JP2017183477A - Flow charge evaluation diagnosis method for electrical equipment, and flow charge evaluation diagnosis device - Google Patents

Flow charge evaluation diagnosis method for electrical equipment, and flow charge evaluation diagnosis device Download PDF

Info

Publication number
JP2017183477A
JP2017183477A JP2016067845A JP2016067845A JP2017183477A JP 2017183477 A JP2017183477 A JP 2017183477A JP 2016067845 A JP2016067845 A JP 2016067845A JP 2016067845 A JP2016067845 A JP 2016067845A JP 2017183477 A JP2017183477 A JP 2017183477A
Authority
JP
Japan
Prior art keywords
insulating
flow
insulating liquid
fine particles
electrical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016067845A
Other languages
Japanese (ja)
Other versions
JP6643940B2 (en
Inventor
昌展 吉田
Masanobu Yoshida
昌展 吉田
小西 義則
Yoshinori Konishi
義則 小西
佐藤 学
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKA IND KK
Chubu Electric Power Co Inc
Original Assignee
YUKA IND KK
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKA IND KK, Chubu Electric Power Co Inc filed Critical YUKA IND KK
Priority to JP2016067845A priority Critical patent/JP6643940B2/en
Publication of JP2017183477A publication Critical patent/JP2017183477A/en
Application granted granted Critical
Publication of JP6643940B2 publication Critical patent/JP6643940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a diagnosis method capable of evaluating flow charge of electrical equipment for both an insulative liquid of a transformer being used at present and a solid insulator.SOLUTION: The present invention relates to a flow charge evaluation diagnosis method for electrical equipment in which a solid insulator and an electrification body are immersed in an insulative liquid. The flow charge evaluation diagnosis method for the electrical equipment is characterized in that the insulative liquid sampled from the electrical equipment and solid insulator particles contained in the insulative liquid are charged and flow charge is evaluated.SELECTED DRAWING: Figure 2

Description

本発明は絶縁性液体と固体絶縁物を備えた電気機器における流動帯電発生のし易さを診断する方法および診断装置に関する。   The present invention relates to a method and a diagnostic apparatus for diagnosing easiness of flow charge generation in an electrical apparatus including an insulating liquid and a solid insulator.

変圧器における流動帯電とは、変圧器内部で絶縁油が流動することにより固体絶縁物の界面において電荷の分離が発生し、巻線内部や油道周辺の絶縁物に電荷が蓄積される現象である。絶縁油入りの変圧器において、絶縁油の流れを良くするために絶縁油の流路が設けられている。これを油道と称する。電荷の蓄積した部分は、直流電位が上昇して静電気放電を発生することがあり、条件によっては絶縁破壊に至るおそれがある。
このように絶縁性液体として絶縁油を使用した電気機器では、絶縁性液体と固体絶縁物の間で流動帯電現象が発生し、電気機器の絶縁性を脅かす場合がある。
このため、従来から、実電気機器に対し流動帯電の程度を評価する方法として、非特許文献1に記載のミニ静電テスター法と非特許文献2に記載の蓄積電荷密度法が検討されている。
Flow electrification in a transformer is a phenomenon in which electric charge is separated at the interface of a solid insulator due to the flow of insulating oil inside the transformer, and charge is accumulated in the insulator inside the winding and around the oil passage. is there. In a transformer with insulating oil, an insulating oil flow path is provided to improve the flow of the insulating oil. This is called an oil passage. In the portion where the charge is accumulated, the direct current potential may increase and electrostatic discharge may occur, and there is a risk of dielectric breakdown depending on conditions.
As described above, in an electric device using insulating oil as an insulating liquid, a flow electrification phenomenon may occur between the insulating liquid and the solid insulator, which may threaten the insulating property of the electric device.
For this reason, conventionally, as a method for evaluating the degree of fluid charging with respect to actual electrical equipment, the mini electrostatic tester method described in Non-Patent Document 1 and the accumulated charge density method described in Non-Patent Document 2 have been studied. .

ミニ静電テスター法は、現地変圧器から採集した絶縁油と紙フィルター(変圧器の固体絶縁物の模擬構造体)で帯電させ、紙フィルターを設置している金属メッシュを通して電流を測定し、評価する方法である。
しかしながら、ミニ静電テスター法を実施した場合、紙フィルターが運転中の変圧器内の絶縁物を充分に再現する訳ではないので、ミニ静電テスター法は絶縁性液体単独の流動帯電への影響を評価することはできるが、固体絶縁物に対する評価はできないと考えられる。
The mini electrostatic tester method is evaluated by measuring the current through a metal mesh with a paper filter, charged with insulating oil collected from a local transformer and a paper filter (simulated structure of the solid insulation of the transformer). It is a method to do.
However, when the mini electrostatic tester method is implemented, the paper filter does not sufficiently reproduce the insulation in the transformer in operation, so the mini electrostatic tester method has an effect on the flow charge of the insulating liquid alone. Can be evaluated, but solid insulators cannot be evaluated.

一方、蓄積電荷密度法は、電気機器内部から絶縁性液体と固体絶縁物を採取する必要がある。ところが、運転中の電気機器から固体絶縁物を直接採取するのは難しいので、実際には実電気機器から固体絶縁物を採取せずに、新品の固体絶縁物に運転中の電気機器から採取した絶縁油を含浸させて代用し、蓄積電荷密度法を適用する必要がある。また、蓄積電荷密度法を実施するには、多大な工期と費用を要するため、実設備に適用することは容易ではない。   On the other hand, in the accumulated charge density method, it is necessary to collect an insulating liquid and a solid insulator from the inside of an electric device. However, since it is difficult to directly collect the solid insulation from the electrical equipment in operation, it was actually collected from the electrical equipment in operation to a new solid insulation without collecting the solid insulation from the actual electrical equipment. It is necessary to impregnate with insulating oil and apply the accumulated charge density method. In addition, since the accumulated charge density method requires a large construction period and cost, it is not easy to apply it to actual equipment.

電気協同研究 第54巻 第5号(その1)「油入変圧器の保守管理」電力用変圧器保守管理専門委員会著、社団法人電気協同研究会 平成11年2月発行、P133〜、7-2-1Electric Cooperative Research Vol. 54, No. 5 (Part 1) “Maintenance Management of Oil-filled Transformers” by Electric Power Transformer Maintenance Management Special Committee, Electric Cooperative Research Society February 1999, P133, 7 -2-1 電気協同研究 第65巻 第1号 「電力用変圧器改修ガイドライン」電力用変圧器保守管理専門委員会著、社団法人電気協同研究会 平成21年2月発行、P198〜、付録7Electric Cooperative Research Vol. 65 No. 1 “Power Transformer Reform Guidelines” by Electric Power Transformer Maintenance Management Special Committee, Electric Cooperative Research Society, February 2009, P198 ~, Appendix 7

前述の背景から、従来知られているミニ静電テスター法と蓄積電荷密度法のいずれにおいても現地使用中の変圧器や電気機器の評価は容易ではなく、従来方法とは異なる方法であって、現地使用中の変圧器の絶縁性液体と固体絶縁物を合わせて評価できる試験方法の開発が求められている。   From the background described above, it is not easy to evaluate transformers and electrical equipment used in the field in any of the conventionally known mini electrostatic tester method and accumulated charge density method, and it is a method different from the conventional method, There is a need for the development of a test method that can be used to evaluate the insulating liquid and solid insulation of transformers currently in use.

従って、本発明の課題は、現地使用中の変圧器などの電気機器の絶縁性液体と固体絶縁物の状態を加味した上で電気機器における流動帯電の状態を評価できる診断方法の提供を目的とする。   Accordingly, an object of the present invention is to provide a diagnostic method capable of evaluating the state of fluid charging in an electric device while taking into account the state of the insulating liquid and the solid insulator of the electric device such as a transformer used in the field. To do.

本発明の流動帯電評価診断方法は、固体絶縁物が絶縁性液体中に浸漬された電気機器の流動帯電評価診断方法であって、稼働中の前記電気機器から採取した絶縁性液体とその絶縁性液体に含まれる固体絶縁物微粒子を帯電させて流動帯電を評価することを特徴とする。
本発明において、使用中の前記電気機器から採取した前記固体絶縁物微粒子を含む絶縁性液体を液体循環流路に流し、前記液体循環流路の途中に設けた金属フィルターで前記絶縁性液体内の前記固体絶縁物微粒子を捕集し、前記金属フィルターに接続した電流計により前記金属フィルターに生じた発生電荷密度を測定することで流動帯電を評価することが好ましい。
The flow charge evaluation and diagnosis method of the present invention is a flow charge evaluation and diagnosis method for an electric device in which a solid insulator is immersed in an insulating liquid, and the insulating liquid collected from the electric device in operation and its insulating property It is characterized in that fluid charge is evaluated by charging solid insulating fine particles contained in a liquid.
In the present invention, an insulating liquid containing the solid insulating fine particles collected from the electrical equipment in use is caused to flow through a liquid circulation channel, and a metal filter provided in the middle of the liquid circulation channel is used to store the insulating liquid in the insulating liquid. It is preferable to evaluate the flow charge by collecting the solid insulating fine particles and measuring the generated charge density generated in the metal filter with an ammeter connected to the metal filter.

本発明において、使用中の前記電気機器から採取した絶縁性液体を容器に貯留し、前記容器内の絶縁性液体を前記液体循環路に連続的に供給して循環させ、前記金属フィルターに前記絶縁性液体内の前記固体絶縁物微粒子を継続的に捕集し、前記電流計により経時的に発生電荷密度を計測し、経時的に計測した発生電荷密度の値から流動帯電を評価することを特徴とする流動帯電評価診断方法であっても良い。
本発明において、使用中の前記電気機器から採取した前記固体絶縁物微粒子を含む絶縁性液体を上下に延在する流路に流し、前記流路の左右に設けた正電極と負電極から前記流路を降下する固体絶縁物微粒子に電界を印加し、前記固体絶縁物微粒子の移動方向に応じて流動帯電を評価することを特徴とする方法でも良い。
本発明において、前記上下に延在する流路の下方に2股の分岐流路を設け、前記分岐流路上方の流路の左右に前記正電極と負電極を設置し、前記正電極と負電極が作用させる電界により前記固体絶縁物粒子が分岐流路に移動する状況を観察し、前記固体絶縁物粒子の前記分岐流路側への移動数を把握して流動帯電を評価することを特徴とする方法でも良い。
In the present invention, an insulating liquid collected from the electrical equipment in use is stored in a container, and the insulating liquid in the container is continuously supplied to the liquid circulation path to be circulated, and the insulating filter is supplied to the metal filter. The solid insulating fine particles in the conductive liquid are continuously collected, the generated charge density is measured over time by the ammeter, and the flow charge is evaluated from the value of the generated charge density measured over time. It may be a fluid charging evaluation diagnostic method.
In the present invention, an insulating liquid containing the solid insulating fine particles collected from the electrical equipment in use is allowed to flow through a vertically extending flow path, and the flow from the positive electrode and the negative electrode provided on the left and right sides of the flow path. A method may be used in which an electric field is applied to the solid insulating fine particles descending the path, and the flow charge is evaluated according to the moving direction of the solid insulating fine particles.
In the present invention, a bifurcated branch channel is provided below the channel extending vertically, the positive electrode and the negative electrode are installed on the left and right of the channel above the branch channel, and the positive electrode and the negative Observing the situation where the solid insulator particles move to the branch flow path by the electric field applied by the electrode, and grasping the number of movements of the solid insulator particles to the branch flow path side to evaluate the flow charge, The method to do is also good.

本発明の電気機器の流動帯電評価診断装置は、固体絶縁物と通電体が絶縁性液体中に浸漬された電気機器の流動帯電評価診断装置であって、電気機器から採取した絶縁性液体を貯留する容器と、この容器に接続された絶縁性液体の循環流路と、前記容器内の絶縁性液体を前記循環流路に送り前記容器に戻して循環させる循環ポンプと、前記循環流路の途中に設けられた金属フィルターと、前記金属フィルターに接続されて前記金属フィルターを介し発生電荷密度を測定する電流計を具備したことを特徴とする。   The flow electrification evaluation diagnostic apparatus for electrical equipment according to the present invention is a flow charge evaluation diagnosis apparatus for electrical equipment in which a solid insulator and a current conductor are immersed in an insulating liquid, and stores the insulating liquid collected from the electrical equipment. An insulating liquid connected to the container, a circulation pump for sending the insulating liquid in the container to the circulation flow path and returning it to the container, and a middle of the circulation flow path And an ammeter connected to the metal filter and measuring a generated charge density through the metal filter.

本発明に係る電気機器の流動帯電評価診断装置は、固体絶縁物と通電体が絶縁性液体中に浸漬された電気機器の流動帯電評価診断装置であって、上下方向に延在された流路を構成し、使用中の前記電気機器から採取された前記固体絶縁物微粒子を含む絶縁性液体を注入する導入管と、この導入管の左右に設置された正電極および負電極と、前記導入管の下端部に接続された2股型の分岐管とを具備したことを特徴とする。   The flow electrification evaluation diagnostic apparatus for an electrical apparatus according to the present invention is a flow charge evaluation diagnostic apparatus for an electrical apparatus in which a solid insulator and a current conductor are immersed in an insulating liquid, wherein the flow path extends in the vertical direction. An introduction pipe for injecting an insulating liquid containing the solid insulating fine particles collected from the electrical equipment in use, a positive electrode and a negative electrode installed on the left and right of the introduction pipe, and the introduction pipe And a bifurcated branch pipe connected to the lower end portion of the tube.

稼働中の電気機器から絶縁性液体を採取するとその絶縁性液体には固体絶縁物微粒子が含まれている。電気機器では通電体への通電により経時的に固体絶縁物の表面の一部が微粒子となって絶縁性液体中へ放出される。この放出される微粒子の量は電気機器への通電状態や使用状態により経時的に変化する。そして、絶縁性液体を収容している電気機器において流動帯電が発生する状態は、固体絶縁物と絶縁性液体の劣化状態に相関がある。このため、絶縁性液体中の固体絶縁物微粒子の帯電に伴う状態を把握することで、使用中の電気機器における流動帯電発生を評価することができる。
固体絶縁物の微粒子を帯電させて流動帯電発生を診断する場合、固体絶縁物の微粒子を含む絶縁性液体を流動させている間に金属フィルターで固体絶縁物の微粒子を捕集し、金属フィルターに接続した電流計により発生荷電密度を測定することで使用中の電気機器であっても流動帯電発生のし易さを評価することができる。
When an insulating liquid is collected from an electrical device in operation, the insulating liquid contains solid insulating fine particles. In an electric device, a part of the surface of the solid insulator becomes fine particles and is discharged into the insulating liquid over time by energization of the energizing body. The amount of the fine particles released changes with time depending on the energization state and use state of the electric equipment. And the state in which the flow electrification occurs in the electrical equipment containing the insulating liquid has a correlation with the deterioration state of the solid insulator and the insulating liquid. For this reason, by grasping the state accompanying charging of the solid insulating fine particles in the insulating liquid, it is possible to evaluate the generation of flow charge in the electric device in use.
When diagnosing the occurrence of flow electrification by charging solid insulator particles, the metal filter collects the solid insulator particles while flowing the insulating liquid containing the solid insulator particles, By measuring the generated charge density with a connected ammeter, it is possible to evaluate the easiness of flow charge generation even in an electric device in use.

本発明に係る流動帯電評価診断を行う対象の一例である変圧器を示すもので、(A)は変圧器の全体構成図、(B)は変圧器内部に収容されている鉄心とコイルを示す部分断面図。1 shows a transformer that is an example of a subject for performing flow electrification evaluation diagnosis according to the present invention, where (A) shows an overall configuration diagram of the transformer, and (B) shows an iron core and a coil housed inside the transformer. FIG. 本発明に係る流動帯電評価診断を行う装置の一例を示すもので、(A)は流動帯電評価診断装置の全体構成図、(B)は金属フィルター設置部を示す部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS An example of the apparatus which performs the flow charge evaluation diagnosis based on this invention is shown, (A) is a whole block diagram of a flow charge evaluation diagnostic apparatus, (B) is a fragmentary sectional view which shows a metal filter installation part. 同装置に設けられている金属フィルター設置部とその前後の構成を示す部分断面図。The fragmentary sectional view which shows the structure before and behind the metal filter installation part provided in the apparatus. 同装置で求められた帯電度の測定結果の一例を示すグラフ。The graph which shows an example of the measurement result of the charging degree calculated | required with the same apparatus. 本発明に係る流動帯電評価診断を行う装置の他の例を示す構成図。The block diagram which shows the other example of the apparatus which performs the flow charge evaluation diagnosis based on this invention. 図2に示す流動帯電評価診断装置を用い、絶縁性液体を95℃に加熱して経時的に測定した発生電荷密度とtanδを示すグラフ。3 is a graph showing generated charge density and tan δ measured over time by heating the insulating liquid to 95 ° C. using the fluidized charge evaluation / diagnosis apparatus shown in FIG. 2.

<第1実施形態>
以下、本発明に係る流動帯電評価診断を行う場合について油入変圧器の場合を例にとり、図面に基づき説明する。
図1は油入変圧器の一例構造を示すもので、この例の油入変圧器1は、タンク2の内部に複数のコイル体3がそれらの中心軸を上下に向けて収容され、タンク2の内部に絶縁油が満たされてなる。各コイル体3の中心部にケイ素鋼板などの磁性体からなる鉄心5が挿通され、各鉄心5は各々の上下端部においてケイ素鋼板などの磁性体からなる上部鉄心6に一体化されている。
各鉄心5の両端部と上部鉄心6の周囲を囲むように枠状の締め金部7が設けられ、上下の締め金部7に締め付け金具8が延出形成され、上下の締め付け金具8により各コイル体3が上下から挟まれ、各コイル体3に締め付け力が付加されている。
<First Embodiment>
Hereinafter, the case of performing the fluid charging evaluation diagnosis according to the present invention will be described with reference to the drawings, taking an oil-filled transformer as an example.
FIG. 1 shows an example of the structure of an oil-filled transformer. In the oil-filled transformer 1 of this example, a plurality of coil bodies 3 are accommodated inside a tank 2 with their central axes facing up and down. Is filled with insulating oil. An iron core 5 made of a magnetic material such as a silicon steel plate is inserted through the central portion of each coil body 3, and each iron core 5 is integrated with an upper iron core 6 made of a magnetic material such as a silicon steel plate at the upper and lower ends.
A frame-shaped clamp part 7 is provided so as to surround both ends of each iron core 5 and the periphery of the upper iron core 6, and a clamp 8 is extended and formed on the upper and lower clamps 7. The coil bodies 3 are sandwiched from above and below, and a tightening force is applied to each coil body 3.

本実施形態においてコイル体3は、図1(B)に示すように外側コイル9と内側コイル10からなり、外側コイル9は巻線(通電体)11と絶縁スペーサー(固体絶縁物)12を上下に積層した積層体を上部絶縁体13と下部絶縁体15により挟み付けて構成されている。内側コイル10は巻線(通電体)16と絶縁スペーサー(固体絶縁物)17を上下に積層した積層体を上部絶縁物18と下部絶縁物19で挟み付けて構成されている。
上部絶縁物13、18と下部絶縁物15、19を上下の締め付け金具8により挟み付けることで各コイル体3には上下から締め付け力が作用され、この状態でコイル体3は絶縁油に浸漬されている。
In this embodiment, the coil body 3 includes an outer coil 9 and an inner coil 10 as shown in FIG. 1B, and the outer coil 9 moves a winding (electrically conductive body) 11 and an insulating spacer (solid insulator) 12 up and down. The stacked body is sandwiched between the upper insulator 13 and the lower insulator 15. The inner coil 10 is configured by sandwiching a laminated body in which a winding (electrical conductor) 16 and an insulating spacer (solid insulator) 17 are vertically stacked between an upper insulator 18 and a lower insulator 19.
By sandwiching the upper insulators 13 and 18 and the lower insulators 15 and 19 with the upper and lower clamping brackets 8, a clamping force is applied to each coil body 3 from above and below, and in this state, the coil bodies 3 are immersed in insulating oil. ing.

前記構成の変圧器1は、送電線などから送られる高電圧を電力使用者の近くで降圧する用途などに使用されるので、外側コイル9および内側コイル10に内在する巻線11(通電体)、16(通電体)には常時電流が流されている。巻線11、16に電流を流すことで電磁力が作用するので、コイル体3や鉄心5には電磁力が作用し、これらが振動する。
また、送電線で短絡事故や地絡事故などが起きると変圧器1の巻線11、16には定格負荷電流の10倍から数10倍に達する大きな電流が流れることがあり、規格以上の電磁力と振動が作用することもある。
これら締め付け力と振動が常時作用する9,10,11,16に巻かれた絶縁紙や絶縁紙の集合体である絶縁スペーサー12、17、絶縁物13,15,18,19や鉄心5とコイル3を隔てる絶縁物(図示略)や、コイル9とコイル10を隔てる絶縁物(図示略)から、絶縁紙を構成する繊維の一部が微粒子となって経時的に絶縁油の中に分離してくる。
一方、変圧器1の絶縁油は種々の要因から経時的に徐々に劣化が進行する。
本願発明者は、絶縁油の劣化の進行度合いと上記絶縁紙から絶縁油内に放出された繊維の微粒子の状態が変圧器1の流動帯電発生のし易さを表すと想定した。
そこで、実使用中の変圧器1から、繊維の微粒子を含む絶縁油の一部を評価診断用に採取し、以下に説明する流動帯電評価診断装置により診断することで、実使用中の変圧器1において、流動帯電発生のし易さを診断することができる。
Since the transformer 1 having the above-described configuration is used for the purpose of stepping down a high voltage sent from a power transmission line or the like near a power user, the winding 11 (electrical conductor) included in the outer coil 9 and the inner coil 10 is used. , 16 (conducting body) is constantly supplied with current. Since an electromagnetic force acts by passing a current through the windings 11 and 16, the electromagnetic force acts on the coil body 3 and the iron core 5, and these vibrate.
In addition, when a short circuit accident or a ground fault occurs in the transmission line, a large current that reaches 10 to several tens of times the rated load current may flow through the windings 11 and 16 of the transformer 1. Forces and vibrations can act.
Insulating spacers 12 and 17 which are aggregates of insulating paper and insulating paper wound around 9, 10, 11 and 16 on which these tightening forces and vibrations are always applied, insulating materials 13, 15, 18 and 19, iron core 5 and coils 3 from the insulator (not shown) that separates the coil 3 and the insulator (not shown) that separates the coil 9 and the coil 10, some of the fibers constituting the insulating paper become fine particles and are separated into the insulating oil over time. Come.
On the other hand, the insulating oil of the transformer 1 gradually deteriorates with time due to various factors.
The inventor of the present application assumed that the degree of progress of the deterioration of the insulating oil and the state of the fine particles of the fibers released from the insulating paper into the insulating oil represent the ease of generating the flow charge of the transformer 1.
Therefore, a part of the insulating oil containing fiber fine particles is collected for evaluation and diagnosis from the transformer 1 in actual use, and diagnosed by the fluidized charge evaluation and diagnosis device described below, thereby the transformer in actual use. In 1, it is possible to diagnose the ease of occurrence of flow charge.

図2(A)は、流動帯電評価診断装置の一実施形態を示すもので、この実施形態の流動帯電評価診断装置30は、変圧器1から採取した絶縁油31を貯留する容器32と、容器32に接続された循環流路33と、循環流路33の一部に組み込まれた循環ポンプ35と、循環流路33の一部に組み込まれた静電気発生部36と、この静電気発生部36に接続された電流計37を主体として構成されている。
容器32の周面に加熱ヒーター38が巻き付けられ、この加熱ヒーター38が図示略の電源に接続されていて、加熱ヒーター38の発熱によって容器32内の絶縁油31を目的の測定温度に加温できるようになっている。
FIG. 2 (A) shows an embodiment of a fluid charge evaluation diagnostic apparatus. A fluid charge evaluation diagnosis apparatus 30 of this embodiment includes a container 32 for storing insulating oil 31 collected from the transformer 1, and a container A circulation flow path 33 connected to 32, a circulation pump 35 incorporated in a part of the circulation flow path 33, a static electricity generation part 36 incorporated in a part of the circulation flow path 33, and a static electricity generation part 36 The connected ammeter 37 is mainly used.
A heater 38 is wound around the peripheral surface of the container 32, and the heater 38 is connected to a power supply (not shown), and the insulating oil 31 in the container 32 can be heated to a target measurement temperature by the heat generated by the heater 38. It is like that.

容器32の開口部には蓋体39が着脱自在に装着され、この蓋体39を上下に貫通して容器内の絶縁油31に到達するように引出管40と戻管41が設けられている。
引出管40の途中に循環ポンプ35が組み込まれ、引出管40の外部終端側に第1の3方弁42を介し環状流路43が接続されている。環状流路43は、第1の3方弁42の1つのポートに接続された第1管路43Aと、この第1管路43Aに第2の3方弁45を介し接続された第2管路43Bと、この第2管路43Bに静電気発生部36を介し接続された第3管路43Cからなり、第3管路43Cの終端側は第1の3方弁42の他のポートに接続されている。また、第2の3方弁45の一つのポートに中継管46が接続され、中継管46の終端側に流速計47を介し戻管41の一端が接続されている。
A lid 39 is detachably attached to the opening of the container 32, and a lead pipe 40 and a return pipe 41 are provided so as to penetrate the lid 39 up and down and reach the insulating oil 31 in the container. .
A circulation pump 35 is incorporated in the middle of the extraction pipe 40, and an annular flow path 43 is connected to the external terminal side of the extraction pipe 40 via a first three-way valve 42. The annular flow path 43 includes a first pipe line 43A connected to one port of the first three-way valve 42, and a second pipe connected to the first pipe line 43A via a second three-way valve 45. Path 43B and a third pipe 43C connected to the second pipe 43B via a static electricity generator 36. The terminal side of the third pipe 43C is connected to another port of the first three-way valve 42. Has been. Further, the relay pipe 46 is connected to one port of the second three-way valve 45, and one end of the return pipe 41 is connected to the terminal end side of the relay pipe 46 via the velocimeter 47.

前記の構造において引出管40と戻管41と環状流路43と第1、第2の3方弁42、45と中継管46により循環流路33が構成されている。
循環ポンプ35により引出管40を介し絶縁油31を容器32から抜き出し、第1の3方弁42側に送り、第3管路43Cを介し静電気発生部36を通過させて第2管路43B側に絶縁油31を送り、第2の3方弁45を介し戻管41側に絶縁油31を送り、容器32に絶縁油31を戻すことができる。
In the above-described structure, the extraction pipe 40, the return pipe 41, the annular flow path 43, the first and second three-way valves 42 and 45, and the relay pipe 46 constitute the circulation flow path 33.
The insulating oil 31 is extracted from the container 32 through the extraction pipe 40 by the circulation pump 35, sent to the first three-way valve 42 side, and passed through the static electricity generating part 36 through the third pipe 43C to the second pipe 43B side. The insulating oil 31 can be sent to the container 32, the insulating oil 31 can be sent to the return pipe 41 via the second three-way valve 45, and the insulating oil 31 can be returned to the container 32.

静電気発生部36は、第2管路43Bに接続された継手型の上部ホルダー50および第3管路43Cに接続された継手型の下部ホルダー51と、上部ホルダー50および下部ホルダー51との間にシールリング52を介し挟持された円盤状の金属フィルター53とからなる。上部ホルダー50の上部側には第2管路43Bに接続するための接続口50aが形成され、上部ホルダー50の内底部側には下広がり状の拡開路50bが形成されている。下部ホルダー51の下部側には第3管路43Cに接続するための接続口51aが形成され、下部ホルダー51の内上部側には上広がり状の拡開路51bが形成されている。金属フィルター53の孔径(ポアサイズ;目の粗さ)は50μm程度に設定されている。   The static electricity generation unit 36 is provided between the upper holder 50 and the lower holder 51, and the joint type upper holder 50 connected to the second pipe line 43B and the joint type lower holder 51 connected to the third pipe line 43C. It consists of a disk-shaped metal filter 53 sandwiched through a seal ring 52. A connection port 50 a for connecting to the second pipe line 43 </ b> B is formed on the upper side of the upper holder 50, and a downwardly expanding widening path 50 b is formed on the inner bottom side of the upper holder 50. A connection port 51 a for connecting to the third pipe line 43 </ b> C is formed on the lower side of the lower holder 51, and an upwardly expanding widening path 51 b is formed on the inner upper side of the lower holder 51. The hole diameter (pore size; eye roughness) of the metal filter 53 is set to about 50 μm.

上部ホルダー50の拡開路50bと下部ホルダー51の拡開路51bに挟まれるように金属フィルター53が設けられているので、第3管路43Cから第2管路43B側に絶縁油31が流動する場合、絶縁油31の内部に含まれている繊維の微粒子は金属フィルター53に補足されるようになっている。
なお、先に説明した変圧器1に備えられている絶縁スペーサー12、17、絶縁物13,15,18,19や鉄心5とコイル3を隔てる絶縁物や、コイル9とコイル10を隔てる絶縁物は絶縁紙からなり、絶縁紙は針葉樹のパルプからなり、その繊維は20〜50μm長さ、厚さ2μm程度であるので、前記金属フィルター53の目の粗さは、前記サイズの繊維の微粒子を捕集できる程度の大きさに設定されている。
上部ホルダー50の上方の第2管路43Bには開閉弁55が組み込まれ、下部ホルダー51の下方の第3管路43Cには開閉弁56が組み込まれている。
Since the metal filter 53 is provided so as to be sandwiched between the expansion path 50b of the upper holder 50 and the expansion path 51b of the lower holder 51, the insulating oil 31 flows from the third pipeline 43C to the second pipeline 43B side. The fine particles of the fibers contained in the insulating oil 31 are supplemented by the metal filter 53.
The insulating spacers 12 and 17, the insulators 13, 15, 18, and 19, the insulator that separates the iron core 5 and the coil 3, and the insulator that separates the coil 9 and the coil 10 are provided in the transformer 1 described above. Is made of coniferous pulp, and its fibers are 20-50 μm long and about 2 μm thick. Therefore, the coarseness of the metal filter 53 is made up of fine particles of fibers of the above size. The size is set so that it can be collected.
An opening / closing valve 55 is incorporated in the second pipeline 43B above the upper holder 50, and an opening / closing valve 56 is incorporated in the third pipeline 43C below the lower holder 51.

下部ホルダー51の内部を貫通して金属フィルター53に接続された検出線37aが設けられ、この下部ホルダー51の外部に延出された検出線37aには電流計37が接続され、電流計37は接地線37bを介し接地されている。この電流計37は金属フィルター53に溜まる電荷を検出するために設けられている。   A detection line 37 a that penetrates the inside of the lower holder 51 and is connected to the metal filter 53 is provided. An ammeter 37 is connected to the detection line 37 a that extends to the outside of the lower holder 51, and the ammeter 37 is It is grounded via the ground line 37b. The ammeter 37 is provided for detecting the electric charge accumulated in the metal filter 53.

容器32の内部において、引出管40の下端直下に絶縁油のtanδ測定用の電極60が設けられ、容器32の側方に蓋体39を貫通した配線61を介し電極60に接続された計測装置62が設けられている。
また、蓋体39を貫通して蓋体39の下方空間に連通する供給管63が設けられ、この供給管63にはシリカゲル等の乾燥剤収容部65を介し空気供給源が接続され、供給管63にはオキシゲントラップ66を介し窒素ガス供給源が接続されている。
Inside the container 32, an electrode 60 for measuring tan δ of insulating oil is provided immediately below the lower end of the extraction pipe 40, and a measuring device connected to the electrode 60 via a wiring 61 penetrating the lid 39 on the side of the container 32. 62 is provided.
In addition, a supply pipe 63 that penetrates the lid 39 and communicates with the space below the lid 39 is provided, and an air supply source is connected to the supply pipe 63 via a desiccant container 65 such as silica gel. A nitrogen gas supply source is connected to 63 via an oxygen trap 66.

次に、図2に示す流動帯電評価診断装置30を用いて流動帯電診断を行う場合の一例について説明する。
図1(A)に示す構成であり、使用中の変圧器1から、必要量の絶縁油を抜き出す。変圧器1のタンク2に設けられているバルブを介しタンク2の内部から診断に必要な量の絶縁油を採取することができる。
変圧器1を継続使用していると、通電体である巻線11、16に通電し、巻線11、16が発生させた電磁力により巻線11、16を含めたコイル体3あるいは鉄心5に振動が発生する。また、絶縁スペーサー12、17、絶縁物13,15,18,19や鉄心5とコイル3を隔てる絶縁物や、コイル9とコイル10を隔てる絶縁物が絶縁紙からなるので、この絶縁紙が油の流れにさらされていること、通電の影響あるいは電磁力の影響などによって振動されること、短絡や地絡などの発生により通常とは異なる影響を受けること、などが要因となって絶縁紙の繊維の一部が剥離し、微粒子として絶縁油の中に放出される。
使用中の変圧器1から絶縁油を採取すると、絶縁油の中には絶縁スペーサー12、17、絶縁物13,15,18,19や鉄心5とコイル3を隔てる絶縁物や、コイル9とコイル10を隔てる絶縁物を構成する繊維の一部が微粒子として必然的に混入している。
Next, an example in which the flow charge diagnosis is performed using the flow charge evaluation diagnostic apparatus 30 shown in FIG. 2 will be described.
In the configuration shown in FIG. 1A, a necessary amount of insulating oil is extracted from the transformer 1 in use. An amount of insulating oil necessary for diagnosis can be collected from the inside of the tank 2 through a valve provided in the tank 2 of the transformer 1.
If the transformer 1 is continuously used, the coil 11 or 16 including the windings 11 and 16 is energized by the electromagnetic force generated by the windings 11 and 16 when the windings 11 and 16 which are current conductors are energized. Vibration occurs. Further, the insulating spacers 12, 17, the insulators 13, 15, 18, 19 and the insulator that separates the iron core 5 from the coil 3 and the insulator that separates the coil 9 from the coil 10 are made of insulating paper. Factors such as being exposed to current flow, being vibrated by the effects of energization or electromagnetic force, or being affected differently by the occurrence of short circuits or ground faults. A part of the fiber is peeled off and released into the insulating oil as fine particles.
When the insulating oil is collected from the transformer 1 in use, the insulating spacers 12 and 17, the insulators 13, 15, 18 and 19, the insulator that separates the iron core 5 and the coil 3, the coil 9 and the coil are contained in the insulating oil. Part of the fibers constituting the insulator separating 10 is inevitably mixed as fine particles.

使用中の変圧器1から採取した絶縁油31を気密状態の図2に示す装置の容器32に必要量投入し、容器32の開口部を蓋体39で閉じる。また、蓋体39で容器32の開口部を閉じる場合、供給管63の下端を絶縁油31の油面位置より上方にして容器32の上部空間に窒素ガスのみを送り込み、窒素封入を行う。
次に、循環ポンプ35を作動させて容器32内から潤滑油31を吸い上げ、環状流路43に送る。環状流路43では第3流路43Cから静電気発生部36側に絶縁油が流動されるので、絶縁油31は金属フィルター53を通過した後、戻管41を介し容器32に戻される。
この動作を所定時間繰り返すと、絶縁油に含まれている微量の微粒子は金属フィルター53の下面側に順次補足されて蓄積される。
A required amount of insulating oil 31 collected from the transformer 1 in use is put into a container 32 of the apparatus shown in FIG. 2 in an airtight state, and the opening of the container 32 is closed with a lid 39. Further, when the opening of the container 32 is closed by the lid 39, only the nitrogen gas is fed into the upper space of the container 32 with the lower end of the supply pipe 63 positioned above the oil surface position of the insulating oil 31 to perform nitrogen sealing.
Next, the circulation pump 35 is operated to suck up the lubricating oil 31 from the container 32 and send it to the annular flow path 43. In the annular flow path 43, the insulating oil flows from the third flow path 43 </ b> C toward the static electricity generation unit 36, so that the insulating oil 31 passes through the metal filter 53 and then returns to the container 32 via the return pipe 41.
When this operation is repeated for a predetermined time, a minute amount of fine particles contained in the insulating oil are sequentially captured and accumulated on the lower surface side of the metal filter 53.

捕捉された微粒子が油と接触し流動帯電して金属フィルター53に電荷が流れるので、この電荷を電流計37で測定することができる。上述の絶縁油の循環動作を所定時間長く行うならば、油を流し続けるので常に帯電が生じ、順次電荷密度を計測できる。測定時間は数時間〜数100時間行うことができる。
絶縁油の温度を加熱ヒーター38により例えば50℃程度に加熱保持し、絶縁油31の流速を例えば5cm/s程度に一定値として電荷密度を計測する。この計測により数pC/mLなどの割合の電荷発生量を計測することができる。
The trapped fine particles come into contact with oil and flow charge and charge flows through the metal filter 53, and this charge can be measured by the ammeter 37. If the above-described circulating operation of the insulating oil is performed for a predetermined time, charging continues because the oil continues to flow, and the charge density can be measured sequentially. The measurement time can be several hours to several hundred hours.
The temperature of the insulating oil is heated and held at, for example, about 50 ° C. by the heater 38, and the charge density is measured by setting the flow rate of the insulating oil 31 to a constant value, for example, about 5 cm / s. By this measurement, the amount of charge generated at a rate of several pC / mL can be measured.

絶縁油に接する紙繊維の表面積が大きいほど流動帯電で発生する電荷量は大きくなると考えられるため、金属フィルター53で捕捉された紙繊維の本数、平均長さ、平均幅を繊維形状測定器で測定し、表面積を求めた上、単位紙面積あたりに発生する電荷(発生電荷密度、単位[pC/mL/mm])を計算し、この値を基に絶縁油―紙繊維間の帯電し易さを評価することができる。
この発生電荷密度を複数の変圧器の絶縁油で計測しておき、変圧器ごとの情報として蓄積しておくと、どの程度の発生電荷密度であれば、流動帯電が起こり易くなっているのか、把握することができる。
例えば、発生電荷密度が1〜10[pC/mL/mm]程度であれば、当該変圧器は流動帯電が発生し難い状態の変圧器であるとわかる。なお、従来公知のミニ静電テスター法などの計測情報を活用して推定把握できる情報として、本実施形態の流動帯電計測装置で計測される発生電荷密度として数100[pC/mL/mm]レベルになると、該当変圧器において流動帯電発生の危険性が高いと推定できる。
As the surface area of the paper fiber in contact with the insulating oil is larger, the amount of charge generated by flow electrification is considered to increase. Therefore, the number, average length, and average width of the paper fibers captured by the metal filter 53 are measured with a fiber shape measuring instrument. Then, after calculating the surface area, calculate the charge generated per unit paper area (generated charge density, unit [pC / mL / mm 2 ]), and based on this value, it is easy to charge between insulating oil and paper fiber Can be evaluated.
If this generated charge density is measured with insulating oil of a plurality of transformers and accumulated as information for each transformer, what level of generated charge density is likely to cause flow charging, I can grasp it.
For example, when the generated charge density is about 1 to 10 [pC / mL / mm 2 ], it can be understood that the transformer is a transformer in which flow electrification hardly occurs. As information that can be estimated and grasped by utilizing measurement information such as a conventionally known mini electrostatic tester method, the generated charge density measured by the flow charge measuring device of this embodiment is several hundred [pC / mL / mm 2 ]. At the level, it can be estimated that there is a high risk of flow charge generation in the transformer.

図2に示す流動帯電評価診断装置30によれば、使用中の変圧器1から評価に必要な絶縁油を抜き出し、絶縁油に含まれている繊維の微粒子の帯電状態を電流計37で計測すればよいので、使用中の変圧器1に収容されている絶縁油の流動帯電のし易さについて変圧器1を止めることなく、変圧器1を分解することなく診断し評価することができる。
また、流動帯電評価診断装置30によれば、容器32内の絶縁油の温度を加熱ヒーター38で調節した上で計測できる。よって、絶縁油の温度に応じた流動帯電発生のし易さを診断することができる。また、絶縁油の温度を高温度に設定し、金属フィルター53の電荷を測定することで絶縁油の流動帯電発生のし易さを後述する実施例の如く加速試験することができる。
According to the flow charge evaluation and diagnosis apparatus 30 shown in FIG. 2, the insulating oil necessary for the evaluation is extracted from the transformer 1 in use, and the charged state of the fine particles of the fibers contained in the insulating oil is measured by the ammeter 37. Therefore, it is possible to diagnose and evaluate the ease of flow charging of the insulating oil accommodated in the transformer 1 in use without stopping the transformer 1 and without disassembling the transformer 1.
Further, according to the fluidized charge evaluation / diagnosis apparatus 30, the temperature of the insulating oil in the container 32 can be measured after adjusting with the heater 38. Therefore, it is possible to diagnose the ease of flow charge generation according to the temperature of the insulating oil. In addition, by setting the temperature of the insulating oil to a high temperature and measuring the charge of the metal filter 53, it is possible to perform an acceleration test as in the examples described later to determine the ease of fluid charge generation of the insulating oil.

<第2実施形態>
図5は、本発明に係る流動帯電評価診断装置の第2実施形態を示すもので、この第2実施形態の流動帯電評価診断装置70は、上下方向に延在された導入管71と、この導入管71の下端部に接続された2股型の分岐管72、73と、導入管71の下端部の側壁に左右に対向し離間して配置された正電極75および負電極76と、正電極75および負電極76に接続された電源77を主体としてなる。
Second Embodiment
FIG. 5 shows a second embodiment of the flow charge evaluation and diagnosis apparatus according to the present invention. A flow charge evaluation and diagnosis apparatus 70 according to the second embodiment includes an introduction pipe 71 extending in the vertical direction, Bifurcated branch pipes 72 and 73 connected to the lower end portion of the introduction pipe 71, a positive electrode 75 and a negative electrode 76 which are arranged on the side wall of the lower end portion of the introduction pipe 71 so as to be opposed to each other on the left and right, Mainly a power source 77 connected to the electrode 75 and the negative electrode 76.

流動帯電評価診断装置70において導入管71がクランプ部材78で鉛直に支持され、クランプ部材78がムッフ部材79を介し支柱80に支持され、支柱80がスタンド81に立設されている。導入管71は鉛直向きに支持され、分岐管72、73は導入管71に対し120゜の傾斜角度に配置されている。このため、導入管71と分岐管72、73は側面視逆Y字型に配置されている。
前記導入管71は上部管71aと下部管71bの継ぎ足し構造とされ、上部管71aの上端には絶縁油投入用の開口部71cが形成されている。
前記電源77は、正電極75と負電極76に対しDC数100V程度、例えばDC500V程度の直流電圧を印加できる電源とされている。
In the fluid charging evaluation diagnostic apparatus 70, the introduction pipe 71 is vertically supported by a clamp member 78, the clamp member 78 is supported by a support 80 via a muff member 79, and the support 80 is erected on a stand 81. The introduction pipe 71 is supported in a vertical direction, and the branch pipes 72 and 73 are arranged at an inclination angle of 120 ° with respect to the introduction pipe 71. Therefore, the introduction pipe 71 and the branch pipes 72 and 73 are arranged in an inverted Y shape when viewed from the side.
The introduction pipe 71 has a structure in which an upper pipe 71a and a lower pipe 71b are added, and an opening 71c for supplying insulating oil is formed at the upper end of the upper pipe 71a.
The power source 77 is a power source that can apply a DC voltage of about several hundred volts DC, for example, about 500 volts DC, to the positive electrode 75 and the negative electrode 76.

第2実施形態の流動帯電評価診断装置70は、絶縁油中に絶縁紙の繊維微粒子を混入し、攪拌することにより絶縁繊維および絶縁油を帯電させ、導入管71内の絶縁油に沿って沈降させ、沈降中の絶縁繊維微粒子に正電極75と負電極76から静電界を印加し、絶縁繊維の帯電状態に応じ分岐管72に移動した絶縁繊維と、分岐管73に移動した絶縁繊維の割合に応じて流動帯電診断を行う装置である。帯電の際、油が+に帯電し、絶縁繊維が−に帯電する。
このため、(分岐管72中の絶縁繊維数)/(分岐管73中の絶縁繊維数)を計測することで、流動帯電診断ができる。分岐管72は正電極75に近く、分岐管73は負電極76に近いため、絶縁繊維が−に帯電することから、絶縁繊維の帯電量の多いものは、分岐管72側に多く集まる。
前記の比率が1.0に近い数値であれば、帯電している絶縁繊維の数が少ないか帯電量が少ないと見積もることができ、絶縁油を回収した変圧器の流動帯電診断において、流動帯電が発生し難い状態であると判断できる。前記の比率が1から離れて大きな数値になるようであると、絶縁油を回収した変圧器の流動帯電診断において、流動帯電が発生し易い状態であると判断できる。
The flow charge evaluation and diagnosis apparatus 70 of the second embodiment mixes the fiber fine particles of insulating paper in the insulating oil, and stirs the insulating fiber and the insulating oil by stirring and settles along the insulating oil in the introduction pipe 71. The ratio of the insulating fibers moved to the branch pipe 73 and the insulating fibers moved to the branch pipe 73 by applying electrostatic fields from the positive electrode 75 and the negative electrode 76 to the settled insulating fiber fine particles and depending on the charged state of the insulating fibers It is a device that performs flow charge diagnosis according to the above. During charging, the oil is charged positively and the insulating fiber is charged negatively.
For this reason, the flow charge diagnosis can be performed by measuring (number of insulating fibers in the branch pipe 72) / (number of insulating fibers in the branch pipe 73). Since the branch pipe 72 is close to the positive electrode 75 and the branch pipe 73 is close to the negative electrode 76, the insulating fibers are charged negatively. Therefore, a large amount of the insulating fibers are collected on the branch pipe 72 side.
If the ratio is a value close to 1.0, it can be estimated that the number of charged insulating fibers is small or the amount of charge is small. It can be determined that it is difficult to occur. If the ratio is a large value away from 1, it can be determined that fluid charging is likely to occur in the fluid charging diagnosis of the transformer from which the insulating oil has been recovered.

<第1実施例>
孔径(ポアサイズ)50μmの金属フィルターを用意し、この金属フィルターを図2に示す流動帯電評価診断装置の上部ホルダーと下部ホルダーの間に挟持した。
1次電圧275kV、2次電圧56kV、定格容量190MVA、2000年製の油入電力用変圧器であって、15年間使用した変圧器から10L分の油を採取し、その繊維を集め、流動帯電発生のし易さを診断した。
絶縁油1.3Lを容器に収容し、容器内の絶縁油の温度を50℃に調整し、循環流路内の流速計で5.3cm/sになるように絶縁油を循環ポンプで流動循環させ、流動帯電を測定した。なお、図2(B)に示す幅広継手型の上部ホルダー50と下部ホルダー51は略図であって、実際の試験の際には図3に示す軸継手型の上部ホルダー50と下部ホルダー51との間に金属フィルター53を設けた構造のホルダーを用いて試験した。このホルダーの上部側の管路の途中部分にはポリ4フッ化エチレン製の管路が組み込まれ、下部側の管路の途中部分にもポリ4フッ化エチレン製のパイプが組み込まれている。
変圧器から絶縁油を採取する場合に絶縁油をなるべく酸化させたくないので、絶縁油をブリキ缶等の容器に採取する場合に採取用の管路の途中に前記継手型のホルダーを開閉弁55、56とともに組み込んで採取用の途中管路として用いる。変圧器から絶縁油の採取後、管路から開閉弁55、56の部分ごとホルダーを取り外して図2に示す装置に付け替えて使用することができる。図2の装置に組み込んだ時点で金属フィルター53は上下のポリ4フッ化エチレン製のパイプで電気的に浮かせた状態とされる。勿論、このホルダーを用いることなく変圧器からブリキ缶等の容器に直接絶縁油を採取しても良い。
試験結果を図4に示す。
<First embodiment>
A metal filter having a pore size (pore size) of 50 μm was prepared, and this metal filter was sandwiched between an upper holder and a lower holder of the fluid charging evaluation diagnostic apparatus shown in FIG.
Primary voltage 275kV, secondary voltage 56kV, rated capacity 190MVA, oil-filled power transformer made in 2000, oil for 10L is taken from the transformer used for 15 years, the fibers are collected, and flow charging The ease of occurrence was diagnosed.
1.3L of insulating oil is contained in a container, the temperature of the insulating oil in the container is adjusted to 50 ° C, and the insulating oil is circulated with a circulation pump so that the flow rate in the circulation channel is 5.3cm / s. The flow charge was measured. Note that the wide joint type upper holder 50 and the lower holder 51 shown in FIG. 2B are schematic views, and the shaft joint type upper holder 50 and the lower holder 51 shown in FIG. The test was conducted using a holder having a structure in which a metal filter 53 was provided therebetween. A pipe made of polytetrafluoroethylene is incorporated in the middle of the pipe on the upper side of the holder, and a pipe made of polytetrafluoroethylene is also incorporated in the middle of the pipe on the lower side.
When collecting the insulating oil from the transformer, it is not desired to oxidize the insulating oil as much as possible. Therefore, when the insulating oil is collected in a container such as a tin can, the joint-type holder is connected to the on-off valve 55 in the middle of the sampling pipe. , 56 and used as an intermediate pipe for collection. After collecting the insulating oil from the transformer, the holders can be removed from the pipes for the portions of the on-off valves 55 and 56, and the apparatus shown in FIG. When incorporated in the apparatus of FIG. 2, the metal filter 53 is electrically floated by upper and lower polytetrafluoroethylene pipes. Of course, the insulating oil may be collected directly from a transformer into a container such as a tin can without using this holder.
The test results are shown in FIG.

図4に示すようにこの絶縁油は約4.2pC/mLの電荷発生量であった。金属フィルター上の紙繊維の本数、平均長、平均幅を繊維形状測定器で測定し、表面積を求めた上、単位紙面積あたりに発生する電荷(発生電荷密度)を計算し、これを基に絶縁油−紙繊維間の流動帯電のし易さを評価した。
絶縁紙繊維表面積は1.84[mm]と求められ、発生電荷密度は2.28[pC/mL/mm]であると求めることができた。
この発生電荷密度は充分に低い値であり、当該変圧器は流動帯電が発生し難い変圧器であると診断できた。
As shown in FIG. 4, this insulating oil had a charge generation amount of about 4.2 pC / mL. The number of paper fibers on the metal filter, the average length, and the average width are measured with a fiber shape measuring instrument to determine the surface area, and then the charge generated per unit paper area (generated charge density) is calculated. The ease of fluid charging between the insulating oil and the paper fiber was evaluated.
The surface area of the insulating paper fiber was determined to be 1.84 [mm 2 ], and the generated charge density was determined to be 2.28 [pC / mL / mm 2 ].
This generated charge density is a sufficiently low value, and it was diagnosed that the transformer is a transformer in which flow electrification hardly occurs.

<第2実施例>
第1実施例で用いた変圧器から回収した別の絶縁油を用い、この絶縁油を一部ろ過して絶縁繊維微粒子を除去した絶縁油のみを図5に示す装置の分岐管72、73から導入管70の途中まで注入し、この後、導入管71の上部管71aに絶縁繊維微粒子入りのままの絶縁油を注入した。即ち、変圧器から取り出してからろ過していない絶縁油を一定時間振動攪拌して注入した。
正電極と負電極にDC500V電源を接続し、導入管70の下部側に各電極から静電界を印加した。
<Second embodiment>
Using another insulating oil recovered from the transformer used in the first embodiment, only the insulating oil obtained by partially filtering this insulating oil and removing the insulating fiber fine particles is obtained from the branch pipes 72 and 73 of the apparatus shown in FIG. After injecting halfway through the introduction pipe 70, the insulating oil containing the insulating fiber fine particles was then injected into the upper pipe 71 a of the introduction pipe 71. That is, the insulating oil that was not filtered after being taken out from the transformer was poured while being stirred for a certain period of time.
A DC 500 V power source was connected to the positive electrode and the negative electrode, and an electrostatic field was applied from each electrode to the lower side of the introduction tube 70.

導入管70の上部側の絶縁油には絶縁繊維微粒子が含まれているので、重力により絶縁繊維微粒子が導入管70の内部を沈降し、静電界により帯電の状態に応じて−に帯電した絶縁繊維の微粒子が分岐管72側に移動しつつ沈降し、帯電していないか帯電量の少ない絶縁繊維の微粒子が分岐管73側に移動しつつ沈降する。
分岐管72に沈降した絶縁繊維微粒子数と分岐管73側に沈降した絶縁繊維微粒子数の比率を繊維形状測定装置で計測したところ、比率は1.05であり、1.0に近く、小さい値であった。このため、先の変圧器は流動帯電が発生し難い変圧器であると診断することができる。
Since the insulating fiber fine particles are contained in the insulating oil on the upper side of the introduction pipe 70, the insulation fiber fine particles settle inside the introduction pipe 70 due to gravity, and are electrically charged by the electrostatic field according to the charged state. The fine particles of the fibers settle to move toward the branch pipe 72, and the fine particles of the insulating fibers that are not charged or have a small charge amount settle to move toward the branch pipe 73.
When the ratio of the number of insulating fiber fine particles settled on the branch pipe 72 and the number of insulating fiber fine particles settled on the branch pipe 73 side was measured with a fiber shape measuring device, the ratio was 1.05, which is close to 1.0 and a small value. Met. For this reason, it can be diagnosed that the previous transformer is a transformer in which flow electrification hardly occurs.

<実施例3>
第1実施例で用いた変圧器から回収した他の絶縁油を用い、図2に示す流動帯電評価診断装置を用いて加熱劣化促進試験を行った。
流動帯電評価診断装置の容器内の絶縁油に触媒として裸銅箔を絶縁油1.0Lに対し0.5cm混入し、容器内に窒素ガスを供給して窒素封入した上で容器内の絶縁油を95℃に加熱し、190時間加熱し、加速劣化させた。平均油温を45℃と仮定し、7℃半減則として、95℃−45℃=50Kの温度上昇は加速倍率141程度となり、190時間の加熱は、190時間×141=26790時間=約3年かかる劣化を模擬した。
<Example 3>
Using another insulating oil recovered from the transformer used in the first example, a heating deterioration acceleration test was performed using the fluid charging evaluation diagnostic apparatus shown in FIG.
Bare copper foil as a catalyst is mixed with 0.5 cm 2 of 1.0 L of insulating oil in the insulating oil in the container of the fluid electrification evaluation diagnostic apparatus, nitrogen gas is supplied into the container and nitrogen is sealed, and the container is insulated. The oil was heated to 95 ° C. and heated for 190 hours to accelerate degradation. Assuming that the average oil temperature is 45 ° C, the temperature increase of 95 ° C-45 ° C = 50K is about 141 accelerating as a half rule of 7 ° C, and heating for 190 hours is 190 hours × 141 = 26790 hours = about 3 years Such deterioration was simulated.

95℃加熱加速試験中の発生電荷密度およびtanδの連続測定結果を図6に示す。絶縁油の温度を95℃に設定し、絶縁油の流速を1.5cm/sに設定して発生電荷密度およびtanδを測定している。
その結果、加熱初期は約6.3[pC/mL/mm]であった発生電荷密度が、190時間の加熱で約14[pC/mL/mm]まで増加した。
この結果から、この試験に用いた変圧器は将来的に流動帯電を発生する危険性が増加してゆくが、危険性の伸びは図6に示す関係の如く鈍化する傾向にあると推定できる。このため、この試験に用いた絶縁油は、長期間の使用に耐える絶縁油であると推定評価することができる。
一方、図6に示すようにtanδは時間経過に対し直線的に増大している。この測定結果は、絶縁油の酸化劣化が徐々に進行し、発生する劣化生成物がtanδを増大させていることを示唆し、tanδに関しては継続的に監視してゆく必要性があることを示している。
FIG. 6 shows the results of continuous measurement of the generated charge density and tan δ during the 95 ° C. accelerated heating test. The generated charge density and tan δ are measured with the temperature of the insulating oil set at 95 ° C. and the flow rate of the insulating oil set at 1.5 cm / s.
As a result, the generated charge density, which was about 6.3 [pC / mL / mm 2 ] at the beginning of heating, increased to about 14 [pC / mL / mm 2 ] by heating for 190 hours.
From this result, it can be estimated that the transformer used in this test has an increased risk of generating flow electrification in the future, but the risk increase tends to slow down as shown in FIG. For this reason, it can be estimated that the insulating oil used in this test is an insulating oil that can withstand long-term use.
On the other hand, as shown in FIG. 6, tan δ increases linearly with time. This measurement result suggests that the oxidative deterioration of the insulating oil is gradually progressing, and that the generated deterioration products increase tan δ, and that tan δ needs to be continuously monitored. ing.

1…変圧器、2…タンク、3…コイル体、5…鉄心、6…上部鉄心、7…締め付け部材、8…締め付け金具、9…外側コイル、10…内側コイル、11、16…巻線(通電体)、12、17…絶縁スペーサー(固体絶縁物)、30…流動帯電評価診断装置、31…絶縁油、32…容器、33…循環流路、35…循環ポンプ、36…静電気発生部、37…電流計、38…加熱ヒーター、40…引出管、41…戻管、50…上部ホルダー、51…下部ホルダー、53…金属フィルター、70…流動帯電評価診断装置、71…導入管、72、73…分岐管、75…正電極、76…負電極、77…電源。   DESCRIPTION OF SYMBOLS 1 ... Transformer, 2 ... Tank, 3 ... Coil body, 5 ... Iron core, 6 ... Upper iron core, 7 ... Fastening member, 8 ... Fastening metal fitting, 9 ... Outer coil, 10 ... Inner coil, 11, 16 ... Winding ( (Electrical conductor), 12, 17 ... insulating spacer (solid insulator), 30 ... fluid charging evaluation diagnostic device, 31 ... insulating oil, 32 ... container, 33 ... circulating flow path, 35 ... circulating pump, 36 ... static electricity generating part, 37 ... Ammeter, 38 ... Heater, 40 ... Drawer tube, 41 ... Return tube, 50 ... Upper holder, 51 ... Lower holder, 53 ... Metal filter, 70 ... Fluid charge evaluation diagnostic device, 71 ... Introduction tube, 72, 73 ... Branch pipe, 75 ... Positive electrode, 76 ... Negative electrode, 77 ... Power supply.

Claims (6)

固体絶縁物が絶縁性液体中に浸漬された電気機器の流動帯電評価診断方法であって、
稼働中の前記電気機器から採取した絶縁性液体とその絶縁性液体に含まれる固体絶縁物微粒子を帯電させて流動帯電を評価することを特徴とする電気機器の流動帯電評価診断方法。
A fluid charging evaluation diagnostic method for electrical equipment in which a solid insulator is immersed in an insulating liquid,
A fluid charging evaluation diagnostic method for an electrical device, wherein the fluid charging is evaluated by charging an insulating liquid collected from the electrical device in operation and solid insulating fine particles contained in the insulating liquid.
使用中の前記電気機器から採取した前記固体絶縁物微粒子を含む絶縁性液体を液体循環流路に流し、前記液体循環流路の途中に設けた金属フィルターで前記絶縁性液体内の前記固体絶縁物微粒子を捕集し、前記金属フィルターに接続した電流計により前記金属フィルターに生じた発生電荷密度を測定することで流動帯電を評価することを特徴とする請求項1に記載の電気機器の流動帯電評価診断方法。   An insulating liquid containing the solid insulating fine particles collected from the electrical equipment in use is caused to flow through the liquid circulation channel, and the solid insulator in the insulating liquid is provided by a metal filter provided in the middle of the liquid circulation channel. The flow charge of an electric device according to claim 1, wherein the flow charge is evaluated by collecting fine particles and measuring a generated charge density generated in the metal filter by an ammeter connected to the metal filter. Evaluation diagnostic method. 使用中の前記電気機器から採取した絶縁性液体を容器に貯留し、前記容器内の絶縁性液体を前記液体循環路に連続的に供給して循環させ、前記金属フィルターに前記絶縁性液体内の前記固体絶縁物微粒子を捕集し、前記電流計により経時的に発生電荷密度を計測し、経時的に計測した発生電荷密度の値から流動帯電を評価することを特徴とする請求項2に記載の電気機器の流動帯電評価診断方法。   Insulating liquid collected from the electrical equipment in use is stored in a container, and the insulating liquid in the container is continuously supplied to the liquid circulation path and circulated, and the metal filter contains the insulating liquid in the insulating liquid. 3. The solid insulator fine particles are collected, the generated charge density is measured over time by the ammeter, and the flow charge is evaluated from the value of the generated charge density measured over time. Method for evaluating the flow charge of electrical equipment. 使用中の前記電気機器から採取した前記固体絶縁物微粒子を含む絶縁性液体を上下に延在する流路に流し、前記流路の左右に設けた正電極と負電極から前記流路を降下する固体絶縁物微粒子に電界を印加し、前記固体絶縁物微粒子の移動方向に応じて流動帯電を評価することを特徴とする請求項1に記載の電気機器の流動帯電評価方法。   An insulating liquid containing the solid insulating fine particles collected from the electrical equipment in use is caused to flow in a channel extending vertically, and descends from the positive electrode and the negative electrode provided on the left and right sides of the channel. 2. The method for evaluating the flow charge of an electric device according to claim 1, wherein an electric field is applied to the solid insulator fine particles, and the flow charge is evaluated according to a moving direction of the solid insulator fine particles. 固体絶縁物と通電体が絶縁性液体中に浸漬された電気機器の流動帯電評価診断装置であって、前記電気機器から採取した絶縁性液体を貯留する容器と、この容器に接続された絶縁性液体の循環流路と、前記容器内の絶縁性液体を前記循環流路に送り前記容器に戻して循環させる循環ポンプと、前記循環流路の途中に設けられた金属フィルターと、前記金属フィルターに接続されて前記金属フィルターを介し発生電荷密度を測定する電流計を具備した電気機器の流動帯電評価診断装置。   A fluid charging evaluation diagnostic apparatus for an electrical device in which a solid insulator and a current conductor are immersed in an insulating liquid, the container storing the insulating liquid collected from the electrical device, and the insulating property connected to the container A liquid circulation channel, a circulation pump for sending the insulating liquid in the container to the circulation channel and circulating it back to the container, a metal filter provided in the middle of the circulation channel, and the metal filter A flow electrification evaluation diagnostic apparatus for an electric device comprising an ammeter connected to measure the generated charge density via the metal filter. 固体絶縁物と通電体が絶縁性液体中に浸漬された電気機器の流動帯電評価診断装置であって、
上下方向に延在された流路を構成し、使用中の前記電気機器から採取された前記固体絶縁物微粒子を含む絶縁性液体を注入する導入管と、この導入管の左右に設置された正電極および負電極と、前記導入管の下端部に接続された2股型の分岐管とを具備したことを特徴とする電気機器の流動帯電評価診断装置。
A fluid charging evaluation diagnostic apparatus for electrical equipment in which a solid insulator and a current conductor are immersed in an insulating liquid,
An inlet pipe that constitutes a flow path extending in the vertical direction and injects an insulating liquid containing the solid insulating fine particles collected from the electrical equipment in use, and a positive pipe installed on the left and right of the inlet pipe. A fluid charging evaluation diagnostic apparatus for an electric device, comprising: an electrode, a negative electrode, and a bifurcated branch pipe connected to a lower end portion of the introduction pipe.
JP2016067845A 2016-03-30 2016-03-30 Fluid electrification evaluation and diagnosis method for electric equipment Active JP6643940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016067845A JP6643940B2 (en) 2016-03-30 2016-03-30 Fluid electrification evaluation and diagnosis method for electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067845A JP6643940B2 (en) 2016-03-30 2016-03-30 Fluid electrification evaluation and diagnosis method for electric equipment

Publications (2)

Publication Number Publication Date
JP2017183477A true JP2017183477A (en) 2017-10-05
JP6643940B2 JP6643940B2 (en) 2020-02-12

Family

ID=60007122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067845A Active JP6643940B2 (en) 2016-03-30 2016-03-30 Fluid electrification evaluation and diagnosis method for electric equipment

Country Status (1)

Country Link
JP (1) JP6643940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181758A (en) * 2018-11-02 2019-01-11 江苏龙安电力设备有限公司 A kind of oil cleaning device that ultrasonic wave is combined with Electrostatic Absorption

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136320A (en) * 1976-05-10 1977-11-15 Hitachi Ltd Monitor device of drift charging in oil-immersed transformer
JPS5321310U (en) * 1976-08-02 1978-02-23
JPS5446327A (en) * 1977-09-21 1979-04-12 Hitachi Ltd Remover for dust in oil of oil-immersed transformer
JPS5482023A (en) * 1977-12-13 1979-06-29 Mitsubishi Electric Corp Static electricity supervisory unit for transformers
JPS54118614U (en) * 1978-02-08 1979-08-20
JPS5696356U (en) * 1979-12-25 1981-07-30
JPH04361170A (en) * 1991-06-07 1992-12-14 Kanegafuchi Chem Ind Co Ltd Apparatus for measuring charge quantity of liquid
JPH10332757A (en) * 1997-06-05 1998-12-18 Mitsubishi Electric Corp Static electricity measuring device
JP2000002734A (en) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp Static measuring device for liquid
JP2002005976A (en) * 2000-06-23 2002-01-09 Mitsubishi Electric Corp Streaming electrification degree measurement device and its method
JP2002184635A (en) * 2000-12-14 2002-06-28 Mitsubishi Electric Corp Device for evaluating flow charge of stationary induction apparatus
JP2005259785A (en) * 2004-03-09 2005-09-22 Tm T & D Kk Oil-filled electric apparatus
JP2006205092A (en) * 2005-01-28 2006-08-10 Fuji Xerox Co Ltd Enrichment means of particulate dispersion, and enrichment device of particulate dispersion
JP2008064706A (en) * 2006-09-11 2008-03-21 Mitsubishi Electric Corp Electrostatic charge potential measuring instrument

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136320A (en) * 1976-05-10 1977-11-15 Hitachi Ltd Monitor device of drift charging in oil-immersed transformer
JPS5321310U (en) * 1976-08-02 1978-02-23
JPS5446327A (en) * 1977-09-21 1979-04-12 Hitachi Ltd Remover for dust in oil of oil-immersed transformer
JPS5482023A (en) * 1977-12-13 1979-06-29 Mitsubishi Electric Corp Static electricity supervisory unit for transformers
JPS54118614U (en) * 1978-02-08 1979-08-20
JPS5696356U (en) * 1979-12-25 1981-07-30
JPH04361170A (en) * 1991-06-07 1992-12-14 Kanegafuchi Chem Ind Co Ltd Apparatus for measuring charge quantity of liquid
JPH10332757A (en) * 1997-06-05 1998-12-18 Mitsubishi Electric Corp Static electricity measuring device
JP2000002734A (en) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp Static measuring device for liquid
JP2002005976A (en) * 2000-06-23 2002-01-09 Mitsubishi Electric Corp Streaming electrification degree measurement device and its method
JP2002184635A (en) * 2000-12-14 2002-06-28 Mitsubishi Electric Corp Device for evaluating flow charge of stationary induction apparatus
JP2005259785A (en) * 2004-03-09 2005-09-22 Tm T & D Kk Oil-filled electric apparatus
JP2006205092A (en) * 2005-01-28 2006-08-10 Fuji Xerox Co Ltd Enrichment means of particulate dispersion, and enrichment device of particulate dispersion
JP2008064706A (en) * 2006-09-11 2008-03-21 Mitsubishi Electric Corp Electrostatic charge potential measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181758A (en) * 2018-11-02 2019-01-11 江苏龙安电力设备有限公司 A kind of oil cleaning device that ultrasonic wave is combined with Electrostatic Absorption
CN109181758B (en) * 2018-11-02 2024-01-12 江苏龙安电力设备有限公司 Ultrasonic wave and electrostatic adsorption combined oil liquid purifying device

Also Published As

Publication number Publication date
JP6643940B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
Mahmud et al. Experimental studies of influence of DC and AC electric fields on bridging in contaminated transformer oil
CN102365692B (en) Apparatus and method for analyzing the state of oil-filled electrical devices
Mahmud et al. Experimental studies of influence of different electrodes on bridging in contaminated transformer oil
Abid et al. Dielectric and thermal performance up-gradation of transformer oil using valuable nano-particles
Paillat et al. Ester oils and flow electrification hazards in power transformers
Sierota et al. Electrostatic charging in transformer oils. Testing and assessment
Leblanc et al. Behavior of the charge accumulation at the pressboard/oil interface under DC external electric field stress
JP6643940B2 (en) Fluid electrification evaluation and diagnosis method for electric equipment
Zelu et al. Study on flow electrification hazards with ester oils
JP2018031743A (en) Method of measuring charge distribution of insulator
Fofana et al. Relationship between static electrification of transformer oils with turbidity and spectrophotometry measurements
Moreau et al. Flow electrification in high power transformers: BTA effect on pressboard degraded by electrical discharges
CN103901276A (en) Measurement device and method for detecting oilpaper conductivity in high-voltage DC electric field
Saaidon et al. Breakdown voltage of transformer oil containing cellulose particle contamination with and without bridge formation under lightning impulse stress
CN110308388A (en) It is a kind of for testing the device and test method of the electric property of GIS insulated pull rod
JP2000193641A (en) Testing device for insulating oil, test method of insulating oil, and maintenance control method of transformer
JPWO2016088156A1 (en) Water tree test method and water tree test apparatus
Huang et al. Comparisons of streaming electrification characteristics between an ester liquid and a mineral oil using pipe flow method
JP2008064706A (en) Electrostatic charge potential measuring instrument
Dai et al. Effects of space charge on flow electrification characteristics under DC voltage
Babicz et al. Dielectric characteristics of an anodized aluminum strip
US20210364460A1 (en) System and method for measuring conductivity
Wang et al. Comparison of online and lab DGA methods for condition assessment of mineral and vegetable transformer oils
Wei et al. Study on DC component method for hot-line XLPE cable diagnosis
Huh et al. Streaming electrification of thin insulating pipes under electric field

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200107

R150 Certificate of patent or registration of utility model

Ref document number: 6643940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250