JPH04361170A - Apparatus for measuring charge quantity of liquid - Google Patents

Apparatus for measuring charge quantity of liquid

Info

Publication number
JPH04361170A
JPH04361170A JP13645891A JP13645891A JPH04361170A JP H04361170 A JPH04361170 A JP H04361170A JP 13645891 A JP13645891 A JP 13645891A JP 13645891 A JP13645891 A JP 13645891A JP H04361170 A JPH04361170 A JP H04361170A
Authority
JP
Japan
Prior art keywords
charge
sample
liquid
amount
charge detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13645891A
Other languages
Japanese (ja)
Inventor
Tamio Shimizu
清水 民生
Nami Sugino
杉野 奈巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP13645891A priority Critical patent/JPH04361170A/en
Publication of JPH04361170A publication Critical patent/JPH04361170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To measure the drift charge characteristics of a liquid in a filter with good reproducibility by easy operation and to also measure the release charge characteristics of the liquid in the filter. CONSTITUTION:A charge detection pipe 11 charged by the contact or separation of a liquid sample, sample removing means 3,5 bringing the sample into contact with the charge detection pipe 11 and a net 12 and removing the same from them, a charge quantity measuring means 41 measuring the charge quantity of the charge quantity detection pipe 11 and a shield body 2 shielding the noise to the charge detection pipe 11 from the outside.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は液体の帯電量測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the amount of charge of a liquid.

【0002】0002

【従来の技術】液体輸送において、固体の不純物除去の
ためにフィルタがよく用いられる。このフィルタは、液
体との接触面接が大きいために非常に大きな帯電特性を
示し、過去に、フィルタの帯電に起因したと推定される
災害事例もある。ところでフィルタによる帯電は、フィ
ルタ自体の内部構造が複雑であるためにあまり解明され
ておらず、生産工程における静電気の発生状況を知るた
めには取扱条件に合わせて実測が必要である。この生産
工程における帯電量の実測はそれ自体に放電を伴う危険
があり、種々条件を変化させて測定することができず、
従って実験的に行い得る測定装置が所望されている。従
来、実験的に行い得る液体の帯電量測定装置として実規
模タンクを用いた装置が知られており、例えば、H.K
raemer, G.Schoen: PTB−Ber
icht,W−6, Physikalisch−Te
chnische  Bundesanstalt.B
rnunschweig(1976)に提案されている
。この装置は、配管系にフィルタを組み込んだもので、
この中を液体を通過させ、この時フィルタに発生する流
動電流を測定することにより液体の帯電量を測定するも
のである。
2. Description of the Related Art In liquid transportation, filters are often used to remove solid impurities. This filter exhibits extremely high charging characteristics due to its large contact surface with liquid, and there have been cases of disasters in the past that are presumed to be caused by charging of the filter. By the way, electrification caused by filters is not well understood because the internal structure of the filter itself is complicated, and in order to know how static electricity is generated in the production process, it is necessary to actually measure it according to the handling conditions. Actual measurement of the amount of charge in this production process itself has the risk of causing discharge, and it is not possible to measure it while changing various conditions.
Therefore, there is a need for a measuring device that can be used experimentally. Conventionally, devices using full-scale tanks have been known as devices for measuring the amount of electrostatic charge of liquids that can be carried out experimentally. K
raemer, G. Schoen: PTB-Ber
icht, W-6, Physikalisch-Te
chnische Bundesanstalt. B
It was proposed by Runschweig (1976). This device has a filter built into the piping system.
The amount of charge on the liquid is measured by passing the liquid through the filter and measuring the flowing current generated in the filter at this time.

【0003】0003

【発明が解決しようとする課題】しかしながら、この従
来例の装置による測定では、フィルタ素材や容器などの
形状、材質があまりにも複雑であり、かつ試料液体を循
環使用し測定するため、試料液体の特性が変化し、試料
液体の品質保持が困難なためデータのバラツキが大きく
定量的な測定結果が得られないという問題点があった。 また、液体の剥離帯電特性については、測定できないと
いう問題点があった。本発明は上述した問題点を解決し
、フィルタにおける液体の流動帯電特性を容易な操作に
より再現性よく測定することができるとともに、さらに
は、フィルタにおける液体の剥離帯電特性をも測定する
ことができる液体の帯電量測定装置を提供することを目
的とする。尚、剥離帯電特性とは、液体がフィルタから
引き剥がされるときの帯電特性をいう。
[Problems to be Solved by the Invention] However, in measurement using this conventional device, the shape and material of the filter material and container are too complicated, and the sample liquid is used in circulation for measurement. There was a problem in that the characteristics changed and it was difficult to maintain the quality of the sample liquid, so the data varied widely and quantitative measurement results could not be obtained. Further, there was a problem in that the peel-off charging characteristics of the liquid could not be measured. The present invention solves the above-mentioned problems, and makes it possible to measure the flow charging characteristics of a liquid in a filter with good reproducibility through easy operations, and furthermore, to measure the exfoliation charging characteristics of a liquid in a filter. The purpose of the present invention is to provide a device for measuring the amount of charge of a liquid. Note that the peeling electrification characteristic refers to the electrification characteristic when the liquid is peeled off from the filter.

【0004】0004

【課題を解決するための手段】本発明は、液体状の試料
の接触及び分離により帯電する帯電検出体と、上記試料
を上記帯電検出体に接触させかつ上記帯電検出体から上
記試料を除去する試料除去手段と、上記帯電検出体の帯
電量を測定する帯電量測定手段と、上記帯電検出体への
外部からのノイズを遮断するための遮蔽体とを備えたこ
とを特徴とする。
[Means for Solving the Problems] The present invention includes a charged detector that is charged by contact and separation of a liquid sample, and a method for bringing the sample into contact with the charged detector and removing the sample from the charged detector. The present invention is characterized in that it includes a sample removing means, a charge amount measuring means for measuring the amount of charge on the charge detecting member, and a shielding member for blocking external noise from entering the charge detecting member.

【0005】[0005]

【作用】まず液体状の試料を帯電検出体に注入し、試料
除去手段を構成する真空ポンプ等の吸引装置により上記
試料を吸引することで、上記帯電検出体に接触させかつ
上記帯電検出体から除去する。このとき、上記帯電検出
体は上記試料の上記帯電検出体との間の接触及び分離に
より試料に発生する電荷量と等しくかつ逆の極性を有す
る流動帯電量で帯電される。また、液体状の試料を上記
の帯電検出体内に付着させ、上記真空ポンプ等の吸引装
置により上記試料を吸引して上記帯電検出体から除去す
る。このとき、上記帯電検出体は上記試料の上記帯電検
出体からの剥離により試料に発生する電荷量と等しくか
つ逆の極性を有する剥離帯電量で帯電される。このとき
、帯電量測定手段により上記帯電検出体の帯電量を測定
することができ、これによって、上記帯電検出体の帯電
量に等しい流動帯電量及び剥離帯電量を測定できる。
[Operation] First, a liquid sample is injected into the charged detection body, and the sample is suctioned by a suction device such as a vacuum pump that constitutes the sample removal means, so that the sample is brought into contact with the charged detection body and removed from the charged detection body. Remove. At this time, the charge detection body is charged with a flowing charge amount that is equal to and opposite in polarity to the charge amount generated on the sample due to contact and separation between the sample and the charge detection body. Further, a liquid sample is deposited inside the charged object, and the sample is suctioned by a suction device such as the vacuum pump to be removed from the charged object. At this time, the charge detection body is charged with a peel-off charge amount that is equal to and opposite in polarity to the charge amount generated on the sample when the sample is peeled from the charge detection body. At this time, the amount of charge on the charge detection body can be measured by the charge amount measuring means, and thereby the amount of flow charge and the amount of peeling charge that are equal to the amount of charge on the charge detection body can be measured.

【0006】[0006]

【実施例】本発明の液体帯電量測定装置の一実施例を示
す図1及び図2において、帯電検出管11は、図2に示
すように直径18mm、全長120mmの例えばSUS
304の材料からなる棒鋼に、帯電検出管11の内部を
軸方向に貫通して液注入部11c、液貯留部11d、液
排出部11eが形成された管である。
[Embodiment] In FIGS. 1 and 2 showing an embodiment of the liquid charge measuring device of the present invention, the charge detection tube 11 is made of, for example, SUS, with a diameter of 18 mm and a total length of 120 mm, as shown in FIG.
This tube is made of a steel bar made of No. 304 material and has a liquid injection part 11c, a liquid storage part 11d, and a liquid discharge part 11e formed by penetrating the inside of the charge detection tube 11 in the axial direction.

【0007】液注入部11cは、帯電検出管11の一端
では直径14mmであり液注入部11cの終端では直径
10mmとなる長さ20mmの漏斗形状であり、液貯留
部11dは直径が一定な貫通孔であり、液貯留部11d
の出口では直径4mmの貫通孔である液排出部11eに
接続するように漏斗形状を有し長さは約60mmである
。尚、液排出部11eの長さは40mmである。
The liquid injection part 11c has a funnel shape with a length of 20 mm, with a diameter of 14 mm at one end of the charge detection tube 11 and a diameter of 10 mm at the terminal end of the liquid injection part 11c, and the liquid storage part 11d is a through hole with a constant diameter. It is a hole, and the liquid storage part 11d
The outlet has a funnel shape and has a length of about 60 mm so as to be connected to a liquid discharge part 11e which is a through hole with a diameter of 4 mm. Note that the length of the liquid discharge portion 11e is 40 mm.

【0008】又、液排出部11eが形成される部分に対
応する帯電検出管11の外周面には後述する絶縁管13
と係合するねじ11aが帯電検出管11の軸方向に沿っ
て形成され、又、帯電検出管11の外周面の適所には、
電荷量検出計41と接続するためのリード線42を接続
する荷電量検出用端子11bが設けられる。
Further, an insulating tube 13 (described later) is provided on the outer peripheral surface of the charge detection tube 11 corresponding to the portion where the liquid discharge portion 11e is formed.
A screw 11a that engages with the charge detection tube 11 is formed along the axial direction of the charge detection tube 11.
A charge amount detection terminal 11b is provided to which a lead wire 42 is connected to the charge amount detection meter 41.

【0009】例えばテフロン等の絶縁材料からなり円柱
形状の絶縁管13において、軸方向の一方の側面13b
には平面形状が円形であって有底である凹部13cが形
成され、凹部13cの内周面には帯電検出管11の一端
部に形成されるねじ11aと係合するねじ13aが軸方
向に沿って形成される。一方、絶縁管13の軸方向の他
端側面13dには、上述した帯電検出管11の液排出部
11eを構成する直径4mmの貫通孔と同一の内径を有
する配管21が係合され、上記凹部13cの底面13f
と配管21との間には直径4mmの貫通孔13eが形成
される。
For example, in the cylindrical insulating tube 13 made of an insulating material such as Teflon, one side surface 13b in the axial direction
A recess 13c having a circular planar shape and a bottom is formed in the recess 13c, and a screw 13a that engages with a screw 11a formed at one end of the charge detection tube 11 is provided in the inner peripheral surface of the recess 13c in the axial direction. formed along. On the other hand, a pipe 21 having the same inner diameter as the through hole with a diameter of 4 mm constituting the liquid discharge portion 11e of the charge detection tube 11 is engaged with the other axial end side surface 13d of the insulating tube 13, and the concave portion Bottom surface 13f of 13c
A through hole 13e with a diameter of 4 mm is formed between the pipe 21 and the pipe 21.

【0010】以上説明した帯電検出管11と絶縁管13
とは、ほぼ凹部13cの内径に等しい直径を有し例えば
SUS304等の材料にてなる網12が絶縁管13の底
面13fに載置された後、絶縁管13の凹部13cのね
じ13aに帯電検出管11のねじ11aを係合させ、帯
電検出管11が網12を押圧するまで帯電検出管11が
上記凹部13cにねじ込まれることで結合される。この
ように帯電検出管11と絶縁管13とを結合することで
帯電検出管13内の液貯留部11d等と配管21とは網
12及び貫通孔13eを介して送液可能となり、又、絶
縁管13は絶縁材料であるので、帯電検出管11、網1
2と配管21とは電気的に絶縁される。又、帯電検出管
11と絶縁管13とは着脱自在であり、後述するように
種々のメッシュ数にてなる網12に交換することができ
る。 尚、帯電検出管11の絶縁管13への取り付けは、ネジ
による螺着以外にパッキング又はO−リングを介しての
嵌合等通常の取り付け方法が用いえる。
Charge detection tube 11 and insulation tube 13 explained above
This means that after the net 12 made of a material such as SUS304 and having a diameter approximately equal to the inner diameter of the recess 13c is placed on the bottom surface 13f of the insulating tube 13, an electrical charge is detected on the screw 13a of the recess 13c of the insulating tube 13. The screws 11a of the tube 11 are engaged, and the charge detection tube 11 is screwed into the recess 13c until the charge detection tube 11 presses the net 12, thereby being connected. By coupling the charge detection tube 11 and the insulating tube 13 in this way, liquid can be transferred between the liquid storage portion 11d and the like in the charge detection tube 13 and the piping 21 via the mesh 12 and the through hole 13e, and the insulation Since the tube 13 is an insulating material, the charge detection tube 11 and the net 1
2 and piping 21 are electrically insulated. Furthermore, the charge detection tube 11 and the insulating tube 13 are removable, and can be replaced with a mesh 12 having a different number of meshes, as will be described later. Note that the charging detection tube 11 can be attached to the insulating tube 13 by ordinary attachment methods such as packing or fitting via an O-ring other than screwing.

【0011】配管21は、バルブ22及び配管23を介
して金属にてなる中空の密閉されたタンク3に送液可能
に接続される。バルブ22はスイッ24を介して例えば
商用交流100V等に接続され、スイッ24を操作する
ことにより、バルブ22の開閉を行うことができる。
The pipe 21 is connected to a hollow sealed tank 3 made of metal via a valve 22 and a pipe 23 so as to be able to send liquid. The valve 22 is connected to, for example, a commercial AC 100V via a switch 24, and by operating the switch 24, the valve 22 can be opened and closed.

【0012】以上のように構成される帯電検出管11、
絶縁管13、配管21、バルブ22、配管23は、内径
70.3mm、長さ350mmの円筒形状で金属等の導
電性材料にてなる収納容器2内に収納され、収納容器2
は上記タンク3に固定される。又、収納容器2は接地さ
れ、このように構成することで収納容器2は帯電検出管
11等に対して外部より作用する電気的ノイズを遮蔽す
る。
Charge detection tube 11 configured as described above,
The insulating tube 13, the piping 21, the valve 22, and the piping 23 are housed in a cylindrical container 2 having an inner diameter of 70.3 mm and a length of 350 mm and made of a conductive material such as metal.
is fixed to the tank 3. Further, the storage container 2 is grounded, and with this configuration, the storage container 2 shields the charge detection tube 11 and the like from electrical noise acting from the outside.

【0013】上記タンク3は、内径65.9mm、長さ
190mmの円筒形状の容器であり、タンク3が電気的
ノイズを発生しないように接地されるとともに、配管7
1、バルブ72、配管73、ガスクーラ4及び配管74
を介して、真空ポンプ5に送気可能に接続され、又、配
管75a及びバルブ75を介して、並びに配管76a及
びバルブ76を介してそれぞれ大気に接続されている。 尚、配管71及び配管75aはタンク3の周方向側面に
接続され、配管76aはタンク3の底板に接続され、又
、タンク3と配管23、71、75a及び76aの接続
部は、それぞれタンク3の内部と大気とが気密状態を保
つように接続される。又、タンク3には、タンク3内の
真空度を測定するための真空計77が取り付けられてい
る。
The tank 3 is a cylindrical container with an inner diameter of 65.9 mm and a length of 190 mm. The tank 3 is grounded so as not to generate electrical noise, and is connected to the piping 7.
1, valve 72, piping 73, gas cooler 4 and piping 74
is connected to the vacuum pump 5 so that air can be supplied thereto, and is connected to the atmosphere via a pipe 75a and a valve 75, and via a pipe 76a and a valve 76, respectively. The piping 71 and the piping 75a are connected to the circumferential side surface of the tank 3, the piping 76a is connected to the bottom plate of the tank 3, and the connection parts of the tank 3 and the piping 23, 71, 75a, and 76a are connected to the tank 3, respectively. The interior of the chamber is connected to the atmosphere in an airtight manner. Further, a vacuum gauge 77 is attached to the tank 3 for measuring the degree of vacuum inside the tank 3.

【0014】以上のように構成することで、バルブ22
、バルブ75及びバルブ76を閉めた状態で、バルブ7
2を開くとともに真空ポンプ5を動作させることによっ
て、タンク3内のガスが真空ポンプ5により排気され、
タンク3内を10−4Torr程度の真空に近い減圧状
態にすることができる。又、バルブ75の開度を調節す
ることでバルブ75を介してタンク3内へ流入する空気
量を調節し、タンク3内の圧力を真空に近い減圧状態か
ら大気圧まで設定することができる。
With the above configuration, the valve 22
, with valve 75 and valve 76 closed.
By opening 2 and operating the vacuum pump 5, the gas in the tank 3 is exhausted by the vacuum pump 5,
The inside of the tank 3 can be brought into a reduced pressure state close to vacuum of about 10<-4 >Torr. Further, by adjusting the opening degree of the valve 75, the amount of air flowing into the tank 3 through the valve 75 can be adjusted, and the pressure inside the tank 3 can be set from a reduced pressure state close to vacuum to atmospheric pressure.

【0015】以上説明したように構成される本実施例の
帯電量測定装置における動作を以下に説明する。バルブ
72を開くとともに、バルブ22、バルブ75及びバル
ブ76を閉じた状態とした後、所定量の液体試料6を液
注入部11cより帯電検出管11内へ注入する。
The operation of the charge amount measuring device of this embodiment constructed as described above will be described below. After opening the valve 72 and closing the valves 22, 75, and 76, a predetermined amount of the liquid sample 6 is injected into the charge detection tube 11 from the liquid injection part 11c.

【0016】次に真空ポンプ5を動作させることによっ
て、配管71、バルブ72、配管73、ガスクーラ4、
配管74を介してタンク3内のガスを排気し、タンク3
内を10−4Torr程度まで減圧する。この状態でバ
ルブ72を閉めるとともにバルブ75の開度を調節しな
がら徐々にバルブを開け、タンク3内に外気を流入させ
タンク3内を所定の圧力値に調圧する。所定の圧力値に
なったとき、バルブ75を閉め、その後スイッチ24を
オン状態とすることでバルブ22を開ける。
Next, by operating the vacuum pump 5, the pipes 71, valves 72, pipes 73, gas cooler 4,
The gas inside the tank 3 is exhausted via the piping 74, and the gas inside the tank 3 is exhausted.
Reduce the pressure inside to about 10-4 Torr. In this state, the valve 72 is closed and the valve 75 is gradually opened while adjusting the opening degree to allow outside air to flow into the tank 3 and adjust the pressure inside the tank 3 to a predetermined pressure value. When the pressure reaches a predetermined value, the valve 75 is closed, and then the switch 24 is turned on to open the valve 22.

【0017】帯電検出管11の液貯留部11dは大気圧
状態であるので、バルブ22が開状態になったとき、上
記試料6は配管21、バルブ22及び配管23を介して
タンク3内に吸い込まれる。このとき、帯電検出管11
は、試料6と帯電検出管11との間の接触及び分離によ
り試料6に発生する電荷量と等しくかつ逆の極性を有す
る流動帯電量で帯電される。
Since the liquid storage portion 11d of the charge detection tube 11 is at atmospheric pressure, when the valve 22 is opened, the sample 6 is sucked into the tank 3 via the pipe 21, valve 22, and pipe 23. It will be done. At this time, the charge detection tube 11
is charged with a flowing charge amount that is equal to and has an opposite polarity to the charge amount generated on the sample 6 due to contact and separation between the sample 6 and the charge detection tube 11.

【0018】このようにして帯電検出管11に帯電した
電荷は、電荷量検出用端子11b及びリード線42を介
して電荷量検出計41に流れ、荷電量検出計41にてそ
の荷電量が測定される。したがって、液体の試料6の流
動帯電量を測定することができる。このように一回の測
定に対して、従来のように試料6を循環して使用しない
ので、測定毎に試料特性が変化するという問題は発生せ
ず再現性の良い測定データを得ることができる。
The charge thus charged on the charge detection tube 11 flows to the charge amount detector 41 via the charge amount detection terminal 11b and the lead wire 42, and the amount of charge is measured by the charge amount detector 41. be done. Therefore, the flow charge amount of the liquid sample 6 can be measured. In this way, the sample 6 is not circulated and used for one measurement as in the conventional method, so there is no problem of sample characteristics changing with each measurement, and measurement data with good reproducibility can be obtained. .

【0019】試料6として市販の特級試薬を用いて、上
述の測定方法で測定した結果を図3から図7及び表1、
表2に示す。尚、これらの測定に使用した帯電検出管1
1は上述したサイズにてなるものを使用した。
Using a commercially available special grade reagent as sample 6, the results were measured by the above-mentioned measuring method, and the results are shown in FIGS. 3 to 7 and Table 1.
It is shown in Table 2. In addition, the charge detection tube 1 used for these measurements
No. 1 was used having the size described above.

【0020】図3は、網12として、150メッシュ網
を用い、帯電検出管11への試料6の注入量は3ml、
タンク3内の圧力値を10−4Torrに設定し、試料
6としてヘキサン、アセトン、ヘキサンの順序で変更し
た場合の試料6の置換による帯電特性に及ぼす影響と測
定の再現性を調べた結果を示すグラフである。図3中の
実線はヘキサンを用いた1回目の結果、破線はその2回
目の結果である。図3に示すように、単位がnCである
流動帯電量が測定回数の増加に伴ってそれぞれ異なる経
路をたどりながら一定値に近付く特性がわかる。また、
それぞれの収束値にはほとんど差が見られず、測定の再
現性も見られる。
In FIG. 3, a 150 mesh net is used as the net 12, and the amount of sample 6 injected into the charge detection tube 11 is 3 ml.
The results of investigating the effect of replacing sample 6 on charging characteristics and reproducibility of measurement when the pressure value in tank 3 was set to 10-4 Torr and sample 6 was changed in the order of hexane, acetone, and hexane are shown. It is a graph. The solid line in FIG. 3 is the result of the first test using hexane, and the broken line is the result of the second test. As shown in FIG. 3, it can be seen that the flow charge amount, whose unit is nC, approaches a constant value while following different paths as the number of measurements increases. Also,
There is almost no difference in the respective convergence values, and the reproducibility of the measurements is also seen.

【0021】図4は、網12として200メッシュ網を
用い、試料6としてヘキサン3mlを注入した場合の吸
引差圧と流動帯電量との関係を示すグラフである。図4
に示すように、流動帯電量が吸引差圧の増大に伴って大
きくなる特性を示している。
FIG. 4 is a graph showing the relationship between the suction differential pressure and the flow charge amount when a 200 mesh mesh is used as the mesh 12 and 3 ml of hexane is injected as the sample 6. Figure 4
As shown in Figure 2, the flow charge amount increases as the suction differential pressure increases.

【0022】図5は、試料6としてヘキサン3mlを注
入し、タンク3内の圧力値を10−4Torrに設定し
た場合における網12のメッシュ数と流動帯電量との関
係を示すグラフである。図5に示すように、流動帯電量
が網12のメッシュ数の増加に伴って大きくなる特性を
示している。
FIG. 5 is a graph showing the relationship between the number of meshes of the net 12 and the flow charge amount when 3 ml of hexane is injected as the sample 6 and the pressure value in the tank 3 is set to 10 -4 Torr. As shown in FIG. 5, the amount of flow charge increases as the number of meshes of the net 12 increases.

【0023】図6は、網12として200メッシュ網を
用い、試料6としてヘキサンを注入し、タンク3内の圧
力値を10−4Torrに設定した場合における試料6
の液量と流動帯電量との関係を示すグラフである。図6
に示すように、流動帯電量が試料量の増加に伴って大き
くなる特性を示している。
FIG. 6 shows sample 6 when a 200 mesh net is used as the net 12, hexane is injected as the sample 6, and the pressure value in the tank 3 is set to 10-4 Torr.
3 is a graph showing the relationship between the amount of liquid and the amount of flow charge. Figure 6
As shown in , the flow charge amount increases as the sample amount increases.

【0024】表1は、網12として150メッシュ網を
用い、試料6を3ml注入し、タンク3内の圧力値を1
0−4Torrに設定した場合における各種試料の流動
帯電特性を調べた結果を示している。表1に示すように
、試料の導電率が10−7〜10−6S/mの範囲に流
動帯電量のピークを持つ特性を示している。
Table 1 shows that a 150 mesh net is used as the net 12, 3 ml of sample 6 is injected, and the pressure value in tank 3 is set to 1.
The graph shows the results of examining the flow charging characteristics of various samples when set at 0-4 Torr. As shown in Table 1, the conductivity of the sample exhibits a characteristic in which the flow charge peaks in the range of 10-7 to 10-6 S/m.

【0025】[0025]

【表1】[Table 1]

【0026】次に、網12として32メッシュ網を使用
し、試料6を0.5ml注入し網12の網目間に試料膜
が形成される状態を作り、形成された試料膜および網1
2に付着した試料6を吸引により網から剥離する場合に
おける帯電状態を調べた。図7は、試料6としてアセト
ンを使用した場合における吸引差圧と剥離帯電量との関
係を示すグラフである。図7に示すように、剥離帯電量
が吸引差圧の増大に伴って大きくなる特性を示している
Next, using a 32 mesh net as the net 12, 0.5 ml of the sample 6 is injected to create a state in which a sample film is formed between the meshes of the net 12, and the formed sample film and the net 1
The charging state when the sample 6 attached to the sample 2 was peeled off from the net by suction was investigated. FIG. 7 is a graph showing the relationship between suction differential pressure and peeling charge amount when acetone is used as sample 6. As shown in FIG. 7, the amount of peeling charge increases as the suction differential pressure increases.

【0027】表2は、タンク3内の圧力値を10−4T
orrに設定した場合の各種試料6の剥離帯電特性を調
べた結果である。表2に示すように、試料6の導電率が
10−7〜10−6S/mの範囲に剥離帯電量のピーク
を持つ特性を示している。
Table 2 shows the pressure value inside the tank 3 at 10-4T.
These are the results of examining the peel-off charging characteristics of various samples 6 when set to orr. As shown in Table 2, the electrical conductivity of Sample 6 exhibits a characteristic in which the peeling charge amount peaks in the range of 10-7 to 10-6 S/m.

【0028】[0028]

【表2】[Table 2]

【0029】以上の図3ないし図6及び表1の測定結果
は、既往の測定報告と定性的によく一致しており、本実
施例の液体帯電量測定装置が実用的であることが判る。 又、網12は、SUS304以外の材質のものでもよく
、これにより、網12の材質による試料6の帯電量の変
化を測定することができる。又、網12を複数枚積み重
ねてもよく、これにより、網12の積み重ね枚数による
試料6の帯電量の変化を測定することができる。
The measurement results shown in FIGS. 3 to 6 and Table 1 qualitatively agree well with past measurement reports, and it can be seen that the liquid charge amount measuring device of this example is practical. Furthermore, the net 12 may be made of a material other than SUS304, so that changes in the amount of charge on the sample 6 depending on the material of the net 12 can be measured. Furthermore, a plurality of nets 12 may be stacked, thereby making it possible to measure changes in the amount of charge on the sample 6 depending on the number of nets 12 stacked.

【0030】図8は、ナイロン、テトロン、ポリエチレ
ン等の絶縁性材料からなる網12による帯電量を測定す
る場合に使用する帯電量測定部1の第2の実施例の縦断
面図を示している。尚、図2と同じ構成部分については
同じ符号を付し、その説明を省略する。絶縁管13には
上述したように第2帯電検出管101がねじ込まれ、第
2帯電検出管101に形成される凹部101aの底面1
01bに絶縁材料からなる網12が載置される。又、第
2帯電検出管101aの外周面であって上記凹部101
aが形成された部分にはねじ101cが形成される。
FIG. 8 shows a longitudinal cross-sectional view of a second embodiment of the charge amount measuring section 1 used when measuring the amount of charge using a net 12 made of an insulating material such as nylon, Tetron, polyethylene, etc. . Note that the same components as in FIG. 2 are given the same reference numerals, and their explanations will be omitted. The second charge detection tube 101 is screwed into the insulating tube 13 as described above, and the bottom surface 1 of the recess 101a formed in the second charge detection tube 101 is screwed into the insulation tube 13.
A net 12 made of an insulating material is placed on 01b. Furthermore, the recess 101 is located on the outer peripheral surface of the second charge detection tube 101a.
A screw 101c is formed in the portion where a is formed.

【0031】第1帯電検出管100は、上述した帯電検
出管11と同様の形状及び大きさにてなる液注入部11
c、液貯留部11d、液排出部11eを有し、液排出部
11e部分に対応する第1帯電検出管100の外周面全
周には周方向へ突出するフランジ100aが形成される
。 尚、フランジ100aの直径は凹部101aの内径より
小さく、フランジ100aは凹部101aに挿入可能で
ありフランジ100aの端面100bと網12とが当接
する。
The first charge detection tube 100 has a liquid injection part 11 having the same shape and size as the charge detection tube 11 described above.
c, a liquid storage part 11d, a liquid discharge part 11e, and a flange 100a projecting in the circumferential direction is formed on the entire outer circumferential surface of the first charge detection tube 100 corresponding to the liquid discharge part 11e. The diameter of the flange 100a is smaller than the inner diameter of the recess 101a, and the flange 100a can be inserted into the recess 101a, so that the end surface 100b of the flange 100a and the mesh 12 come into contact.

【0032】上記のように設置された第1帯電検出管1
00には、第1帯電検出管100の外径より僅かに大き
く上記フランジ100aの外径より小さい直径を有する
孔102bが底面102aにあけられた凹部102cを
有する締結金具102が、上記孔102bを第1帯電検
出管100に挿通して設けられ、上記凹部102cの内
周面に形成されたねじ102dと第2帯電検出管101
のねじ101cとを係合させる。よって締結金具102
をねじ込むことで、締結金具102の底面102aと第
1帯電検出管100のフランジ100aとが当接し、さ
らにねじ込むことで網12を挟んだ状態で第1及び第2
の帯電検出管100,101を締結することができる。
First charge detection tube 1 installed as described above
00, the fastening metal fitting 102 has a recess 102c formed in the bottom surface 102a with a hole 102b having a diameter slightly larger than the outer diameter of the first charge detection tube 100 and smaller than the outer diameter of the flange 100a. A screw 102d inserted through the first charge detection tube 100 and formed on the inner peripheral surface of the recess 102c and the second charge detection tube 101
The screw 101c is engaged with the screw 101c. Therefore, the fastener 102
By screwing in, the bottom surface 102a of the fastening fitting 102 and the flange 100a of the first charge detection tube 100 come into contact, and by further screwing, the first and second
charge detection tubes 100 and 101 can be fastened together.

【0033】このように構成することで、金属からなる
網の場合と同様に絶縁性材料からなる網12に発生した
電荷量を第1帯電検出管100に設けた電荷量検出用端
子11b、リード線42を介して電荷量検出計41にて
測定することができる。
With this configuration, the amount of charge generated in the mesh 12 made of an insulating material can be detected by the charge amount detection terminal 11b and the lead provided on the first charge detection tube 100, as in the case of a mesh made of metal. The charge amount can be measured by the charge amount detector 41 via the line 42 .

【0034】上述した各実施例では、図2に示し、又、
上述したような構造の帯電検出管11等を使用したが、
これに限るものではなく、試料6をタンク3内に吸引す
るときに発生する流動帯電量及び剥離帯電量の検出感度
が高くなるように適宜、帯電検出管の内径、長さ及び構
造を設計すればよい。
In each of the above-mentioned embodiments, as shown in FIG.
Although the charge detection tube 11 etc. having the structure as described above was used,
However, the inner diameter, length, and structure of the charge detection tube may be appropriately designed to increase the detection sensitivity of the amount of flow charge and the amount of peeling charge that occur when the sample 6 is sucked into the tank 3. Bye.

【0035】以上説明したように、上記各実施例の帯電
量測定装置によれば、フィルタ素材や容器などの形状等
が複雑となることはなく、又、試料液体を循環使用しな
いので、試料液体の特性が変化することはなく測定デー
タが大きく変化せず、定量的に液体の流動帯電量及び剥
離帯電量をともに測定することができ、高精度でかつ同
一の測定条件の再現性に優れた測定を行うことができる
As explained above, according to the charge amount measuring device of each of the above embodiments, the shape of the filter material, container, etc. is not complicated, and the sample liquid is not used in circulation. It is possible to quantitatively measure both the flow charge amount and peeling charge amount of the liquid without changing the characteristics of the liquid, and the measurement data does not change significantly.It is highly accurate and has excellent reproducibility under the same measurement conditions. Measurements can be taken.

【0036】[0036]

【発明の効果】以上詳述したように本発明によれば、液
体状の試料を帯電検出体に接触させかつ上記帯電検出体
から除去した後、上記帯電検出体の帯電量を帯電量測定
手段により測定するようにしたもので、フィルタ素材や
容器などの形状等が複雑となることはなく、又、試料液
体を循環使用しないので、試料液体の特性が変化するこ
とはなく測定データが大きく変化せず、容易な操作によ
りフィルタにおける液体の流動帯電量及び剥離帯電量を
ともに測定することができ、かつ従来例に比較し高精度
であって測定条件の再現性に優れた液体の帯電量測定装
置を提供することができる。
As described in detail above, according to the present invention, after a liquid sample is brought into contact with a charged detecting body and removed from the charged detecting body, the amount of charge on the charged detecting body is measured by the charge amount measuring means. Since the filter material and the shape of the container are not complicated, and the sample liquid is not recycled, the characteristics of the sample liquid will not change and the measurement data will change significantly. A liquid charge measurement method that allows you to measure both the flowing charge amount and peeling charge amount of a liquid in a filter with easy operation without having to use a filter, and is highly accurate and has excellent reproducibility of measurement conditions compared to conventional methods. equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の液体帯電量測定装置の一実施例を
示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a liquid charge amount measuring device of the present invention.

【図2】  図1に示す帯電量検出部の縦断面図である
2 is a longitudinal cross-sectional view of the charge amount detection section shown in FIG. 1. FIG.

【図3】  測定回数と流動帯電量との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the number of measurements and the flow charge amount.

【図4】  吸引差圧と流動帯電量との関係を示すグラ
フである。
FIG. 4 is a graph showing the relationship between suction differential pressure and flow charge amount.

【図5】  網のメッシュ数と流動帯電量との関係を示
すグラフである。
FIG. 5 is a graph showing the relationship between the number of meshes of the net and the flow charge amount.

【図6】  試料量と流動帯電量との関係を示すグラフ
である。
FIG. 6 is a graph showing the relationship between sample amount and flow charge amount.

【図7】  吸引差圧と剥離帯電量との関係を示すグラ
フである。
FIG. 7 is a graph showing the relationship between suction differential pressure and peeling charge amount.

【図8】  図1に示す帯電検出部の第2の実施例を示
す縦断面図である。
8 is a longitudinal sectional view showing a second embodiment of the charge detection section shown in FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1…帯電量検出部、2…収納容器、3…タンク、5…真
空ポンプ、6…液体の試料、11…帯電検出管、12…
網、13…絶縁管、41…帯電量検出計。
DESCRIPTION OF SYMBOLS 1... Charge amount detection part, 2... Storage container, 3... Tank, 5... Vacuum pump, 6... Liquid sample, 11... Charge detection tube, 12...
Net, 13... Insulating tube, 41... Charge amount detection meter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  液体状の試料の接触及び分離により帯
電する帯電検出体と、上記試料を上記帯電検出体に接触
させかつ上記帯電検出体から除去する試料除去手段と、
上記帯電検出体の帯電量を測定する帯電量測定手段と、
上記帯電検出体に対する外部からのノイズを遮断する遮
蔽体と、を備えたことを特徴とする液体の帯電量測定装
置。
1. A charged detector that is charged by contacting and separating a liquid sample; sample removing means that brings the sample into contact with the charged detector and removes the sample from the charged detector;
A charge amount measuring means for measuring the charge amount of the charge detection body;
An apparatus for measuring the amount of charge of a liquid, comprising: a shield that blocks noise from the outside to the charge detection body.
JP13645891A 1991-06-07 1991-06-07 Apparatus for measuring charge quantity of liquid Pending JPH04361170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13645891A JPH04361170A (en) 1991-06-07 1991-06-07 Apparatus for measuring charge quantity of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13645891A JPH04361170A (en) 1991-06-07 1991-06-07 Apparatus for measuring charge quantity of liquid

Publications (1)

Publication Number Publication Date
JPH04361170A true JPH04361170A (en) 1992-12-14

Family

ID=15175588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13645891A Pending JPH04361170A (en) 1991-06-07 1991-06-07 Apparatus for measuring charge quantity of liquid

Country Status (1)

Country Link
JP (1) JPH04361170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038810A (en) * 2009-08-07 2011-02-24 Kyoto Electron Mfg Co Ltd Vibration-type density measuring method and vibration-type densitometer
JP2017183477A (en) * 2016-03-30 2017-10-05 中部電力株式会社 Flow charge evaluation diagnosis method for electrical equipment, and flow charge evaluation diagnosis device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038810A (en) * 2009-08-07 2011-02-24 Kyoto Electron Mfg Co Ltd Vibration-type density measuring method and vibration-type densitometer
JP2017183477A (en) * 2016-03-30 2017-10-05 中部電力株式会社 Flow charge evaluation diagnosis method for electrical equipment, and flow charge evaluation diagnosis device

Similar Documents

Publication Publication Date Title
US4749988A (en) Non-invasive liquid level sensor
JP2878581B2 (en) Monitor device
US5136247A (en) Apparatus and methods for calibrated work function measurements
US3487677A (en) Method for leak detection
US3910830A (en) Flush mounted probe assembly
US2484279A (en) Method and apparatus for testing corrosion
CN108845000A (en) A kind of method of pulsed field fingerprint technique measurement defect of pipeline
US2800628A (en) Dual testing capacitor
US4916940A (en) Method and apparatus for measuring and calculating bulk water in crude oil
JPH04361170A (en) Apparatus for measuring charge quantity of liquid
JPS61260153A (en) Device for monitoring mixing ratio of liquid of two kind
US4556849A (en) Apparatus for measuring the grain-size composition of powders
US3876916A (en) Capacitor for sensing contaminated oil
CA1269712A (en) Apparatus for the detection and measurement of suspended particulates in a molten metal
US4579144A (en) Electron impact ion source for trace analysis
EP0115587B1 (en) Sample volume metering apparatus
US6583627B2 (en) Process and apparatus for testing multi-layer composites and containers produced therefrom
US3863146A (en) Measuring instrument for the electrical determination of damage to an enamel layer
US3808875A (en) Densitometer and probe therefor
US3689833A (en) Particle analyzing apparatus
GB2248301A (en) Apparatus and method for the detection of changes in the composition of a material
US3732159A (en) Flow-through chamber for analysis of continuously flowing sample solution
CN214703226U (en) Device for detecting oil particle amount
JP3704053B2 (en) In-pipe film defect inspection apparatus and in-pipe film defect inspection method
US2979620A (en) Air radioactivity monitor