JP4158971B2 - Mass sensor - Google Patents

Mass sensor Download PDF

Info

Publication number
JP4158971B2
JP4158971B2 JP2003339422A JP2003339422A JP4158971B2 JP 4158971 B2 JP4158971 B2 JP 4158971B2 JP 2003339422 A JP2003339422 A JP 2003339422A JP 2003339422 A JP2003339422 A JP 2003339422A JP 4158971 B2 JP4158971 B2 JP 4158971B2
Authority
JP
Japan
Prior art keywords
holder
sensor element
mass sensor
mass
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003339422A
Other languages
Japanese (ja)
Other versions
JP2005106579A (en
Inventor
雅子 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2003339422A priority Critical patent/JP4158971B2/en
Publication of JP2005106579A publication Critical patent/JP2005106579A/en
Application granted granted Critical
Publication of JP4158971B2 publication Critical patent/JP4158971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、圧電単結晶基板上に介在する、種々の微少質量(物)を付着させたとき、質量変化を周波数変化の大きさで計測する「Sauerbreyの理論」を用いた、QCM式の質量センサに関する。   The present invention relates to a mass of QCM using “Sauerbrey's theory” that measures mass change by the magnitude of frequency change when various minute masses (objects) interposed on a piezoelectric single crystal substrate are attached. It relates to sensors.

近年では、地球環境汚染問題や、ヒトの遺伝子解明などの研究が進められており、例えば、環境ホルモン種の同定、抗原−抗体反応、高分子蛋白同士(DNA−DNA、DNA−RNA)の結合反応、酵素反応の解析、プロテオーム解析などが盛んに行われている。そして、これら分析手法として、ガスクロマトグラフィ質量分析器(GC−MS)、高速液体クロマトグラフ(HPLC)や、表面プラズモン共鳴計測装置(SPR)の様な装置が使用されている。これら装置は、大型で高価な設備であると同時に分析感度はかなり高いが、試料の前処理にはかなりの手間と時間が必要だったり、更に、多成分の同時解析が困難などの問題がある。また、常々反応の過程をリアルタイムで観測したいという要求もあるが、上記設備ではそのようなことは不可能である。   In recent years, research on global environmental pollution problems and human genetic elucidation has been conducted. For example, identification of environmental hormone species, antigen-antibody reaction, binding of high molecular proteins (DNA-DNA, DNA-RNA) Reactions, analysis of enzyme reactions, proteome analysis, etc. are actively performed. And as these analysis methods, apparatuses, such as a gas chromatography mass spectrometer (GC-MS), a high performance liquid chromatograph (HPLC), and a surface plasmon resonance measuring device (SPR), are used. These instruments are large and expensive equipment, and at the same time have a very high analytical sensitivity. However, pretreatment of the sample requires considerable labor and time, and it is difficult to analyze multiple components simultaneously. . In addition, there is always a demand to observe the reaction process in real time, but this is not possible with the above equipment.

抗原−抗体反応、DNA−RNA結合など、相補的結合反応が生じたとき、重量変化や、誘電率変化が発生する。QCM式質量センサでは、このような微少な変化を捉えることが可能である。
圧電単結晶をセンサ素子として使用した質量センサでは、ngレベルの重量測定が可能であることから、抗体(或いは、抗原)をデバイス表面に固定化することで抗原(或いは、抗体)の検知が可能となる。また、PHや導電率についても、導電率変化を音響電気相互作用により検出することが可能となる。
When a complementary binding reaction such as an antigen-antibody reaction or DNA-RNA binding occurs, a change in weight or a change in dielectric constant occurs. With the QCM mass sensor, it is possible to capture such minute changes.
Mass sensors that use piezoelectric single crystals as sensor elements can measure ng-level weights, so antigens (or antibodies) can be detected by immobilizing antibodies (or antigens) on the device surface. It becomes. Further, regarding PH and conductivity, it is possible to detect a change in conductivity by an acoustoelectric interaction.

そして、反応の過程を周波数変化として捉えられることから、周波数変化の様子をリアルタイム計測、記録することでリアルタイム定量解析が可能となる。
特開平6−018394号公報 特開2001−153777号公報 特開昭62−064934号公報 (1) N.Miura,H.Higabashi,G.Sakai 他: Piezoelectric crystal immunosensor for sensitive detection of methamphetamine(stimulant drug) in human urine Proc. Fourth Int. Meeting on Chemical Sensors, Technical Digest, Tokyo. pp.13-17(1992)
Since the reaction process can be understood as a frequency change, real-time quantitative analysis is possible by measuring and recording the state of the frequency change in real time.
JP-A-6-018394 JP 2001-153777 A JP-A-62-064934 (1) N. Miura, H. Higabashi, G. Sakai et al .: Piezoelectric crystal immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine Proc. Fourth Int. Meeting on Chemical Sensors, Technical Digest, Tokyo. Pp. 13- 17 (1992)

図5に示す質量センサは、抗原−抗体反応、DNA−RNA結合など、相補的結合反応を捕らえる場合、あらかじめセンサ素子の反応部(通常は、Au、Alなどの金属電極)上に、対応する抗原や抗体、または、DNAなどの感応物を付加しておき、この状態で発振回路などにより固有振動周波数で励振させたまま溶液中に浸漬して対象物質との反応や結合の状態により変化する質量変化による周波数変化を計測することになる。   When capturing a complementary binding reaction such as an antigen-antibody reaction or DNA-RNA binding, the mass sensor shown in FIG. 5 corresponds in advance on the reaction part of the sensor element (usually a metal electrode such as Au or Al). A sensitive substance such as an antigen, antibody, or DNA is added, and in this state, it is immersed in a solution while being excited at the natural vibration frequency by an oscillation circuit or the like, and changes depending on the reaction or binding state with the target substance. The frequency change due to the mass change is measured.

このとき、センサ素子の固有振動の姿態は「厚みすべり振動」であり、この振動姿態を自励する為、センサ素子の主面表裏には対抗して金属電極が必要となる。従って、この構成で溶液中に浸漬すると、2電極間には溶液を介して電気的リークの発生により、不安定、かつ、有限のインピーダンスをもって接続された回路が付加されることとなり、発振周波数は不安定となり計測が困難となる。   At this time, the state of the natural vibration of the sensor element is “thickness shear vibration”, and in order to self-excited this vibration state, a metal electrode is required on the front and back of the main surface of the sensor element. Therefore, when immersed in a solution with this structure, an unstable circuit connected with a finite impedance is added between the two electrodes due to the occurrence of electrical leakage through the solution, and the oscillation frequency is Measurement becomes difficult due to instability.

この対策として、反応などに寄与しない反対側主面上に絶縁処理を施し溶液中に浸漬することが考えられるが、励振の負荷が大きくなり、容易に発振させることが困難となる。従って、通常、反応主面は溶液中に露出せざるを得ないが、反対側の主面は気相中に露出する構造をとる。
従来の質量センサの構造例を図5に示す。これは、センサ素子の外周寸法に近似した円筒状のホルダの片端に、開口部を塞ぐようにしてセンサ素子をエポキシ系接着剤で固定、円筒内に溶液を導入できる構造とし、反対側主面は気相中に露出されているものである。
As a countermeasure against this, it is conceivable that the opposite main surface that does not contribute to the reaction is subjected to an insulation treatment and immersed in a solution, but the excitation load becomes large and it is difficult to oscillate easily. Therefore, usually, the reaction main surface must be exposed in the solution, but the opposite main surface is exposed in the gas phase.
A structural example of a conventional mass sensor is shown in FIG. This is a structure in which the sensor element can be fixed with epoxy adhesive at one end of a cylindrical holder that approximates the outer circumference of the sensor element so that the opening is closed, and the solution can be introduced into the cylinder. Is exposed in the gas phase.

この構造は、気相、液相を分離することができるが、既にエポキシ接着剤で固定されているため、計測前に感応物を付加させる作業の困難性や、制限されたりする問題、また、小型化への対応では、センサ素子周辺部とは言え、主振動の伝播波が減衰し切れず残存する部位をしっかり固定することは、著しく振動の安定性を劣化させることになる。   This structure can separate the gas phase and the liquid phase, but since it is already fixed with an epoxy adhesive, it is difficult to add sensitive materials before measurement, problems that are limited, In order to cope with the downsizing, even if it is the sensor element peripheral portion, firmly fixing the portion where the propagation wave of the main vibration is not completely attenuated will significantly deteriorate the stability of vibration.

本発明は、以上の問題点を解決するためになされたもので、ホルダ部に脱着可能な状態で挟持と嵌合により固定されるため、ホルダと質量センサ素子が脱着可能な構造となっていることから、センサ素子のみに感応物の取り付け作業を施した後に、容易にホルダに取り付けることが可能となり、感応物質や、その取り付け作業の自由度が大きく広げることができる。   The present invention has been made in order to solve the above-described problems, and since the holder and the mass sensor element are detachable, the holder and the mass sensor element are detachable because the holder is fixed by clamping and fitting. For this reason, after the sensitive material is attached only to the sensor element, it can be easily attached to the holder, and the sensitive material and the degree of freedom of the attachment work can be greatly expanded.

本発明は、センサ素子単独で感応物質の付加処理が可能となるため、取り扱いが簡便で、感応物質材料の自由度、作業性が向上する。   In the present invention, since a sensitive substance can be added by a sensor element alone, handling is simple, and the degree of freedom and workability of the sensitive substance material are improved.

抗原−抗体反応や、DNA−DNA結合反応など、生体系由来の相補的結合反応を計測するQCM式質量センサに於ける計測は、このセンサが、リアルタイム定量解析も可能であり、反応形態を解析する上においても、非常に重要であり、メリットがある。種類の異なる多くの感応物質を扱い、マトリックス的に解析を試みるとき、センサ素子の反応部(通常は、Au、Alなどの金属電極)上には、それに応じて多種類の感応物質を固定させる必要がある。本発明では、このようなとき、センサ素子単体での処理が可能となり、作業性が簡便・確実であるため高精度計測が可能となる。   The QCM mass sensor that measures complementary binding reactions derived from biological systems, such as antigen-antibody reactions and DNA-DNA binding reactions, can also perform real-time quantitative analysis and analyze the reaction form. In doing so, it is very important and has advantages. When many different types of sensitive substances are handled and analysis is attempted in a matrix, various types of sensitive substances are fixed on the reaction part of the sensor element (usually a metal electrode such as Au or Al) accordingly. There is a need. According to the present invention, in such a case, it is possible to perform processing with a single sensor element, and since the workability is simple and reliable, highly accurate measurement is possible.

以下、添付図面に従って本発明の実施例を説明する。図1に示す本発明の質量センサも動作原理は従来の質量センサと同様で、抗原−抗体反応、DNA−RNA結合など、相補的結合反応を捕らえる場合、あらかじめセンサ素子の反応部(通常は、Au、Alなどの金属電極)上に、対応する抗原や抗体、または、DNAなどの感応物を付加しておき、溶液中に浸漬すると、2電極間には溶液を介して電気的リークの発生により、不安定、かつ、有限のインピーダンスをもって接続された状態で発振回路などにより固有振動周波数で励振させたまま溶液中に浸漬して対象物質との反応や結合の状態により変化する質量変化による周波数変化を計測するものである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The operation principle of the mass sensor of the present invention shown in FIG. 1 is the same as that of the conventional mass sensor. When capturing a complementary binding reaction such as an antigen-antibody reaction or DNA-RNA binding, the reaction part of the sensor element (usually, When a corresponding antigen, antibody, or sensitive substance such as DNA is added on a metal electrode (Au, Al, etc.) and immersed in a solution, electrical leakage occurs between the two electrodes via the solution. The frequency due to the mass change that changes depending on the reaction with the target substance and the state of binding by immersion in the solution while being excited at the natural vibration frequency by an oscillation circuit etc. in an unstable and connected state with a finite impedance. It measures changes.

構造的には質量センサ全体はホルダと質量センサ素子からなり、ホルダに質量センサ素子を保持する保持部が形成され、質量センサ素子がホルダと脱着可能な構造となっていることを特徴とする質量センサである。なお、ホルダの材質についてはセラミックなどを用いて形成するものである。   Structurally, the entire mass sensor is composed of a holder and a mass sensor element, a holding part for holding the mass sensor element is formed in the holder, and the mass sensor element is structured to be detachable from the holder. It is a sensor. The material of the holder is formed using ceramic or the like.

具体的な構造を図2に示す。図2は、圧電単結晶基板1の主面両面に電極2を形成してなる本発明の質量センサに使用される質量センサ素子3の断面図(図2(a))と斜視図(図2(b))を示す。本素子の振動姿態は「厚みすべり振動」であり、溶液の粘性や密度に応じて周波数を選定する。このとき、基本波の周波数を変える方法や、オーバトーン振動で周波数を変更する方法が用いられ通常、数MHz〜数十MHzの振動が多く使用される。図2(a)は溶液に浸漬する方の金属電極2に対し感応物質を付加した一例を描画し、図2(b)にはセンサ素子上に金属電極2を形成した一例を示した図である。通常、感応物質は、スピンコート、蒸着、沈着、LB膜形成などで形成される。   A specific structure is shown in FIG. 2 is a cross-sectional view (FIG. 2 (a)) and a perspective view (FIG. 2) of a mass sensor element 3 used in a mass sensor of the present invention in which electrodes 2 are formed on both main surfaces of a piezoelectric single crystal substrate 1. In FIG. (B)) is shown. The vibration mode of this element is “thickness shear vibration”, and the frequency is selected according to the viscosity and density of the solution. At this time, a method of changing the frequency of the fundamental wave or a method of changing the frequency by overtone vibration is used, and usually vibrations of several MHz to several tens of MHz are often used. FIG. 2A shows an example in which a sensitive substance is added to the metal electrode 2 immersed in the solution, and FIG. 2B shows an example in which the metal electrode 2 is formed on the sensor element. is there. Usually, the sensitive substance is formed by spin coating, vapor deposition, deposition, LB film formation or the like.

図3は本発明の特徴部分を図1の矢印A方向から見て示した斜視図である。圧電単結晶基板を使用した質量センサでホルダに質量センサ素子を保持する保持部が形成され、質量センサ素子がホルダと脱着可能な構造となっていることは図1で図示している。その特徴である要部については、質量センサ素子の外形部に突出する凸部とホルダの凹部とが嵌合し、質量センサ素子の外形部に突出する凸部には、ホルダの凹部と電気的に導通を図る導通部分により質量センサとホルダとが一体となっていることを図3では描画している。   FIG. 3 is a perspective view showing the characteristic part of the present invention as seen from the direction of arrow A in FIG. FIG. 1 shows that a mass sensor using a piezoelectric single crystal substrate is formed with a holder for holding the mass sensor element in the holder, and the mass sensor element is detachable from the holder. As for the main part which is the feature, the convex part protruding from the outer part of the mass sensor element and the concave part of the holder are fitted, and the convex part protruding from the outer part of the mass sensor element is electrically connected to the concave part of the holder. FIG. 3 shows that the mass sensor and the holder are integrated with each other by a conducting portion that conducts electricity.

また特に図示はしないが、図3に示すように質量センサ素子3をホルダの上部に配置するようなホルダを構成した場合、ホルダに溶液を入れ漏れないようにホルダの一方を塞ぎ、質量センサ素子3をホルダ内の溶液に浮かせるように配置した場合などは、質量センサ素子の外形部に突出する凸部4と、ホルダの凹部5の適度なはめあいでホルダに質量センサ素子3を保持することができる。そのために僅かな移動できる余裕が形成されている。   Further, although not shown in particular, when a holder in which the mass sensor element 3 is arranged on the upper part of the holder as shown in FIG. 3 is configured, one of the holders is closed so as not to leak the solution into the holder, and the mass sensor element 3 is arranged so as to float in the solution in the holder, the mass sensor element 3 can be held in the holder with an appropriate fit between the convex part 4 projecting to the outer shape part of the mass sensor element and the concave part 5 of the holder. it can. Therefore, there is a margin for slight movement.

そして、質量センサ素子はホルダとの該嵌合部分で、ホルダの凹部では質量センサ素子の外形部に突出する凸部が僅かに移動できる形態になっていることから、
あらかじめセンサ素子の反応部(通常は、Au、Alなどの金属電極)上に、対応する抗原や抗体、または、DNAなどの感応物を付加しておき、この状態で発振回路などにより固有振動周波数で励振させたまま溶液中に浸漬して対象物質との反応や結合の変化を測定するときの一連の質量センサ素子の保持と調整を簡略化することができる。
And since the mass sensor element is in the fitting part with the holder, and the convex part protruding to the outer shape part of the mass sensor element is slightly movable in the concave part of the holder,
A corresponding antigen, antibody, or sensitive material such as DNA is added in advance to the reaction part of the sensor element (usually a metal electrode such as Au or Al), and in this state, the natural vibration frequency is generated by an oscillation circuit or the like. It is possible to simplify the holding and adjustment of a series of mass sensor elements when measuring a reaction with a target substance or a change in binding by immersing in a solution while being excited by the above.

図4は本発明の質量センサを用いて質量を計測する装置の構成図の例である。図4で示す構成は、発振回路共々、温度変動の影響を除外する目的で、正確に温度制御された恒温槽内に置かれ、更に、測定に使用される溶液もこの恒温槽の温度条件で管理される。周波数の計測には、周波数カウンタが用いられるが、カウンタの基準は、Rb発振、及び高安定水晶発振器で作られた信号を使用することが望ましい。周波数カウンタで得られたデータはコンピュータで、希望するアルゴリズムで処理が出来る構造となっている。   FIG. 4 is an example of a configuration diagram of an apparatus for measuring mass using the mass sensor of the present invention. The configuration shown in FIG. 4 is placed in a thermostat that is precisely temperature controlled for the purpose of eliminating the influence of temperature fluctuations for both oscillation circuits, and the solution used for the measurement is also subject to the temperature conditions of this thermostat. Managed. For frequency measurement, a frequency counter is used. As a reference of the counter, it is desirable to use a signal generated by an Rb oscillation and a highly stable crystal oscillator. Data obtained by the frequency counter has a structure that can be processed by a computer with a desired algorithm.

以上本発明の実施例に記載のとおり、ホルダと質量センサ素子が脱着可能な構造となっており、ホルダ部に脱着可能な状態で挟持と嵌合により圧電単結晶基板1を固定することから、特に図示はなされていないが圧電単結晶基板1の固定部分にはホルダ内部の溶液が漏れ出さないようにシール構造となっていることは言うまでもない。   As described in the embodiments of the present invention, the holder and the mass sensor element are detachable, and the piezoelectric single crystal substrate 1 is fixed by clamping and fitting in a detachable state to the holder part. Although not shown in particular, it goes without saying that a sealing structure is provided in the fixed portion of the piezoelectric single crystal substrate 1 so that the solution inside the holder does not leak out.

本センサは、溶液内での反応、結合に対する質量変化を計測する例について述べてきたが、例えば、ダイオキシンなどの環境汚染物質の含有量計測のような気相中の計測に関しても有効であり、多種多様の感応物質の加工の簡便性や、センサ素子の支持がソフトに固定できるため、非常に安定した周波数が得られるため、計測環境が気相・液相を問わず、正確な測定が可能となる。   This sensor has been described with respect to examples of measuring mass changes due to reactions and bonds in solution, but it is also effective for measurements in the gas phase, such as measuring the content of environmental pollutants such as dioxins. Easy processing of a wide variety of sensitive materials and the support of the sensor element can be fixed softly, so a very stable frequency can be obtained, enabling accurate measurement regardless of the gas phase or liquid phase. It becomes.

本発明の液相計測質量センサの一例を示す概念図である。It is a conceptual diagram which shows an example of the liquid phase measurement mass sensor of this invention. 本発明に使用するセンサ素子を示す部分拡大図である。It is the elements on larger scale which show the sensor element used for this invention. 本発明の特徴である要部に着目した部分拡大図である。It is the elements on larger scale which paid its attention to the principal part which is the characteristics of this invention. 本発明の質量センサ素子を用いた質量計測装置の構成例を示す概念図である。It is a conceptual diagram which shows the structural example of the mass measuring device using the mass sensor element of this invention. 従来の液相計測質量センサの一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional liquid phase measurement mass sensor.

符号の説明Explanation of symbols

1 圧電単結晶基板
2 電極
3 質量センサ素子
4 質量センサ素子の外形部に突出する凸部
5 ホルダの凹部
DESCRIPTION OF SYMBOLS 1 Piezoelectric single crystal substrate 2 Electrode 3 Mass sensor element 4 Convex part which protrudes in the external part of a mass sensor element

Claims (2)

圧電単結晶基板を使用した質量センサにおいて、ホルダに該質量センサ素子を保持する保持部が形成され、該質量センサ素子が前記ホルダと脱着可能な構造となり、該センサ素子は、該質量センサ素子の外形部に突出する凸部と前記ホルダの凹部とが嵌合し、前記質量センサ素子の外形部に突出する凸部には、前記ホルダの凹部と電気的に導通を図る導通部分により前記センサ素子と前記ホルダとが一体となっていることを特徴とする質量センサ。 In a mass sensor using a piezoelectric single crystal substrate, a holder is formed to hold the mass sensor element in a holder, and the mass sensor element is configured to be detachable from the holder . The convex portion protruding from the outer shape portion and the concave portion of the holder are fitted, and the convex portion protruding from the outer shape portion of the mass sensor element is connected to the concave portion of the holder by a conductive portion that is electrically connected to the sensor element. A mass sensor, wherein the holder and the holder are integrated. 請求項記載の該質量センサ素子は該ホルダと該嵌合部分で、前記ホルダの凹部では前記質量センサ素子の外形部に突出する凸部が僅かに移動できる形態になっていることを特徴とする質量センサ。 The mass sensor element according to claim 1 , wherein the convex portion protruding from the outer shape portion of the mass sensor element is slightly movable in the concave portion of the holder at the fitting portion with the holder. Mass sensor.
JP2003339422A 2003-09-30 2003-09-30 Mass sensor Expired - Fee Related JP4158971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339422A JP4158971B2 (en) 2003-09-30 2003-09-30 Mass sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339422A JP4158971B2 (en) 2003-09-30 2003-09-30 Mass sensor

Publications (2)

Publication Number Publication Date
JP2005106579A JP2005106579A (en) 2005-04-21
JP4158971B2 true JP4158971B2 (en) 2008-10-01

Family

ID=34534617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339422A Expired - Fee Related JP4158971B2 (en) 2003-09-30 2003-09-30 Mass sensor

Country Status (1)

Country Link
JP (1) JP4158971B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796825B2 (en) * 2005-11-30 2011-10-19 京セラキンセキ株式会社 Sensor for measuring minute mass

Also Published As

Publication number Publication date
JP2005106579A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
CN101371132B (en) Self-exciting, self-sensing piezoelectric cantilever sensor
Heinisch et al. Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements
US8349611B2 (en) Resonant sensors and methods of use thereof for the determination of analytes
US8809065B2 (en) Detection and measurement of mass change using an electromechanical resonator
Beardslee et al. Liquid-phase chemical sensing using lateral mode resonant cantilevers
JP2002506990A (en) Micro mechanical potential difference sensor
CN109374729B (en) Acoustic micro-mass sensor and detection method
Cunningham et al. Design, fabrication and vapor characterization of a microfabricated flexural plate resonator sensor and application to integrated sensor arrays
JP2008122105A (en) Elastic wave sensor and detection method
US7335336B1 (en) Sensor array using lateral field excited resonators
JP2003307481A (en) Multichannel biosensor
JP2008026099A (en) Resonance vibrator mass detector
Stachiv et al. Mass spectrometry of heavy analytes and large biological aggregates by monitoring changes in the quality factor of nanomechanical resonators in air
CA2271179A1 (en) Process for monitoring and detecting small molecule - biomolecule interactions
JP2004340766A (en) Apparatus for detecting chemical substance
US20060029929A1 (en) Systems and methods for molecular recognition
JP2005274164A (en) Biosensor device
US7331232B2 (en) Measurement method and biosensor apparatus using resonator
Lee et al. Measurement of hepatitis B surface antigen concentrations using a piezoelectric microcantilever as a mass sensor
JP4158971B2 (en) Mass sensor
JP2006078181A (en) Qcm sensor and measuring method using it
JP4180472B2 (en) Mass sensor
JP4216692B2 (en) Mass sensor
Ogi et al. Replacement-free electrodeless quartz crystal microbalance biosensor using nonspecific-adsorption of streptavidin on quartz
JP2005106580A (en) Mass sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4158971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees