JP5361602B2 - Vibration density measuring method and vibration density meter - Google Patents

Vibration density measuring method and vibration density meter Download PDF

Info

Publication number
JP5361602B2
JP5361602B2 JP2009183997A JP2009183997A JP5361602B2 JP 5361602 B2 JP5361602 B2 JP 5361602B2 JP 2009183997 A JP2009183997 A JP 2009183997A JP 2009183997 A JP2009183997 A JP 2009183997A JP 5361602 B2 JP5361602 B2 JP 5361602B2
Authority
JP
Japan
Prior art keywords
sample
measured
glass cell
vibration
static electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009183997A
Other languages
Japanese (ja)
Other versions
JP2011038810A (en
Inventor
義康 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2009183997A priority Critical patent/JP5361602B2/en
Publication of JP2011038810A publication Critical patent/JP2011038810A/en
Application granted granted Critical
Publication of JP5361602B2 publication Critical patent/JP5361602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration-type density measuring method removing influence on an oscillation cycle from static electricity charged on a liquid sample to be measured and a vibration-type densitometer discharging static electricity charged on a liquid sample to be measured. <P>SOLUTION: A liquid sample is introduced into a glass cell 1 through a sample introducing tube 8a, a metal joint 7a and cell introducing piping 6a, and an earth wire is contacted to the metal joint 7a or 7b, thereby static electricity charged on a liquid sample is discharged. Then the glass cell 1 is vibrated by making electromagnetic force interact on a permanent magnet 2 and density of the liquid sample is calculated from an oscillation cycle measured for the glass cell 1. In this way, the static electricity charged on the liquid sample is discharged, therefore, a correct density value is measured without changing the oscillation cycle of the glass cell due to static electricity. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、振動式密度計に関し、特に、測定対象の液体試料に帯電する静電気の影響を除去する振動式密度計に関する。   The present invention relates to a vibration type density meter, and more particularly to a vibration type density meter that removes the influence of static electricity charged on a liquid sample to be measured.

振動式密度計は被測定試料を収容した測定セルを振動させて、測定した固有振動周期から被測定試料の密度を演算、出力する装置であり、例えば清涼飲料の濃度管理等の各種流体の密度測定に利用されている。   The vibration type density meter is a device that vibrates the measurement cell containing the sample to be measured, and calculates and outputs the density of the sample to be measured from the measured natural vibration period. For example, the density of various fluids such as concentration management of soft drinks It is used for measurement.

この振動式密度計は、例えば、ガラス製のU字型測定セルを備え、このガラスセルの先端部に永久磁石を固定し、永久磁石に対向する位置に駆動コイルと検出部を内蔵した測定ヘッドを配置している。そして、被測定試料の密度測定時には、ガラスセルに被測定試料を導入するとともに、測定ヘッドの駆動コイルに駆動電流を流して永久磁石に電磁力を作用させることによりガラスセルを振動させ、検出部により検出したガラスセルの固有振動周期から被測定試料の密度を求めている(例えば、特許文献1参照)。   This vibration type density meter has, for example, a glass U-shaped measurement cell, a permanent magnet is fixed to the tip of the glass cell, and a drive coil and a detection unit are built in a position facing the permanent magnet. Is arranged. Then, when measuring the density of the sample to be measured, the sample to be measured is introduced into the glass cell, and the glass cell is vibrated by applying a driving current to the driving coil of the measuring head and applying an electromagnetic force to the permanent magnet. The density of the sample to be measured is obtained from the natural vibration period of the glass cell detected by (see, for example, Patent Document 1).

以下、固有振動周期から被測定試料の密度を算出する方法について説明する。
ガラスセルの固有振動周期をTとし、被測定試料の密度をρとすると、ρは、
ρ=PT/4πV−M/V・・・(1)
で求めることができる。ただし、上記のPは振動系の振動定数、Vは被測定流体の体積(ガラスセルの容積)、Mはガラスセル及び永久磁石の質量である。
上記各P、V、Mはセンサ部の構造によって決定される定数であるから、P/4πV=K、M/V=Kとすると、
ρ=K−K・・・(2)
で表すことができる。
Hereinafter, a method for calculating the density of the sample to be measured from the natural vibration period will be described.
If the natural vibration period of the glass cell is T and the density of the sample to be measured is ρ, ρ is
ρ = PT 2 / 4π 2 VM / V (1)
Can be obtained. Where P is the vibration constant of the vibration system, V is the volume of the fluid to be measured (the volume of the glass cell), and M is the mass of the glass cell and the permanent magnet.
Since each P, V, and M is a constant determined by the structure of the sensor unit, when P / 4π 2 V = K 1 and M / V = K 2 ,
ρ = K 1 T 2 −K 2 (2)
It can be expressed as

ここで、既知の密度をもつ2種類の物質、例えば純水(ρWATER)と空気(ρAIR)をガラスセルで測定した固有振動周期をTwater、TAIRとすると、
ρWATER =KWATER −K・・・(3)
ρAIR =KAIR 2 −K・・・(4)
であり、上記(3)、(4)式より定数K、Kは、
=(ρAIR−ρWATER)/(TAIR −TWATER )・・・(5)
=TAIR ・(ρAIR−ρWATER)/(TAIR −TWATER )−ρAIR・・・(6)
となる。
Here, T water and T AIR are the natural vibration periods of two kinds of substances having known densities, for example, pure water (ρ WATER ) and air (ρ AIR ) measured with a glass cell,
ρ WATER = K 1 T WATER 2 -K 2 (3)
ρ AIR = K 1 T AIR 2 −K 2 (4)
From the above equations (3) and (4), the constants K 1 and K 2 are
K 1 = (ρ AIR −ρ WATER ) / (T AIR 2− T WATER 2 ) (5)
K 2 = T AIR 2 · (ρ AIR −ρ WATER ) / (T AIR 2 −T WATER 2 ) −ρ AIR (6)
It becomes.

上記(5)、(6)式より、(2)式は、
ρ=ρAIR+(ρAIR−ρWATER)*(T−TAIR )/(TAIR −TWATER )・・・(7)
となり、純水と空気の設定温度での密度ρWATER及びρAIRは既知であるので、純水と空気を測定した振動周期TAIR、TWATER、被測定試料を測定した振動周期Tから被測定試料の密度ρを算出することができる。
From the above formulas (5) and (6), formula (2) is
ρ = ρ AIR + (ρ AIR −ρ WATER ) * (T 2 −T AIR 2 ) / (T AIR 2 −T WATER 2 ) (7)
Since the density ρ WATER and ρ AIR at a set temperature of pure water and air are known, the measurement is performed from the vibration periods T AIR and T WATER in which pure water and air are measured and the vibration period T in which the sample to be measured is measured. The density ρ of the sample can be calculated.

特開平6−58862号公報Japanese Patent Laid-Open No. 6-58862

上記のようにして測定がおこなわれる振動式密度計のガラスセルの一方の開口端にはセル導入配管が接続され、他方の開口端にはセル出口配管が接続されている。このセル導入配管とセル出口配管は、継ぎ手を介してそれぞれ被測定試料を導入する試料導入チューブ及び測定の完了した被測定試料を排出する試料排出チューブに接続され、被測定試料の密度測定時には、試料導入チューブを介してガラスセルに被測定試料が導入される。   A cell introduction pipe is connected to one open end of the glass cell of the vibration type densitometer in which measurement is performed as described above, and a cell outlet pipe is connected to the other open end. The cell introduction pipe and the cell outlet pipe are connected to a sample introduction tube for introducing a measurement sample through a joint and a sample discharge tube for discharging a measurement sample which has been measured, respectively, and when measuring the density of the measurement sample, A sample to be measured is introduced into the glass cell via the sample introduction tube.

このように、ガラスセルのセル導入配管やセル出口配管は、試料変更時に試料を容易に交換できるように、継ぎ手を介して試料導入チューブと試料排出チューブに接続されるが、これらのセル導入配管、セル出口配管、試料導入チューブ、試料排出チューブ及び継ぎ手は、被測定試料に対し耐蝕性を備える必要があり、一般にはフッ素系樹脂、例えば、テフロン(登録商標)チューブ及びテフロン製継ぎ手が使用されている。   As described above, the cell introduction pipe and the cell exit pipe of the glass cell are connected to the sample introduction tube and the sample discharge tube through the joint so that the sample can be easily replaced when the sample is changed. The cell outlet pipe, sample introduction tube, sample discharge tube, and joint must have corrosion resistance to the sample to be measured. Generally, fluororesins such as Teflon (registered trademark) tubes and Teflon joints are used. ing.

しかしながら、液体試料の変更時には、付着した液を除去するためにセル導入配管、セル出口配管を紙等で拭く必要があり、フッ素系樹脂はこのような接触摩擦で帯電しやすく、その電荷が測定対象の液体試料にも影響を及ぼし、その静電場のために振動周期が変化し、正しい密度測定ができないという問題があった。   However, when changing the liquid sample, it is necessary to wipe the cell introduction pipe and cell outlet pipe with paper etc. to remove the adhering liquid. Fluorine resin is easily charged by such contact friction, and the charge is measured. There is also a problem that the target liquid sample is affected, the vibration period changes due to the electrostatic field, and correct density measurement cannot be performed.

本発明は、上記の課題を解決するために創案されたものであり、測定対象の液体試料に帯電した静電気の振動周期への影響を除去することができる振動式密度測定方法及び測定対象の液体試料に帯電した静電気を放電することができる振動式密度計を提供することを目的とする。   The present invention was devised to solve the above-described problem, and a vibration-type density measuring method and a liquid to be measured capable of removing the influence of the static electricity charged on the liquid sample to be measured on the vibration period. An object of the present invention is to provide a vibration type density meter capable of discharging static electricity charged on a sample.

請求項1に係る発明の振動式密度測定方法は、被測定試料を収容したガラスセルの振動周期から被測定試料の密度を測定する振動式密度測定方法において、測定対象の液体試料に帯電した静電気を放電させた後、被測定試料の密度を測定することを特徴とする。   According to a first aspect of the present invention, there is provided a vibration type density measuring method for measuring a density of a sample to be measured from a vibration period of a glass cell containing the sample to be measured. After the discharge, the density of the sample to be measured is measured.

また、請求項2に係る発明の振動式密度計は、被測定試料を収容したガラスセルの振動周期から被測定試料の密度を測定する振動式密度計において、測定対象の液体試料に帯電した静電気を放電させる放電機構を備えたことを特徴とする。   According to a second aspect of the present invention, there is provided a vibratory density meter that measures the density of a sample to be measured from the vibration period of a glass cell that contains the sample to be measured. It is characterized by having a discharge mechanism for discharging the gas.

さらに、請求項3に係る発明の振動式密度計は、請求項2に係る発明の振動式密度計において、上記放電機構を、上記ガラスセルの配管と被測定試料の導入チューブ、及び/または、排出チューブとを接続する金属継ぎ手により構成したことを特徴とし、
請求項4に係る発明の振動式密度計は、請求項2に係る発明の振動式密度計において、上記放電機構を、上記ガラスセルに取り付けられたアース電極により構成したことを特徴とする。
Furthermore, the vibratory density meter of the invention according to claim 3 is the vibratory density meter of the invention of claim 2, wherein the discharge mechanism is connected to the glass cell pipe and the sample tube to be measured, and / or It is composed of a metal joint that connects the discharge tube,
A vibration type density meter according to a fourth aspect of the present invention is the vibration type density meter according to the second aspect of the present invention, wherein the discharge mechanism is constituted by a ground electrode attached to the glass cell.

また、請求項5に係る発明の振動式密度計は、請求項2に係る発明の振動式密度計において、上記放電機構を、上記ガラスセルに施したメッキコーティングにより構成したことを特徴とし、
請求項6に係る発明の振動式密度計は、請求項2に係る発明の振動式密度計において、上記放電機構として、上記ガラスセルに被測定試料を導入、排出する導入チューブ、及び/または、試料排出チューブを金属チューブとしたことを特徴とする。
The vibratory density meter of the invention according to claim 5 is characterized in that, in the vibratory density meter of the invention of claim 2, the discharge mechanism is constituted by a plating coating applied to the glass cell,
The vibratory density meter of the invention according to claim 6 is the vibratory density meter of the invention of claim 2, wherein the discharge mechanism introduces and discharges the sample to be measured into the glass cell, and / or The sample discharge tube is a metal tube.

さらに、請求項7に係る発明の振動式密度計は、請求項2に係る発明の振動式密度計において、上記放電機構として、上記ガラスセルに被測定試料を導入、排出する試料導入チューブ、及び/または、試料排出チューブを導電性素材の樹脂チューブとしたことを特徴とする。   Furthermore, the vibration type density meter of the invention according to claim 7 is the vibration type density meter of the invention according to claim 2, wherein the discharge mechanism introduces and discharges the sample to be measured to the glass cell, and / Or the sample discharge tube is a resin tube made of a conductive material.

請求項1に係る発明の振動式密度測定方法によれば、測定対象の液体試料に帯電した静電気を放電させた後、液体試料の密度を測定するので、測定対象の液体試料が帯電状態となっていても、静電気が放電されるので、静電気によってガラスセルの振動周期が変化することなく、正しい密度値を測定することができる。   According to the vibration type density measuring method of the invention according to claim 1, since the density of the liquid sample is measured after discharging the static electricity charged in the liquid sample to be measured, the liquid sample to be measured is in a charged state. However, since the static electricity is discharged, the correct density value can be measured without changing the vibration period of the glass cell due to the static electricity.

また、請求項2〜請求項7に係る発明の振動式密度計によれば、測定対象の液体試料に帯電した静電気を放電させる放電機構を備えているので、測定対象の液体試料に静電気が帯電しないようにすることができ、同様に、静電気によってガラスセルの振動周期が変化することなく、正しい密度値を測定することができる。   In addition, according to the vibratory density meter of the inventions according to claims 2 to 7, since the discharge mechanism for discharging the static electricity charged in the liquid sample to be measured is provided, static electricity is charged in the liquid sample to be measured. Similarly, the correct density value can be measured without changing the vibration period of the glass cell due to static electricity.

本発明の振動式密度計のセンサ部の構造を示す図である。It is a figure which shows the structure of the sensor part of the vibration type density meter of this invention. 図1のセンサ部を取り付けた振動式密度計の概念図である。It is a conceptual diagram of the vibration type density meter which attached the sensor part of FIG. 静電気を放電させた場合の振動周期の時間変化を示す図である。It is a figure which shows the time change of the vibration period at the time of discharging static electricity. 本発明の放電機構を備えたセンサ部の構造を示す図である。It is a figure which shows the structure of the sensor part provided with the discharge mechanism of this invention. 本発明の放電機構を備えたセンサ部の他の実施例の構造を示す図である。It is a figure which shows the structure of the other Example of the sensor part provided with the discharge mechanism of this invention. 本発明の放電機構を備えたセンサ部の他の実施例の構造を示す図である。It is a figure which shows the structure of the other Example of the sensor part provided with the discharge mechanism of this invention. 本発明の放電機構を備えたセンサ部の他の実施例の構造を示す図である。It is a figure which shows the structure of the other Example of the sensor part provided with the discharge mechanism of this invention. 本発明の放電機構を備えたセンサ部の他の実施例の構造を示す図である。It is a figure which shows the structure of the other Example of the sensor part provided with the discharge mechanism of this invention.

図1は本発明の振動式密度計のセンサ部の構造を示す図であり、このセンサ部は、ガラスセル1、永久磁石2、ホルダ3a、3b、温度センサ4、ガラス製の外筒5、セル導入配管6a、セル出口配管6bにより構成されている。
ガラスセル1は、肉厚0.2mm程度のガラスで作成した細いU字管であり、その先端部には永久磁石の薄板2が接着剤により固着されている。また、このガラスセル1の基端部はホルダ3a、3bに固定され、このホルダ3a、3bは外筒5に固定されている。また、温度センサ4は、ガラス管の内部にサーミスタが挿入されたものであり、試料の温度を測定する。
FIG. 1 is a diagram showing the structure of a sensor unit of a vibration type density meter according to the present invention. This sensor unit includes a glass cell 1, permanent magnets 2, holders 3a and 3b, a temperature sensor 4, a glass outer cylinder 5, It is composed of a cell introduction pipe 6a and a cell outlet pipe 6b.
The glass cell 1 is a thin U-shaped tube made of glass having a wall thickness of about 0.2 mm, and a thin plate 2 of a permanent magnet is fixed to the tip of the tube with an adhesive. Further, the base end portion of the glass cell 1 is fixed to the holders 3 a and 3 b, and the holders 3 a and 3 b are fixed to the outer cylinder 5. The temperature sensor 4 has a thermistor inserted in the glass tube, and measures the temperature of the sample.

また、ガラスセル1への試料の導入、排出を行うセル導入配管6a及びセル出口配管6bは、試料変更時に試料を容易に交換できるように、金属継ぎ手7a、7bを介して試料導入チューブ8a及び試料排出チューブ8bに接続される。そして、セル導入配管6a、セル出口配管6b、試料導入チューブ8a、試料排出チューブ8bにはテフロンチューブが使用されており、金属継ぎ手7a、7bには、金属、例えば、SUSが使用されている。   In addition, the cell introduction pipe 6a and the cell outlet pipe 6b for introducing and discharging the sample to and from the glass cell 1 are connected to the sample introduction tube 8a and the metal pipe 7a and 7b through the metal joints 7a and 7b so that the sample can be easily replaced when the sample is changed. Connected to the sample discharge tube 8b. A Teflon tube is used for the cell introduction pipe 6a, the cell outlet pipe 6b, the sample introduction tube 8a, and the sample discharge tube 8b, and a metal such as SUS is used for the metal joints 7a and 7b.

一方、図2は図1のセンサ部を取り付けた振動式密度計の概念図であり、センサ部が断熱材11の内部に収容されるとともに、ペルチェ素子(図示せず)を備えた銅ブロック12がセンサ部、すなわち、ガラスセル1内の被測定試料の温度を設定温度に保つように制御される。また、ガラスセル1の先端部に固定された永久磁石2に対向する位置に、駆動コイル13と、光により振動を検出する振動検出センサ14を内蔵した測定ヘッド15が配置されている。
また、図に示すように、温度センサ4のガラス管内には、サーミスタ16が配置され、ガラスセル1の先端付近の温度を測定する。
On the other hand, FIG. 2 is a conceptual diagram of the vibration type density meter to which the sensor unit of FIG. 1 is attached. The sensor unit is housed in the heat insulating material 11 and has a copper block 12 having a Peltier element (not shown). Is controlled to keep the temperature of the sample to be measured in the sensor unit, that is, the glass cell 1, at the set temperature. A measurement head 15 including a drive coil 13 and a vibration detection sensor 14 for detecting vibration by light is disposed at a position facing the permanent magnet 2 fixed to the tip of the glass cell 1.
As shown in the figure, a thermistor 16 is disposed in the glass tube of the temperature sensor 4 and measures the temperature near the tip of the glass cell 1.

制御装置17は、制御部21、駆動部22、検出部23、表示部24及び記憶部25を備え、制御部21には上記サーミスタ16の温度検出出力が入力され、サーミスタ16の温度が測定設定温度となるように、銅ブロック12のペルチェ素子を制御する。また、駆動部22は測定ヘッド15の駆動コイル13に駆動電流を流し、検出部23は測定ヘッド15の振動検出センサ14の出力を検出してガラスセル1の振動周期を検出する。さらに、制御部21は、表示部24に測定の設定画面や密度の測定値を表示するとともに、ユーザが設定した測定条件や検出した振動周期等を記憶部25に記憶する。   The control device 17 includes a control unit 21, a drive unit 22, a detection unit 23, a display unit 24, and a storage unit 25. The temperature detection output of the thermistor 16 is input to the control unit 21, and the temperature of the thermistor 16 is measured and set. The Peltier element of the copper block 12 is controlled so that the temperature is reached. The drive unit 22 supplies a drive current to the drive coil 13 of the measurement head 15, and the detection unit 23 detects the output of the vibration detection sensor 14 of the measurement head 15 to detect the vibration cycle of the glass cell 1. Furthermore, the control unit 21 displays the measurement setting screen and the density measurement value on the display unit 24, and stores the measurement condition set by the user, the detected vibration cycle, and the like in the storage unit 25.

次に、液体試料の密度測定時の作用について説明する。
測定にあたっては、まず試料導入チューブ8a、金属継ぎ手7a、セル導入配管6aを通じてガラスセル1内に液体試料を導入するとともに、金属継ぎ手7aまたは7bにアース線を接触させることにより、液体試料に帯電している静電気を放電させる。この後、制御装置17の駆動部22より測定ヘッド15の駆動コイル13に駆動電流を入力し、永久磁石2に電磁力を作用させることにより、ガラスセル1に振動を開始させる。
Next, the effect | action at the time of the density measurement of a liquid sample is demonstrated.
In the measurement, first, a liquid sample is introduced into the glass cell 1 through the sample introduction tube 8a, the metal joint 7a, and the cell introduction pipe 6a, and a ground wire is brought into contact with the metal joint 7a or 7b to charge the liquid sample. Discharge static electricity. Thereafter, a driving current is input to the driving coil 13 of the measuring head 15 from the driving unit 22 of the control device 17, and an electromagnetic force is applied to the permanent magnet 2 to cause the glass cell 1 to start vibrating.

このときの振動を測定ヘッド15の振動検出センサ14が検出して検出信号を検出部23に入力し、この振動周期に同期した駆動信号を引き続き、測定ヘッド15の駆動コイル13に入力することにより、ガラスセル1を一定の周期で振動させて固有振動周期を求め、測定した振動周期から液体試料の密度を算出する。   The vibration detection sensor 14 of the measurement head 15 detects the vibration at this time, inputs a detection signal to the detection unit 23, and continuously inputs a drive signal synchronized with this vibration cycle to the drive coil 13 of the measurement head 15. The natural vibration period is obtained by vibrating the glass cell 1 at a constant period, and the density of the liquid sample is calculated from the measured vibration period.

図3は振動周期の測定中に静電気を放電させた場合の振動周期の時間変化をプロットしたものであり、図3に示すように、測定開始後、0.1時間経過した時点で静電気を放電させることにより、それまで静電気によって変動していた振動周期の変化が発生せず、正しい密度値を測定するできることが理解できる。   FIG. 3 is a plot of changes over time in the vibration cycle when static electricity is discharged during measurement of the vibration cycle. As shown in FIG. 3, the static electricity is discharged when 0.1 hour has elapsed after the start of measurement. By doing so, it can be understood that the correct density value can be measured without causing a change in the vibration period that has been fluctuated by static electricity until then.

なお、上記の実施例では、密度測定時に金属継ぎ手7aまたは7bにアース線を接触させることにより、液体試料に帯電した静電気を放電させたが、図4に示すように、常時、金属継ぎ手7a、7bの一方、または両方をアースしておくことにより、測定対象の液体試料に静電気が帯電しても、放電させることができるので、静電気によってガラスセル1の振動周期が変化することなく、正しい密度値を測定することができる。
また、上記の実施例では、密度測定時に金属継ぎ手をアースすることにより液体試料の静電気を放電させたが、他の金属部分をアースしたり、液体試料自体にアースした金属を触れさせて液体試料の静電気を放電させることも可能である。
In the above embodiment, the static electricity charged in the liquid sample was discharged by bringing the ground wire into contact with the metal joint 7a or 7b during density measurement. However, as shown in FIG. 4, the metal joint 7a, By grounding one or both of 7b, even if the liquid sample to be measured is charged with static electricity, it can be discharged, so that the vibration cycle of the glass cell 1 does not change due to static electricity and the correct density is obtained. The value can be measured.
In the above embodiment, the static electricity of the liquid sample was discharged by grounding the metal joint during density measurement. However, the liquid sample was grounded by touching the grounded metal to the liquid sample itself or by touching the grounded metal to the liquid sample itself. It is also possible to discharge static electricity.

上記の実施例では、継ぎ手を金属製とすることにより、液体試料に帯電した静電気を放電させるようにしたが、その他の構成により放電機構を構成することもでき、以下、他の放電機構の実施例について説明する。   In the above embodiment, the joint is made of metal so that static electricity charged in the liquid sample is discharged. However, the discharge mechanism can be configured by other configurations. An example will be described.

図5は、放電機構としてガラスセルにアース電極を取り付けた実施例を示す図であり、図に示すように、ガラスセル1内部にホルダ3aを貫通してアース電極31が挿入されている。なお、アース電極31としては、ガラスセル1にクラックが入らないように白金を使用することが望ましい。
これにより、上記と同様に、測定対象の液体試料に静電気が帯電しても、放電させることができるので、静電気によってガラスセルの振動周期が変化することなく、正しい密度値を測定することができる。
FIG. 5 is a diagram showing an embodiment in which a ground electrode is attached to a glass cell as a discharge mechanism. As shown in the figure, a ground electrode 31 is inserted into the glass cell 1 through a holder 3a. As the ground electrode 31, it is desirable to use platinum so that the glass cell 1 does not crack.
Thus, similarly to the above, even if static electricity is charged in the liquid sample to be measured, it can be discharged, so that the correct density value can be measured without changing the vibration period of the glass cell due to static electricity. .

また、図6は、放電機構としてガラスセルにメッキコーティングを施したものであり、図に示すように、外筒5の端部の外周、及び、ガラスセル1の端部の内周面にメッキコーティング32が施され、このメッキ部分がアースされている。
これにより、上記と同様に、測定対象の液体試料に静電気が帯電しても、放電させることができるので、静電気によってガラスセルの振動周期が変化することなく、正しい密度値を測定することができる。
Further, FIG. 6 shows a case where a glass cell is plated as a discharge mechanism. As shown in the figure, the outer periphery of the end of the outer cylinder 5 and the inner peripheral surface of the end of the glass cell 1 are plated. A coating 32 is applied and the plated portion is grounded.
Thus, similarly to the above, even if static electricity is charged in the liquid sample to be measured, it can be discharged, so that the correct density value can be measured without changing the vibration period of the glass cell due to static electricity. .

さらに、図7は、放電機構として、ガラスセルに被測定試料を導入、排出する試料導入チューブ、試料排出チューブを金属配管としたものであり、図に示すように、試料導入チューブ8a、試料排出チューブ8bが金属配管33によって構成されており、この金属配管33の一方または両方がアースされている。
これにより、上記と同様に、測定対象の液体試料に静電気が帯電しても、放電させることができるので、静電気によってガラスセルの振動周期が変化することなく、正しい密度値を測定することができる。
Furthermore, FIG. 7 shows a sample introduction tube for introducing and discharging a sample to be measured into a glass cell and a sample discharge tube as a metal pipe as a discharge mechanism. As shown in FIG. The tube 8b is constituted by a metal pipe 33, and one or both of the metal pipes 33 are grounded.
Thus, similarly to the above, even if static electricity is charged in the liquid sample to be measured, it can be discharged, so that the correct density value can be measured without changing the vibration period of the glass cell due to static electricity. .

また、図8は放電機構として、ガラスセルに被測定試料を導入、排出する試料導入チューブ、試料排出チューブを導電性素材の樹脂チューブとしたものであり、図に示すように、試料導入チューブ8a、試料排出チューブ8bが導電性樹脂チューブ34によって構成されており、この導電性樹脂チューブ34の一方または両方がアースされている。
これにより、上記と同様に、測定対象の液体試料に静電気が帯電しても、放電させることができるので、静電気によってガラスセルの振動周期が変化することなく、正しい密度値を測定することができる。
FIG. 8 shows a discharge mechanism in which a sample introduction tube that introduces and discharges a sample to be measured into a glass cell, and the sample discharge tube is a resin tube made of a conductive material. As shown in FIG. The sample discharge tube 8b is composed of a conductive resin tube 34, and one or both of the conductive resin tubes 34 are grounded.
Thus, similarly to the above, even if static electricity is charged in the liquid sample to be measured, it can be discharged, so that the correct density value can be measured without changing the vibration period of the glass cell due to static electricity. .

なお、図1、図4の実施例では、試料導入側、試料排出側の二つの継ぎ手の両方を金属継ぎ手としたが、試料導入側、または、試料排出側の一方のみ金属継ぎ手としてもよく、また、図7、図8の実施例では、試料導入チューブ、試料排出チューブの両方を金属配管または導電性樹脂チューブとしたが、試料導入チューブ、または、試料排出チューブの一方のみを金属配管または導電性樹脂チューブとしてもよい。   1 and 4, both of the two joints on the sample introduction side and the sample discharge side are metal joints, but only one of the sample introduction side or the sample discharge side may be a metal joint, 7 and 8, both the sample introduction tube and the sample discharge tube are metal pipes or conductive resin tubes, but only one of the sample introduction tube or the sample discharge tube is a metal pipe or conductive pipe. A good resin tube may be used.

また、以上の実施例では、金属継ぎ手、アース電極、メッキコーティング、金属配管、あるいは、導電性チューブを接地したが、必ずしも接地する必要はなく、接地しなくとも、静電気を減らす効果を得ることができる。   In the above embodiment, the metal joint, the ground electrode, the plating coating, the metal pipe, or the conductive tube is grounded. However, it is not always necessary to ground, and the effect of reducing static electricity can be obtained without grounding. it can.

さらに、以上の実施例では、測定セルの先端に取り付けた永久磁石に対向して配置される、駆動コイル及び光により振動を検出するセンサを有する測定ヘッドを備えた振動式密度計を例として説明したが、振動を検出コイルにより検出するタイプの振動式密度計等の他の振動式密度計にも、本発明の振動式密度測定方法及び振動式密度計を適用することができる。   Furthermore, in the above embodiment, a vibration type density meter having a measurement head having a drive coil and a sensor for detecting vibration by light, which is disposed opposite to a permanent magnet attached to the tip of the measurement cell, will be described as an example. However, the vibration-type density measuring method and the vibration-type density meter of the present invention can be applied to other vibration-type density meters such as a vibration-type density meter that detects vibration with a detection coil.

1 ガラスセル
2 永久磁石
3a、3b ホルダ
4 温度センサ
5 外筒
6a セル導入配管
6b セル出口配管
7a、7b 金属継ぎ手
8a 試料導入チューブ
8b 試料排出チューブ
11 断熱材
12 銅ブロック
13 駆動コイル
14 振動検出センサ
15 測定ヘッド
16 サーミスタ
17 制御装置
21 制御部
22 駆動部
23 検出部
24 表示部
25 記憶部
DESCRIPTION OF SYMBOLS 1 Glass cell 2 Permanent magnet 3a, 3b Holder 4 Temperature sensor 5 Outer cylinder 6a Cell introduction piping 6b Cell exit piping 7a, 7b Metal joint 8a Sample introduction tube 8b Sample discharge tube 11 Heat insulating material 12 Copper block 13 Drive coil 14 Vibration detection sensor DESCRIPTION OF SYMBOLS 15 Measurement head 16 Thermistor 17 Control apparatus 21 Control part 22 Drive part 23 Detection part 24 Display part 25 Memory | storage part

Claims (7)

被測定試料を収容したガラスセルの振動周期から被測定試料の密度を測定する振動式密度測定方法において、
測定対象の液体試料に帯電した静電気を放電させた後、被測定試料の密度を測定することを特徴とする振動式密度測定方法。
In the vibration type density measuring method for measuring the density of the sample to be measured from the vibration period of the glass cell containing the sample to be measured,
A vibration type density measuring method comprising: measuring a density of a sample to be measured after discharging static electricity charged in a liquid sample to be measured.
被測定試料を収容したガラスセルの振動周期から被測定試料の密度を測定する振動式密度計において、
測定対象の液体試料に帯電した静電気を放電させる放電機構を備えたことを特徴とする振動式密度計。
In the vibration type density meter that measures the density of the sample to be measured from the vibration period of the glass cell containing the sample to be measured,
A vibration type density meter comprising a discharge mechanism for discharging static electricity charged in a liquid sample to be measured.
請求項2に記載した振動式密度計において、上記放電機構を、上記ガラスセルの配管と被測定試料の導入チューブ、及び/または、排出チューブとを接続する金属継ぎ手により構成したことを特徴とする振動式密度計。   3. The vibratory density meter according to claim 2, wherein the discharge mechanism is constituted by a metal joint that connects the pipe of the glass cell and the introduction tube and / or the discharge tube of the sample to be measured. Vibrating density meter. 請求項2に記載した振動式密度計において、上記放電機構を、上記ガラスセルに取り付けられたアース電極により構成したことを特徴とする振動式密度計。   3. The vibration type density meter according to claim 2, wherein the discharge mechanism is constituted by a ground electrode attached to the glass cell. 請求項2に記載した振動式密度計において、上記放電機構を、上記ガラスセルに施したメッキコーティングにより構成したことを特徴とする振動式密度計。   3. The vibration type density meter according to claim 2, wherein the discharge mechanism is constituted by a plating coating applied to the glass cell. 請求項2に記載した振動式密度計において、上記放電機構として、上記ガラスセルに被測定試料を導入、排出する導入チューブ、及び/または、試料排出チューブを金属チューブとしたことを特徴とする振動式密度計。   3. The vibration type density meter according to claim 2, wherein the discharge mechanism is an introduction tube for introducing and discharging a sample to be measured into the glass cell, and / or a sample discharge tube is a metal tube. Expression density meter. 請求項2に記載した振動式密度計において、上記放電機構として、上記ガラスセルに被測定試料を導入、排出する試料導入チューブ、及び/または、試料排出チューブを導電性素材の樹脂チューブとしたことを特徴とする振動式密度計。   3. The vibration type density meter according to claim 2, wherein as the discharge mechanism, the sample introduction tube for introducing and discharging the sample to be measured into the glass cell and / or the sample discharge tube is a resin tube made of a conductive material. This is a vibration type density meter.
JP2009183997A 2009-08-07 2009-08-07 Vibration density measuring method and vibration density meter Active JP5361602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183997A JP5361602B2 (en) 2009-08-07 2009-08-07 Vibration density measuring method and vibration density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183997A JP5361602B2 (en) 2009-08-07 2009-08-07 Vibration density measuring method and vibration density meter

Publications (2)

Publication Number Publication Date
JP2011038810A JP2011038810A (en) 2011-02-24
JP5361602B2 true JP5361602B2 (en) 2013-12-04

Family

ID=43766754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183997A Active JP5361602B2 (en) 2009-08-07 2009-08-07 Vibration density measuring method and vibration density meter

Country Status (1)

Country Link
JP (1) JP5361602B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304430B6 (en) * 2012-12-05 2014-04-30 Vysoká Škola Báňská-Technická Univerzita Ostrava Levitation-vibrating device for measuring viscosity, density and interfacial tension
JP6268861B2 (en) 2013-09-25 2018-01-31 マツダ株式会社 Control device for compression ignition engine
CN116690180B (en) * 2023-05-31 2024-02-13 珠海市新万山仪表有限公司 Single straight tube liquid density measuring device and assembling method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361170A (en) * 1991-06-07 1992-12-14 Kanegafuchi Chem Ind Co Ltd Apparatus for measuring charge quantity of liquid
JPH0658862A (en) * 1992-08-11 1994-03-04 Kyoto Electron Mfg Co Ltd Temperature compensation for oscillating density meter
JPH06129889A (en) * 1992-10-20 1994-05-13 Tokico Ltd Oscillation type measuring apparatus
JP4251595B2 (en) * 2000-08-08 2009-04-08 オルガノ株式会社 Vibrating tube density sensor
JP2003344276A (en) * 2002-05-30 2003-12-03 Fuji Photo Film Co Ltd Measuring apparatus

Also Published As

Publication number Publication date
JP2011038810A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
US3479873A (en) Self-cleaning electrodes
WO2011161873A1 (en) Ultrasonic flow rate measurement device
JP2003097986A (en) Electromagnetic flowmeter
JP5361602B2 (en) Vibration density measuring method and vibration density meter
JP2012525584A (en) Fluid density measuring device
US11255766B2 (en) Vibronic sensor and measuring assembly for monitoring a flowable medium
US20090205438A1 (en) Magneto-inductive flow rate meter
US8857270B2 (en) Method for detecting plugging in a Coriolis flow measuring device
JP2013113656A (en) Vibratory physical property measurement device and method
JP4424511B2 (en) Electromagnetic flow meter and electromagnetic flow meter system
JP5355278B2 (en) Calibration parameter determination method and density calculation method for vibration type density meter
JP5473455B2 (en) Vibrating density meter
JP2006214792A (en) Microreactor, and device, method and program for measuring dissociation constant
JP4795231B2 (en) Specific heat measuring method and apparatus
JP6226505B1 (en) Liquid measurement device
CN109060953A (en) Electric insulating oil moisture content measuring device with electricity and method
CN111417841A (en) Method for determining the viscosity of a medium by means of a coriolis mass flowmeter and coriolis mass flowmeter for carrying out the method
JP5292359B2 (en) Sensing device
JP5295028B2 (en) Vibrating density meter
JP2005315830A (en) Analyzer
JP4465473B2 (en) High resolution sound velocity measuring method and apparatus for fluid
JP3184733B2 (en) Detection method and detection device using vibration
JP4336779B2 (en) Density measuring device for fluid and density measuring method
Erhart Measurement of elastic modulus and ultrasonic wave velocity by piezoelectric resonator
RU2135959C1 (en) Method recording liquid discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Ref document number: 5361602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250