JP2004151074A - Multi-point object detecting device for vibratory level sensor - Google Patents

Multi-point object detecting device for vibratory level sensor Download PDF

Info

Publication number
JP2004151074A
JP2004151074A JP2002356005A JP2002356005A JP2004151074A JP 2004151074 A JP2004151074 A JP 2004151074A JP 2002356005 A JP2002356005 A JP 2002356005A JP 2002356005 A JP2002356005 A JP 2002356005A JP 2004151074 A JP2004151074 A JP 2004151074A
Authority
JP
Japan
Prior art keywords
vibration
sensor
level sensor
electromagnet
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356005A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakatsu
裕志 川勝
Naoko Miyabe
直子 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohken Inc
Original Assignee
Nohken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohken Inc filed Critical Nohken Inc
Priority to JP2002356005A priority Critical patent/JP2004151074A/en
Publication of JP2004151074A publication Critical patent/JP2004151074A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-point object detecting device for a vibratory level sensor, which can reduce the number of parts, thereby enabling the improvement of reliability. <P>SOLUTION: Each sensor unit having a different oscillation frequency is provided at a plurality of locations of a tank. Coils of an electromagnet of each sensor unit are connected in series or in parallel. Impedance variations at these oscillation frequencies are detected. Based on these variations, the presence of an object at each location is collectively detected in a single control circuit unit. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は振動式レベルセンサの多点物体検出装置に関し、特に、検出パイプと検出パイプ内のマグネットを設けた振動板と前記振動板に若干のギャップを介して対向させた電磁石とからなるセンサ部を有し、前記電磁石により振動を発生させ物体の有無を検出する振動式レベルセンサの多点物体検出装置に関する。
【0002】
【従来の技術】
図8は従来の振動式レベルセンサの概略ブロック図であり、特開平11−351944号公報に記載されているものである。図8(a)において、検出パイプ部1は、その基部11が固定端とされ、その先端部が閉塞部12で閉塞されて自由端とされ、折返し片持ち梁を構成している。検出パイプ部1の内部には、細長い矩形状の振動片2が設けられる。すなわち、振動片2の一端は検出パイプ部1の閉塞部12に固着され、他端には永久磁石3が設けられて自由端とされる。
【0003】
さらに、振動片2の軸方向と向き合うように電磁石4が検出パイプ部1の内壁に密着するように取り付けられる。電磁石4が交流電流で駆動されると、電磁石4が発生する磁界と、永久磁石3の磁界の吸引反発作用により、振動片2と閉塞部12と検出パイプ部1が基部11を固定端として折返し片持ち梁の振動を発生させる。
【0004】
検出パイプ部1の基部11側の内側の壁には歪検出素子5が設けられる。歪検出素子5は検出パイプ1の基部11側の振動振幅状態を検知して電気信号に変換し、増幅回路6に与える。増幅回路6は入力された信号を増幅して再び電磁石4に入力する。
【0005】
電磁石4に加えられる電流の極性と電磁石4に発生する磁界の関係が図8(b)に示す関係であるとすると、電磁石4の永久磁石3に向き合う極がN極となり、振動片2に取り付けられた永久磁石3のS極との間には吸引力が生じ、永久磁石3のN極との間には反発力が生じ、振動片2の自由端は図8(b)において上側に力を受けて変位することになる。
【0006】
逆に、電磁石4に加わる電流の極性を逆にすると、図8(c)に示すように、電磁石4の永久磁石3に向かい合う側の極性が逆転してS極となり、振動片2の永久磁石3のS極と反発し、N極と吸引するために振動片2の自由端は下側に力を受け振動モードが変化する。したがって、電磁石4に加わる電流の極性を折返し片持ち梁の振動系の固有振動周波数に合わせて切り換えることにより、振動を生じ、継続させることができる。
【0007】
【発明が解決しようとする課題】
図8に示した例では、振動系の振動を検出素子5で検出して電気信号に変換し、増幅回路6で増幅して再び電磁石4に入力するとともに、検出回路7から検出信号を出力する。振動の検出素子5として圧電素子や加速度ピックアップが用いられるが、圧電素子は割れやすく、検出パイプに接着剤で貼り付けることによる環境性や温度特性などの影響を受けやすく圧電素子そのものの信頼性が低いという問題がある。
【0008】
その他に、たとえば特許第2636871号公報に示されている振動式検出装置を用いる方法もある。この振動式レベル検出装置では、振動体に励振用圧電素子と受信用圧電素子とが設けられ、励振用圧電素子により振動体が励振させて振動体の振動が受信用圧電素子で検出される。そして、受信用圧電素子からの出力がバンドパスフィルタに入力されて振動体が被検出対象物に接触しない場合の振動周波数faを通過させ、振動体が被検出対象物に接触した場合の振動周波数fbを通過させないようにする。このバンドパスフィルタの出力を電圧比較回路に与えて、基準電圧と比較し、振動体が被検出対象物に接触しない場合には基準電圧より高くなるので被検出対象物を検出できる。
【0009】
しかし、上述の従来例においては、検出回路の部品点数が多くなり、コストが高くなり構造的にも複雑になり、組み立て工数も多くなってしまうという問題もある。部品点数が増えることは信頼性の低下にもつながる。
【0010】
図9は図8に示す従来のセンサ部をタンクの複数位置に設けた時のレベルセンサの説明図である。タンク41にセンサ部43を設け、タンク42にセンサ部44を設けて、それぞれの位置における物体の有無を検出する場合、各センサ部43,44に電源を供給する電源線47や各センサ部43,44の信号を物体排出供給用の制御装置45に送る信号線46が各センサ部毎に必要となり、各線ともプラス側とマイナス側の2本必要で、図9の例では各センサ部43,44に対して4本、合計8本の電線が必要になる。
【0011】
また、センサ部および制御装置にそれら配線を接続する端子台などの接続用の部品の点数も多く必要になる。
【0012】
それに加え、各センサ部毎に制御回路部として、増幅回路や検出回路およびそれに伴う電源回路等付随回路が必要で、タンク周辺温度が高温な場合、部品の温度範囲を越す場合などは、使用できなかったり、冷却などの手段が必要である。また、電子部品は振動などに弱い場合が多く、特に物体の目詰まりなどを防ぐ目的で設けられているバイブレータや衝撃発生器などの近傍にセンサが設けられる場合は補強などの対策が必要となる。
【0013】
それゆえに、この発明の主たる目的は、単一の制御回路部により複数のセンサ部位置の物体の有無を検出することでレベルセンサのコストを下げると同時にセンサ部と制御装置間の配線を極力少なくし配線材料の本数および長さを削減し配線材料のコストを下げると共に、センサ内部の電子回路を無くし、耐熱性能や耐振動性能等の耐環境性能に優れた振動式レベルセンサの物体検出装置を提供することである。
【0014】
【課題を解決するための手段】
この発明は、検出パイプと検出パイプ内に配置し、マグネットを設けた振動板と前記振動板に若干のギャップを介して対向させた電磁石とからなるセンサ部を有し、前記電磁石により振動を発生させ粉体の有無を検出する振動式レベルセンサであって、異なる振動周波数を持つ前記センサ部をタンクの複数位置に設け、前記センサ部の電磁石のコイルを直列または並列に接続し、これらの振動周波数におけるインピーダンス変化を検出し、この変化から各位置の物体の有無を単一の制御回路部で一括して検出できるようにしたことを特徴とする。
【0015】
また、各センサ部と前記制御回路部はループ状の一本の線で接続されていることを特徴とする。
【0016】
【実施の実施の形態】
まず、この発明の実施形態について説明する前に、図1を参照してこの発明の原理について説明する。図1において、検出パイプ11と振動板12とマグネット13と電磁石14からセンサ部Aは構成される。この電磁石14に振動板12と検出パイプ11の振動周波数の電流信号を加えると、マグネット13の磁極と電磁石14の交番磁界の作用によりセンサ部Aの振動が最大となり、マグネット13と電磁石14により生じる逆起電力も最も大きくなり制御信号から信号線15に流している電流位相が変化する。この変化を測定した結果を図2〜図5に示す。
【0017】
図6を参照して図2〜図5を説明する。たとえば、タンク21に取り付けたセンサ部23の振動周波数は331Hzで、タンク22に取り付けたセンサ部24の振動周波数は382Hzの場合、図2はセンサ部23の検出パイプ11とセンサ部24の検出パイプ11の両方とも物体で覆われることなく自由振動状態を示す。図3はセンサ部23の検出パイプ11は物体に覆われた状態を示し、センサ部24の検出パイプ11は物体に覆われていない状態を示す。図4はセンサ部23の検出パイプ11は物体に覆われていない状態を示し、センサ部24の検出パイプ11は物体に覆われた状態を示す。図5はセンサ部23の検出パイプ11とセンサ部24の検出パイプ11の両方とも物体に覆われている状態を示している。
【0018】
物体がない場合は、センサ部の振動周波数で電流位相に変化が発生しているが、物体がある場合は、検出パイプ11や振動板12は振動しないため逆起電力による信号電流の位相は変化しない。この各センサ部23,24の振動周波数における電流位相の変化の有無もしくは大きさから、それぞれのセンサが物体に埋没しているかしていないかを検出する。
【0019】
なお、各センサ部23,24の振動周波数をそれぞれ変えるには、振動板12の厚み、材質または形状を変えるなどの方法がある。
【0020】
図7はこの発明の一実施形態における振動式レベルセンサの制御回路部25のブロック図である。図7において、制御回路部25は周波数制御部33、周波数発生部32、駆動回路37、電流検出部36、位相比較部38で構成され、周波数制御部33が周波数発生部32を制御して信号線15に接続されている全てのセンサ部の振動周波数を包括する周波数範囲の掃引を行う。(本例では320Hz〜400Hz)駆動回路37はマイクロコンピュータ31の信号を信号線15に加える電流信号へ変換する。電流検出部36は信号線15に流れている電流位相を検出する。位相比較部38は周波数発生部32が発生する駆動位相と、電流検出部36が検出する信号線15に流れている電流位相の比較を行い、両位相の位相差を検出する。
【0021】
信号処理部34はある周波数における位相差があらかじめ設定されている位相差の範囲内かどうか判断し、各々のセンサ部の振動周波数における位相特性から、各々のセンサ部の振動状態そして各々のセンサが物体に埋没しているかどうかの判定を行い、検出信号出力部35から制御/警報信号39の出力を行う。
【0022】
なお、周波数の掃引は、すべてのセンサ部の振動周波数を一括して行う方法や、特定のセンサ部の振動周波数を重点的に掃引し、他のセンサ部の振動周波数の掃引は間欠的に行う方法がある。
【0023】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
【0024】
【発明の効果】
以上のように、この発明によれば、各センサ部の振動周波数におけるインピーダンス変化を検出することができ、このインピーダンスの変化に基づいて物体の有無を検出することができる。
【0025】
したがって、センサ部として駆動用コイル(電磁石)と永久磁石のみを設け、受信用のセンサ部に従来のように圧電素子や加速度ピックアップを用いることなく、物体の有無を判別でき、これにより構造の簡素化と大幅なコストダウンを図ることが可能となり、装置としての信頼性も向上できる。
【図面の簡単な説明】
【図1】この発明の原理を説明するための図である。
【図2】センサ23、24共に何も検出していない自由振動状態を示す。
【図3】センサ23は物体を検出し、センサ24は何も検出していない状態を示す。
【図4】センサ23は何も検出されず、センサ24は物体を検出している状態を示す。
【図5】センサ23,24共に物体を検出している状態を示す。
【図6】図2〜図5を説明するための図
【図7】上述の原理に基づく第1の実施形態のブロック図である。
【図8】従来の振動式レベルセンサの概略ブロック図である。
【図9】従来の振動式レベルセンサの説明図である。
【符号の説明】
A センサ部、11 検出パイプ、12 振動板、13 永久磁石、14 駆動コイル、21,22 タンク、23,24 センサ部、25 制御回路部、26信号線、31 マイクロコンピュータ、32 周波数発生部、33 周波数制御部、34 信号処理部、35 検出信号出力部、36 電流検出部、37 駆動回路、38 位相比較部、39 制御/警報信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multipoint object detection device of a vibration type level sensor, and in particular, a sensor unit including a detection pipe, a diaphragm provided with a magnet in the detection pipe, and an electromagnet opposed to the diaphragm with a slight gap therebetween. The present invention relates to a multi-point object detecting device of a vibration type level sensor that generates vibration by the electromagnet and detects the presence or absence of an object.
[0002]
[Prior art]
FIG. 8 is a schematic block diagram of a conventional vibration type level sensor, which is described in JP-A-11-351944. In FIG. 8A, the detection pipe portion 1 has a fixed end at a base 11 and a free end closed at a tip end by a closing portion 12 to constitute a folded cantilever. An elongated rectangular vibrating reed 2 is provided inside the detection pipe portion 1. That is, one end of the vibrating reed 2 is fixed to the closing portion 12 of the detection pipe portion 1, and the other end is provided with the permanent magnet 3 and is free.
[0003]
Further, the electromagnet 4 is attached to the inner wall of the detection pipe 1 so as to be in close contact with the axial direction of the resonator element 2. When the electromagnet 4 is driven by the alternating current, the vibrating reed 2, the closing portion 12, and the detection pipe portion 1 are folded back with the base portion 11 as a fixed end due to the magnetic field generated by the electromagnet 4 and the repelling action of the magnetic field of the permanent magnet 3. Generates vibration of the cantilever.
[0004]
A strain detecting element 5 is provided on an inner wall of the detection pipe unit 1 on the base 11 side. The strain detecting element 5 detects a vibration amplitude state on the base 11 side of the detection pipe 1, converts the vibration amplitude state into an electric signal, and supplies the electric signal to the amplifier circuit 6. The amplifier circuit 6 amplifies the input signal and inputs the amplified signal to the electromagnet 4 again.
[0005]
Assuming that the relationship between the polarity of the current applied to the electromagnet 4 and the magnetic field generated in the electromagnet 4 is as shown in FIG. 8B, the pole of the electromagnet 4 facing the permanent magnet 3 becomes the N pole, and is attached to the vibrating bar 2. Attraction force is generated between the permanent magnet 3 and the S pole, and repulsive force is generated between the permanent magnet 3 and the N pole. The free end of the vibrating reed 2 is forced upward in FIG. Will be displaced in response to this.
[0006]
Conversely, when the polarity of the current applied to the electromagnet 4 is reversed, as shown in FIG. 8C, the polarity of the electromagnet 4 on the side facing the permanent magnet 3 is reversed to become the S pole, and the permanent magnet The free end of the vibrating reed 2 receives a downward force to repel the S pole of No. 3 and attract the N pole, and the vibration mode changes. Therefore, by switching the polarity of the current applied to the electromagnet 4 in accordance with the natural vibration frequency of the vibrating system of the folded cantilever, vibration can be generated and continued.
[0007]
[Problems to be solved by the invention]
In the example shown in FIG. 8, the vibration of the vibration system is detected by the detection element 5, converted into an electric signal, amplified by the amplification circuit 6, input to the electromagnet 4 again, and output the detection signal from the detection circuit 7. . A piezoelectric element or an acceleration pickup is used as the vibration detecting element 5. However, the piezoelectric element is easily broken, and is easily affected by environmental characteristics and temperature characteristics caused by sticking to the detecting pipe with an adhesive. There is a problem of low.
[0008]
In addition, for example, there is a method using a vibration-type detection device disclosed in Japanese Patent No. 2636871. In this vibration type level detecting device, a vibrating body is provided with a piezoelectric element for excitation and a piezoelectric element for receiving, and the vibration of the vibrating body is excited by the piezoelectric element for excitation, and the vibration of the vibrating body is detected by the piezoelectric element for receiving. Then, the output from the receiving piezoelectric element is input to the band-pass filter to pass a vibration frequency fa when the vibrating body does not contact the detection target, and a vibration frequency when the vibrator contacts the detection target. fb. The output of the band-pass filter is supplied to a voltage comparison circuit and compared with a reference voltage. When the vibrating body does not contact the detection target, the detection target is detected because the voltage is higher than the reference voltage.
[0009]
However, in the above-described conventional example, there are problems that the number of components of the detection circuit increases, the cost increases, the structure becomes complicated, and the number of assembly steps increases. Increasing the number of parts also leads to lower reliability.
[0010]
FIG. 9 is an explanatory diagram of a level sensor when the conventional sensor unit shown in FIG. 8 is provided at a plurality of positions of a tank. When a sensor section 43 is provided in the tank 41 and a sensor section 44 is provided in the tank 42 to detect the presence or absence of an object at each position, a power supply line 47 for supplying power to each of the sensor sections 43 and 44 and each of the sensor sections 43 , 44 to the control unit 45 for discharging and supplying the object, a signal line 46 is required for each sensor unit, and each line requires two lines on the plus side and the minus side. In the example of FIG. A total of eight wires are required, four for 44.
[0011]
In addition, a large number of connecting parts such as a terminal block for connecting these wires to the sensor unit and the control device are required.
[0012]
In addition, a control circuit for each sensor requires an additional circuit such as an amplification circuit, a detection circuit, and a power supply circuit that accompanies it.It can be used when the temperature around the tank is high or when the temperature exceeds the temperature range of parts. Or no means such as cooling is required. In addition, electronic components are often vulnerable to vibration, etc., especially when sensors are provided near vibrators or shock generators provided to prevent clogging of objects, measures such as reinforcement are necessary. .
[0013]
Therefore, the main object of the present invention is to reduce the cost of the level sensor by detecting the presence or absence of an object at a plurality of sensor positions by a single control circuit unit, and at the same time to minimize the wiring between the sensor unit and the control device. In addition to reducing the number and length of wiring materials and reducing the cost of wiring materials, an electronic circuit inside the sensor is eliminated, and an object detection device for a vibration type level sensor with excellent environmental performance such as heat resistance and vibration resistance is provided. To provide.
[0014]
[Means for Solving the Problems]
The present invention has a sensor unit including a detection pipe, a diaphragm provided in the detection pipe, and a magnet provided with a magnet, and an electromagnet opposed to the diaphragm with a slight gap therebetween, and generates vibration by the electromagnet. A vibrating level sensor for detecting the presence or absence of powder, wherein the sensor units having different vibration frequencies are provided at a plurality of positions of a tank, and coils of electromagnets of the sensor unit are connected in series or in parallel, and these vibrations are detected. An impedance change in frequency is detected, and the presence or absence of an object at each position can be collectively detected by a single control circuit unit from the change.
[0015]
Further, each sensor unit and the control circuit unit are connected by a single loop-shaped line.
[0016]
[Embodiment]
First, before describing an embodiment of the present invention, the principle of the present invention will be described with reference to FIG. In FIG. 1, a sensor section A includes a detection pipe 11, a diaphragm 12, a magnet 13, and an electromagnet 14. When a current signal of the vibration frequency of the diaphragm 12 and the detection pipe 11 is applied to the electromagnet 14, the action of the alternating magnetic field between the magnetic poles of the magnet 13 and the electromagnet 14 maximizes the vibration of the sensor section A, and is generated by the magnet 13 and the electromagnet 14. The back electromotive force also becomes maximum, and the phase of the current flowing from the control signal to the signal line 15 changes. The results of measuring this change are shown in FIGS.
[0017]
2 to 5 will be described with reference to FIG. For example, when the vibration frequency of the sensor unit 23 attached to the tank 21 is 331 Hz and the vibration frequency of the sensor unit 24 attached to the tank 22 is 382 Hz, FIG. 2 shows the detection pipe 11 of the sensor unit 23 and the detection pipe of the sensor unit 24. 11 shows a free vibration state without being covered by an object. FIG. 3 shows a state in which the detection pipe 11 of the sensor unit 23 is covered with an object, and a state in which the detection pipe 11 of the sensor unit 24 is not covered with an object. FIG. 4 shows a state in which the detection pipe 11 of the sensor unit 23 is not covered with an object, and a state in which the detection pipe 11 of the sensor unit 24 is covered with an object. FIG. 5 shows a state where both the detection pipe 11 of the sensor unit 23 and the detection pipe 11 of the sensor unit 24 are covered with an object.
[0018]
When there is no object, a change occurs in the current phase at the vibration frequency of the sensor unit. However, when there is an object, the phase of the signal current due to the back electromotive force changes because the detection pipe 11 and the diaphragm 12 do not vibrate. do not do. From the presence or absence or the magnitude of the change in the current phase at the vibration frequency of each of the sensor units 23 and 24, it is detected whether each sensor is buried in the object.
[0019]
In order to change the vibration frequency of each of the sensor units 23 and 24, there is a method of changing the thickness, material, or shape of the diaphragm 12, for example.
[0020]
FIG. 7 is a block diagram of the control circuit unit 25 of the vibration type level sensor according to the embodiment of the present invention. 7, the control circuit unit 25 includes a frequency control unit 33, a frequency generation unit 32, a drive circuit 37, a current detection unit 36, and a phase comparison unit 38. The frequency control unit 33 controls the frequency generation unit 32 and outputs a signal. A sweep of a frequency range covering the vibration frequencies of all the sensor units connected to the line 15 is performed. The drive circuit 37 converts the signal of the microcomputer 31 into a current signal to be applied to the signal line 15 (in this example, 320 Hz to 400 Hz). The current detector 36 detects the phase of the current flowing through the signal line 15. The phase comparing section 38 compares the driving phase generated by the frequency generating section 32 with the current phase flowing through the signal line 15 detected by the current detecting section 36, and detects a phase difference between the two phases.
[0021]
The signal processing unit 34 determines whether or not the phase difference at a certain frequency is within a preset range of the phase difference. From the phase characteristics at the vibration frequency of each sensor unit, the vibration state of each sensor unit and each sensor It is determined whether the object is buried in the object, and the detection signal output unit 35 outputs a control / warning signal 39.
[0022]
In addition, the frequency sweep may be performed by a method in which the vibration frequencies of all the sensor units are collectively performed, or the vibration frequency of a specific sensor unit may be mainly swept, and the sweep of the vibration frequency of the other sensor units may be intermittently performed. There is a way.
[0023]
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to detect a change in impedance at the vibration frequency of each sensor unit, and to detect the presence or absence of an object based on the change in impedance.
[0025]
Therefore, only a driving coil (electromagnet) and a permanent magnet are provided as the sensor unit, and the presence or absence of an object can be determined without using a piezoelectric element or an acceleration pickup in the receiving sensor unit as in the related art, thereby simplifying the structure. It is possible to achieve cost reduction and cost reduction, and the reliability of the device can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the principle of the present invention.
FIG. 2 shows a free vibration state in which neither sensor 23 nor 24 detects anything.
FIG. 3 shows a state where a sensor 23 detects an object and a sensor 24 does not detect anything.
FIG. 4 shows a state in which nothing is detected by a sensor 23 and a sensor 24 is detecting an object.
FIG. 5 shows a state where both sensors 23 and 24 are detecting an object.
FIG. 6 is a diagram for explaining FIGS. 2 to 5; FIG. 7 is a block diagram of a first embodiment based on the above-described principle;
FIG. 8 is a schematic block diagram of a conventional vibration type level sensor.
FIG. 9 is an explanatory diagram of a conventional vibration type level sensor.
[Explanation of symbols]
A sensor unit, 11 detection pipe, 12 diaphragm, 13 permanent magnet, 14 drive coil, 21, 22 tank, 23, 24 sensor unit, 25 control circuit unit, 26 signal lines, 31 microcomputer, 32 frequency generation unit, 33 Frequency control section, 34 signal processing section, 35 detection signal output section, 36 current detection section, 37 drive circuit, 38 phase comparison section, 39 control / alarm signal

Claims (2)

検出パイプと検出パイプ内に配置し、マグネットを設けた振動板と前記振動板に若干のギャップを介して対向させた電磁石とからなるセンサ部を有し、前記電磁石により振動を発生させ物体の有無を検出する振動式レベルセンサの多点物体検出装置であって、異なる振動周波数を持つ前記センサ部をタンクの複数位置に設け、前記各センサ部の電磁石のコイルを直列または並列に接続し、これらの振動周波数におけるインピーダンス変化を検出し、この変化から各位置の物体の有無を単一の制御回路部で一括して検出できるようにしたことを特徴とする振動式レベルセンサの多点物体検出装置。It has a sensor section consisting of a detection pipe and a diaphragm provided with a magnet and a magnet provided with a magnet, and an electromagnet opposed to the diaphragm with a slight gap therebetween. A multi-point object detection device of a vibration type level sensor for detecting, wherein the sensor units having different vibration frequencies are provided at a plurality of positions of a tank, the coils of the electromagnets of the respective sensor units are connected in series or in parallel, A multipoint object detection device for a vibration-type level sensor, which detects a change in impedance at the vibration frequency of the object and detects from the change the presence or absence of an object at each position by a single control circuit unit. . 前記各センサ部と前記制御回路部はループ状の一本の線で接続されていることを特徴とする請求項1に記載の振動式レベルセンサの多点物体検出装置。2. The multipoint object detection device for a vibration type level sensor according to claim 1, wherein each of the sensor units and the control circuit unit are connected by a single loop-shaped line. 3.
JP2002356005A 2002-10-31 2002-10-31 Multi-point object detecting device for vibratory level sensor Pending JP2004151074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356005A JP2004151074A (en) 2002-10-31 2002-10-31 Multi-point object detecting device for vibratory level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356005A JP2004151074A (en) 2002-10-31 2002-10-31 Multi-point object detecting device for vibratory level sensor

Publications (1)

Publication Number Publication Date
JP2004151074A true JP2004151074A (en) 2004-05-27

Family

ID=32463398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356005A Pending JP2004151074A (en) 2002-10-31 2002-10-31 Multi-point object detecting device for vibratory level sensor

Country Status (1)

Country Link
JP (1) JP2004151074A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508935A (en) * 2011-03-08 2014-04-10 イフア・チェン Electromagnetic pushing and knocking type object detector
JP2018010000A (en) * 2013-04-29 2018-01-18 マイクロ モーション インコーポレイテッド Boundary detection of sand separation device
EP3879241A4 (en) * 2018-11-09 2022-07-20 Hunan Xinliang Electronic Co., Ltd Action mechanism for object detection and object detection device
DE102011090015B4 (en) 2011-12-28 2023-12-28 Endress+Hauser SE+Co. KG Device for determining and/or monitoring at least one process variable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508935A (en) * 2011-03-08 2014-04-10 イフア・チェン Electromagnetic pushing and knocking type object detector
DE102011090015B4 (en) 2011-12-28 2023-12-28 Endress+Hauser SE+Co. KG Device for determining and/or monitoring at least one process variable
JP2018010000A (en) * 2013-04-29 2018-01-18 マイクロ モーション インコーポレイテッド Boundary detection of sand separation device
EP3879241A4 (en) * 2018-11-09 2022-07-20 Hunan Xinliang Electronic Co., Ltd Action mechanism for object detection and object detection device

Similar Documents

Publication Publication Date Title
KR100311298B1 (en) vibration type level detector
US7598820B2 (en) Magnetic drive for high and low temperature mechanical oscillators used in sensor applications
US7345372B2 (en) Electromechanical generator for, and method of, converting mechanical vibrational energy into electrical energy
US9461237B2 (en) Power generation switch
US6441571B1 (en) Vibrating linear actuator and method of operating same
KR100477491B1 (en) Coil impedance detection method and object detection method and apparatus using the same
KR100528776B1 (en) Temperature Measuring Method, Object Detecting Method and Object Detecting Device with Vibrating-Type Level Sensor
JP2000050608A (en) Control method for drive of linear vibrating motor
KR100507420B1 (en) Driving unit for transducer
JP2004151074A (en) Multi-point object detecting device for vibratory level sensor
JP4073335B2 (en) Vibration type level sensor
WO2001072435A1 (en) Vibration-generating device and portable telephone comprising the same
CN114341597A (en) Coriolis measuring sensor and coriolis measuring device
JP2017043214A (en) Alarm device for vehicle
JP2006234411A (en) Oscillation gyroscope sensor
CN109153039A (en) It controls the method for audible alarm unit and executes the audible alarm unit of the control method
JP3186357B2 (en) Ultrasonic generation temperature detector in gas
Tonoli et al. Contactless Time-Gated Technique for Electromagnetic Interrogation of Micromechanical Resonator Sensors
CN109932051A (en) A kind of mechanical high frequency vibration transducer
KR20020050338A (en) Resonant frequency check set
JPH05111098A (en) Plate-like transceiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Effective date: 20070507

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Effective date: 20070918

Free format text: JAPANESE INTERMEDIATE CODE: A02