTとすると、
T=√(m/k)
すなわち、
=m/k
である。
質量mはガラス管の質量mglass、被測定試料の質量msampleに分かれ、
=(msample+mglass)/k
であるので、被測定試料の質量msampleは、
sample=k・T−mglass・・・(1)
となる。
The vibration type density meter can be represented by a spring constant k and a mass m, as shown in FIG. In this vibration system, when the natural vibration period is T,
T = √ (m / k)
That is,
T 2 = m / k
It is.
The mass m is divided into the mass m glass of the glass tube and the mass m sample of the sample to be measured.
T 2 = (m sample + m glass ) / k
Therefore, the mass m sample of the sample to be measured is
m sample = k · T 2 −m glass (1)
It becomes.

上記の(1)式より被測定試料の密度ρsampleは、測定セルの容量をVcellとすると、
ρsample=msample/Vcell=k・T/Vcell−mglass/Vcell
となる。ここで、k/VcellをK、−mglass/VcellをKとすると、
ρsample=K・T+K・・・(2)
で表すことができる。
Density [rho sample of the above (1) sample to be measured from the equation, the capacitance of the measuring cell and V cell,
ρ sample = m sample / V cell = k · T 2 / V cell -m glass / V cell
It becomes. Here, when k / V cell is K 1 and −m glass / V cell is K 2 ,
ρ sample = K 1 · T 2 + K 2 (2)
Can be expressed as

次に、被測定試料の密度の算出方法について説明する。
既知の密度をもつ2種類の物質、例えば純水(ρWATER)と空気(ρAIR)を測定セルで測定した固有振動周期をTWATER、TAIRとすると、
ρWATER =K・TWATER
+K・・・(3)
ρAIR =K・TAIR 2 +K・・・(4)
であり、上記式(3)、(4)より校正パラメータK、Kは、
=(ρWATER―ρAIR)/(TWATER −TAIR )・・・(5)
=−TAIR ・(ρWATER―ρAIR)/(TWATER −TAIR )+ρAIR・・・(6)
となる。
そして、純水と空気の測定温度での密度ρWATER及びρAIRは既知であるので、純水と空気を測定した振動周期TWATER、TAIRから上記校正パラメータK、Kを算出することができ、上記の式(2)により被測定試料を測定した固有振動周期Tから被測定試料の密度ρsampleを求めることができる。
Next, a method for calculating the density of the sample to be measured will be described.
When T WATER and T AIR are natural vibration periods of two kinds of substances having a known density, for example, pure water (ρ WATER ) and air (ρ AIR ) measured by a measuring cell,
ρ WATER = K 1・ T WATER 2
+ K 2 (3)
ρ AIR = K 1 · T AIR 2 + K 2 (4)
From the above equations (3) and (4), the calibration parameters K 1 and K 2 are
K 1 = (ρ WATER −ρ AIR ) / (T WATER 2 −T AIR 2 ) (5)
K 2 = −T AIR 2 · (ρ WATER −ρ AIR ) / (T WATER 2 −T AIR 2 ) + ρ AIR (6)
It becomes.
Since the densities ρ WATER and ρ AIR at the measured temperatures of pure water and air are known, the calibration parameters K 1 and K 2 are calculated from the vibration periods T WATER and T AIR measured for pure water and air. The density ρ sample of the sample to be measured can be obtained from the natural vibration period T obtained by measuring the sample to be measured by the above equation (2).

上記のようにして算出した校正パラメータK、Kは、ある基準温度tの下での特定の2つの物質の密度及び固有振動周期に基づいて決定する定数であるので、この基準温度tと異なる温度の測定セルで被測定試料を測定した固有振動周期に基づいて被測定試料の密度を算出した場合には、真の値との誤差が生じる。 Since the calibration parameters K 1 and K 2 calculated as described above are constants determined based on the density and natural vibration period of two specific substances under a certain reference temperature t 0 , the reference temperature t When the density of the sample to be measured is calculated based on the natural vibration period obtained by measuring the sample to be measured using a measurement cell having a temperature different from 0 , an error from the true value occurs.

そのため、断熱材、サーモモジュール等の温度制御手段を用いて測定セルの温度を基準温度tに保持するようにし、測定セルの温度が基準温度tになった時点での固有振動周期を測定するようにしている(例えば、特許文献1参照)。 Therefore, the temperature of the measurement cell is maintained at the reference temperature t 0 using temperature control means such as a heat insulating material or a thermo module, and the natural vibration period when the temperature of the measurement cell reaches the reference temperature t 0 is measured. (For example, refer to Patent Document 1).

特開平6−58862号公報Japanese Patent Laid-Open No. 6-58862

上記のような振動式密度計は、測定時間が短く、試料が少なくてすみ、かつ、高精度であるが、外気温度や試料温度の変化による測定セルへの温度影響があり、測定セル温度計の指示値が一定であっても、環境温度が変化した場合、元々ある測定セル内の温度分布が変化し、測定した振動周期が変化する。すなわち、完全に断熱された系(測定セル)では温度分布は存在しないが、通常の装置では、試料注入側の断熱性が不十分であり、測定セルの中心部から試料注入側にかけて、大きな温度分布が存在する。
このため、測定セル温度計の指示値が一定であっても、環境温度が変化した場合、元々ある測定セル内の温度分布が変化し、振動周期、密度指示値が変化する。
The vibration density meter as described above has a short measurement time, requires a small number of samples, and is highly accurate. However, there is a temperature effect on the measurement cell due to changes in the outside air temperature or sample temperature. Even if the indicated value is constant, when the environmental temperature changes, the temperature distribution in the original measurement cell changes, and the measured vibration period changes. That is, the temperature distribution does not exist in a completely insulated system (measurement cell), but in a normal apparatus, the heat insulation on the sample injection side is insufficient, and a large temperature is required from the center of the measurement cell to the sample injection side. Distribution exists.
For this reason, even if the indicated value of the measurement cell thermometer is constant, when the environmental temperature changes, the temperature distribution in the original measurement cell changes, and the vibration period and density indication value change.

本発明は、上記の課題を解決するために創案されたものであり、外部温度変化、試料温度変化によりセル内温度分布が変化した場合の密度指示値への影響を除去することができる振動式密度計を提供することを目的とする。   The present invention was devised to solve the above problems, and is a vibration type that can remove the influence on the density indication value when the temperature distribution in the cell changes due to external temperature change or sample temperature change. The purpose is to provide a density meter.

図4の振動系において、バネ定数kと質量mの代表温度が常に一定であれば、振動周期は変化しないが、バネ定数または質量mの代表温度が変化すると、振動周期も変化する。そして、測定セルの一点で温度制御する場合、最も振動周期に影響の大きい質量mの代表温度で温度制御を行うが、この場合、バネ定数kの代表温度は外気温の影響を受ける。
この影響を除去する方法として、別途、バネ定数kの代表温度を温度制御する二点での温度制御、あるいは、温度とバネ定数kとの関係から得られる振動周期の補正が考えられるが、二点での温度制御は構造上難しいため、本発明では、振動周期の補正を実施する。
In the vibration system of FIG. 4, if the representative temperature of the spring constant k and the mass m is always constant, the vibration cycle does not change, but if the representative temperature of the spring constant or the mass m changes, the vibration cycle also changes. When temperature control is performed at one point of the measurement cell, temperature control is performed at the representative temperature of the mass m that has the greatest influence on the vibration cycle. In this case, the representative temperature of the spring constant k is affected by the outside air temperature.
As a method for removing this influence, temperature control at two points for temperature control of the representative temperature of the spring constant k or correction of the vibration period obtained from the relationship between the temperature and the spring constant k can be considered. Since temperature control at a point is difficult in terms of structure, the present invention corrects the vibration period.

図5に示すように、振動式密度計の振動子において、質量mの代表温度は、先端から1/3付近であることが知られているため、この部分の温度をサーミスタで測定し、測定セルの温度制御を行う。一方、振動式密度計の振動子において、バネ定数kの代表温度は、節付近であるため、この部分の温度をサーミスタで測定し、振動周期の温度補正に使用する。   As shown in FIG. 5, in the vibrator of the vibratory density meter, since the representative temperature of the mass m is known to be about 1/3 from the tip, the temperature of this portion is measured with a thermistor and measured. Perform cell temperature control. On the other hand, in the vibrator of the vibration type density meter, the representative temperature of the spring constant k is near the node. Therefore, the temperature of this part is measured with a thermistor and used for temperature correction of the vibration period.

すなわち、上記の式(2)において、校正パラメータKはガラス管の質量/測定セル容量であるので、バネ定数kの代表温度、質量mの代表温度から影響を受けにくいが、校正パラメータKは、バネ定数kの代表温度により変化する。この影響を除去するために、バネ定数kの代表温度を使用して校正パラメータK、Kを補正する。 That is, in the above equation (2), the calibration parameter K 2 is the mass of the glass tube / the capacity of the measuring cell, and thus is hardly affected by the representative temperature of the spring constant k and the representative temperature of the mass m, but the calibration parameter K 1 Varies depending on the representative temperature of the spring constant k. In order to remove this influence, the calibration parameters K 1 and K 2 are corrected using the representative temperature of the spring constant k.

言い換えると、バネ定数kの代表温度から校正パラメータK、Kを決定するのが正しい方法であるが、今までは質量mの代表温度(校正時の設定温度)から校正パラメータK、Kを決定していた不具合を修正するために、常時、バネ定数kの代表温度、すなわち、測定セルの節付近の温度を測定し、これにより校正パラメータK、Kを決定する。
ただし、校正パラメータK、Kの値は、予め作成した温度と校正パラメータK、Kの表、あるいは、各温度の校正パラメータK、Kを算出するための関数から抽出、または、算出する。
In other words, the spring is constant k to determine the representative temperature from calibration parameters K 1, K 2 which is the right way, the calibration from the representative temperature of the mass m is far (during calibration of the set temperature) parameters K 1, K In order to correct the problem that has determined 2 , the representative temperature of the spring constant k, that is, the temperature near the node of the measurement cell, is always measured, and thereby the calibration parameters K 1 and K 2 are determined.
However, the value of the calibration parameters K 1, K 2, the temperature and the calibration parameter K 1 previously prepared, K 2 tables or extraction from a function for calculating the calibration parameters K 1, K 2 of the temperature, or ,calculate.

上記のように、環境温度が変化した場合の振動周期変化の要因として最も大きいものは、1番目にセル内部温度変化によるセル内試料の温度変化、2番目に測定セルの節部温度変化による校正パラメータK、Kの変化であるが、本発明の振動式密度計によれば、セル部の代表点を一定温度にして測定セルの節付近の温度を測定し、これにより校正パラメータK、Kを決定するので、外部温度変化、試料温度変化によりセル内温度分布が変化した場合の密度指示値への影響を除去することができる。 As described above, the largest factor of the vibration period change when the environmental temperature changes is firstly the temperature change of the sample in the cell due to the change of the cell internal temperature, and secondly the calibration by the change of the node temperature of the measurement cell. Regarding the changes in the parameters K 1 and K 2 , according to the vibration type density meter of the present invention, the temperature near the node of the measurement cell is measured by setting the representative point of the cell portion to a constant temperature, and thereby the calibration parameter K 1. since determining the K 2, it is possible to eliminate the influence of the external temperature changes, density indication of when the cell temperature distribution is changed by the sample temperature change.

本発明の振動式密度計のセンサ部の構造を示す図である。It is a figure which shows the structure of the sensor part of the vibration type density meter of this invention. 図1のセンサ部を取り付けた振動式密度計の概念図である。It is a conceptual diagram of the vibration type density meter which attached the sensor part of FIG. 空気と純水を種々の温度で測定した固有振動周期の二乗を温度に対してプロットしたグラフである。It is the graph which plotted the square of the natural vibration period which measured air and pure water at various temperatures with respect to temperature. 振動式密度計の振動系をモデル化した図である。It is the figure which modeled the vibration system of the vibration type density meter. 振動式密度計のセルの模式図である。It is a schematic diagram of the cell of a vibration type density meter.

図1は本発明の振動式密度計のセンサ部の構造を示す図であり、図1(a)はセンサ部の側面図、図2(b)はセンサ部の上面図である。このセンサ部は、測定セル1、永久磁石2、ホルダ3a、3b、温度センサ4、ガラス製の外筒5により構成されている。
測定セル1は、肉厚0.2mm程度のガラスで作成した細いU字管であり、その先端部には永久磁石の薄板2が接着剤により固着されている。また、この測定セル1の基端部はホルダ3a、3bに固定され、このホルダ3a、3bは図1(a)に示すように、外筒5に設けられた突起6により固定されている。また、温度センサ4は、ガラス管の内部にサーミスタが挿入されたものであり、試料の温度及び測定セル1の節部の温度を測定する。このセンサ部は組み立て後、ヘリウム注入口7を介して内部にヘリウムが注入された後、封止される。
1A and 1B are diagrams showing the structure of a sensor unit of a vibration type density meter according to the present invention. FIG. 1A is a side view of the sensor unit, and FIG. 2B is a top view of the sensor unit. This sensor part is composed of a measurement cell 1, a permanent magnet 2, holders 3a and 3b, a temperature sensor 4 and a glass outer cylinder 5.
The measurement cell 1 is a thin U-shaped tube made of glass having a wall thickness of about 0.2 mm, and a thin plate 2 of a permanent magnet is fixed to the tip of the tube with an adhesive. Further, the base end portion of the measurement cell 1 is fixed to holders 3a and 3b, and the holders 3a and 3b are fixed by projections 6 provided on the outer cylinder 5 as shown in FIG. The temperature sensor 4 is a glass tube in which a thermistor is inserted, and measures the temperature of the sample and the temperature of the node of the measurement cell 1. This sensor part is sealed after helium is injected into it through the helium inlet 7 after assembly.

一方、図2は図1のセンサ部を取り付けた振動式密度計の概念図であり、センサ部が断熱材11の内部に収容されるとともに、ペルチェ素子(図示せず)を備えた銅ブロック12がセンサ部、すなわち、測定セル1内の被測定試料の温度を設定温度に保つように制御される。また、測定セル1の先端部に固定された永久磁石2に対向する位置に、駆動コイルと検出コイルを内蔵した測定ヘッド13が配置されている。   On the other hand, FIG. 2 is a conceptual diagram of the vibration type density meter to which the sensor unit of FIG. 1 is attached. The sensor unit is housed in the heat insulating material 11 and has a copper block 12 having a Peltier element (not shown). Is controlled so that the temperature of the sample to be measured in the sensor unit, that is, the measurement cell 1 is maintained at the set temperature. In addition, a measurement head 13 incorporating a drive coil and a detection coil is disposed at a position facing the permanent magnet 2 fixed to the tip of the measurement cell 1.

また、図に示すように、温度センサ4のガラス管内には、二つのサーミスタ14、15が配置され、サーミスタ14は測定セル1の先端付近の温度を測定し、サーミスタ15は測定セル1の根元付近の温度、すなわち、節温度を測定する。
一方、測定セル1の一方の開口端は被測定流体を導入するサンプリングチューブ16に接続され、他方の開口端は測定の完了した被測定流体を排出する排液チューブ17に接続されている。
As shown in the figure, two thermistors 14 and 15 are arranged in the glass tube of the temperature sensor 4, and the thermistor 14 measures the temperature near the tip of the measurement cell 1, and the thermistor 15 is the root of the measurement cell 1. Measure the temperature in the vicinity, that is, the node temperature.
On the other hand, one open end of the measurement cell 1 is connected to a sampling tube 16 that introduces a fluid to be measured, and the other open end is connected to a drain tube 17 that discharges the measured fluid that has been measured.

制御装置18は、制御部21、駆動部22、検出部23、表示部24及び記憶部25を備え、制御部21には上記サーミスタ14の温度検出出力が入力され、サーミスタ14の温度が測定設定温度となるように、銅ブロック12のペルチェ素子を制御する。また、駆動部22は測定ヘッド13の駆動コイルに駆動電流を流し、検出部23は測定ヘッド13の検出コイルの出力を検出して測定セル1の振動周期を検出する。さらに、制御部21は、表示部24に測定の設定画面や密度の測定値を表示するとともに、ユーザが設定した測定条件や検出した振動周期等を記憶部25に記憶する。また、この記憶部25には種々の温度での空気、純水の密度のデータを記憶したテーブルを備えている。   The control device 18 includes a control unit 21, a drive unit 22, a detection unit 23, a display unit 24, and a storage unit 25. The temperature detection output of the thermistor 14 is input to the control unit 21, and the temperature of the thermistor 14 is measured and set. The Peltier element of the copper block 12 is controlled so that the temperature is reached. The drive unit 22 supplies a drive current to the drive coil of the measurement head 13, and the detection unit 23 detects the output of the detection coil of the measurement head 13 to detect the vibration cycle of the measurement cell 1. Further, the control unit 21 displays the measurement setting screen and the density measurement value on the display unit 24, and stores the measurement condition set by the user, the detected vibration cycle, and the like in the storage unit 25. In addition, the storage unit 25 is provided with a table that stores density data of air and pure water at various temperatures.

本発明では、環境温度補正、すなわち、測定セルの節温度を用いて校正パラメータを算出するが、以下、種々の温度での校正パラメータの算出方法について説明する。
まず、5℃、20℃、50℃、70℃での純水、空気の振動周期TWATER、TAIRを振動式密度計で測定する。
図3は測定した純水と空気の振動周期の二乗と温度との関係をプロットしたものであり、■が純水(WATER)、◆が空気(AIR)を測定した振動周期である。そして、図3の曲線は、下記式(7)、(8)に示すように、この振動周期の二乗と温度との関係を2次式の関数でフィッティングしたものであり、校正パラメータの算出に使用するため、この関数を制御装置18の記憶部25に記憶しておく。
AIR、t =aAIR・t+bAIR・t+cAIR・・・(7)
WATER、t =aWATER・t+bWATER・t+cWATER・・・(8)
In the present invention, the calibration parameter is calculated using the environmental temperature correction, that is, the node temperature of the measurement cell. Hereinafter, a method for calculating the calibration parameter at various temperatures will be described.
First, the vibration periods T WATER and T AIR of pure water and air at 5 ° C., 20 ° C., 50 ° C., and 70 ° C. are measured with a vibrating densimeter .
FIG. 3 is a plot of the relationship between the square of the vibration period of pure water and air measured and the temperature, where ■ is the vibration period when pure water (WATER) is measured, and ◆ is the vibration period when air (AIR) is measured. The curve in FIG. 3 is obtained by fitting the relationship between the square of the vibration period and the temperature with a quadratic function as shown in the following equations (7) and (8). This function is stored in the storage unit 25 of the control device 18 for use.
T AIR, t 2 = a AIR · t 2 + b AIR · t + c AIR (7)
T WATER, t 2 = a WATER · t 2 + b WATER · t + c WATER (8)

そして、密度の演算時等には、上記の式(7)、(8)に所定の温度を入力することにより、その温度における空気、純水の振動周期が得られるので、式(5)、(6)にその値を代入することにより、各温度での校正パラメータK1t、K2tを下記式により求めることができる。
1t=(ρWATER―ρAIR)/(TWATER、t −TAIR、t )・・・(9)
2t=−TAIR、t ・(ρWATER―ρAIR)/(TWATER、t −TAIR、t )+ρAIR・・・(10)
When calculating the density, etc., by inputting a predetermined temperature in the above equations (7) and (8), the vibration period of air and pure water at that temperature can be obtained. By substituting the value into (6), the calibration parameters K 1t and K 2t at each temperature can be obtained by the following equations.
K 1t = (ρ WATER− ρ AIR ) / (T WATER, t 2 −T AIR, t 2 ) (9)
K 2t = −T AIR, t 2 · (ρ WATER −ρ AIR ) / (T WATER, t 2 −T AIR, t 2 ) + ρ AIR (10)

次に、20℃で被測定試料の密度を測定する場合の作用について説明する。
制御部18は、上記したように、サーミスタ14の温度検出出力が20℃となるように、銅ブロック12のペルチェ素子を制御するとともに、サンプリングチューブ16を通じて測定セル1内に被測定試料を導入する。そして、制御装置18の駆動部22より測定ヘッド13の駆動コイルに駆動電流を入力して永久磁石2に電磁力を作用させることにより、測定セル1に振動を開始させる。
このときの振動を測定ヘッド13の検出コイルが検出して検出信号を検出部23に入力し、この振動周期に同期した駆動信号を引き続き、測定ヘッド13の駆動コイルに入力することにより、測定セル1を一定の周期で振動させ、固有振動周期TSAMPを測定する。このとき、測定セルの温度tCELL、節温度tJOINTもサーミスタ14、15の出力により取得する。
Next, the operation when the density of the sample to be measured is measured at 20 ° C. will be described.
As described above, the control unit 18 controls the Peltier element of the copper block 12 so that the temperature detection output of the thermistor 14 is 20 ° C., and introduces the sample to be measured into the measurement cell 1 through the sampling tube 16. . Then, a driving current is input to the driving coil of the measuring head 13 from the driving unit 22 of the control device 18 to apply an electromagnetic force to the permanent magnet 2, thereby causing the measuring cell 1 to start vibrating.
The detection coil of the measurement head 13 detects the vibration at this time, and a detection signal is input to the detection unit 23, and a drive signal synchronized with this vibration cycle is continuously input to the drive coil of the measurement head 13, thereby allowing the measurement cell to 1 is vibrated at a constant period, and the natural vibration period T SAMP is measured. At this time, the temperature t CELL and the node temperature t JOINT of the measurement cell are also acquired from the outputs of the thermistors 14 and 15.

いま、例えば、測定セルの温度tCELL=20.00℃、節温度tJOINT=20.01℃であった場合、被測定試料の密度を以下のようにして演算する。
制御部21は、記憶部25から読み出した上記式(7)、(8)のフィッティング式に20.01℃を入力してTAIR、20.01℃ 、TWATER、20.01℃ を算出し、この算出したTAIR、20.01℃ 、TWATER、20.01℃ を式(9)、(10)に代入することにより、温度20.01℃での校正パラメータK120.01℃、K220.01℃の値を求める。
For example, when the temperature t CELL of the measurement cell is 20.00 ° C. and the node temperature t JOINT = 20.01 ° C., the density of the sample to be measured is calculated as follows.
The control unit 21 inputs 20.01 ° C. to the fitting equations of the above formulas (7) and (8) read from the storage unit 25 and calculates TAIR, 20.01 ° C. 2 , T WATER, 20.01 ° C. 2 and calculates this. T AIR, 20.01 ℃ 2, T WATER, formula (9) 20.01 ° C. 2, by substituting (10), determines the value of the calibration parameter K 120.01 ℃, K 220.01 at temperature 20.01 ° C. .

そして、校正パラメータとして、上記のK120.01℃、K220.01℃の値を使用し、振動周期として、上記のTSAMPを使用することにより、制御部21は、被測定試料の密度ρSAMPを以下の式により算出して表示部24に表示する。
ρSAMP=K120.01℃×TSAMP +K220.01℃
以上のように、測定セルの節温度に基づいて算出した校正パラメータを用いて被測定試料の密度を演算するので、外部温度変化、試料温度変化によりセル内温度分布が変化しても密度指示値への影響を除去することができる。
Then, as the calibration parameters, the above K 120.01 ° C., using the values of K 220.01 ° C., as the vibration period, by using the above T SAMP, the control unit 21, the density of the sample to be measured ρ SAMP is calculated by the following formula and displayed on the display unit 24.
ρ SAMP = K 120.01 ° C × T SAMP 2 + K 220.01 ° C
As described above, the density of the sample to be measured is calculated using the calibration parameter calculated based on the node temperature of the measurement cell. Therefore, even if the temperature distribution in the cell changes due to external temperature change or sample temperature change, the density indication value The influence on can be removed.

なお、上記の実施例では、純水と空気の振動周期の二乗と温度との関係を2次式の関数でフィッティングし、この関数から所望温度での純水と空気の振動周期の二乗を算出したが、振動式密度計の温度を様々に変えて、種々の温度における空気と純水の振動周期のデータを多数取得し、純水と空気の振動周期の二乗と温度との関係の表をテーブルとして記憶部25に記憶しておき、この表から所望温度での純水と空気の振動周期の二乗を抽出することも可能である。
また、上記の実施例では、純水と空気の振動周期の二乗と温度との関係を2次式の関数でフィッティングしたが、純水、空気の振動周期を測定する温度の測定点数を増やすことにより、3次式、4次式等の多項式で純水と空気の振動周期の二乗と温度との関係をフィッティングすることも可能である。
In the above embodiment, the relationship between the square of the vibration period of pure water and air and the temperature is fitted by a quadratic function, and the square of the vibration period of pure water and air at the desired temperature is calculated from this function. However, by changing the temperature of the vibratory densimeter in various ways, we obtained a lot of vibration period data of air and pure water at various temperatures, and obtained a table of the relationship between the square of the vibration period of pure water and air and the temperature. It is also possible to store in the storage unit 25 as a table and extract the square of the vibration cycle of pure water and air at a desired temperature from this table.
In the above embodiment, the relationship between the square of the vibration period of pure water and air and the temperature is fitted by a quadratic function, but the number of temperature measurement points for measuring the vibration period of pure water and air is increased. Thus, it is also possible to fit the relationship between the square of the vibration period of pure water and air and the temperature with a polynomial such as a cubic or quartic equation.

さらに、以上の実施例では、測定セルの先端に取り付けた永久磁石に対向して配置される駆動コイル及び検出コイルよりなる測定ヘッドを備えた振動式密度計を例として説明したが、振動を光により検出するタイプの振動式密度計等の他の密度計にも、本発明の振動式密度計を適用することができる。   Furthermore, in the above embodiment, the vibration type density meter provided with the measurement head including the drive coil and the detection coil arranged to face the permanent magnet attached to the tip of the measurement cell has been described as an example. The vibration type density meter of the present invention can also be applied to other density meters such as the type of vibration density meter detected by the above.

1 測定セル
2 永久磁石
3a、3b ホルダ
4 温度センサ
5 外筒
6 突起
7 ヘリウム注入口
11 断熱材
12 銅ブロック
13 測定ヘッド
14、15 サーミスタ
16 サンプリングチューブ
17 排液チューブ
18 制御装置
21 制御部
22 駆動部
23 検出部
24 表示部
25 記憶部
DESCRIPTION OF SYMBOLS 1 Measurement cell 2 Permanent magnet 3a, 3b Holder 4 Temperature sensor 5 Outer cylinder 6 Protrusion 7 Helium inlet 11 Heat insulating material 12 Copper block 13 Measurement head 14, 15 Thermistor 16 Sampling tube 17 Drain tube 18 Controller 21 Controller 22 Drive Unit 23 detection unit 24 display unit 25 storage unit

Claims (2)

被測定試料を収容した測定セルの振動周期と校正パラメータとから被測定試料の密度を演算する制御装置を備えた振動式密度計であって、
測定セルの根元付近に配置した温度センサを備え、上記制御装置が、密度演算時に、上記温度センサにより検出した測定セルの節温度での校正パラメータを算出して被測定流体の密度を演算することを特徴とする振動式密度計。
A vibration type densimeter equipped with a control device for calculating the density of the sample to be measured from the vibration period of the measurement cell containing the sample to be measured and the calibration parameter,
A temperature sensor arranged near the base of the measurement cell is provided, and the control device calculates the calibration parameter at the measured temperature of the measurement cell detected by the temperature sensor and calculates the density of the fluid to be measured when calculating the density. This is a vibration type density meter.
上記制御装置が、密度既知の二つの物質の種々の温度における振動周期と温度との関係に基づいて各温度での密度既知の二つの物質の振動周期を得、この振動周期から各温度での校正パラメータを算出することを特徴とする、上記請求項1に記載された振動式密度計。   The control device obtains the vibration period of the two substances of known density at each temperature based on the relationship between the vibration period and the temperature of the two substances of known density at various temperatures. The vibration type density meter according to claim 1, wherein a calibration parameter is calculated.
JP2009175980A 2009-07-29 2009-07-29 Vibrating density meter Active JP5473455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175980A JP5473455B2 (en) 2009-07-29 2009-07-29 Vibrating density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175980A JP5473455B2 (en) 2009-07-29 2009-07-29 Vibrating density meter

Publications (2)

Publication Number Publication Date
JP2011027653A true JP2011027653A (en) 2011-02-10
JP5473455B2 JP5473455B2 (en) 2014-04-16

Family

ID=43636564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175980A Active JP5473455B2 (en) 2009-07-29 2009-07-29 Vibrating density meter

Country Status (1)

Country Link
JP (1) JP5473455B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020403B1 (en) * 2011-11-28 2012-09-05 リオン株式会社 Vibration type physical property measuring apparatus and method
JP2016090580A (en) * 2014-10-31 2016-05-23 アントン パール ゲゼルシャフト ミット ベシュレンクテル ハフツングAnton Paar GmbH Method and device for measuring density of liquid medium
EP3124950A1 (en) * 2015-07-29 2017-02-01 Anton Paar GmbH Method for determining the density of liquids
CN114414432A (en) * 2022-01-24 2022-04-29 深圳国检计量测试技术有限公司 Efficient calibration device and method for vibrating densimeter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180080860A1 (en) * 2016-07-27 2018-03-22 Uop Llc Method for density measurement using multiple sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126137A (en) * 1988-11-05 1990-05-15 Kyoto Denshi Kogyo Kk Temperature control method for oscilational densimeter
JPH0658862A (en) * 1992-08-11 1994-03-04 Kyoto Electron Mfg Co Ltd Temperature compensation for oscillating density meter
JPH08159943A (en) * 1994-12-06 1996-06-21 Kyoto Electron Mfg Co Ltd Method for measuring amount of dissolved gas in fluid
JPH09196731A (en) * 1996-01-19 1997-07-31 Tokico Ltd Vibration-type measuring apparatus
JPH11190650A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Vibrating type measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126137A (en) * 1988-11-05 1990-05-15 Kyoto Denshi Kogyo Kk Temperature control method for oscilational densimeter
JPH0658862A (en) * 1992-08-11 1994-03-04 Kyoto Electron Mfg Co Ltd Temperature compensation for oscillating density meter
JPH08159943A (en) * 1994-12-06 1996-06-21 Kyoto Electron Mfg Co Ltd Method for measuring amount of dissolved gas in fluid
JPH09196731A (en) * 1996-01-19 1997-07-31 Tokico Ltd Vibration-type measuring apparatus
JPH11190650A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Vibrating type measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020403B1 (en) * 2011-11-28 2012-09-05 リオン株式会社 Vibration type physical property measuring apparatus and method
DE112012004953B4 (en) * 2011-11-28 2015-09-10 Rion Co. Ltd. Oscillator device and method for measuring physical properties
US9228930B2 (en) 2011-11-28 2016-01-05 Rion Co., Ltd. Oscillating type physical property measuring apparatus and method
JP2016090580A (en) * 2014-10-31 2016-05-23 アントン パール ゲゼルシャフト ミット ベシュレンクテル ハフツングAnton Paar GmbH Method and device for measuring density of liquid medium
US10520408B2 (en) 2014-10-31 2019-12-31 Anton Paar Gmbh Method and instrument for measuring the density of fluid media
EP3124950A1 (en) * 2015-07-29 2017-02-01 Anton Paar GmbH Method for determining the density of liquids
CN106442215A (en) * 2015-07-29 2017-02-22 安东帕有限责任公司 Method for determining the density of liquids
CN106442215B (en) * 2015-07-29 2021-07-06 安东帕有限责任公司 Method for determining the density of a liquid
AT517486B1 (en) * 2015-07-29 2022-11-15 Anton Paar Gmbh Procedure for determining the density of liquids
CN114414432A (en) * 2022-01-24 2022-04-29 深圳国检计量测试技术有限公司 Efficient calibration device and method for vibrating densimeter

Also Published As

Publication number Publication date
JP5473455B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5473455B2 (en) Vibrating density meter
CA2908920C (en) Vibratory sensor and method of varying vibration in a vibratory sensor
JP5355278B2 (en) Calibration parameter determination method and density calculation method for vibration type density meter
CN103051285B (en) For revising circuit and the method for the temperature dependency of the frequency of piezoresistive oscillator
US20160109347A1 (en) Method, circuit and flexural resonator for measuring the density of fluids
JP5421832B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
JP5335722B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
US8707763B2 (en) Method for the accurate measurement of the density of a sample
JP5641996B2 (en) Density measuring system and density measuring method
JP5295028B2 (en) Vibrating density meter
JPWO2005114156A1 (en) Specific heat measuring method and apparatus
JP2006214842A (en) Liquid physical property value measuring instrument and liquid physical property value measuring method
US20160341644A1 (en) Measuring instrument for determining the density of fluids
JPS5915837A (en) Viscosity measuring apparatus for high temperature fluid
CN108896654B (en) Energy dissipation factor measuring method based on piezoelectric acoustic wave resonant sensor
Heinisch et al. Resonant steel tuning forks for precise inline viscosity and mass density measurements in harsh environments
JP6226505B1 (en) Liquid measurement device
KR100965308B1 (en) Measurement method for very low frost point using quartz crystal microbalance dew-point sensor
JP5361602B2 (en) Vibration density measuring method and vibration density meter
US20210080366A1 (en) Oscillator for Density Measurement of a Liquid
JP2015190829A (en) Method, program, and device for determining yield value of fluid
JP4418343B2 (en) A method for obtaining a calibration straight line for obtaining specific heat at a desired temperature, and a specific heat measuring apparatus.
JP2015045602A (en) Thermometer and temperature predication method of thermometer
KR102011569B1 (en) Device for measuring viscosity of minute volume liquids and method thereof
JPH0658862A (en) Temperature compensation for oscillating density meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250