JP2006214842A - Liquid physical property value measuring instrument and liquid physical property value measuring method - Google Patents

Liquid physical property value measuring instrument and liquid physical property value measuring method Download PDF

Info

Publication number
JP2006214842A
JP2006214842A JP2005027255A JP2005027255A JP2006214842A JP 2006214842 A JP2006214842 A JP 2006214842A JP 2005027255 A JP2005027255 A JP 2005027255A JP 2005027255 A JP2005027255 A JP 2005027255A JP 2006214842 A JP2006214842 A JP 2006214842A
Authority
JP
Japan
Prior art keywords
viscosity
sample
property value
concentration
relative relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005027255A
Other languages
Japanese (ja)
Inventor
Takeshi Ihara
健 井原
Yuji Fukami
雄二 深見
Masatake Egashira
昌剛 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2005027255A priority Critical patent/JP2006214842A/en
Publication of JP2006214842A publication Critical patent/JP2006214842A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the concentration and density of a liquid specimen in addition to its viscosity. <P>SOLUTION: This liquid physical property value measuring instrument 10 for measuring the physical property values of the liquid specimen which is a measuring object, includes a viscometer body 12 of a tuning fork vibration type; an arithmetic processing part 46 for calculating the viscosity of the specimen based on a numerical value obtained from the viscometer body 12; and a memory 48 stored with the viscosity calculated by the processing part 46. The viscometer main body 12 includes a specimen temperature sensor 26 for detecting the temperature of the specimen. The memory 48 is stored with a relational expression between "the concentration, the viscosity, and the specimen temperature" of the specimen. The processing part 46 converts the calculated viscosity into concentration and/or density based on the specimen temperature detected by the temperature sensor 26 and on the relational expression. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液体物性値測定装置及び液体物性値測定方法に関し、特に、試料の粘度に加え、濃度及び/又は密度を測定する液体物性値測定装置及び液体物性値測定方法に関する。
The present invention relates to a liquid property value measuring device and a liquid property value measuring method, and more particularly to a liquid property value measuring device and a liquid property value measuring method for measuring concentration and / or density in addition to the viscosity of a sample.

従来、液体試料の粘度と密度等、複数種類の物性値を1台の測定器で同時に測定しようとする場合、特許文献1、特許文献2または特許文献3に記載されるような装置及び方法が用いられていた。   Conventionally, when a plurality of types of physical property values such as viscosity and density of a liquid sample are to be measured simultaneously with one measuring device, an apparatus and a method as described in Patent Document 1, Patent Document 2 or Patent Document 3 are used. It was used.

特許文献1に示される液体物性値測定装置及び方法では、振動子に印加した振動電圧の共振周波数から被測定液体の密度ρを検出し、振動センサの電気出力から被測定液体の密度ρと粘度ηの積ξを検出し、この積ξと密度ρから粘度ηを求めていた。   In the liquid property value measuring apparatus and method disclosed in Patent Document 1, the density ρ of the liquid to be measured is detected from the resonance frequency of the vibration voltage applied to the vibrator, and the density ρ and the viscosity of the liquid to be measured are detected from the electrical output of the vibration sensor. The product ξ of η was detected, and the viscosity η was obtained from the product ξ and the density ρ.

また、特許文献2に示される液体物性値測定装置及び方法では、攪拌機のトルクT、回転数n、および、攪拌機の動力特性を用いて、演算を行い、缶内の内容物の粘度η、密度ρを測定していた。   In addition, in the liquid property value measuring apparatus and method disclosed in Patent Document 2, calculation is performed using the torque T of the stirrer, the rotation speed n, and the power characteristics of the stirrer, and the viscosity η and density of the contents in the can ρ was measured.

また、特許文献3に示される液体物性値測定装置及び方法では、被測定液体内に音叉型振動片22を浸漬し、振動片22を数kHz〜20kHzという高い共振周波数fで振動させ、共振周波数fと共振先鋭度Qと入出力位相差Pの特性から、被測定液体の粘度ηと密度ρを求めていた。   Further, in the liquid property value measuring apparatus and method disclosed in Patent Document 3, the tuning fork type vibrating piece 22 is immersed in the liquid to be measured, and the vibrating piece 22 is vibrated at a high resonance frequency f of several kHz to 20 kHz. From the characteristics of f, resonance sharpness Q, and input / output phase difference P, the viscosity η and density ρ of the liquid to be measured were obtained.

しかし、これらの液体物性値測定装置及び方法には、以下に説明する技術的な課題があった。   However, these liquid property value measuring devices and methods have technical problems described below.

特開平11−183353号公報JP-A-11-183353 特開平9−222387号公報JP-A-9-222387 特開平11−173968号公報Japanese Patent Laid-Open No. 11-173968

特許文献1や特許文献2に示された液体物性値測定装置及び方法では、複数種類の物性値を求めるにあたって試料の温度が一切考慮されていないが、粘度は、温度依存性が高く、一般的な液体では1℃の温度変化で5〜10%も変化するものである。   In the liquid property value measuring apparatus and method disclosed in Patent Document 1 and Patent Document 2, the temperature of the sample is not considered at all in obtaining a plurality of types of property values, but the viscosity is highly temperature-dependent and general. In such a liquid, 5 to 10% changes with a temperature change of 1 ° C.

従って、特許文献1や特許文献2記載の装置や方法で、試料の物性値を精密に管理したり評価しようとする場合には、例えば恒温槽設備を用いて、試料の温度が一定になるように調整する必要があり、コスト増の要因となっていた。しかも、精密な測定を行なえば行なおうとする程、試料の温度を調整するのに時間がかかるため、作業が大幅に遅れたり、試料の経時的物性変化を招くという問題点もあった。   Therefore, when using the apparatus or method described in Patent Document 1 or Patent Document 2 to precisely control or evaluate the physical property value of the sample, the temperature of the sample is made constant, for example, using a thermostatic bath facility. It was necessary to adjust to this, which was a factor of cost increase. In addition, the more precise measurement is performed, the longer it takes to adjust the temperature of the sample, and thus there is a problem that the work is greatly delayed or the physical properties of the sample are changed over time.

また、特許文献2記載の回転トルク検出方式、特許文献1及び特許文献3記載の共振周波数検出方式では、特に水などの低粘度領域での粘度、濃度、密度などの測定精度が悪いこと、高粘度領域での測定の再現性が乏しいこと、検出される物理量の検出範囲が狭く、1台の測定器(センサ)ではワイドレンジでの検出が出来ないなどの問題があった。   Further, in the rotational torque detection method described in Patent Document 2 and the resonance frequency detection method described in Patent Document 1 and Patent Document 3, the measurement accuracy of viscosity, concentration, density, etc. in a low viscosity region such as water is particularly poor. There are problems such as poor reproducibility of measurement in the viscosity region, narrow detection range of the physical quantity to be detected, and inability to detect in a wide range with one measuring device (sensor).

これは、上記方式で検出される各物理量の検出感度が低いという技術的問題に由来している。例えば、回転トルク検出方式ではトルクセンサ1個で検出されるトルク範囲が狭いため、多くの回転子を用意し、レンジを細分化して対応している。この技術の本質的な問題点は、トルク検出にバネ材を利用した発条(ゼンマイ)の変位量として検出していることにある。この回転トルク検出方式は、質量計では「バネばかり」に相当し、最も測定精度の低い方式である。   This is due to the technical problem that the detection sensitivity of each physical quantity detected by the above method is low. For example, in the rotational torque detection method, since the torque range detected by one torque sensor is narrow, many rotors are prepared and the range is subdivided. The essential problem of this technique is that it is detected as a displacement amount of a spring using a spring material for torque detection. This rotational torque detection method corresponds to a “spring only” in a mass meter and is the method with the lowest measurement accuracy.

また、共振周波数方式では、振動子に数kHz以上の高周波振動を数十ミクロン程度の微小変位として加えるため、被測定液体と振動子の界面でのすべり・摩擦・摩擦による発熱や機械的ストレスによる試料の物性変化などが発生し、検出精度が向上しないという問題があった。   Also, in the resonant frequency method, high frequency vibration of several kHz or more is applied to the vibrator as a small displacement of about several tens of microns. Therefore, heat generated by slip, friction, friction at the interface between the liquid to be measured and the vibrator, or mechanical stress. There was a problem that the physical properties of the sample changed and the detection accuracy was not improved.

本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、試料の温度を所定値に調整する必要なく、粘度と試料温度を測定するだけで、迅速かつ高精度に、密度や濃度をも求めることが出来る液体物性値測定装置及び液体物性値測定方法を提供することにある。
The present invention has been made in view of such conventional problems, and the object of the present invention is to measure the viscosity and the sample temperature without having to adjust the sample temperature to a predetermined value. An object of the present invention is to provide a liquid property value measuring apparatus and a liquid property value measuring method capable of obtaining a density and a concentration quickly and with high accuracy.

上記目的を達成するため、本発明にかかる液体物性値測定装置は、測定対象物である液体試料の物性値を測定する液体物性値測定装置であって、マグネットと継鉄により構成される磁気回路と電磁コイルの組み合わせにより発生する電磁力により、対になった2以上の振動子を駆動し、駆動された振動子の変動量を変位センサにより測定検出する方式の音叉振動式粘度計本体と、前記粘度計本体から得られた数値に基づいて前記試料の粘度を算出する演算処理部と、前記演算処理部で算出された粘度が記憶されるメモリとを備え、前記粘度計本体は、前記試料の温度を検出する試料温度センサを備え、前記メモリには、前記試料の「濃度と粘度と試料温度」及び/又は「密度と粘度と試料温度」の相対関係が予め記憶されるものであり、前記演算処理部は、前記試料について算出された粘度を、前記試料温度センサで検出された試料温度と、前記相対関係に基づいて、濃度及び/又は密度に換算するようにした。   In order to achieve the above object, a liquid property value measuring apparatus according to the present invention is a liquid property value measuring apparatus for measuring a property value of a liquid sample which is a measurement object, and is a magnetic circuit composed of a magnet and a yoke. A tuning fork vibration viscometer body that drives two or more pairs of vibrators by electromagnetic force generated by a combination of the electromagnetic coil and a displacement sensor to measure and detect the fluctuation amount of the driven vibrators, An arithmetic processing unit that calculates the viscosity of the sample based on a numerical value obtained from the viscometer main body, and a memory that stores the viscosity calculated by the arithmetic processing unit, the viscometer main body includes the sample The memory includes a sample temperature sensor for detecting the temperature of the sample, and the memory stores in advance a relative relationship between the “concentration, viscosity, and sample temperature” and / or “density, viscosity, and sample temperature” of the sample, Above Calculation processing unit, the viscosity calculated for the sample, and the sample temperature detected by the sample temperature sensor, on the basis of the relative relationship, and so converted into concentration and / or density.

また、本発明にかかる液体物性値測定方法は、測定対象物である液体試料の物性値を測定する液体物性値測定方法であって、前記試料の「濃度と粘度と試料温度」及び/又は「密度と粘度と試料温度」の相対関係を、予めメモリに記憶する第1の過程と、マグネットと継鉄により構成される磁気回路と電磁コイルの組み合わせにより発生する電磁力により、対になった2以上の振動子を駆動し、駆動された振動子の変動量を変位センサにより測定検出する方式の音叉振動式粘度計で算出された前記試料の粘度を、試料温度センサで検出された試料温度と、前記相対関係に基づいて、濃度及び/又は密度に換算する第2の過程とを有するようにした。   Further, the liquid property value measuring method according to the present invention is a liquid property value measuring method for measuring a physical property value of a liquid sample which is a measurement object, wherein the “concentration, viscosity and sample temperature” and / or “ The relative relationship of “density, viscosity, and sample temperature” is paired by the first process of storing in the memory in advance and the electromagnetic force generated by the combination of the magnetic circuit composed of the magnet and the yoke and the electromagnetic coil. The above-mentioned viscosity of the sample calculated by a tuning-fork vibration viscometer of a type that drives the vibrator and measures and detects the fluctuation amount of the driven vibrator by a displacement sensor is the sample temperature detected by the sample temperature sensor. And a second step of converting to a concentration and / or density based on the relative relationship.

このように構成した液体物性値測定装置及び方法によれば、予めメモリに記憶された「濃度と粘度と試料温度」の相対関係及び/又は「密度と粘度と試料温度」の相対関係に基づいて、測定対象物について算出された粘度と、検出された試料温度から、濃度及び/又は密度が換算されるので、電磁力を利用した音叉振動式の液体物性値測定装置1台によって、粘度だけでなく、濃度や密度等の複数の物性値を、高精度かつ幅広いダイナミックレンジで求めることが出来る。   According to the liquid property value measuring apparatus and method configured in this way, based on the relative relationship of “concentration, viscosity, and sample temperature” and / or the relative relationship of “density, viscosity, and sample temperature” stored in advance in memory. Since the concentration and / or density is converted from the viscosity calculated for the measurement object and the detected sample temperature, only one viscosity can be obtained by a tuning fork vibration type liquid physical property measuring apparatus using electromagnetic force. In addition, a plurality of physical property values such as density and density can be obtained with high accuracy and a wide dynamic range.

更に、「濃度と粘度」又は「密度と粘度」の相対関係に加えて、試料温度が変数として加わっているため、特に温度依存性の高い試料にあっては、恒温槽等により試料温度を一定に保って測定する必要がなく、任意の試料温度で複数種類の物性値を測定することが出来るので、迅速な測定に寄与する。   Furthermore, in addition to the relative relationship between “concentration and viscosity” or “density and viscosity”, the sample temperature is added as a variable, so in particular for samples with high temperature dependence, the sample temperature is kept constant using a thermostatic chamber or the like. Therefore, it is possible to measure a plurality of physical property values at an arbitrary sample temperature, which contributes to rapid measurement.

更に、現在、機械オイル・グリス、液晶用レジスト、印刷用インク、その他産業用液体に求められる各種物理量の測定精度向上、測定時間短縮化、管理評価時間短縮化は、工場ラインでの生産性に直結し、同時に商品の品質改善につながるため、各企業にとっては重要課題となっていて、本発明により、上記産業用液体市場に液体試料の管理評価レベルの向上を提案することが可能となる。   In addition, improvements in measurement accuracy, measurement time, and management evaluation time for various physical quantities required for machine oils and greases, liquid crystal resists, printing inks, and other industrial liquids are now increasing productivity in the factory line. Directly connected and at the same time leads to improvement of product quality, which is an important issue for each company, and the present invention makes it possible to propose an improvement in the level of liquid sample management and evaluation to the industrial liquid market.

また、前記演算処理部は、前記相対関係が未知である場合、濃度及び/又は密度が異なる複数の前記試料について、試料温度を変化させて粘度を算出し、前記試料温度をパラメータとした濃度と粘度及び/又は密度と粘度の相対関係から近似式を算出して前記メモリに記憶するものであってもよい。   In addition, when the relative relationship is unknown, the arithmetic processing unit calculates the viscosity by changing the sample temperature for the plurality of samples having different concentrations and / or densities, and uses the sample temperature as a parameter. An approximate expression may be calculated from the relative relationship between viscosity and / or density and viscosity and stored in the memory.

また、前記相対関係が未知である場合、前記第1の過程で、濃度及び/又は密度が異なる複数の前記試料について、試料温度を変化させて粘度を算出し、前記試料温度をパラメータとした濃度と粘度及び/又は密度と粘度の相対関係から近似式を算出して前記メモリに記憶するものであってもよい。   Further, when the relative relationship is unknown, in the first process, for a plurality of the samples having different concentrations and / or densities, the viscosity is calculated by changing the sample temperature, and the concentration using the sample temperature as a parameter is calculated. The approximate expression may be calculated from the relative relationship between the viscosity and / or the viscosity and / or the density and the viscosity, and stored in the memory.

この構成によれば、「濃度と粘度と試料温度」又は「密度と粘度と試料温度」の相対関係が未知の試料についても、異なる濃度の試料で、試料温度を変化させて、粘度を測定することで、これらの関係式が得られ、濃度や密度を求めることが出来るようになる。   According to this configuration, even with a sample whose relative relationship between “concentration, viscosity, and sample temperature” or “density, viscosity, and sample temperature” is unknown, the viscosity is measured by changing the sample temperature with a sample having a different concentration. Thus, these relational expressions can be obtained, and the concentration and density can be obtained.

また、前記演算処理部は、前記算出された粘度と、前記換算された濃度及び/又は密度とを、前記メモリに記憶された相対関係に基づいて、所定の温度における値に換算するものであってもよい。   Further, the arithmetic processing unit converts the calculated viscosity and the converted concentration and / or density into a value at a predetermined temperature based on a relative relationship stored in the memory. May be.

また、前記液体物性値測定方法は、前記算出された粘度と、前記換算された濃度及び/又は密度とを、前記相対関係に基づいて、所定の温度における値に換算する第3の過程を有するものであってもよい。   The liquid property value measuring method includes a third step of converting the calculated viscosity and the converted concentration and / or density into a value at a predetermined temperature based on the relative relationship. It may be a thing.

この構成によれば、例えば、試料管理や試料評価を行なう際に、試料温度を一定に管理する設備や手間が不要となり、設備投資の削減、管理・評価の容易化が図られる。   According to this configuration, for example, when performing sample management and sample evaluation, facilities and labor for managing the sample temperature at a constant level are not required, so that capital investment can be reduced and management and evaluation can be facilitated.

また、前記相対関係は、構成材料の異なる試料毎に前記メモリに記憶され、前記演算処理部は、入力部からの試料種類の選択入力に応じて、測定対象物に対応する前記相対関係を前記メモリから呼出すものであってもよい。   In addition, the relative relationship is stored in the memory for each sample having a different constituent material, and the arithmetic processing unit determines the relative relationship corresponding to the measurement object according to the selection input of the sample type from the input unit. It may be called from memory.

また、前記相対関係は、構成材料の異なる試料毎に前記メモリに記憶されるものであり、前記第2の過程では、試料種類の選択入力に応じて、測定対象物に対応する前記相対関係が前記メモリから呼出されてもよい。   The relative relationship is stored in the memory for each sample having a different constituent material. In the second process, the relative relationship corresponding to the measurement object is determined according to the selection input of the sample type. It may be called from the memory.

この構成によれば、演算処理部は、いつでもメモリから測定対象物に対応する関係式を呼出して、任意の試料の粘度、濃度を求めることが出来、測定の迅速化に寄与する。
According to this configuration, the arithmetic processing unit can always call the relational expression corresponding to the measurement object from the memory to obtain the viscosity and concentration of an arbitrary sample, which contributes to speeding up the measurement.

本発明にかかる液体物性値測定装置及び液体物性値測定方法によれば、予めメモリに記憶された「濃度と粘度と試料温度」の相対関係及び/又は「密度と粘度と試料温度」の相対関係に基づいて、測定対象物について算出された粘度と、検出された試料温度から、濃度及び/又は密度が換算されるので、1台の装置によって、粘度だけでなく、濃度や密度等の複数の物性値を求めることが出来る。   According to the liquid property value measuring apparatus and the liquid property value measuring method according to the present invention, the relative relationship between the “concentration, the viscosity, and the sample temperature” and / or the “density, the viscosity, and the sample temperature” stored in the memory in advance. Based on the above, the concentration and / or density is converted from the viscosity calculated for the measurement object and the detected sample temperature. Therefore, not only the viscosity but also a plurality of concentrations and densities can be obtained by one apparatus. The physical property value can be obtained.

更に、「濃度と粘度」又は「密度と粘度」の相対関係に加えて、試料温度が変数として加わっているため、特に温度依存性の高い試料にあっては、恒温槽等により試料温度を一定に保って測定する必要がなく、任意の試料温度で複数種類の物性値を測定することが出来るので、迅速な測定に寄与する。
Furthermore, in addition to the relative relationship between “concentration and viscosity” or “density and viscosity”, the sample temperature is added as a variable, so in particular for samples with high temperature dependence, the sample temperature is kept constant using a thermostatic chamber or the like. Therefore, it is possible to measure a plurality of physical property values at an arbitrary sample temperature, which contributes to rapid measurement.

以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。本実施例の液体物性値測定装置10は、測定対象物である液体試料Xの粘度を測定する音叉振動式粘度計であり、図1は、粘度を算出するために必要な数値を検出するための粘度計本体12のうち、駆動機構部の構造図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. The liquid property value measuring apparatus 10 of the present embodiment is a tuning fork vibration type viscometer that measures the viscosity of a liquid sample X that is an object to be measured, and FIG. 1 is used to detect a numerical value necessary for calculating the viscosity. FIG. 3 is a structural diagram of a drive mechanism portion of the viscometer body 12 of FIG.

この粘度計本体12は、以下詳述するように、マグネットと継鉄により構成される磁気回路と電磁コイルの組み合わせにより発生する電磁力により、対になった2以上の振動子を駆動し、駆動された振動子の変動量を変位センサにより測定検出する方式を採用している。   As will be described in detail below, the viscometer body 12 drives two or more vibrators that are paired by an electromagnetic force generated by a combination of a magnetic circuit composed of a magnet and a yoke and an electromagnetic coil. A method of measuring and detecting the fluctuation amount of the vibrator by a displacement sensor is adopted.

この粘度計本体12の駆動機構部は、断面が概略逆凸型のフレーム14を有している。フレーム14の上端側側面には、同一形状の板バネ16がそれぞれ固設されている。   The drive mechanism portion of the viscometer body 12 has a frame 14 whose cross section is roughly inverted. Plate springs 16 having the same shape are respectively fixed to the upper side surface of the frame 14.

各板バネ16の下端側には、試料X中に浸漬される同一形状の一対の音叉型振動子18がそれぞれ固設されている。各振動子18は、セラミック部材や金属部材等の薄肉平板状の板材から形成され、先端に円形状の拡大部が設けられ、一対の振動子18は、厚み方向の中心軸が試料X中で同一平面上に位置するように配置される。尚、振動子18は、対になって2以上あればよい。また、振動子18は、測定中の試料Xの温度変化を出来るだけ少なくするため、熱容量の少ない形状、材質が望ましい。   On the lower end side of each leaf spring 16, a pair of tuning fork vibrators 18 having the same shape and immersed in the sample X are fixed. Each vibrator 18 is formed of a thin flat plate material such as a ceramic member or a metal member, and has a circular enlarged portion at the tip. The pair of vibrators 18 has a center axis in the thickness direction in the sample X. It arrange | positions so that it may be located on the same plane. It should be noted that two or more vibrators 18 may be paired. Further, the vibrator 18 preferably has a shape and material having a small heat capacity in order to minimize the temperature change of the sample X during measurement.

各振動子18の上端側には、フレーム14側に突出するマグネット20(マグネットと継鉄により構成された磁気回路)が固設されている。このマグネット20は、フレーム14の側面に支持された電磁コイル22の内側に一端側が挿入されており、このマグネット20と電磁コイル22との組み合わせにより電磁力を発生させ、振動子18を電磁振動させる電磁駆動部23を構成している。一対の振動子18には、各電磁駆動部23により相互に逆位相の電磁振動が供給される。   A magnet 20 (a magnetic circuit composed of a magnet and a yoke) protruding to the frame 14 side is fixed to the upper end side of each vibrator 18. One end of the magnet 20 is inserted inside the electromagnetic coil 22 supported on the side surface of the frame 14, and an electromagnetic force is generated by the combination of the magnet 20 and the electromagnetic coil 22 to cause the vibrator 18 to electromagnetically vibrate. The electromagnetic drive part 23 is comprised. The pair of vibrators 18 are supplied with electromagnetic vibrations having opposite phases from each other by the electromagnetic driving units 23.

フレーム14には、一方の電磁コイル22の上方側に、変位センサ24が設けられており、この変位センサ24は、板バネ16の近くに配置され、電磁振動による板バネ16の振幅値、すなわち、振動子18の変動量を検出する。   The frame 14 is provided with a displacement sensor 24 on the upper side of one electromagnetic coil 22. The displacement sensor 24 is disposed near the leaf spring 16, and the amplitude value of the leaf spring 16 due to electromagnetic vibration, that is, The fluctuation amount of the vibrator 18 is detected.

又、フレーム14の中心には、試料X中に浸漬されて、その温度を検出する試料温度センサ26が設けられている。   In addition, a sample temperature sensor 26 is provided at the center of the frame 14 so as to be immersed in the sample X and detect its temperature.

図2は、本実施例にかかる液体物性値測定装置10(音叉振動式粘度計)の制御駆動系のブロック図であるが、当該構成は、従来の音叉振動式粘度計の構成と実質的に変わらないものである。尚、図2に記載の機能ブロックが、電子部品により主としてハードウェア的に実現されるか、CPUのプログラムにより主としてソフトウェア的に実現されるかは問わない。また、AD変換器その他の機能ブロックは、マイコン等の演算処理部46に含まれていてもよい。   FIG. 2 is a block diagram of a control drive system of the liquid property value measuring apparatus 10 (tuning fork vibration type viscometer) according to the present embodiment. This configuration is substantially the same as that of a conventional tuning fork vibration type viscometer. It does not change. Note that it does not matter whether the functional blocks shown in FIG. 2 are realized mainly by hardware using electronic components or mainly by software using a CPU program. The AD converter and other functional blocks may be included in the arithmetic processing unit 46 such as a microcomputer.

まず、本実施例の液体物性値測定装置10は、粘度計本体12の変位センサ24の出力信号が入力されるアンプ30、整流器32、整流器32からの出力と基準振幅値が入力される比較器34とを備えている。   First, the liquid property value measuring apparatus 10 of this embodiment includes an amplifier 30 to which an output signal of the displacement sensor 24 of the viscometer body 12 is input, a rectifier 32, a comparator to which an output from the rectifier 32 and a reference amplitude value are input. 34.

また、比較器34の出力信号を受けて、その値に応じて制御信号を自動減衰器38に出力する制御器36を有している。自動減衰器38には、常時一定の駆動信号、例えば、30Hzの共振駆動信号が入力され、自動減衰器38では、この駆動信号を制御器36から送出される制御信号で制御して、アンプ30を介して、電磁駆動部23の各電磁コイル22に供給している。   Further, it has a controller 36 that receives the output signal of the comparator 34 and outputs a control signal to the automatic attenuator 38 according to the value. A constant drive signal, for example, a resonance drive signal of 30 Hz, is always input to the automatic attenuator 38. The automatic attenuator 38 controls the drive signal with a control signal sent from the controller 36, and the amplifier 30 Is supplied to each electromagnetic coil 22 of the electromagnetic drive unit 23.

この際の駆動電流は、電流検出器40で検出され、I/V変換器42及びA/D変換器44を介して、演算処理部46(マイコン)に入力される。また、試料温度センサ26の入力信号は、A/D変換器44を介して演算処理部46に入力されている。   The drive current at this time is detected by the current detector 40 and input to the arithmetic processing unit 46 (microcomputer) via the I / V converter 42 and the A / D converter 44. An input signal of the sample temperature sensor 26 is input to the arithmetic processing unit 46 via the A / D converter 44.

演算処理部46には、メモリ48、表示部50、キースイッチ部52が接続されている。以上の構成を備えた液体物性値測定装置10では、振動子18を所定の振幅値で共振振動させた際の、電磁駆動部23の電磁コイル22への駆動電流が電流検出器40で測定される。そして、得られた駆動電流の値と所定の検量線とに基づいて、演算処理部46で、測定対象物である液体試料Xの粘度を算出することが出来る。   A memory 48, a display unit 50, and a key switch unit 52 are connected to the arithmetic processing unit 46. In the liquid property value measuring apparatus 10 having the above configuration, the current detector 40 measures the drive current to the electromagnetic coil 22 of the electromagnetic drive unit 23 when the vibrator 18 is caused to resonate with a predetermined amplitude value. The Then, based on the obtained value of the drive current and a predetermined calibration curve, the arithmetic processing unit 46 can calculate the viscosity of the liquid sample X that is the measurement object.

以上説明したような方式の音叉振動式の粘度計本体12では、電磁力を利用し、数10Hz(本実施例では約30Hz)と低い周波数で、約0.4mm程度の移動量(変動量、振幅値)を振動子18に加えることで、試料Xに大きなエネルギーを加えることなく、また、試料Xと振動子18の界面で発生するすべりを極力抑えるので、試料Xの組成を破壊することなく安定した物理量検出が可能となる。   The tuning fork vibration type viscometer body 12 of the type described above uses electromagnetic force and has a moving amount (variation amount, about 0.4 mm) at a frequency as low as several tens Hz (about 30 Hz in this embodiment). (Amplitude value) is applied to the vibrator 18 so that a large amount of energy is not applied to the sample X, and the slip generated at the interface between the sample X and the vibrator 18 is suppressed as much as possible, so that the composition of the sample X is not destroyed. Stable physical quantity detection is possible.

また、比較器34、制御器36などの構成により、電磁力により振動子18の振幅値(変位量)を一定に保ちながら、試料の持つ物理量に合わせて振動子18の駆動力を制御しているので、質量計では現在最も高精度となる分析用天秤同様、高精度で幅広いダイナミックレンジの測定が可能となる。   In addition, the configuration of the comparator 34, the controller 36, and the like control the driving force of the vibrator 18 according to the physical quantity of the sample while keeping the amplitude value (displacement amount) of the vibrator 18 constant by electromagnetic force. Therefore, the mass meter can measure with high accuracy and a wide dynamic range like the analytical balance with the highest accuracy at present.

また、本実施例の粘度計本体12の振動子18は、薄肉金属製であるため熱容量が小さく試料Xに対する熱的干渉が少なく、同時に、低周波数での振動子18の変動量は試料Xの量がわずかな量(10ml程度)でも検出可能であるため、試料温度が一定となるために必要となる時間が短くて済み、その結果、高精度かつ短時間に粘度を測定することが可能となる。   In addition, since the vibrator 18 of the viscometer body 12 of the present embodiment is made of a thin metal, the heat capacity is small and there is little thermal interference with the sample X. At the same time, the fluctuation amount of the vibrator 18 at low frequency is the same as that of the sample X. Since even a small amount (about 10 ml) can be detected, the time required for the sample temperature to be constant can be shortened, and as a result, the viscosity can be measured with high accuracy and in a short time. Become.

ここで、本実施例の液体物性値測定装置10は、上述の構成により試料Xの粘度を算出する他、以下に説明する点に顕著な特徴がある。   Here, the liquid property value measuring apparatus 10 of the present embodiment has notable features in the following points in addition to calculating the viscosity of the sample X by the above-described configuration.

すなわち、本実施例の液体物性値測定装置10では、予めメモリ48に「濃度と粘度と試料温度」及び/又は「密度と粘度と試料温度」の相対関係が既知である試料Xについて、当該「濃度と粘度と試料温度」及び/又は「密度と粘度と試料温度」の相対関係が、構成材料の異なる試料(例えば、食塩水、酢、酒等)毎に記憶されている。   That is, in the liquid property value measuring apparatus 10 of the present embodiment, the “concentration, viscosity, and sample temperature” and / or the “density, viscosity, and sample temperature” in the memory 48 are previously stored in the “ The relative relationship between “concentration, viscosity, and sample temperature” and / or “density, viscosity, and sample temperature” is stored for each sample (for example, saline, vinegar, sake, etc.) of different constituent materials.

そして、演算処理部46は、粘度が未知の測定対象物である試料Xについて、粘度を算出し、算出された粘度を、試料温度センサ26で検出された温度と、予めメモリ48に記憶された関係式とに基づいて、濃度及び/又は密度へ換算することが出来る。   The arithmetic processing unit 46 calculates the viscosity of the sample X, which is a measurement object whose viscosity is unknown, and the calculated viscosity is stored in the memory 48 in advance with the temperature detected by the sample temperature sensor 26. Based on the relational expression, the concentration and / or density can be converted.

尚、本実施例の液体物性値測定装置10は、試料温度センサ26を備えており、物性値の温度依存性が高いような試料でも正確にこれらの物性値を算出することが出来るよう、「濃度と粘度と試料温度」及び/又は「密度と粘度と試料温度」の相対関係をメモリ48に記憶しているが、物性値の温度依存性が比較的低い試料や、測定精度が要求されない試料については、試料温度センサ26は必須の構成要素ではなく、「濃度と粘度」及び/又は「密度と粘度」の相対関係をメモリ48に記憶するだけで、算出された粘度と、当該相対関係とに基づいて、粘度から濃度及び/又は密度への換算処理が行なわれるようにしてもよい。   In addition, the liquid property value measuring apparatus 10 of the present embodiment includes a sample temperature sensor 26, so that these property values can be accurately calculated even for a sample having a high temperature dependency of the property values. Although the memory 48 stores the relative relationship between “concentration, viscosity, and sample temperature” and / or “density, viscosity, and sample temperature”, a sample whose physical property value is relatively low in temperature, or a sample that does not require measurement accuracy , The sample temperature sensor 26 is not an essential component, and only by storing the relative relationship of “concentration and viscosity” and / or “density and viscosity” in the memory 48, the calculated viscosity and the relative relationship Based on the above, conversion processing from viscosity to concentration and / or density may be performed.

次に、メモリ48への関係式の記憶処理と、演算処理部46が行なう換算処理の具体的な内容について、図4,図5のフローチャートを参照しながら説明する。尚、以下においては、粘度及び濃度が未知の試料Xの粘度と濃度を算出する場合を説明するが、濃度に代えて密度もしくは濃度と密度の両方を算出するものであってもよい。   Next, specific contents of the storage process of the relational expression in the memory 48 and the conversion process performed by the arithmetic processing unit 46 will be described with reference to the flowcharts of FIGS. In the following, the case of calculating the viscosity and the concentration of the sample X whose viscosity and concentration are unknown will be described. However, instead of the concentration, the density or both the concentration and the density may be calculated.

まず、試料X(例えば、食塩水とする)について、「濃度と粘度と試料温度」の相対関係が既知である場合には(S110)、「濃度と粘度と試料温度」の関係式(例えば、c=Aη+BT:c=濃度、η=粘度、T=試料温度)を、キースイッチ部52やキーボード等の入力手段(図示せず)から入力する等してメモリ48に記憶させる(S120)。尚、密度を求めたい場合には、「密度と粘度と試料温度」の関係式をメモリ48に記憶させればよい。   First, for a sample X (for example, a saline solution), when the relative relationship between “concentration, viscosity, and sample temperature” is known (S110), a relational expression of “concentration, viscosity, and sample temperature” (for example, c = Aη + BT: c = concentration, η = viscosity, T = sample temperature) is stored in the memory 48 by inputting from an input means (not shown) such as a key switch 52 or a keyboard (S120). When the density is to be obtained, the relational expression of “density, viscosity, and sample temperature” may be stored in the memory 48.

試料Xの「濃度と粘度と試料温度」の相対関係が未知である場合には(S110)、濃度の異なる複数の試料X〜Xを作製し(S130)、それぞれの試料X〜Xにつき、温度コントローラ等の温度制御装置により試料温度を変化させながら、演算処理部46で、各試料温度における粘度を算出する(S140)。そして、演算処理部46は、粘度を算出した結果に基づいて、各濃度における粘度と試料温度の相対関係を式に表し、メモリ48に記憶する(S150)。尚、試料温度は、試料温度センサ26で検出された値を用い、粘度は、上述した液体物性値測定装置10の構成により演算処理部46で算出される。 When the relative relationship between the “concentration, viscosity, and sample temperature” of the sample X is unknown (S110), a plurality of samples X 1 to X n having different concentrations are prepared (S130), and each of the samples X 1 to X is prepared. For n , the viscosity at each sample temperature is calculated by the arithmetic processing unit 46 while changing the sample temperature by a temperature controller such as a temperature controller (S140). Then, the arithmetic processing unit 46 represents the relative relationship between the viscosity at each concentration and the sample temperature based on the result of calculating the viscosity, and stores it in the memory 48 (S150). The sample temperature is a value detected by the sample temperature sensor 26, and the viscosity is calculated by the arithmetic processing unit 46 according to the configuration of the liquid property value measuring apparatus 10 described above.

本実施例では、濃度0%、10%、20%の食塩水(試料X〜X)を作製し、温度コントローラで加熱(25℃で開始、40℃まで加熱)しながら、5℃毎に粘度を算出する。測定結果(濃度毎の粘度と試料温度の相対関係)は、図6のグラフの通りとなる。この測定結果に基づいて、試料X〜Xの粘度ηと試料温度Tの相対関係を1次近似すると、試料Xの濃度cと粘度ηと試料温度Tの相対関係(温度Tを変数とした濃度cと粘度ηの相対関係)は、(1−1)〜(1−3)式の3つの式で表され、これらの式がキースイッチ部52等の入力手段から入力され、メモリ48に記憶される。 In this example, saline solutions (samples X 1 to X 3 ) having concentrations of 0%, 10%, and 20% were prepared and heated at a temperature controller (starting at 25 ° C., heating to 40 ° C.) every 5 ° C. Viscosity is calculated. The measurement result (relative relationship between the viscosity for each concentration and the sample temperature) is as shown in the graph of FIG. Based on this measurement result, when the relative relationship between the viscosity η of the samples X 1 to X 3 and the sample temperature T is first-order approximated, the relative relationship between the concentration c, the viscosity η of the sample X and the sample temperature T (temperature T is a variable) The relative relationship between the concentration c and the viscosity η) is expressed by three formulas (1-1) to (1-3). These formulas are input from input means such as the key switch unit 52, and the memory 48. Is remembered.

η(c=20%)=−0.025T+2.2[mPa/s]・・・(1−1)
η(c=10%)=−0.018T+1.585[mPa/s]・・・(1−2)
η(c=0%)=−0.015T+1.257[mPa/s]・・・(1−3)
η 1 (c = 20%) = − 0.025T + 2.2 [mPa / s] (1-1)
η 2 (c = 10%) = − 0.018T + 1.585 [mPa / s] (1-2)
η 3 (c = 0%) = − 0.015T + 1.257 [mPa / s] (1-3)

尚、例えば、粘度と試料温度の測定結果(濃度毎の粘度と試料温度の数値)や、図6のグラフそのものがメモリ48に記憶され、これらの測定結果(数値)やグラフに基づいて、演算処理部46が、自動的に試料Xの濃度cと粘度ηと試料温度Tの関係式(1−1)〜(1−3)を演算して、メモリ48に記憶するものであってもよい。   For example, the measurement results of viscosity and sample temperature (numerical values of viscosity and sample temperature for each concentration) and the graph itself of FIG. 6 are stored in the memory 48, and calculation is performed based on these measurement results (numerical values) and graphs. The processing unit 46 may automatically calculate the relational expressions (1-1) to (1-3) of the concentration c, the viscosity η, and the sample temperature T of the sample X and store them in the memory 48. .

また、例えば、粘度に温度依存性がほとんどないことが予め分かっている場合には、濃度の異なる複数の試料X〜Xを作製した後、試料温度を一定(例えば、25℃)にして、それぞれの濃度の試料X〜Xについて粘度を算出し、粘度と濃度の相対関係を算出して、メモリ48に記憶しておけばよい。温度依存性がない試料の濃度と粘度の相対関係を表すグラフの一例を図7に示す。 For example, when it is known in advance that the viscosity has almost no temperature dependence, after preparing a plurality of samples X 1 to X n having different concentrations, the sample temperature is kept constant (for example, 25 ° C.). The viscosities may be calculated for the samples X 1 to X n having the respective concentrations, and the relative relationship between the viscosities and the concentrations may be calculated and stored in the memory 48. FIG. 7 shows an example of a graph representing the relative relationship between the concentration and the viscosity of the sample having no temperature dependence.

図7の測定結果より、2次近似を行なうと、濃度と粘度の関係式は、c=−31.71η+106.59η−69.24[%]・・・(2−1)で表され、この関係式がキースイッチ部52等の入力手段により入力され、メモリ48に記憶される。 From the measurement result of FIG. 7, when a second order approximation is performed, the relational expression between the concentration and the viscosity is expressed by c = −31.71η 2 + 106.59η−69.24 [%] (2-1). The relational expression is input by input means such as the key switch unit 52 and stored in the memory 48.

尚、上述したS110〜150の手続きは、試料Xのみならず、その他の試料Y(例えば、酒)、Z(例えば、砂糖水)についても同様に行なわれていてもよい。また、試料Y,ZについてのS110〜150の手続きは、後述するフローにおいて物性値が未知の測定対象物である試料Y、Zの濃度を算出する直前に行なわれるものであってもよい。   In addition, the procedure of S110-150 mentioned above may be similarly performed not only about the sample X but other samples Y (for example, liquor) and Z (for example, sugar water). Moreover, the procedure of S110-150 about sample Y, Z may be performed just before calculating the density | concentration of sample Y, Z which is a measuring object whose physical property value is unknown in the flow mentioned later.

また、試料X,Y,Zの全てについて予め関係式をメモリ48に記憶しておく場合には、各測定対象物の濃度を算出する際に、試料の種類がXかYかZかを、キースイッチ部52等の入力手段から選択入力する必要がある。複数種類の試料について関係式をメモリ48に記憶しておけば、演算処理部46は、いつでもメモリ48から測定対象物に対応する関係式を呼出して、任意の試料の粘度、濃度を求めることが出来、測定の迅速化に寄与する。   Further, when relational expressions are stored in advance in the memory 48 for all of the samples X, Y, and Z, when calculating the concentration of each measurement object, whether the type of the sample is X, Y, or Z, It is necessary to select and input from input means such as the key switch unit 52. If the relational expressions are stored in the memory 48 for a plurality of types of samples, the arithmetic processing unit 46 can always call the relational expressions corresponding to the measurement object from the memory 48 to obtain the viscosity and concentration of an arbitrary sample. Can contribute to speeding up the measurement.

次に、液体物性値測定装置10は、粘度及び濃度が未知の測定対象物である試料X(食塩水)の粘度ηを算出し、試料温度センサ26から試料温度Tを検出して、これらをメモリ48に記憶する(S210)。尚、粘度ηは、先のフロー同様にして演算処理部46で算出されるものであり、温度Tは、試料温度センサ26から検出される値である。本実施例では、η=1.27[mPa・s]、T=27.5[℃]である。 Next, the liquid property value measuring apparatus 10 calculates the viscosity η 0 of the sample X (saline solution) that is the measurement object whose viscosity and concentration are unknown, detects the sample temperature T 0 from the sample temperature sensor 26, and These are stored in the memory 48 (S210). The viscosity η 0 is calculated by the arithmetic processing unit 46 as in the previous flow, and the temperature T 0 is a value detected from the sample temperature sensor 26. In this embodiment, η 0 = 1.27 [mPa · s] and T 0 = 27.5 [° C.].

ここで、先にメモリ48に記憶された試料Xの「濃度と粘度と試料温度」の関係式が、1つである場合には(S220)、演算処理部46は、当該関係式をメモリ48から呼出して、関係式の変数η(粘度)と変数T(試料温度)に、先に求められたηとTをそれぞれ代入し、濃度cを算出する(S230)。例えば、粘度に温度依存性のない試料の場合は、濃度cと粘度ηの関係式が1つ、メモリ48に記憶されているので、例えば先の(2−1)式の変数ηにηを代入すれば、試料Xの濃度cが算出される。 Here, when there is one relational expression of “concentration, viscosity, and specimen temperature” of the sample X previously stored in the memory 48 (S220), the arithmetic processing unit 46 stores the relational expression in the memory 48. And η 0 and T 0 obtained previously are respectively substituted into the variable η (viscosity) and the variable T (sample temperature) in the relational expression to calculate the concentration c (S230). For example, in the case of a sample whose viscosity does not depend on temperature, since one relational expression between the concentration c and the viscosity η is stored in the memory 48, for example, the variable η in the above equation (2-1) is represented by η 0 Is substituted, the concentration c of the sample X is calculated.

また、先の(1−1)〜(1−3)式のように、「濃度と粘度と試料温度」の関係式が複数である場合には(S220)、演算処理部46は、当該関係式をメモリ48から呼出して、それぞれの式の変数TにTを代入し、各濃度cにおける粘度η〜ηを算出する(S240)。 Further, when there are a plurality of relational expressions of “concentration, viscosity, and sample temperature” as in the above formulas (1-1) to (1-3) (S220), the arithmetic processing unit 46 determines that the relation The equations are called from the memory 48, and T 0 is substituted into the variable T of each equation to calculate the viscosities η 1 to η 3 at each concentration c (S240).

具体的には、関係式(1−1)〜(1−3)式の各変数TにT=27.5を代入し、27.5℃での粘度を濃度毎に算出すると、以下の(3−1)〜(3−3)式が得られる。 Specifically, when T 0 = 27.5 is substituted for each variable T in the relational expressions (1-1) to (1-3), and the viscosity at 27.5 ° C. is calculated for each concentration, Equations (3-1) to (3-3) are obtained.

η(c=20%)=1.51[mPa・s]・・・(3−1)
η(c=10%)=1.09[mPa・s]・・・(3−2)
η(c=0%)=0.84[mPa・s]・・・(3−3)
η 1 (c = 20%) = 1.51 [mPa · s] (3-1)
η 2 (c = 10%) = 1.09 [mPa · s] (3-2)
η 3 (c = 0%) = 0.84 [mPa · s] (3-3)

(3−1)〜(3−3)式を、濃度と粘度の相対関係として、グラフに表すと、図8のようになる。このグラフ、ないし、(3−1)〜(3−3)式の数値(粘度と濃度)に基づき、濃度と粘度の相対関係を式に表すと、(4−1)式が得られる。尚、(4−1)式は2次近似により得られたものである。   If the expressions (3-1) to (3-3) are expressed in a graph as the relative relationship between the concentration and the viscosity, the result is as shown in FIG. When the relative relationship between the concentration and the viscosity is expressed by an expression based on this graph or the numerical values (viscosity and concentration) of the expressions (3-1) to (3-3), the expression (4-1) is obtained. The equation (4-1) is obtained by the second order approximation.

c=−24.17η+86.64η−55.73[%]・・・(4−1) c = −24.17η 2 + 86.64η−55.73 [%] (4-1)

つまり演算処理部46は、試料温度センサ26で検出された試料温度Toにおける濃度と粘度の関係式を算出し、メモリ48に記憶するものである(S250)。   That is, the arithmetic processing unit 46 calculates a relational expression between the concentration and the viscosity at the sample temperature To detected by the sample temperature sensor 26, and stores it in the memory 48 (S250).

演算処理部46は、メモリ48に記憶された関係式(4−1)を呼出して、(4−1)式の変数ηにη=1.27を代入し、濃度cを算出する(S260)。具体的には、c=−24.17(1.27)+86.64(1.27)−55.73=15.3[%]となる。 The arithmetic processing unit 46 calls the relational expression (4-1) stored in the memory 48, substitutes η 0 = 1.27 for the variable η in the expression (4-1), and calculates the concentration c (S260). ). Specifically, c = −24.17 (1.27) 2 +86.64 (1.27) −55.73 = 15.3 [%].

尚、確認のため、この試料Xについて、T=27.5℃の時の濃度を液体物性値測定装置10以外の測定器によって測定すると、15%であり、本実施例の液体物性値測定装置10によって、正しく濃度の測定が行なわれることが分かった。   For confirmation, the sample X has a concentration at the time of T = 27.5 ° C. measured by a measuring instrument other than the liquid physical property measuring device 10, which is 15%. 10, it was found that the concentration was correctly measured.

表示部50は、演算処理部46によって算出された粘度及び濃度と、試料温度センサ26で検出された試料温度を表示する(S270)。   The display unit 50 displays the viscosity and concentration calculated by the arithmetic processing unit 46 and the sample temperature detected by the sample temperature sensor 26 (S270).

以上のように構成された液体物性値測定装置10によれば、予めメモリ48に記憶された「濃度と粘度と試料温度」の相対関係及び/又は「密度と粘度と試料温度」の相対関係に基づいて、測定対象物について算出された粘度と、検出された試料温度から、濃度及び/又は密度が換算されるので、1台の装置によって、粘度だけでなく、濃度や密度等の複数の物性値を求めることが出来る。   According to the liquid property value measuring apparatus 10 configured as described above, the relative relationship between “concentration, viscosity, and sample temperature” and / or “density, viscosity, and sample temperature” stored in the memory 48 in advance is used. Based on the viscosity calculated for the object to be measured and the detected sample temperature, the concentration and / or density is converted. Therefore, not only the viscosity but also a plurality of physical properties such as concentration and density can be obtained with a single device. The value can be obtained.

更に、「濃度と粘度」又は「密度と粘度」の相対関係に加えて、試料温度が変数として加わっているため、特に温度依存性の高い試料にあっては、恒温槽等により試料温度を一定に保って測定する必要がなく、任意の試料温度で複数種類の物性値を測定することが出来るので、迅速な測定に寄与する。   Furthermore, in addition to the relative relationship between “concentration and viscosity” or “density and viscosity”, the sample temperature is added as a variable, so in particular for samples with high temperature dependence, the sample temperature is kept constant using a thermostatic chamber or the like. Therefore, it is possible to measure a plurality of physical property values at an arbitrary sample temperature, which contributes to rapid measurement.

また、「濃度と粘度と試料温度」又は「密度と粘度と試料温度」の相対関係が未知の試料についても、異なる濃度の試料で、試料温度を変化させて、粘度を測定することで、これらの関係式が得られ、濃度や密度を求めることが出来るようになる。   In addition, for samples whose relative relationship between “concentration, viscosity, and sample temperature” or “density, viscosity, and sample temperature” is unknown, these samples can be measured by changing the sample temperature and measuring the viscosity with samples of different concentrations. Thus, the concentration and density can be obtained.

また、「濃度と粘度と試料温度」又は「密度と粘度と試料温度」の相対関係がメモリ48に記憶されているため、演算処理部46は、この相対関係に基づいて、検出された試料温度における物性値から所定の試料温度における物性値への換算を行なうことも出来る。この構成により、例えば、試料管理や試料評価を行なう際に、試料温度を一定に管理する設備や手間が不要となり、設備投資の削減、管理・評価の容易化が図られる。   Further, since the relative relationship of “concentration, viscosity, and sample temperature” or “density, viscosity, and sample temperature” is stored in the memory 48, the arithmetic processing unit 46 detects the detected sample temperature based on this relative relationship. It is also possible to convert the physical property value at to a physical property value at a predetermined sample temperature. With this configuration, for example, when performing sample management and sample evaluation, facilities and labor for maintaining the sample temperature at a constant level are not required, and capital investment can be reduced and management and evaluation can be facilitated.

従来の試料管理においては、試料温度の管理精度が物性値の測定精度に及ぼす影響が大きいものであったが、特に、粘度計本体12の振動子18が、金属製薄板状である場合には、振動子18の熱容量が小さく、試料の温度管理を行いながら物性値を測定する必要がなくなるため、試料の評価管理にかかる時間が短縮され、かつ、物性値の測定精度が維持される。   In the conventional sample management, the management accuracy of the sample temperature has a great influence on the measurement accuracy of the physical property value. In particular, when the vibrator 18 of the viscometer body 12 is a thin metal plate. The vibrator 18 has a small heat capacity, and it is not necessary to measure the physical property value while managing the temperature of the sample. Therefore, the time required for the evaluation management of the sample is shortened, and the measurement accuracy of the physical property value is maintained.

また、試料中に浸漬される振動子18の熱容量が小さいと同時に、試料の量がわずかで済む音叉振動式粘度計本体12を用いれば、試料温度の安定時間が短く、その結果、短時間での物性値測定、試料評価・管理が可能となる。   In addition, if the tuning fork vibration type viscometer body 12 that requires a small amount of the sample at the same time as the heat capacity of the vibrator 18 immersed in the sample is small, the stabilization time of the sample temperature is short. Physical property measurement, sample evaluation and management are possible.

現在、機械オイル・グリス、液晶用レジスト、印刷用インク、その他産業用液体に求められる各種物理量の測定精度向上、測定時間短縮化、管理評価時間短縮化は、工場ラインでの生産性に直結し、同時に商品の品質改善につながるため、各企業にとっては重要課題となっていて、本発明により、上記産業用液体市場に液体試料の管理評価レベルの向上を提案することが可能となる。
Improvements in measurement accuracy, measurement time and management evaluation time for various physical quantities required for machine oils and greases, liquid crystal resists, printing inks, and other industrial liquids are directly linked to productivity on the factory line. At the same time, it leads to improvement of product quality, which is an important issue for each company, and according to the present invention, it is possible to propose an improvement in management evaluation level of liquid samples to the industrial liquid market.

以上、液体物性値測定装置10の実施例につき説明したが、本発明の液体物性値測定装置は、上記実施例で説明した構成要件の全てを備えた液体物性値測定装置に限定されるものではなく、各種の変更及び修正が可能である。又、かかる変更及び修正についても本発明の特許請求の範囲に属することは言うまでもない。   As mentioned above, although it demonstrated per Example of the liquid physical property value measuring apparatus 10, the liquid physical property value measuring apparatus of this invention is not limited to the liquid physical property value measuring apparatus provided with all the structural requirements demonstrated in the said Example. Various changes and modifications are possible. It goes without saying that such changes and modifications also belong to the scope of the claims of the present invention.

例えば、関係式を記憶するメモリ48、濃度及び/又は密度の換算を行なう演算処理部46は、先の実施例の液体物性値測定装置10のその他の構成手段と一体に構成されている必要はなく、外部に設置されたコンピュータ等の外部機器13が有していてもよい。この場合の、液体物性値測定装置10aの制御系ブロック図の一例を図3に示す。尚、図3の粘度計本体12aのハードウェア構成例は図2のメモリ48と演算処理部46以外の構成手段と同様であり、図3の粘度計本体12aは、図2の液体物性値測定装置10の一部の構成のみを抽出したものであり、その他は省略されている。   For example, the memory 48 for storing the relational expression and the arithmetic processing unit 46 for converting the concentration and / or density need to be configured integrally with the other constituent means of the liquid property value measuring apparatus 10 of the previous embodiment. Alternatively, an external device 13 such as a computer installed outside may be included. FIG. 3 shows an example of a control system block diagram of the liquid property value measuring apparatus 10a in this case. 3 is the same as that of the configuration means other than the memory 48 and the arithmetic processing unit 46 in FIG. 2, and the viscometer body 12a in FIG. 3 has the liquid property value measurement in FIG. Only a part of the configuration of the apparatus 10 is extracted, and the others are omitted.

図3に示した外部機器13は、演算処理部46と、演算処理部46に接続されたメモリ48、入力部52a、表示部50を有している。又、外部機器13と粘度計本体12aとは、各々に設けられた通信手段54によって接続され、これら外部機器13と粘度計本体12aとが液体物性値測定装置10aを構成している。   The external device 13 illustrated in FIG. 3 includes an arithmetic processing unit 46, a memory 48 connected to the arithmetic processing unit 46, an input unit 52a, and a display unit 50. The external device 13 and the viscometer main body 12a are connected by communication means 54 provided in each, and the external device 13 and the viscometer main body 12a constitute a liquid property value measuring device 10a.

尚、演算処理部46及びメモリ48が、外部機器13と粘度計本体12aとにそれぞれ設けられていてもよく、その場合には、粘度計本体12a側の演算処理部46が粘度を算出する機能を有し、外部機器13側の演算処理部46が粘度から濃度及び/又は密度を算出する機能を有する、というように、機能を分けることが出来る。これによって、外部機器13は市販のコンピュータを採用し、粘度計本体12aは従来の音叉振動式粘度計を採用して、これに粘度の値を外部に送信するような通信機能を設けるだけでよい。尚、双方向通信は必ずしも必要ではないので、外部出力端子付きの音叉振動式粘度計が粘度計本体12aを構成してもよい。
The arithmetic processing unit 46 and the memory 48 may be provided in the external device 13 and the viscometer main body 12a, respectively. In this case, the arithmetic processing unit 46 on the viscometer main body 12a side calculates the viscosity. And the processing unit 46 on the external device 13 side has a function of calculating the concentration and / or density from the viscosity. Accordingly, the external device 13 employs a commercially available computer, the viscometer body 12a employs a conventional tuning fork vibration type viscometer, and only has a communication function for transmitting the viscosity value to the outside. . In addition, since bidirectional communication is not always necessary, a tuning fork vibration viscometer with an external output terminal may constitute the viscometer body 12a.

液体物性値測定装置の駆動機構部の側面図である。It is a side view of the drive mechanism part of a liquid physical property value measuring apparatus. 液体物性値測定装置の電気的構成を示す制御ブロック図である。It is a control block diagram which shows the electrical structure of a liquid physical property value measuring apparatus. 液体物性値測定装置の電気的構成を示す他の制御ブロック図である。It is another control block diagram which shows the electric constitution of a liquid physical property value measuring apparatus. 本発明にかかる液体物性値測定装置で関係式を記憶する際の手順を示すフローチャート図である。It is a flowchart figure which shows the procedure at the time of memorize | stored a relational expression with the liquid physical property value measuring apparatus concerning this invention. 本発明にかかる液体物性値測定装置で濃度を算出する際の手順を示すフローチャート図である。It is a flowchart figure which shows the procedure at the time of calculating a density | concentration with the liquid physical property value measuring apparatus concerning this invention. 粘度と試料温度の相対関係を濃度毎に示すグラフである。It is a graph which shows the relative relationship of a viscosity and sample temperature for every density | concentration. 粘度と濃度の相対関係を示すグラフである。It is a graph which shows the relative relationship of a viscosity and a density | concentration. 試料温度27.5℃における粘度と濃度の相対関係を示すグラフである。It is a graph which shows the relative relationship of the viscosity in the sample temperature of 27.5 degreeC, and a density | concentration.

符号の説明Explanation of symbols

10:液体物性値測定装置
12:粘度計本体
13:外部機器
14:フレーム
16:板バネ
18:振動子
20:マグネット
22:電磁コイル
23:電磁駆動部
24:変位センサ
26:試料温度センサ
30:アンプ
32:整流器
34:比較器
36:制御器
38:自動減衰器
40:電流検出器
42:I/V変換器
44:A/D変換器
46:演算処理部
48:メモリ
50:表示部
52:キースイッチ部(入力部)
54:通信手段
10: Liquid property value measuring device 12: Viscometer body 13: External device 14: Frame 16: Leaf spring 18: Vibrator 20: Magnet 22: Electromagnetic coil 23: Electromagnetic drive unit 24: Displacement sensor 26: Sample temperature sensor 30: Amplifier 32: Rectifier 34: Comparator 36: Controller 38: Automatic attenuator 40: Current detector 42: I / V converter 44: A / D converter 46: Arithmetic processing unit 48: Memory 50: Display unit 52: Key switch part (input part)
54: Communication means

Claims (8)

測定対象物である液体試料の物性値を測定する液体物性値測定装置であって、
マグネットと継鉄により構成される磁気回路と電磁コイルの組み合わせにより発生する電磁力により、対になった2以上の振動子を駆動し、駆動された振動子の変動量を変位センサにより測定検出する方式の音叉振動式粘度計本体と、
前記粘度計本体から得られた数値に基づいて前記試料の粘度を算出する演算処理部と、
前記演算処理部で算出された粘度が記憶されるメモリとを備え、
前記粘度計本体は、
前記試料の温度を検出する試料温度センサを備え、
前記メモリには、
前記試料の「濃度と粘度と試料温度」及び/又は「密度と粘度と試料温度」の相対関係が予め記憶されるものであり、
前記演算処理部は、
前記試料について算出された粘度を、前記試料温度センサで検出された試料温度と、前記相対関係に基づいて、濃度及び/又は密度に換算する
ことを特徴とする液体物性値測定装置。
A liquid property value measuring apparatus for measuring a physical property value of a liquid sample as a measurement object,
Two or more pairs of transducers are driven by electromagnetic force generated by a combination of a magnetic circuit composed of a magnet and a yoke and an electromagnetic coil, and the amount of fluctuation of the driven transducers is measured and detected by a displacement sensor. A tuning-fork vibratory viscometer body,
An arithmetic processing unit that calculates the viscosity of the sample based on the numerical value obtained from the viscometer body,
A memory for storing the viscosity calculated by the arithmetic processing unit,
The viscometer body is
A sample temperature sensor for detecting the temperature of the sample;
In the memory,
The relative relationship between the “concentration, viscosity, and sample temperature” and / or “density, viscosity, and sample temperature” of the sample is stored in advance,
The arithmetic processing unit includes:
The liquid property value measuring apparatus, wherein the viscosity calculated for the sample is converted into a concentration and / or density based on the sample temperature detected by the sample temperature sensor and the relative relationship.
前記演算処理部は、
前記相対関係が未知である場合、
濃度及び/又は密度が異なる複数の前記試料について、試料温度を変化させて粘度を算出し、前記試料温度をパラメータとした濃度と粘度及び/又は密度と粘度の相対関係から近似式を算出して前記メモリに記憶する
ことを特徴とする請求項1に記載の液体物性値測定装置。
The arithmetic processing unit includes:
If the relative relationship is unknown,
For a plurality of samples having different concentrations and / or densities, the viscosity is calculated by changing the sample temperature, and an approximate expression is calculated from the relative relationship between the concentration and viscosity and / or the density and viscosity using the sample temperature as a parameter. It memorize | stores in the said memory. The liquid physical property value measuring apparatus of Claim 1 characterized by the above-mentioned.
前記演算処理部は、
前記算出された粘度と、前記換算された濃度及び/又は密度とを、前記メモリに記憶された相対関係に基づいて、所定の温度における値に換算する
ことを特徴とする請求項1又は請求項2に記載の液体物性値測定装置。
The arithmetic processing unit includes:
The calculated viscosity and the converted concentration and / or density are converted into values at a predetermined temperature based on the relative relationship stored in the memory. 2. The liquid property value measuring apparatus according to 2.
前記相対関係は、
構成材料の異なる試料毎に前記メモリに記憶され、
前記演算処理部は、
入力部からの試料種類の選択入力に応じて、測定対象物に対応する前記相対関係を前記メモリから呼出す
ことを特徴とする請求項1から請求項3のいずれかに記載の液体物性値測定装置。
The relative relationship is
Stored in the memory for each sample of different constituent materials,
The arithmetic processing unit includes:
The liquid property value measuring device according to any one of claims 1 to 3, wherein the relative relationship corresponding to a measurement object is called from the memory in response to a selection input of a sample type from an input unit. .
測定対象物である液体試料の物性値を測定する液体物性値測定方法であって、
前記試料の「濃度と粘度と試料温度」及び/又は「密度と粘度と試料温度」の相対関係を、予めメモリに記憶する第1の過程と、
マグネットと継鉄により構成される磁気回路と電磁コイルの組み合わせにより発生する電磁力により、対になった2以上の振動子を駆動し、駆動された振動子の変動量を変位センサにより測定検出する方式の音叉振動式粘度計で算出された前記試料の粘度を、試料温度センサで検出された試料温度と、前記相対関係に基づいて、濃度及び/又は密度に換算する第2の過程とを
有することを特徴とする液体物性値測定方法。
A liquid property value measurement method for measuring a property value of a liquid sample as a measurement object,
A first step of storing in advance a relative relationship between “concentration, viscosity, and sample temperature” and / or “density, viscosity, and sample temperature” of the sample in a memory;
Two or more pairs of transducers are driven by electromagnetic force generated by a combination of a magnetic circuit composed of a magnet and a yoke and an electromagnetic coil, and the amount of fluctuation of the driven transducers is measured and detected by a displacement sensor. A second process of converting the viscosity of the sample calculated by a tuning-fork vibration viscometer of the type into a concentration and / or density based on the sample temperature detected by a sample temperature sensor and the relative relationship A method for measuring liquid property values.
前記相対関係が未知である場合、前記第1の過程で、
濃度及び/又は密度が異なる複数の前記試料について、試料温度を変化させて粘度を算出し、前記試料温度をパラメータとした濃度と粘度及び/又は密度と粘度の相対関係から近似式を算出して前記メモリに記憶する
ことを特徴とする請求項5に記載の液体物性値測定方法。
When the relative relationship is unknown, in the first process,
For a plurality of samples having different concentrations and / or densities, the viscosity is calculated by changing the sample temperature, and an approximate expression is calculated from the relative relationship between the concentration and viscosity and / or the density and viscosity using the sample temperature as a parameter. It memorize | stores in the said memory. The liquid physical property value measuring method of Claim 5 characterized by the above-mentioned.
前記液体物性値測定方法は、
前記算出された粘度と、前記換算された濃度及び/又は密度とを、前記相対関係に基づいて、所定の温度における値に換算する第3の過程を
有することを特徴とする請求項5又は請求項6に記載の液体物性値測定方法。
The liquid property value measuring method is:
6. The method according to claim 5, further comprising a third step of converting the calculated viscosity and the converted concentration and / or density into a value at a predetermined temperature based on the relative relationship. Item 7. The liquid property value measuring method according to Item 6.
前記相対関係は、
構成材料の異なる試料毎に前記メモリに記憶されるものであり、
前記第2の過程では、
試料種類の選択入力に応じて、測定対象物に対応する前記相対関係が前記メモリから呼出される
ことを特徴とする請求項5から請求項7のいずれかに記載の液体物性値測定方法。
The relative relationship is
It is stored in the memory for each sample having different constituent materials,
In the second step,
The liquid property value measuring method according to any one of claims 5 to 7, wherein the relative relationship corresponding to a measurement object is called from the memory in accordance with a selection input of a sample type.
JP2005027255A 2005-02-03 2005-02-03 Liquid physical property value measuring instrument and liquid physical property value measuring method Pending JP2006214842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027255A JP2006214842A (en) 2005-02-03 2005-02-03 Liquid physical property value measuring instrument and liquid physical property value measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027255A JP2006214842A (en) 2005-02-03 2005-02-03 Liquid physical property value measuring instrument and liquid physical property value measuring method

Publications (1)

Publication Number Publication Date
JP2006214842A true JP2006214842A (en) 2006-08-17

Family

ID=36978199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027255A Pending JP2006214842A (en) 2005-02-03 2005-02-03 Liquid physical property value measuring instrument and liquid physical property value measuring method

Country Status (1)

Country Link
JP (1) JP2006214842A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482698A (en) * 2010-08-11 2012-02-15 Mobrey Ltd Acid concentration measurement
JP2012045940A (en) * 2011-10-14 2012-03-08 Dainippon Printing Co Ltd Method for manufacturing thermal transfer image-receiving sheet, and coating liquid for forming thermal transfer image-receiving sheet
JP5020403B1 (en) * 2011-11-28 2012-09-05 リオン株式会社 Vibration type physical property measuring apparatus and method
KR101490357B1 (en) * 2013-04-25 2015-02-06 주식회사 포스코 Apparatus for measureing thickness of coating and controlling method of the same of
CN105675809A (en) * 2016-01-15 2016-06-15 清华大学 Analysis method of concentration of HI-I2-H2O ternary solution
RU178305U1 (en) * 2017-10-24 2018-03-29 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулёва" Министерства обороны Российской Федерации Device for determining operational vibration of aircraft

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482698A (en) * 2010-08-11 2012-02-15 Mobrey Ltd Acid concentration measurement
GB2482698B (en) * 2010-08-11 2015-01-07 Rosemount Measurement Ltd Acid concentration measurement
JP2012045940A (en) * 2011-10-14 2012-03-08 Dainippon Printing Co Ltd Method for manufacturing thermal transfer image-receiving sheet, and coating liquid for forming thermal transfer image-receiving sheet
JP5020403B1 (en) * 2011-11-28 2012-09-05 リオン株式会社 Vibration type physical property measuring apparatus and method
WO2013080813A1 (en) * 2011-11-28 2013-06-06 リオン株式会社 Vibrating physical property measurement device and method
DE112012004953B4 (en) * 2011-11-28 2015-09-10 Rion Co. Ltd. Oscillator device and method for measuring physical properties
US9228930B2 (en) 2011-11-28 2016-01-05 Rion Co., Ltd. Oscillating type physical property measuring apparatus and method
KR101490357B1 (en) * 2013-04-25 2015-02-06 주식회사 포스코 Apparatus for measureing thickness of coating and controlling method of the same of
CN105675809A (en) * 2016-01-15 2016-06-15 清华大学 Analysis method of concentration of HI-I2-H2O ternary solution
RU178305U1 (en) * 2017-10-24 2018-03-29 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулёва" Министерства обороны Российской Федерации Device for determining operational vibration of aircraft

Similar Documents

Publication Publication Date Title
CN109477751B (en) Electronic vibration sensor
JP2006214842A (en) Liquid physical property value measuring instrument and liquid physical property value measuring method
US20100236323A1 (en) Method for determining and/ or monitoring viscosity and corresponding apparatus
KR20150060908A (en) Method and device for measuring fluid body physical properties
JP6482449B2 (en) Measuring method of fluid density
KR102302655B1 (en) Controlling a vibration of a vibratory sensor based on a phase error
KR102135790B1 (en) Determining a vibration response parameter of a vibratory element
US10928240B2 (en) Vibronic sensor with interference compensation
MX2015003335A (en) Mobility detection for edge applications in wireless communication networks.
JP5355278B2 (en) Calibration parameter determination method and density calculation method for vibration type density meter
JPS5915837A (en) Viscosity measuring apparatus for high temperature fluid
JP4795231B2 (en) Specific heat measuring method and apparatus
JPWO2015193943A1 (en) Method and apparatus for measuring physical properties of fluid
AU2015230397B2 (en) Method for optimizing the switch-on time of a Coriolis gyroscope and Coriolis gyroscope suitable therefor
JP6169092B2 (en) Method, program and apparatus for evaluating reach distance of shear rate acting on fluid
JP3074365B2 (en) Thermogravimeter with balance vibration function
JP5295028B2 (en) Vibrating density meter
KR102011569B1 (en) Device for measuring viscosity of minute volume liquids and method thereof
JPH0121452B2 (en)
JP2004361300A (en) Viscometer
RU2274676C2 (en) Device to check the depth of vacuum deposited coatings
WO2021130970A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
JP2017161543A (en) Vibratory sensor and method
SU1442878A1 (en) Method of measuring medium density
JPH04296635A (en) Temperature correcting method of density sensor in vibratory gas density meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Effective date: 20091008

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309