JP4251595B2 - Vibrating tube density sensor - Google Patents

Vibrating tube density sensor Download PDF

Info

Publication number
JP4251595B2
JP4251595B2 JP2000239656A JP2000239656A JP4251595B2 JP 4251595 B2 JP4251595 B2 JP 4251595B2 JP 2000239656 A JP2000239656 A JP 2000239656A JP 2000239656 A JP2000239656 A JP 2000239656A JP 4251595 B2 JP4251595 B2 JP 4251595B2
Authority
JP
Japan
Prior art keywords
vibration
tube
vibrating
excitation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000239656A
Other languages
Japanese (ja)
Other versions
JP2002055036A (en
Inventor
裕路 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000239656A priority Critical patent/JP4251595B2/en
Publication of JP2002055036A publication Critical patent/JP2002055036A/en
Application granted granted Critical
Publication of JP4251595B2 publication Critical patent/JP4251595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、振動管式密度センサに関し、更に詳しくは、振動管の固有振動数を測定して測定対象の流体の密度を測定する形式の密度センサに関する。
【0002】
【従来の技術】
擬似移動層式クロマト分離装置は、製糖業や製薬業などの製造業一般において、天然もしくは化学反応によって得られ複数の成分を含む原材料の流体から一種以上の成分を抽出する目的で広く用いられている。擬似移動層式クロマト分離装置では、その内部流体の状態(相)を検出する目的で、振動管式密度センサが利用される。
【0003】
振動管式密度センサーは、振動系の固有振動数を測定してこれを密度に換算する。固有振動数は、振動系の機械的な大きさと、弾性及び重量とによって定まり、密度測定中は、振動系の大きさ及び弾性は殆ど変化せず定数と見なせる。従って、振動系の固有振動数はその重量の関数として扱うことが出来る。実際には、振動管の断面は中空で内部に測定対象の流体を充填するので、振動管自体の重さと、充填された測定対象の流体の重さとの和で、振動系の固有振動数が決まる。
【0004】
従来の振動管式(振動式)密度センサーは、例えば特開平6−94592号公報に記載されている。該公報に記載の密度センサは、振動管加振のため、及び、振動管の振動数検出のために、振動管に2つの永久磁石を固定し、双方の永久磁石と対峙する位置に駆動コイル及び検出コイルを固定配置している。駆動コイル及び一方の永久磁石の組によって振動管を振動させ、他方の永久磁石及び検出コイルの組によって振動管の振動数を検出している。
【0005】
上記公報に記載の密度センサでは、振動管の継続的な振動を得るためには、検出コイルで検出された振動管の振動に対して、駆動コイルからの加振を正帰還の信号として与える必要がある。このため、検出コイルによる検出信号の位相を、移相回路によって90度進め、これを増幅して駆動コイルの駆動信号として用いている。
【0006】
【発明が解決しようとする課題】
従来の振動管式密度センサーでは、駆動(加振)及び振動検出を目的として2個の永久磁石を振動管自体に取り付けている。このため、永久磁石の重量と振動管の重量とが測定対象流体の重量に加わり、振動系の全重量を構成している。ここで、振動系に占める振動管及び永久磁石の重量が、測定対象流体の重量に比して大きいほど、密度計としての検出感度が低下する。つまり、充分に細く且つ長さが短い振動管を用いた場合でも、測定対象流体の密度検出に充分な感度を得るためには、永久磁石の重量が無視できないという問題がある。
【0007】
また、従来の振動管式密度センサーでは、上記の通り、振動検出用と加振用に2個のコイルを用いている。ここで、検出用と加振用の2つのコイルを接近させると、両者の間で磁気的な結合が生じ、振動系の固有振動数とは別の周波数で発振を起こすことが知られている。このような発振を防止するためには、双方のコイル間に磁気的な結合が生じない程度の離隔距離を保つ必要があり、従って、これらと組を成す双方の永久磁石にも同等の離隔距離が必要となる。これによって、振動管式密度センサの振動系には、小型化についての限界が生ずる。
【0008】
更に、振動管式密度センサーでは、振動系の継続的な振動を維持するために、振動検出手段から得られた振動の位相を、移相回路を用いて90度進め、これを増幅して加振コイルを駆動している。この場合、移相回路にも周波数特性があるため、正確に位相角を90度進めることが難しい。その結果、振動管式密度センサは、振動系と移相回路とを組み合わせた状態で最も能率が高い周波数で継続的な振動を続ける。この振動は、振動系が有する固有振動数とは僅かに異なる周波数であり、密度計としての感度を低下させる要因となる。
【0009】
本発明は、上記に鑑み、振動管に取り付ける部材を少なくして検出感度を向上させ、且つ、その小型化を可能にする振動管式密度計を提供することを目的とする。
【0010】
また、本発明は、位相器を用いないため、振動計の固有振動数が正確に得られるので、検出感度の更なる向上が可能な振動管式密度計を提供することをもその目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の第1の視点の振動管式密度計は、測定対象の流体を収容し、所定部分が振動可能に支持される振動管と、該振動管の振動波形を検出する振動検出手段と、前記振動管及び該振動管内の流体の何れか又は双方の前記所定部分に、前記振動検出手段で検出された振動波形の所定のタイミングで電流を通ずる通電手段と、前記所定部分に前記電流と直交方向の磁界を印加する磁界印加手段とを備え、前記電流及び磁界は、前記振動管の振動に対して正帰還の信号となる電磁力を発生することを特徴とする。
【0012】
本発明の第1の視点の振動管式密度センサでは、所定部分を流れる電流と磁界印加手段によって印加された磁界とが、振動管の振動のために正帰還となる電磁力を発生するので、振動管の振動が発振する。従って、加振のためには、振動管の所定部分に振動管の重量を増加させる部材の取付けを要しないので、密度の検出精度を低下させることがなく、また、相互に離隔距離が必要な部材の取付けを要しないので、振動系の小型化が容易である。
【0013】
また、本発明の第2の視点の振動管式密度センサは、測定対象の流体を収容し、所定部分が振動可能に支持される振動管と、該振動管の振動波形を検出する振動検出手段と、前記振動検出手段で検出された振動波形の所定のタイミングで前記振動管の振動に対して正帰還の信号となる加振力を与える加振手段とを備える振動管式密度センサにおいて、
前記振動検出手段は、前記振動管の振動によって通過光束量が変化する光源及び受光素子の組を備えることを特徴とする。
【0014】
本発明の第2の視点の振動管密度センサでは、振動検出手段を振動管に取り付ける必要がなく、従って、振動管には相互に離隔距離が必要な部材の取付けを要しないので、振動系の小型化が容易である。加振手段は、振動管の所定部分とその所定部分に対向する固定部分との間で電磁力を発生する部材の組合せによって構成することが好ましい。
【0015】
上記第2の視点の振動管式密度センサの好ましい態様では、前記加振手段を、前記振動管の所定部分に配置された磁性材と、前記所定部分に対向する位置に固定されるコイルと、前記振動検出手段で検出された振動波形の所定のタイミングで前記コイルに電流を通ずる通電手段によって構成し、前記電流が、前記振動管の振動に対して正帰還の信号となる吸引力を前記磁性材に発生する。この場合、加振手段の構成がより簡素である。磁性材としては、振動管の所定部分に磁性材料から成る薄膜を形成することが好ましい。この場合、特に簡素な構成の加振手段によって密度センサを構成できる。
【0016】
本発明の第1の視点の振動管式密度センサ、及び、第2の視点の上記好ましい態様の密度センサでは、前記通電手段が、前記振動波形から所定のタイミングを検出するタイミング検出部と、前記所定のタイミングに同期して電流パルスを発生するパルス発生手段とを備えることが好ましい。この場合、位相回路を用いることなく、所望の位相の電流パルスを得ることが出来る。
【0017】
更に、前記振動管の振動を励起する励起手段を備えることも本発明の好ましい態様である。ここで、本発明の好適な態様の振動管式密度計は、自然界に存在する雑音を検出してその正帰還によって振動を励起し、次いで、振動計の固有振動数に従う発振を行うように移行する。しかし、特に雑音が少ない環境下では、稀にこのような自己発振が発生しない場合がある。励起手段は、このようなときに短時間使用して振動を励起する。僅かでも振動が発生したら、その後は正帰還によって振動が持続するので、励起手段を停止する。
【0018】
【発明の実施の形態】
以下、図面を参照し本発明の実施形態例に基づいて本発明を更に詳細に説明する。図1は、本発明の一実施形態例の振動管式密度センサを示している。振動管式密度センサは、U字型に曲げられU字の一対の脚部でサポートブロック11、12に支持された振動管13と、振動管13に図の矢印16方向に電流を流すための一対の電極14、15と、振動管13の自由端を成すU字湾曲部の近傍を流れる電流に対して電磁力を付与する磁界を印加する、一対のU字形状の永久磁石17、18とを有する。サポートブロック11、12は、絶縁プレート19を介してベース20に固定され、また、永久磁石17、18は、ベース20に直接に固定される。
【0019】
振動管13は、例えばチタニウム又はステンレススチール製であり、U字ボルト21によって、サポートブロック11、12に固定される。U字ボルト21とサポートブロック11、12とは、絶縁ワッシャ22によって電気的及び磁気的に絶縁される。振動管13には、密度の測定対象を成す擬似移動層式クロマト分離装置からの流体が導入される。
【0020】
振動管13のU字湾曲部付近の振動は、発光ダイオード23及びフォトトランジスタ24の組合せと、発光ダイオードからの光を遮断するシャッタ25とによって検出される。つまり、電極14、15を経由して振動管13に矢印16方向の電流が流れると、永久磁石17、18が印加する磁界によって、振動管13にはフレミングの左手法則として知られる、図面上で上向きの電磁力が発生する。この電磁力によって振動管13が振動すると、発光ダイオード23からの光束の一部がシャッタ25によって遮断される。なお、シャッタ25は、振動管13のサイズが充分に大きく、振動管13の振動周波数に与える影響が小さいときに用いる。振動管13が、細く且つ短い場合には、振動管13自身によって直接に光束の一部を遮断または通過させ、通過光束量を変化させることが好ましい。
【0021】
図2は、電極14、15間に電流を流す信号処理回路のブロックダイヤグラムである。なお、同図では、振動管13によって直接に光束の一部を遮断する例を示した。信号処理回路は、振動管13の振動を検出する振動検出部30、振動検出部30の検出信号波形に基づいて所定のタイミング信号を発生するタイミング信号発生部40、タイミング信号に基づいて振動管13に加振のための電流を通電する駆動部50、及び、振動管13の振動を励起するためのパルスを発生する励起部60から構成される。
【0022】
振動検出部30は、電流制限抵抗R1を介して電源VCCに接続された発光ダイオード23、発光ダイオード23からの光束を受光するフォトトランジスタ24、及び、フォトトランジスタ24のコレクタ抵抗R2からの出力信号を、直流分阻止用のRCフィルタ31を介して取り出すボルテージフォロア32から構成される。ボルテージフォロア32は、オペレーションアンプから構成される。
【0023】
タイミング信号発生部40は、ボルテージフォロア32から入力された入力信号を接地レベルと比較し、入力信号が正極の信号になると出力が「1」になるコンパレータ41、コンパレータ41の出力と励起部60の出力とのORをとるORゲート42、及び、ORゲート42の出力が「1」になると、所定のパルス幅のワンショットパルスを発生するワンショット回路43から構成される。なお、コンパレータ41では、接地レベルに代えて所定の基準レベルを用いることが出来る。
【0024】
駆動部50は、電源VCCと振動管13の一方の電極14との間に接続されたチョークコイル51、電極14とグランド間に接続された電解コンデンサ52、及び、他方の電極15とグランド間に挿入され、ワンショット回路43の出力によって駆動されるパワートランジスタ53から構成される。パワートランジスタ53によって供給される電流は、電源VCCから、チョークコイル51、電極14、振動管13及び電極15を経由してグランドに流れる。
【0025】
励起部60は、振動管の振動を励起するための励起パルスとなるパルス列を発生する励起パルス発振器61、及び、励起許可信号63と、励起パルス発振器61からの出力とのANDをとるANDゲート62から構成される。ANDゲート62の出力は、励起部60の出力として前記の通りORゲート42の一方の入力に与えられる。
【0026】
上記実施形態例の振動管式密度センサは、自然界に存在する雑音の存在下で正帰還によって振動を始め、振動管13及び内部流体の重量によって定まる固有周波数で発振するように移行する。雑音が極端に少ない環境下で、この密度センサが自己発振を起こさない場合には、励起パルス発振器61をオンとし、励起部60に励起許可信号63を入力し、ANDゲート62を経由して励起パルス列をタイミング信号発生部40に与える。励起パルス列は、ワンショット回路43を経由してパワートランジスタ53を駆動することによって、振動管13の振動を励起する。なお、励起部60を備える構成に代えて、振動管13を何らかの手段で機械的に振動させる励起手段を備えてもよい。或いは、作業者の手によって振動させてもよい。
【0027】
正帰還によって、或いは、励起パルス列の印加によって、振動管13が僅かでも振動を始めると、振動管13は、発光ダイオード23からフォトトランジスタ24に向かう光束の一部を遮断又は通過させる。この光束の変化によって、フォトトランジスタ24で発生した電気信号は、直流分阻止フィルタ31によってその交流分だけが抽出され、ボルテージフォロア32に入力する。
【0028】
ボルテージフォロア32の出力信号は、コンパレータ41によって接地電位を成す基準電位と比較され、基準電位よりも高い正極信号になった際にワンショット回路43を起動する。この正極信号は、振動管13の上方を通過する光束が減少する途中、つまり、振動管13が上向きに移動し、且つ、振動管13が振動の中心位置に在る時に発生する。
【0029】
ワンショット回路43は、パワートランジスタ53を駆動し、パワートランジスタ53は、短時間のパルス電流を振動管13に流す。永久磁石17、18によって印加された磁界は、このパルス電流との間に電磁力を発生させ、振動管13に上向きの力を与える。これにより、振動管13の上向きの移動が加速される。振動管13の振幅は、この正帰還によって徐々に増大し、運転開始から所定時間経過後は、一定の振幅で且つその固有振動数によって継続的な振動を続ける。
【0030】
本実施形態例の密度センサは、図示しないカウンタ等によって、ワンショット回路43が発生するパルス列の周期を計測することによって、振動管13の振動周波数を演算し、これに基づいて測定対象となる流体の密度を演算する。なお、振動周波数は、これに限らず何れかの信号の周期又は周波数を測定することによって得られる。
【0031】
上記実施形態例を適用し、内径が2mm、U字の長手方向の寸法が47mmの振動管を有する振動管式密度センサーを作製した。振動管は、通常の環境下で自然界のノイズによって約30秒程度で発振を発生した。また、極端にノイズが小さな環境下では、約10秒程度の励起許可信号の印加によって振動を励起することが出来た。
【0032】
上記実施形態例の振動管式密度センサでは、原理的には振動管13の固有振動周波数に影響を与える部材の取付けを要しないので、精度の高い密度計測値が得られる。また、位相回路を使用しないので、同様に高い精度で密度計測値が得られる。更に、相互に離隔距離を必要とする2つの部材の取付けを必要としないので、小型化が容易である。
【0033】
なお、上記実施形態例では、振動管13を導電体で形成し、振動管自体に電流を流す例を挙げたが、この電流は、振動管を絶縁体で形成し、この振動管を被覆する導電皮膜等を経由して流してもよい。或いは、測定対象の流体を経由して流してもよく、流体及び振動管の双方を経由して流してもよい。
【0034】
また、上記実施形態例では、振動管13をU字状に形成した例を挙げたが、振動管をU字状に形成すること自体は必須ではなく、振動が容易に得られるならば、任意の形状の振動管が採用できる。
【0035】
本発明の別の実施形態例として、先の実施形態例における振動管に電流を流す構成に代え、振動管には、その所定部分にメッキによって磁性材料から成る薄膜を形成し、その薄膜に対向する位置にコイルを固定配置する。信号処理回路は、先の実施形態例と同様な構成を採用する。例えば振動管が上方に移動する際に、通電手段によってコイルに通電して、振動管を上方に付勢する。つまり、固定コイルと振動管の薄膜との間に、振動管の振動に対して正帰還となる吸引力を発生する。従来の、振動管の所定部分に2つの磁石を並べる構成に比して、高精度の密度測定が可能であり、また、振動系の小型化が可能である。
【0036】
以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の振動管式密度センサは、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
【0037】
【発明の効果】
以上、説明したように、本発明の第1の視点の振動管式密度センサは、振動系に対して加振のための部材の取付を要しないことによって、精度が高い密度測定が可能な振動管式密度センサを提供した顕著な効果を奏する。
【0038】
また、本発明の第2の視点の振動管式密度センサは、振動管の振動を検出する振動検出手段を振動管とは離して設置できるので、振動管には離隔距離を必要とする部材の取付けを要しなく、振動系の小型化が可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る振動管式密度センサの斜視図。
【図2】図1の振動管式密度センサの回路ブロック図。
【符号の説明】
11、12:サポートブロック
13:振動管
14、15:電極
16:電流の向き
17、18:永久磁石
19:絶縁プレート
20:ベース
21:U字ボルト
22:絶縁ワッシャ
23:発光ダイオード
24:フォトトランジスタ
30:振動検出部
31:RCフィルタ
32:ボルテージフォロア
40:タイミング信号発生部
41:コンパレータ
42:ORゲート
43:ワンショット回路
50:駆動部
51:チョークコイル
52:電解コンデンサ
53:パワートランジスタ
60:励起部
61:励起パルス発振器
62:ANDゲート
63:励起許可信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibrating tube density sensor, and more particularly to a density sensor of a type that measures the density of a fluid to be measured by measuring the natural frequency of the vibrating tube.
[0002]
[Prior art]
The simulated moving bed type chromatographic separation apparatus is widely used for the purpose of extracting one or more components from a raw material fluid obtained by a natural or chemical reaction in a variety of manufacturing industries such as sugar industry and pharmaceutical industry. Yes. In the simulated moving bed type chromatographic separation apparatus, a vibrating tube density sensor is used for the purpose of detecting the state (phase) of the internal fluid.
[0003]
The vibration tube type density sensor measures the natural frequency of the vibration system and converts it into density. The natural frequency is determined by the mechanical size, elasticity, and weight of the vibration system. During density measurement, the size and elasticity of the vibration system hardly change and can be regarded as a constant. Therefore, the natural frequency of the vibration system can be treated as a function of its weight. Actually, since the cross section of the vibration tube is hollow and is filled with the fluid to be measured, the natural frequency of the vibration system is the sum of the weight of the vibration tube itself and the weight of the filled fluid to be measured. Determined.
[0004]
A conventional vibration tube type (vibration type) density sensor is described in, for example, Japanese Patent Application Laid-Open No. 6-94592. The density sensor described in the publication has two permanent magnets fixed to a vibration tube for vibration tube excitation and vibration frequency detection of the vibration tube, and a drive coil at a position facing both permanent magnets. And the detection coil is fixedly arranged. The vibration tube is vibrated by a set of a drive coil and one permanent magnet, and the frequency of the vibration tube is detected by a set of the other permanent magnet and a detection coil.
[0005]
In the density sensor described in the above publication, in order to obtain continuous vibration of the vibration tube, it is necessary to apply excitation from the drive coil as a positive feedback signal to vibration of the vibration tube detected by the detection coil. There is. For this reason, the phase of the detection signal from the detection coil is advanced by 90 degrees by a phase shift circuit, which is amplified and used as a drive signal for the drive coil.
[0006]
[Problems to be solved by the invention]
In the conventional vibration tube type density sensor, two permanent magnets are attached to the vibration tube itself for the purpose of driving (vibration) and vibration detection. For this reason, the weight of the permanent magnet and the weight of the vibration tube are added to the weight of the fluid to be measured, thereby constituting the total weight of the vibration system. Here, the detection sensitivity as the density meter decreases as the weight of the vibration tube and the permanent magnet in the vibration system is larger than the weight of the fluid to be measured. That is, even when a sufficiently thin and short vibrating tube is used, there is a problem that the weight of the permanent magnet cannot be ignored in order to obtain sufficient sensitivity for detecting the density of the fluid to be measured.
[0007]
Further, in the conventional vibration tube type density sensor, as described above, two coils are used for vibration detection and excitation. Here, it is known that when two coils for detection and excitation are brought close to each other, magnetic coupling occurs between the two coils and oscillation occurs at a frequency different from the natural frequency of the vibration system. . In order to prevent such oscillation, it is necessary to maintain a separation distance that does not cause magnetic coupling between the two coils. Therefore, both permanent magnets that form a pair with these coils have the same separation distance. Is required. As a result, the vibration system of the vibration tube type density sensor has a limit on downsizing.
[0008]
Furthermore, in the vibration tube type density sensor, in order to maintain continuous vibration of the vibration system, the phase of vibration obtained from the vibration detecting means is advanced 90 degrees using a phase shift circuit, and this is amplified and added. The vibration coil is driven. In this case, since the phase shift circuit also has frequency characteristics, it is difficult to advance the phase angle accurately by 90 degrees. As a result, the vibration tube density sensor continues to vibrate at a frequency with the highest efficiency in a state where the vibration system and the phase shift circuit are combined. This vibration has a frequency slightly different from the natural frequency of the vibration system, and causes a decrease in sensitivity as a density meter.
[0009]
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a vibrating tube density meter that improves the detection sensitivity by reducing the number of members attached to the vibrating tube, and enables the miniaturization thereof.
[0010]
Another object of the present invention is to provide a vibrating tube density meter capable of further improving the detection sensitivity because the natural frequency of the vibration meter can be obtained accurately because no phase shifter is used. .
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a vibrating tube densimeter according to a first aspect of the present invention includes a vibrating tube that contains a fluid to be measured and that is supported so that a predetermined portion can vibrate, and a vibration waveform of the vibrating tube. Vibration detecting means for detecting the current, and energizing means for passing a current to the predetermined portion of either or both of the vibration tube and the fluid in the vibration tube at a predetermined timing of the vibration waveform detected by the vibration detection means, Magnetic field applying means for applying a magnetic field in a direction orthogonal to the current to the predetermined portion, wherein the current and the magnetic field generate an electromagnetic force that becomes a positive feedback signal with respect to vibration of the vibrating tube. To do.
[0012]
In the vibrating tube density sensor according to the first aspect of the present invention, the current flowing through the predetermined portion and the magnetic field applied by the magnetic field applying means generate an electromagnetic force that provides positive feedback due to vibration of the vibrating tube. The vibration of the vibrating tube oscillates. Therefore, it is not necessary to attach a member that increases the weight of the vibration tube to a predetermined portion of the vibration tube for vibration, so that the density detection accuracy is not lowered and a separation distance is necessary. Since it is not necessary to attach a member, the vibration system can be easily downsized.
[0013]
The vibration tube density sensor according to the second aspect of the present invention includes a vibration tube that contains a fluid to be measured and is supported so that a predetermined portion can vibrate, and vibration detection means that detects a vibration waveform of the vibration tube. And a vibrating tube density sensor that includes a vibrating unit that applies a vibrating force as a positive feedback signal to the vibration of the vibrating tube at a predetermined timing of the vibration waveform detected by the vibration detecting unit.
The vibration detecting means includes a set of a light source and a light receiving element whose amount of passing light beam is changed by vibration of the vibrating tube.
[0014]
In the vibration tube density sensor according to the second aspect of the present invention, it is not necessary to attach the vibration detecting means to the vibration tube, and therefore, the vibration tube does not need to be attached with members that need to be separated from each other. Miniaturization is easy. It is preferable that the vibrating means is constituted by a combination of members that generate electromagnetic force between a predetermined portion of the vibrating tube and a fixed portion facing the predetermined portion.
[0015]
In a preferable aspect of the vibration tube type density sensor of the second viewpoint, the excitation means includes a magnetic material disposed in a predetermined portion of the vibration tube, and a coil fixed to a position facing the predetermined portion; An energization unit that passes current through the coil at a predetermined timing of the vibration waveform detected by the vibration detection unit, and the current generates an attractive force that becomes a positive feedback signal with respect to the vibration of the vibration tube. Occurs in wood. In this case, the structure of the vibration means is simpler. As the magnetic material, it is preferable to form a thin film made of a magnetic material on a predetermined portion of the vibration tube. In this case, the density sensor can be configured by a vibration means having a particularly simple configuration.
[0016]
In the vibration tube type density sensor according to the first aspect of the present invention and the density sensor according to the preferred aspect according to the second aspect of the present invention, the energization means detects a predetermined timing from the vibration waveform, and It is preferable to include pulse generation means for generating a current pulse in synchronization with a predetermined timing. In this case, a current pulse having a desired phase can be obtained without using a phase circuit.
[0017]
Furthermore, it is also a preferable aspect of the present invention to include an excitation unit that excites vibration of the vibrating tube. Here, the vibration tube type density meter according to the preferred embodiment of the present invention detects noise existing in the natural world, excites vibration by its positive feedback, and then shifts to perform oscillation according to the natural frequency of the vibration meter. To do. However, there are rare cases where such self-oscillation does not occur, particularly in an environment with low noise. In such a case, the excitation means is used for a short time to excite vibration. If even a slight vibration occurs, the vibration is continued by positive feedback thereafter, and the excitation means is stopped.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail based on embodiments of the present invention with reference to the drawings. FIG. 1 shows a vibrating tube density sensor according to an embodiment of the present invention. The vibration tube type density sensor is a vibration tube 13 bent in a U-shape and supported by support blocks 11 and 12 with a pair of U-shaped legs, and a current flow through the vibration tube 13 in the direction of arrow 16 in the figure. A pair of electrodes 14 and 15 and a pair of U-shaped permanent magnets 17 and 18 that apply a magnetic field that applies electromagnetic force to the current flowing in the vicinity of the U-shaped curved portion that forms the free end of the vibrating tube 13; Have The support blocks 11 and 12 are fixed to the base 20 via the insulating plate 19, and the permanent magnets 17 and 18 are directly fixed to the base 20.
[0019]
The vibration tube 13 is made of, for example, titanium or stainless steel, and is fixed to the support blocks 11 and 12 by U-shaped bolts 21. The U-shaped bolt 21 and the support blocks 11 and 12 are electrically and magnetically insulated by an insulating washer 22. The vibrating tube 13 is introduced with a fluid from a pseudo moving bed type chromatographic separation apparatus that is a density measurement target.
[0020]
The vibration in the vicinity of the U-shaped curved portion of the vibration tube 13 is detected by a combination of the light emitting diode 23 and the phototransistor 24 and a shutter 25 that blocks light from the light emitting diode. That is, when a current in the direction of the arrow 16 flows through the vibrating tube 13 via the electrodes 14 and 15, the vibrating tube 13 is known as the left Fleming method law due to the magnetic field applied by the permanent magnets 17 and 18. An upward electromagnetic force is generated. When the vibrating tube 13 vibrates due to this electromagnetic force, a part of the light beam from the light emitting diode 23 is blocked by the shutter 25. The shutter 25 is used when the size of the vibration tube 13 is sufficiently large and the influence on the vibration frequency of the vibration tube 13 is small. When the vibrating tube 13 is thin and short, it is preferable that a portion of the light beam is directly blocked or passed by the vibrating tube 13 itself to change the amount of the passing light beam.
[0021]
FIG. 2 is a block diagram of a signal processing circuit for passing a current between the electrodes 14 and 15. In the figure, an example in which a part of the light beam is directly blocked by the vibrating tube 13 is shown. The signal processing circuit includes a vibration detection unit 30 that detects vibration of the vibration tube 13, a timing signal generation unit 40 that generates a predetermined timing signal based on the detection signal waveform of the vibration detection unit 30, and the vibration tube 13 based on the timing signal. The driving unit 50 energizes a current for excitation, and the excitation unit 60 that generates a pulse for exciting the vibration of the vibrating tube 13.
[0022]
The vibration detection unit 30 receives the output signal from the light emitting diode 23 connected to the power source VCC via the current limiting resistor R1, the phototransistor 24 that receives the light flux from the light emitting diode 23, and the collector resistance R2 of the phototransistor 24. The voltage follower 32 is taken out via an RC filter 31 for blocking DC components. The voltage follower 32 includes an operation amplifier.
[0023]
The timing signal generation unit 40 compares the input signal input from the voltage follower 32 with the ground level, and when the input signal becomes a positive signal, the output is “1”. An OR gate 42 that takes an OR with the output and a one-shot circuit 43 that generates a one-shot pulse with a predetermined pulse width when the output of the OR gate 42 becomes “1”. In the comparator 41, a predetermined reference level can be used instead of the ground level.
[0024]
The drive unit 50 includes a choke coil 51 connected between the power supply VCC and one electrode 14 of the vibrating tube 13, an electrolytic capacitor 52 connected between the electrode 14 and the ground, and between the other electrode 15 and the ground. The power transistor 53 is inserted and driven by the output of the one-shot circuit 43. The current supplied by the power transistor 53 flows from the power supply VCC to the ground via the choke coil 51, the electrode 14, the vibrating tube 13, and the electrode 15.
[0025]
The excitation unit 60 generates an excitation pulse oscillator 61 that generates a pulse train that serves as an excitation pulse for exciting the vibration of the vibration tube, and an AND gate 62 that performs an AND operation between the excitation permission signal 63 and the output from the excitation pulse oscillator 61. Consists of The output of the AND gate 62 is given to one input of the OR gate 42 as an output of the excitation unit 60 as described above.
[0026]
The vibration tube type density sensor of the above-described embodiment starts to vibrate by positive feedback in the presence of noise existing in nature, and shifts to oscillate at a natural frequency determined by the weight of the vibration tube 13 and the internal fluid. When the density sensor does not self-oscillate in an environment with extremely low noise, the excitation pulse oscillator 61 is turned on, the excitation permission signal 63 is input to the excitation unit 60, and excitation is performed via the AND gate 62. The pulse train is given to the timing signal generator 40. The excitation pulse train excites the vibration of the vibrating tube 13 by driving the power transistor 53 via the one-shot circuit 43. Instead of the configuration including the excitation unit 60, an excitation unit that mechanically vibrates the vibrating tube 13 by some means may be provided. Or you may vibrate by the hand of an operator.
[0027]
When the vibrating tube 13 starts to vibrate even slightly due to positive feedback or application of an excitation pulse train, the vibrating tube 13 blocks or passes a part of the light beam from the light emitting diode 23 toward the phototransistor 24. Due to the change in the luminous flux, only the AC component of the electrical signal generated in the phototransistor 24 is extracted by the DC component blocking filter 31 and input to the voltage follower 32.
[0028]
The output signal of the voltage follower 32 is compared with a reference potential that forms a ground potential by the comparator 41, and when the positive signal is higher than the reference potential, the one-shot circuit 43 is activated. This positive signal is generated while the luminous flux passing above the vibrating tube 13 is decreasing, that is, when the vibrating tube 13 moves upward and the vibrating tube 13 is at the center position of vibration.
[0029]
The one-shot circuit 43 drives the power transistor 53, and the power transistor 53 flows a short-time pulse current through the vibrating tube 13. The magnetic field applied by the permanent magnets 17 and 18 generates an electromagnetic force between the pulse current and gives an upward force to the vibrating tube 13. Thereby, the upward movement of the vibration tube 13 is accelerated. The amplitude of the vibration tube 13 gradually increases by this positive feedback, and continues to vibrate with a constant amplitude and its natural frequency after a predetermined time has elapsed from the start of operation.
[0030]
The density sensor of the present embodiment calculates the vibration frequency of the vibration tube 13 by measuring the period of the pulse train generated by the one-shot circuit 43 with a counter (not shown) or the like, and based on this, the fluid to be measured Calculate the density of. The vibration frequency is not limited to this, and can be obtained by measuring the period or frequency of any signal.
[0031]
The above embodiment example was applied to produce a vibrating tube density sensor having a vibrating tube having an inner diameter of 2 mm and a U-shaped longitudinal dimension of 47 mm. The vibration tube oscillated in about 30 seconds due to natural noise in a normal environment. In an environment with extremely small noise, vibration could be excited by applying an excitation permission signal for about 10 seconds.
[0032]
In the vibration tube type density sensor of the above embodiment, in principle, it is not necessary to attach a member that affects the natural vibration frequency of the vibration tube 13, so that a highly accurate density measurement value can be obtained. In addition, since no phase circuit is used, a density measurement value can be obtained with high accuracy. Further, since it is not necessary to attach two members that require a separation distance from each other, the size can be easily reduced.
[0033]
In the above embodiment, the vibration tube 13 is formed of a conductor and an electric current is passed through the vibration tube itself. However, this current forms the vibration tube with an insulator and covers the vibration tube. It may flow through a conductive film or the like. Alternatively, it may flow through the fluid to be measured, or may flow through both the fluid and the vibrating tube.
[0034]
In the above embodiment, the vibration tube 13 is formed in a U-shape. However, it is not essential to form the vibration tube in a U-shape. A vibrating tube of the shape can be adopted.
[0035]
As another embodiment of the present invention, instead of the configuration in which current is passed through the vibrating tube in the previous embodiment, a thin film made of a magnetic material is formed on the predetermined portion of the vibrating tube by plating, and the thin film is opposed to the thin film. The coil is fixedly arranged at the position to be. The signal processing circuit adopts the same configuration as the previous embodiment. For example, when the vibrating tube moves upward, the coil is energized by the energizing means to bias the vibrating tube upward. That is, a suction force that generates positive feedback with respect to the vibration of the vibration tube is generated between the fixed coil and the thin film of the vibration tube. Compared with the conventional configuration in which two magnets are arranged in a predetermined portion of the vibration tube, it is possible to measure the density with high accuracy and to reduce the size of the vibration system.
[0036]
Although the present invention has been described based on the preferred embodiment thereof, the vibrating tube density sensor of the present invention is not limited to the configuration of the above embodiment example. Various modifications and changes are also included in the scope of the present invention.
[0037]
【The invention's effect】
As described above, the vibration tube type density sensor according to the first aspect of the present invention does not require the attachment of a member for excitation to the vibration system, so that vibration with high accuracy can be measured. There is a remarkable effect of providing a tubular density sensor.
[0038]
In the vibration tube type density sensor according to the second aspect of the present invention, the vibration detection means for detecting the vibration of the vibration tube can be installed away from the vibration tube, so that the vibration tube is provided with a member that requires a separation distance. There is no need for mounting, and the vibration system can be downsized.
[Brief description of the drawings]
FIG. 1 is a perspective view of a vibrating tube density sensor according to an embodiment of the present invention.
2 is a circuit block diagram of the vibrating tube density sensor of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11, 12: Support block 13: Vibrating tube 14, 15: Electrode 16: Current direction 17, 18: Permanent magnet 19: Insulating plate 20: Base 21: U-shaped bolt 22: Insulating washer 23: Light emitting diode 24: Phototransistor 30: Vibration detection unit 31: RC filter 32: Voltage follower 40: Timing signal generation unit 41: Comparator 42: OR gate 43: One-shot circuit 50: Drive unit 51: Choke coil 52: Electrolytic capacitor 53: Power transistor 60: Excitation Unit 61: Excitation pulse oscillator 62: AND gate 63: Excitation permission signal

Claims (2)

測定対象の流体を収容し、所定部分が振動可能に支持される振動管と、
該振動管の振動波形を検出する振動検出手段と、前記振動管及び該振動管内の流体の何れか又は双方の前記所定部分に、前記振動検出手段で検出された振動波形の所定のタイミングで電流を通ずる通電手段と、
前記所定部分に前記電流と直交方向の磁界を印加する磁界印加手段と、
前記振動管の振動を励起する励起手段とを備え、
前記電流及び磁界、前記振動管の振動に対して正帰還の信号となる電磁力を発生し、
前記振動検出手段が、前記振動管の振動によって通過光束量が変化する光源及び受光素子の組を備え、
前記通電手段が、前記振動波形から前記所定のタイミングを検出するタイミング検出部と、前記所定のタイミングに同期して電流パルスを発生するパルス発生手段とを備える
ことを特徴とする振動管式密度センサ。
A vibrating tube that contains a fluid to be measured and is supported so that a predetermined portion can vibrate;
A vibration detection unit that detects a vibration waveform of the vibration tube, and a current at a predetermined timing of the vibration waveform detected by the vibration detection unit in one or both of the vibration tube and the fluid in the vibration tube. Energizing means that pass through,
Magnetic field applying means for applying a magnetic field perpendicular to the current to the predetermined portion ;
An excitation means for exciting the vibration of the vibration tube ,
The current and magnetic field, generates an electromagnetic force which is a positive feedback signal to the vibration of the vibrating tube,
The vibration detection means includes a set of a light source and a light receiving element in which a passing light flux amount is changed by vibration of the vibration tube,
The vibration tube density sensor , wherein the energizing means includes a timing detection unit that detects the predetermined timing from the vibration waveform, and a pulse generation unit that generates a current pulse in synchronization with the predetermined timing. .
測定対象の流体を収容し、所定部分が振動可能に支持される振動管と、
該振動管の振動波形を検出する振動検出手段と、前記振動検出手段で検出された振動波形の所定のタイミングで前記振動管の振動に対して正帰還の信号となる加振力を与える加振手段と、
前記振動管の振動を励起する励起手段とを備える振動管式密度センサであって
前記振動検出手段は、前記振動管の振動によって通過光束量が変化する光源及び受光素子の組を備え
前記加振手段が、前記振動管の所定部分に配置された磁性材と、前記所定部分に対向する位置に固定されるコイルと、前記振動検出手段で検出された振動波形の所定のタイミングで前記コイルに電流を通ずる通電手段とを備え、
前記通電手段が、前記振動波形から前記所定のタイミングを検出するタイミング検出部と、前記所定のタイミングに同期して電流パルスを発生するパルス発生手段とを備える
ことを特徴とする振動管式密度センサ。
A vibrating tube that contains a fluid to be measured and is supported so that a predetermined portion can vibrate;
Vibration detecting means for detecting a vibration waveform of the vibration tube, and an excitation for applying an excitation force as a positive feedback signal to the vibration of the vibration tube at a predetermined timing of the vibration waveform detected by the vibration detection means. Means ,
A vibrating tube densitometer sensor comprising an excitation means for exciting a vibration of the vibrating tube,
The vibration detection means includes a set of a light source and a light receiving element in which a passing light flux amount is changed by vibration of the vibration tube ,
The excitation means includes a magnetic material disposed in a predetermined portion of the vibration tube, a coil fixed at a position facing the predetermined portion, and a predetermined timing of a vibration waveform detected by the vibration detection means. An energization means for passing current through the coil;
The vibration tube density sensor , wherein the energizing means includes a timing detection unit that detects the predetermined timing from the vibration waveform, and a pulse generation unit that generates a current pulse in synchronization with the predetermined timing. .
JP2000239656A 2000-08-08 2000-08-08 Vibrating tube density sensor Expired - Fee Related JP4251595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000239656A JP4251595B2 (en) 2000-08-08 2000-08-08 Vibrating tube density sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000239656A JP4251595B2 (en) 2000-08-08 2000-08-08 Vibrating tube density sensor

Publications (2)

Publication Number Publication Date
JP2002055036A JP2002055036A (en) 2002-02-20
JP4251595B2 true JP4251595B2 (en) 2009-04-08

Family

ID=18731156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000239656A Expired - Fee Related JP4251595B2 (en) 2000-08-08 2000-08-08 Vibrating tube density sensor

Country Status (1)

Country Link
JP (1) JP4251595B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228735B2 (en) * 2005-02-03 2007-06-12 Integrated Sensing Systems, Inc. Fluid sensing device with integrated bypass and process therefor
JP5417986B2 (en) * 2009-05-20 2014-02-19 東ソー株式会社 Liquid chromatograph
JP5361602B2 (en) * 2009-08-07 2013-12-04 京都電子工業株式会社 Vibration density measuring method and vibration density meter
WO2014066433A1 (en) * 2012-10-22 2014-05-01 Goodbread Joseph H Method and device for measuring fluid properties
CN104101556A (en) * 2014-08-11 2014-10-15 范明军 Resonant liquid densimeter structure

Also Published As

Publication number Publication date
JP2002055036A (en) 2002-02-20

Similar Documents

Publication Publication Date Title
NL1028939C2 (en) Mass flow meter of the Coriolist type.
US8203290B2 (en) Vibrating element
JP2872205B2 (en) Coriolis mass flow / density sensor
KR100347406B1 (en) Viscometer
JP2831629B2 (en) Coriolis mass flow sensor
JP5039650B2 (en) Flowmeter
KR100528776B1 (en) Temperature Measuring Method, Object Detecting Method and Object Detecting Device with Vibrating-Type Level Sensor
JP4251595B2 (en) Vibrating tube density sensor
KR100477491B1 (en) Coil impedance detection method and object detection method and apparatus using the same
JP6223440B2 (en) Operation method of resonance measurement system and resonance measurement system related to the operation method
JP2003004829A (en) Apparatus for measuring magnetic flux
JP4073335B2 (en) Vibration type level sensor
JP2001527641A (en) Magnetic resonance sensor
JPS585614A (en) Flowmeter
JPH08267007A (en) Self-exciting oscillation type vibrator of electromagnet vibration exciting system
JP2004151074A (en) Multi-point object detecting device for vibratory level sensor
JPH032543A (en) Density and viscosity meter
RU99107790A (en) METHOD FOR TEMPERATURE MEASUREMENT
RU2239789C1 (en) Method of measuring flow rate of liquid and electromagnetic transducer for measuring flow rate of liquid
JP2003066360A (en) Drive unit of electromagnetic driving type actuator and method for detecting oscillation
RU2000111543A (en) UNITED SENSOR AND EXCITER OF OSCILLATIONS FOR USE IN CORIOLIS FLOW METERS, AND METHOD FOR THEIR OPERATION
JPS5922883B2 (en) electromagnetic flowmeter transmitter
JPS6166102A (en) Vibration type gap measuring apparatus
RU2005127596A (en) LIGHT MASS CORIOLIS FLOWMETER WITH LIGHTED DRIVE SYSTEM
JPH04236330A (en) Mass flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees