JP4216692B2 - Mass sensor - Google Patents

Mass sensor Download PDF

Info

Publication number
JP4216692B2
JP4216692B2 JP2003373009A JP2003373009A JP4216692B2 JP 4216692 B2 JP4216692 B2 JP 4216692B2 JP 2003373009 A JP2003373009 A JP 2003373009A JP 2003373009 A JP2003373009 A JP 2003373009A JP 4216692 B2 JP4216692 B2 JP 4216692B2
Authority
JP
Japan
Prior art keywords
voltage
excitation
sensor element
mass sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003373009A
Other languages
Japanese (ja)
Other versions
JP2005134326A (en
Inventor
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2003373009A priority Critical patent/JP4216692B2/en
Publication of JP2005134326A publication Critical patent/JP2005134326A/en
Application granted granted Critical
Publication of JP4216692B2 publication Critical patent/JP4216692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、圧電単結晶基板上に介在する、種々の微少質量(物)を脱着させた時、その質量変化を周波数変化の大きさで計測する「Sauerbreyの理論」を用いた、QCM(Quartz Crystal Micro-Balance)式の質量センサに関する。 The present invention uses QCM (Quartz), which uses “Sauerbrey's theory” that measures the change in mass by the magnitude of frequency change when various minute masses (objects) intervening on a piezoelectric single crystal substrate are desorbed. The present invention relates to a crystal micro-balance type mass sensor.

近年では、地球環境汚染問題や、ヒトの遺伝子解明などの研究が進められており、例えば、環境ホルモン種の同定、抗原−抗体反応、高分子蛋白同士(DNA-DNA、DNA-RNA)の結合反応、酵素反応の解析、プロテオーム解析などが盛んに行われている。そして、これら分析手法として、ガスクロマトグラフィ質量分析器(GC-MS)、高速液体クロマトグラフ(HPLC)や、表面プラズモン共鳴計測装置(SPR)、の様な装置が使用されている。これら装置は、大型で高価な設備であると同時に分析感度はかなり高いが、試料の前処理にはかなりの手間と時間が必要なことや、更に、多成分の同時解析が困難であるなどの問題がある。また、常々反応の過程をリアルタイムで観測したいという要求もあるが、上記のような設備ではこのようなことは不可能である。   In recent years, research on global environmental pollution problems and human genetic elucidation has been conducted. For example, identification of environmental hormone species, antigen-antibody reaction, binding of high molecular proteins (DNA-DNA, DNA-RNA) Reactions, analysis of enzyme reactions, proteome analysis, etc. are actively performed. And as these analytical techniques, apparatuses such as a gas chromatography mass spectrometer (GC-MS), a high performance liquid chromatograph (HPLC), and a surface plasmon resonance measuring apparatus (SPR) are used. These instruments are large and expensive equipment, and at the same time have a very high analytical sensitivity, but they require a lot of labor and time for sample preparation, and it is difficult to analyze multiple components simultaneously. There's a problem. In addition, there is always a demand to observe the reaction process in real time, but this is not possible with the equipment described above.

抗原−抗体反応、DNA-RNA結合など、相補的結合反応が生じた時、重量変化や、誘電率変化が発生する。QCM式質量センサでは、このような微少な変化を捉えることが可能である。圧電単結晶をセンサ素子として使用した質量センサでは、ng(ナノグラム)レベルの重量測定が可能であることから、抗体(或いは、抗原)をデバイス表面に固定化することで抗原(或いは、抗体)の反応の検知が可能となる。また、PH値(モル濃度で表した水素イオン濃度の逆数の常用対数)や導電率についても、導電率変化を音響電気相互作用により検出することも可能となる。更に、反応の過程を周波数変化として捉えられるので、周波数変化の様子をリアルタイムで計測したり、記録することでリアルタイム定量解析が可能となる。なお、図3に示すのは従来から用いられる質量センサ素子の構造である。   When a complementary binding reaction such as an antigen-antibody reaction or DNA-RNA binding occurs, a change in weight or a change in dielectric constant occurs. With the QCM mass sensor, it is possible to capture such minute changes. In a mass sensor using a piezoelectric single crystal as a sensor element, ng (nanogram) level weight measurement is possible. By immobilizing an antibody (or antigen) on the device surface, the antigen (or antibody) The reaction can be detected. In addition, regarding the PH value (the common logarithm of the reciprocal of the hydrogen ion concentration expressed in terms of molar concentration) and the conductivity, it is also possible to detect a change in conductivity by an acoustoelectric interaction. Furthermore, since the process of reaction can be grasped as frequency change, real-time quantitative analysis can be performed by measuring and recording the state of frequency change in real time. FIG. 3 shows the structure of a mass sensor element used conventionally.

(1) N.Miura,H.Higabashi,G.Sakai 他: Piezoelectric crystal immunosensor for sensitive detection of methamphetamine(stimulant drug) in human urine Proc. Fourth Int. Meeting on Chemical Sensors, Technical Digest, Tokyo. pp.13-17(1992)(1) N. Miura, H. Higabashi, G. Sakai et al .: Piezoelectric crystal immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine Proc. Fourth Int. Meeting on Chemical Sensors, Technical Digest, Tokyo. Pp. 13- 17 (1992)

QCM式質量センサは、特定の振動モードで固有振動をしている有限寸法の圧電単結晶基板上の質量変化が発生すると、それに比例して周波数が変動する現象を用いたものである。今、圧電単結晶を水晶として述べると、水晶素子の質量変化に対する感度が非常に高いことから、近年では、環境ホルモンの含有量計測、抗原−抗体反応、DNA-RNA、DNA-DNA結合などによる微少質量変化を周波数変化として観測できるので、微少質量の変化を計測するセンサとして使用されている。   The QCM mass sensor uses a phenomenon in which the frequency fluctuates in proportion to a change in mass on a piezoelectric single crystal substrate having a finite dimension that is performing natural vibration in a specific vibration mode. Now, when a piezoelectric single crystal is described as a quartz crystal, the sensitivity to the change in mass of the quartz crystal element is extremely high. Since a minute mass change can be observed as a frequency change, it is used as a sensor for measuring a minute mass change.

従って、QCM式質量センサは、被測定対象物の環境により、気相、液相の雰囲気下でセンサ素子基板表面を露出して使用されるが、どのような場合でも質量の変化のみが正確に、周波数の変化に反映される必要がある。計測時は被測定物以外の物質の付着によるセンサ素子表面の汚染や、環境温度変化などの外部擾乱による影響を極力排除することが必要である。また、QCM式質量センサは、微少質量変化を周波数変化として直読することになるので、水晶センサ素子・発振回路由来の発振周波数の初期変動や、周波数ドリフトを最小(安定状態)に保つことが必要で、そのためには、センサ素子の励振に必要なドライブ電圧を、その環境中で安定して発振が持続出来る最小で、かつ、振動振幅を一定の値に維持することが重要となる。   Therefore, the QCM mass sensor is used by exposing the sensor element substrate surface in a gas phase or liquid phase atmosphere depending on the environment of the object to be measured. Need to be reflected in frequency changes. During measurement, it is necessary to eliminate as much as possible the influence of external disturbances such as contamination of the sensor element surface due to adhesion of substances other than the object to be measured and environmental temperature changes. In addition, since the QCM mass sensor directly reads minute mass changes as frequency changes, it is necessary to keep the initial fluctuation of the oscillation frequency derived from the crystal sensor element / oscillation circuit and the frequency drift to the minimum (stable state). For this purpose, it is important to maintain the drive voltage necessary for excitation of the sensor element at a minimum value at which oscillation can be stably maintained in the environment and the vibration amplitude at a constant value.

従って、ドライブ電圧を制御し、低ドライブ・定振幅でセンサ素子を励振すれば、ドライブ電圧過多による過大振動による機械歪異常や、センサ素子内部の自己発熱により見られる、周波数初期変動、計測中の周波数ドリフト現象の防止や、気相・液相環境を問わず、粘性流体の粘度、比重などの影響を極小にすることが可能となり、センサ素子に由来する擾乱が改善され、発振開始直後に観測される周波数の初期変動現象や、計測中の周波数安定性が向上する。また、QCM式質量センサの計測では、多種多様な微少質量変化を計測する(出来る)ため、非測定物質に合わせた適正なドライブ電圧が必要とされる。従って、本特許の質量センサでは、そのドライブ電圧を外部から制御できるように、基準電圧回路を設け、測定開始時に意図的、臨機応変に基準電圧を調整して被測定物に適性なドライブ電圧を設定し、計測中は常にこの振動振幅になるように、センサ素子基板上の励振電極に隣接して備えたモニタ電極により得た電荷量から振動振幅を制御する構造をとる。   Therefore, if the drive voltage is controlled and the sensor element is excited with low drive and constant amplitude, the mechanical distortion abnormality due to excessive vibration due to excessive drive voltage and self-heating inside the sensor element, initial frequency fluctuation, It is possible to minimize the effects of viscous fluids such as viscosity and specific gravity regardless of the gas-phase or liquid-phase environment, preventing the frequency drift phenomenon, improving the disturbance caused by the sensor element and observing immediately after the start of oscillation. The initial fluctuation phenomenon of the frequency to be measured and the frequency stability during measurement are improved. Further, in the measurement of the QCM mass sensor, a wide variety of minute mass changes are measured (can be performed), and thus an appropriate drive voltage that matches the non-measurement substance is required. Therefore, in the mass sensor of this patent, a reference voltage circuit is provided so that the drive voltage can be controlled from the outside, and at the start of measurement, the reference voltage is intentionally and flexibly adjusted to provide an appropriate drive voltage for the object to be measured. The vibration amplitude is controlled from the charge amount obtained by the monitor electrode provided adjacent to the excitation electrode on the sensor element substrate so that the vibration amplitude is always set during measurement.

QCM式質量センサは、微少質量変化を周波数変化として直読することになるので、水晶センサ素子・発振回路由来の発振周波数の初期変動や、周波数ドリフトを最小(安定状態)に保つことが必要で、そのためには、センサ素子の励振に必要なドライブ電圧を、気相・液相の計測環境中で安定した振動が持続出来る適性・最小の電圧の設定と、その振動の振幅が一定の値になるよう維持することが重要なポイントとなる。QCM式質量センサは、多種多様な結合、反応などによる微少質量変化を計測することから、非測定物質に合わせた適正なドライブ電圧が必要となる。本発明はこれらを実現するため、センサ素子の基板上に励振電極と独立してモニタ電極を設け、この電極に発生する電荷量が常に一定になるよう制御することを特徴としている。   Since the QCM mass sensor directly reads a minute mass change as a frequency change, it is necessary to keep the initial fluctuation of the oscillation frequency derived from the crystal sensor element / oscillation circuit and the frequency drift to the minimum (stable state). For this purpose, the drive voltage required for excitation of the sensor element is set to the appropriate and minimum voltage that can maintain stable vibration in the gas / liquid phase measurement environment, and the amplitude of the vibration becomes a constant value. This is an important point. Since the QCM mass sensor measures minute mass changes due to various bonds and reactions, an appropriate drive voltage according to the non-measurement substance is required. In order to realize these, the present invention is characterized in that a monitor electrode is provided on the substrate of the sensor element independently of the excitation electrode, and the amount of electric charge generated at this electrode is controlled to be always constant.

通常、水晶振動子の振幅を制御するには、水晶振動子の出力端子に発生する電圧をモニタ信号として扱い、この信号をAGC回路などに導入し、発振器の励振電圧を制御して振幅を一定に保持する方法が一般的である。本発明において、センサ素子の振幅の大きさを検出するモニタ電極を独立して設けた理由は、計測環境が粘性流体(気相・液相を含め)であり、その環境中に表面を露出して置かれるセンサ素子の振幅の様子は、センサ素子の出力端子の電気信号をモニタ信号とするより、一度機械振動を介した後に電気信号に変換する手法の方が、粘性、比重などの環境条件の成分を含んだ信号として取り出すことができるため、実状に合った確度の高いモニタ信号を得ることが可能となる。   Normally, to control the amplitude of a crystal resonator, the voltage generated at the output terminal of the crystal resonator is treated as a monitor signal, this signal is introduced into an AGC circuit, etc., and the amplitude is kept constant by controlling the excitation voltage of the oscillator. The method of holding in the above is general. In the present invention, the reason why the monitor electrode for detecting the magnitude of the amplitude of the sensor element is provided independently is that the measurement environment is a viscous fluid (including gas phase and liquid phase), and the surface is exposed in the environment. As for the state of the amplitude of the sensor element placed, the method of converting the electrical signal after passing through mechanical vibration once to the electrical signal is more environmental conditions such as viscosity and specific gravity than using the electrical signal of the output terminal of the sensor element as the monitor signal. Therefore, it is possible to obtain a monitor signal with high accuracy that matches the actual situation.

また、露出されたセンサ素子は、測定環境の粘性、比重などの変化により励振条件の適正値が異なる。従って、本特許の質量センサでは、適正ドライブ電圧を外部から制御できるように、電圧が可変できる基準電圧発生回路を設け、この電圧により測定開始時に意図的、かつ、臨機応変にドライブ電圧を調整し被測定物に適合したドライブ電圧を設定し、計測中は常に、このドライブ電圧で発生する振動振幅と同一となること、すなわちセンサ素子基板上のモニタ電極により得た電荷量が一定になる様に振動振幅制御をする構造をとる。   In addition, the appropriate value of the excitation condition differs between the exposed sensor elements due to changes in the viscosity and specific gravity of the measurement environment. Therefore, in the mass sensor of this patent, a reference voltage generation circuit that can vary the voltage is provided so that the appropriate drive voltage can be controlled from the outside, and the drive voltage is intentionally and flexibly adjusted at the start of measurement by this voltage. Set a drive voltage suitable for the object to be measured, so that the vibration amplitude generated by this drive voltage is always the same during measurement, that is, the amount of charge obtained by the monitor electrode on the sensor element substrate is constant. A structure that controls vibration amplitude is adopted.

図1は、本発明のセンサ素子を示す。回転Y板を用いた圧電単結晶基板1(例えば水晶基板などの圧電材料で図面の主面形状は円形であるが、形状は円形にこだわらない。)の表裏面に励振電極2を、片面の励振電極2の周囲にモニタ電極3を配置する。この励振電極2構造体は、チタン下地に金の2重薄膜を、蒸着或いはスパッタなどとするが、材料の種類はこの他に、下地膜としてクロム、ニクロム、アルミなどが、更に上層膜としては、チタン、アルミ、白金黒、SiO、銅、ポリスチレンなどが利用される。モニタ電極3には、振動により同一面内にある励振電極2との間に、振動振幅の大きさに比例して発生する平行電界による電荷が発生し、これがセンサ素子の振幅を制御するモニタ信号となる。この様にセンサ素子は3端子構造をとる。なお、図1に示す圧電単結晶基板1の表裏に形成する励振電極2はほぼ同じ面積の電極で構成するが、励振電極2の電極面積が異なっていても構わない。 FIG. 1 shows a sensor element of the present invention. The excitation electrode 2 is provided on the front and back surfaces of a piezoelectric single crystal substrate 1 using a rotating Y plate (for example, a piezoelectric material such as a quartz substrate and the shape of the main surface of the drawing is circular, but the shape is not limited to a circle). A monitor electrode 3 is arranged around the excitation electrode 2. In this excitation electrode 2 structure, a gold double thin film is deposited or sputtered on a titanium base, but other types of materials include chromium, nichrome, aluminum, etc. Titanium, aluminum, platinum black, SiO 2 , copper, polystyrene, etc. are used. The monitor electrode 3 is charged with a parallel electric field generated in proportion to the amplitude of the vibration amplitude between the monitor electrode 3 and the excitation electrode 2 in the same plane due to vibration, and this is a monitor signal for controlling the amplitude of the sensor element. It becomes. Thus, the sensor element has a three-terminal structure. In addition, although the excitation electrode 2 formed on the front and back of the piezoelectric single crystal substrate 1 shown in FIG. 1 is composed of electrodes having substantially the same area, the electrode area of the excitation electrode 2 may be different.

図2では、この質量センサの回路構成例を述べる。回路は、大きく4パートに分離することが出来る。第1はセンサ素子のモニタ電極端子(M)を入力とする「励振振幅検出部」、これはセンサ素子の振動振幅に比例し、励振ゲイン制御電圧を介して振幅が一定になるように増幅回路の増幅率を調整する。第2は計測環境に適合した基準(バイアスとして使用)の励振ゲインを決める「励振基準電圧決定のための制御電圧発生部」。第3にこれら2種類の電圧において、「励振基準電圧決定のための制御電圧」を基準として、「励振振幅検出電圧」にマイナス1を乗算して加算する「励振ゲイン制御電圧発生部」と、第4に「励振ゲイン制御電圧」により励振ゲインを可変できる「発振回路部」から構成される。発振回路部には、センサ素子の励振用電極2端子(S1)(S2)が接続され、外部環境の変化に捕らわれず、計測開始時に設定された励振振幅を維持するように励振ゲインが制御される。   In FIG. 2, a circuit configuration example of the mass sensor will be described. The circuit can be largely divided into 4 parts. The first is an “excitation amplitude detector” that receives the monitor electrode terminal (M) of the sensor element, which is proportional to the vibration amplitude of the sensor element, and is an amplification circuit so that the amplitude becomes constant via the excitation gain control voltage. Adjust the gain. The second is a “control voltage generator for determining an excitation reference voltage” that determines an excitation gain of a reference (used as a bias) suitable for the measurement environment. Thirdly, in these two types of voltages, an “excitation gain control voltage generator” that multiplies “excitation amplitude detection voltage” by minus 1 with “control voltage for determining excitation reference voltage” as a reference, and Fourthly, an “oscillation circuit unit” that can vary the excitation gain by the “excitation gain control voltage”. The excitation circuit 2 terminals (S1) and (S2) of the sensor element are connected to the oscillation circuit unit, and the excitation gain is controlled so as to maintain the excitation amplitude set at the start of measurement without being caught by changes in the external environment. The

ここで上述の回路構成(図2)の動作を説明する。QCM質量センサは通常発振回路を使用し、励振用電極S1、S2にセンサ素子の2端子を接続して発振させる方法をとる。S1端子からの信号はI/V変換回路により電流を電圧に変換している。そのとき、計測環境の異なる例えば気相、液相、液相中でも粘度や、比重が異なるとその環境変化に応じて感度条件が異なる。   Here, the operation of the above-described circuit configuration (FIG. 2) will be described. The QCM mass sensor normally uses an oscillation circuit and oscillates by connecting two terminals of the sensor element to the excitation electrodes S1 and S2. The signal from the S1 terminal converts current into voltage by an I / V conversion circuit. At that time, if the viscosity and specific gravity are different even in different measurement environments such as the gas phase, the liquid phase, and the liquid phase, the sensitivity conditions differ depending on the environmental change.

本発明ではセンサ素子上にモニタ電極を形成し、振動がセンサ基板内を伝搬するとき、前記環境条件が付加されて信号伝達が行われる。従って、モニタ電極端子(M)には環境条件が付加された信号(電荷量)が発生し、Q/V変換回路によりこの電荷量を電圧に変換し増幅されて取り込まれ、フィルタでノイズを除去した後整流回路で直流電圧に変換される。そして、この直流電圧が絶えず一定になるように励振ゲインが調整されることが特徴である。なお、前述した様に環境条件により適切な励振ゲインは異なるので外部より励振用基準電圧制御回路により適応した基準値になるように調節を行う構造をとる。   In the present invention, when the monitor electrode is formed on the sensor element and the vibration propagates through the sensor substrate, the environmental condition is added and signal transmission is performed. Therefore, a signal (charge amount) with an environmental condition is generated at the monitor electrode terminal (M), and this charge amount is converted into a voltage by the Q / V conversion circuit, amplified and taken in, and noise is removed by a filter. After that, it is converted into a DC voltage by a rectifier circuit. The excitation gain is adjusted so that the DC voltage is constantly constant. As described above, since an appropriate excitation gain varies depending on the environmental conditions, a structure is adopted in which adjustment is performed from the outside so that the reference value is adapted by the excitation reference voltage control circuit.

また、モニタ電極を励振信号系と別に独立して設けることで図面には描画していないが、モニタ電圧(電流)は計測環境(粘度や比重など)の影響を受けるので励振信号と比較することで位相差を確認できるため、位相差の状況を予め取得したデータをメモリ回路に蓄積しておき、モニタ信号(M)の結果と比較し補正することで測定環境に合わせて励振振幅を調整することも可能となる。   Although the monitor electrode is provided separately from the excitation signal system and is not drawn in the drawing, the monitor voltage (current) is affected by the measurement environment (viscosity, specific gravity, etc.), so it should be compared with the excitation signal. Since the phase difference can be confirmed with the above, the data obtained in advance for the phase difference state is stored in the memory circuit, and compared with the result of the monitor signal (M) and corrected to adjust the excitation amplitude according to the measurement environment. It is also possible.

本センサは、溶液内での反応、結合に対する質量変化を計測するために用いられるもので、例えば、ダイオキシンなどの環境汚染物質の含有量計測のような気相中の計測に関しても有効であり、多種多様の感応物質の測定に対して広く利用でき、測定時の作業効率を容易にし、測定精度に関しても従来に比べ向上させることを可能にする。   This sensor is used to measure mass changes in response to reactions and bonds in solution. For example, this sensor is also effective for measurements in the gas phase, such as measuring the content of environmental pollutants such as dioxins. It can be widely used for measurement of a wide variety of sensitive substances, facilitates work efficiency at the time of measurement, and improves the measurement accuracy as compared with the prior art.

本特許のセンサ素子の外形主面(図1(a))及び断面図例(図1(b))とそれをシンボル表記(図1(c))で示した概念図である。It is the conceptual diagram which showed the external shape main surface (FIG. 1 (a)) of the sensor element of this patent, the example of sectional drawing (FIG.1 (b)), and the symbol notation (FIG.1 (c)). 本特許の質量センサの駆動回路構成の一例を示すブロック図である。It is a block diagram which shows an example of the drive circuit structure of the mass sensor of this patent. 従来のセンサ素子の外形主面(図3(a))及び断面図例(図3(b))とそれをシンボル表記(図3(c))で示した概念図である。It is the conceptual diagram which showed the external shape main surface (FIG. 3 (a)) of the conventional sensor element, the example of sectional drawing (FIG.3 (b)), and the symbol notation (FIG.3 (c)).

符号の説明Explanation of symbols

1 圧電単結晶基板
2 励振電極
3 モニタ電極
1 Piezoelectric single crystal substrate 2 Excitation electrode 3 Monitor electrode

Claims (2)

圧電単結晶を基板に使用し、同一基板上に励振電極と、振動状態を検知するモニタ電極を付加して電荷量を電圧の大きさに変換し、励振電極により励振される質量センサ素子の振幅の大きさを認識する質量センサにおいて、該モニタ電極に捕集される電荷量、あるいはモニタ電圧が一定値になるように励振電圧を制御する回路を付加したことを特徴とする質量センサ。 Using a piezoelectric single crystal as a substrate, adding an excitation electrode and a monitor electrode for detecting the vibration state on the same substrate to convert the amount of charge into a voltage, and the amplitude of the mass sensor element excited by the excitation electrode In the mass sensor for recognizing the magnitude of the mass sensor, a circuit for controlling the excitation voltage is added so that the amount of charge collected by the monitor electrode or the monitor voltage becomes a constant value . 請求項1において、電荷量(変換された電圧)を一定とする時、その値は、外部から可変可能な基準電圧回路で発生する電圧値により決定されることを特徴とする質量センサ。2. The mass sensor according to claim 1, wherein when the charge amount (converted voltage) is constant, the value is determined by a voltage value generated by a reference voltage circuit that can be varied from the outside.
JP2003373009A 2003-10-31 2003-10-31 Mass sensor Expired - Fee Related JP4216692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373009A JP4216692B2 (en) 2003-10-31 2003-10-31 Mass sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373009A JP4216692B2 (en) 2003-10-31 2003-10-31 Mass sensor

Publications (2)

Publication Number Publication Date
JP2005134326A JP2005134326A (en) 2005-05-26
JP4216692B2 true JP4216692B2 (en) 2009-01-28

Family

ID=34649226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373009A Expired - Fee Related JP4216692B2 (en) 2003-10-31 2003-10-31 Mass sensor

Country Status (1)

Country Link
JP (1) JP4216692B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078334A (en) * 2008-09-24 2010-04-08 National Institute Of Advanced Industrial Science & Technology Detection sensor and vibrator
JP5470536B2 (en) * 2010-03-24 2014-04-16 オリンパス株式会社 Detection sensor, substance detection system
CN104807524B (en) * 2015-05-08 2017-04-26 重庆大学 Adjustable-amplitude quartz crystal microbalance self-excited oscillation circuit

Also Published As

Publication number Publication date
JP2005134326A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US6016686A (en) Micromechanical potentiometric sensors
US6626026B2 (en) Acoustic wave based sensor
JP2020144134A (en) Systems and methods for determining at least one property of material
US7671511B2 (en) System for oscillating a micromechanical cantilever
Cunningham et al. Design, fabrication and vapor characterization of a microfabricated flexural plate resonator sensor and application to integrated sensor arrays
JP4913032B2 (en) Electrostatic measurement of chemical reactions based on stress
TWI443338B (en) And a sensing means for sensing the sensing object in the liquid
US7165452B2 (en) Measuring method, measurement-signal output circuit, and measuring apparatus
JPS6199851A (en) Method for detecting at least one component of one substanceor mixture of substance and vibrating condenser for executing said method
JP4216692B2 (en) Mass sensor
JP2004340766A (en) Apparatus for detecting chemical substance
JP4646813B2 (en) Biosensor measurement system, viscosity measurement method, and trace mass measurement method
US7331232B2 (en) Measurement method and biosensor apparatus using resonator
KR20090124789A (en) Resonance characteristic measurement apparatus of cantillever structure and measurement method thereof
JP2004294356A (en) Qcm sensor unit
WO2021028827A1 (en) Gas sensor with capacitive micromachined ultrasonic transducer structure and functional polymer layer
JP4158971B2 (en) Mass sensor
JP4180472B2 (en) Mass sensor
JP2005077232A (en) Mass sensor and its manufacturing method
Aziz et al. Quartz Crystal Microbalance a Powerful Technique for Nanogram Mass Sensing
Oprea et al. High sensitivity polyacrylic acid films for ammonia detection with field effect devices
Ünal et al. Design of a portable and low-cost mass-sensitive sensor with the capability of measurements on various frequency quartz tuning forks
JP2006010431A (en) Mass detector
Cunningham et al. Chemical vapor detection using microfabricated flexural plate silicon resonator arrays
Thundat Micromechanical potentiometric sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees