JP4180472B2 - Mass sensor - Google Patents

Mass sensor Download PDF

Info

Publication number
JP4180472B2
JP4180472B2 JP2003307475A JP2003307475A JP4180472B2 JP 4180472 B2 JP4180472 B2 JP 4180472B2 JP 2003307475 A JP2003307475 A JP 2003307475A JP 2003307475 A JP2003307475 A JP 2003307475A JP 4180472 B2 JP4180472 B2 JP 4180472B2
Authority
JP
Japan
Prior art keywords
mass sensor
sensor element
mass
sensor
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003307475A
Other languages
Japanese (ja)
Other versions
JP2005077231A (en
Inventor
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2003307475A priority Critical patent/JP4180472B2/en
Publication of JP2005077231A publication Critical patent/JP2005077231A/en
Application granted granted Critical
Publication of JP4180472B2 publication Critical patent/JP4180472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、圧電単結晶基板上に介在する、種々の微少質量(物)を脱着させたとき、質量変化を周波数変化の大きさで計測する「Sauerbreyの理論」を用いた、QCM式の質量センサに関する。   The present invention is a QCM type mass that uses “Sauerbrey's theory” that measures mass change by the magnitude of frequency change when various minute masses (objects) interposed on a piezoelectric single crystal substrate are desorbed. It relates to sensors.

近年では、地球環境汚染問題や、ヒトの遺伝子解明などの研究が進められており、例えば、環境ホルモン種の同定、抗原−抗体反応、高分子蛋白同士(DNA−DNA、DNA−RNA)の結合反応、酵素反応の解析、プロテオーム解析などが盛んに行われている。そして、これら分析手法として、ガスクロマトグラフィ質量分析器(GC−MS)、高速液体クロマトグラフ(HPLC)や、表面プラズモン共鳴計測装置(SPR)の様な装置が使用されている。これら装置は、大型で高価な設備であると同時に分析感度はかなり高いが、試料の前処理にはかなりの手間と時間が必要だったり、更に、多成分の同時解析が困難などの問題がある。また、常々反応の過程をリアルタイムで観測したいという要求もあるが、上記設備ではそのようなことは不可能である。   In recent years, research on global environmental pollution problems and human genetic elucidation has been conducted. For example, identification of environmental hormone species, antigen-antibody reaction, binding of high molecular proteins (DNA-DNA, DNA-RNA) Reactions, analysis of enzyme reactions, proteome analysis, etc. are actively performed. And as these analysis methods, apparatuses, such as a gas chromatography mass spectrometer (GC-MS), a high performance liquid chromatograph (HPLC), and a surface plasmon resonance measuring device (SPR), are used. These instruments are large and expensive equipment, and at the same time have a very high analytical sensitivity. However, pretreatment of the sample requires considerable labor and time, and it is difficult to analyze multiple components simultaneously. . In addition, there is always a demand to observe the reaction process in real time, but this is not possible with the above equipment.

抗原−抗体反応、DNA−RNA結合など、相補的結合反応が生じたとき、重量変化や、誘電率変化が発生する。QCM式質量センサでは、このような微少な変化を捉えることが可能である。
圧電単結晶をセンサ素子として使用した質量センサでは、 ngレベル の重量測定が可能であることから、抗体(或いは、抗原)をデバイス表面に固定化することで抗原(或いは、抗体)の検知が可能となる。また、PHや導電率についても、導電率変化を音響電気相互作用により検出することが可能となる。そして、反応の過程を周波数変化として捉えられることから、周波数変化の様子をリアルタイム計測、記録することでリアルタイム定量解析が可能となる。
(1) N.Miura,H.Higabashi,G.Sakai 他: Piezoelectric crystal immunosensor for sensitive detection of methamphetamine(stimulant drug) in human urine Proc. Fourth Int. Meeting on Chemical Sensors, Technical Digest, Tokyo. pp.13-17(1992)
When a complementary binding reaction such as an antigen-antibody reaction or DNA-RNA binding occurs, a change in weight or a change in dielectric constant occurs. With the QCM mass sensor, it is possible to capture such minute changes.
Mass sensors that use piezoelectric single crystals as sensor elements can measure ng levels of weight, so it is possible to detect antigens (or antibodies) by immobilizing antibodies (or antigens) on the device surface. It becomes. Further, regarding PH and conductivity, it is possible to detect a change in conductivity by an acoustoelectric interaction. Since the reaction process can be understood as a frequency change, real-time quantitative analysis is possible by measuring and recording the state of the frequency change in real time.
(1) N. Miura, H. Higabashi, G. Sakai et al .: Piezoelectric crystal immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine Proc. Fourth Int. Meeting on Chemical Sensors, Technical Digest, Tokyo. Pp. 13- 17 (1992)

図1に示す質量センサは、抗原−抗体反応、DNA−RNA結合など、相補的結合反応を捕らえる場合、あらかじめセンサ素子の反応部(通常は、Au、Alなどの金属電極)上に、対応する抗原や抗体、または、DNAなどの感応物を付加しておき、この状態で発振回路などにより固有振動周波数で励振させたまま溶液中に浸漬して対象物質との反応や結合の状態により変化する質量変化による周波数変化を計測することになる。   When the mass sensor shown in FIG. 1 captures a complementary binding reaction such as an antigen-antibody reaction or a DNA-RNA binding, the mass sensor corresponds in advance on a reaction part (usually a metal electrode such as Au or Al) of the sensor element. A sensitive substance such as an antigen, antibody, or DNA is added, and in this state, it is immersed in a solution while being excited at the natural vibration frequency by an oscillation circuit or the like, and changes depending on the reaction or binding state with the target substance. The frequency change due to the mass change is measured.

このとき、センサ素子の固有振動の姿態は「厚みすべり振動」であり、この振動姿態を誘発する為、センサ素子の主面表裏には対抗して金属電極が必要となる。従って、この構成で溶液中に浸漬すると、2電極間には溶液を介して電気的リークの発生により、不安定、かつ、有限のインピーダンスをもって接続された回路が付加されることとなり、発振周波数は不安定となり計測が困難となる。   At this time, the state of the natural vibration of the sensor element is “thickness shear vibration”, and in order to induce this vibration state, metal electrodes are required on the front and back of the main surface of the sensor element. Therefore, when immersed in a solution with this structure, an unstable circuit connected with a finite impedance is added between the two electrodes due to the occurrence of electrical leakage through the solution, and the oscillation frequency is Measurement becomes difficult due to instability.

この対策として、反応などに寄与しない反対側主面上に絶縁処理を施し溶液中に浸漬することが考えられるが、励振の負荷が大きくなり、容易に発振させることが困難となる。従って、通常、反応主面は溶液中に露出せざるを得ないが、反対側の主面は気相中に露出する構造をとる。
従来の質量センサの構造例を図1に示す。これは、センサ素子の外周寸法に近似した円筒状のホルダの片端に、開口部を塞ぐようにしてセンサ素子をエポキシ系接着剤で固定、円筒内に溶液を導入できる構造とし、反対側主面は気相中に露出されているものである。
As a countermeasure against this, it is conceivable that the opposite main surface that does not contribute to the reaction is subjected to an insulation treatment and immersed in a solution, but the excitation load becomes large and it is difficult to oscillate easily. Therefore, usually, the reaction main surface must be exposed in the solution, but the opposite main surface is exposed in the gas phase.
A structural example of a conventional mass sensor is shown in FIG. This is a structure in which the sensor element can be fixed with epoxy adhesive at one end of a cylindrical holder that approximates the outer circumference of the sensor element so that the opening is closed, and the solution can be introduced into the cylinder. Is exposed in the gas phase.

この構造は、気相、液相を分離することができるが、既にエポキシ接着剤で固定されているため、計測前に感応物を付加させる作業の困難性や、制限されたりする問題、また、小型化への対応では、センサ素子周辺部とは言え、主振動の伝播波が減衰し切れず残存する部位を硬く固定することは、著しく振動の安定性を劣化させることになる。   This structure can separate the gas phase and the liquid phase, but since it is already fixed with an epoxy adhesive, it is difficult to add sensitive materials before measurement, problems that are limited, In response to downsizing, the stability of vibration is remarkably deteriorated by fixing the portion where the propagation wave of the main vibration is not completely attenuated and remains, although it is in the periphery of the sensor element.

本発明は、以上の問題点を解決するためになされたもので、センサ素子を導電体材料と絶縁体材料が交互に連続して配列した高分子弾性体により、ホルダ部に脱着可能な状態で、挟持するように固定されるため、センサ素子のみに感応物取り付け作業を施した後に、容易にホルダに取り付けることが可能となり、感応物質や、その取り付け作業の自由度が大きく広がると共に、高分子弾性体にはゴム材の弾力性の大きい材料をしようすることで、パッキング性が良く漏液が発生せず、漏洩振動の束縛も無くなり、安定度の高い発振振動を提供する事が出来る。   The present invention has been made to solve the above-described problems. The sensor element can be attached to and detached from the holder portion by a polymer elastic body in which a conductor material and an insulator material are alternately arranged. Because it is fixed so that it can be clamped, it is possible to easily attach it to the holder after performing a sensor mounting operation only on the sensor element. By using a rubber material having high elasticity as the elastic body, it is possible to provide a highly stable oscillation vibration because the packing property is good and no leakage occurs, and there is no restriction of leakage vibration.

本発明は、センサ素子単独で感応物質の付加処理が可能となるため、取り扱いが簡便で、感応物質材料の自由度、作業性が向上する。また、導電体材料と絶縁体材料が相互に連続して配列した、ゴム材の高分子弾性体でセンサ素子の外部を表裏から挟持する構造は、ホルダへの脱着が容易、かつ、確実であり、ソフト支持・高パッキング性のため、センサとして高い周波数安定度を確保すると共に漏液対策も可能となる。 In the present invention, since a sensitive substance can be added by a sensor element alone, handling is simple, and the degree of freedom and workability of the sensitive substance material are improved. The conductive material and the insulating material is arranged in series with each other, the structure for clamping the outer peripheral portion of the sensor element from the front and back with the elastic polymer of the rubber material is easily desorbed in the holder, and surely Because of the soft support and high packing property, it is possible to secure high frequency stability as a sensor and to take measures against leakage.

抗原−抗体反応や、DNA−DNA結合反応など、生体系由来の相補的結合反応を計測するQCM式質量センサに於ける計測は、このセンサが、リアルタイム定量解析も可能であり、反応形態を解析する上においても、非常に重要であり、メリットがある。種類の異なる多くの感応物質を扱い、マトリックス的に解析を試みるとき、センサ素子の反応部(通常は、Au、Alなどの金属電極)上には、それに応じて多種類の感応物質を固定させる必要がある。本発明では、このようなとき、センサ素子単体での処理が可能となり、作業性が簡便・確実であるため高精度計測が可能となる、またソフト支持・高パッキング構造のため、センサとして高い周波数安定度を確保すると共に漏液対策も可能となることを特徴とする質量センサである。   The QCM mass sensor that measures complementary binding reactions derived from biological systems, such as antigen-antibody reactions and DNA-DNA binding reactions, can also perform real-time quantitative analysis and analyze the reaction form. In doing so, it is very important and has advantages. When many different types of sensitive substances are handled and analysis is attempted in a matrix, various types of sensitive substances are fixed on the reaction part of the sensor element (usually a metal electrode such as Au or Al) accordingly. There is a need. In the present invention, the sensor element alone can be processed in such a case, and the workability is simple and reliable, so that high-precision measurement is possible, and because of the soft support and high packing structure, the sensor has a high frequency. It is a mass sensor characterized by ensuring stability and taking countermeasures against leakage.

以下、添付図面に従って本発明の実施例を説明する。図2は、圧電単結晶基板1の主面両面に電極2を形成してなる本発明の質量センサに使用される質量センサ素子3の斜視図(図2(a))、及び、断面図(図2(b))を示す。本素子の振動姿態は「厚みすべり振動」であり、溶液の粘性や密度に応じて周波数を選定する。このとき、基本波の周波数を変える方法や、オーバトーン振動で周波数を変更する方法が用いられ通常、数MHz〜数十MHzの振動が多く使用される。図2(a)は、センサ素子上に金属電極2を形成した一例を示し、図2(b)には、溶液に浸漬する方の金属電極2に対し、感応物質を付加した例である。
通常、感応物質は、スピンコート、蒸着、沈着、LB膜形成などで形成される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 2 is a perspective view (FIG. 2 (a)) of a mass sensor element 3 used in the mass sensor of the present invention in which electrodes 2 are formed on both main surfaces of the piezoelectric single crystal substrate 1, and a cross-sectional view (FIG. FIG. 2 (b)) is shown. The vibration mode of this element is “thickness shear vibration”, and the frequency is selected according to the viscosity and density of the solution. At this time, a method of changing the frequency of the fundamental wave or a method of changing the frequency by overtone vibration is used, and usually vibrations of several MHz to several tens of MHz are often used. FIG. 2A shows an example in which the metal electrode 2 is formed on the sensor element, and FIG. 2B shows an example in which a sensitive substance is added to the metal electrode 2 immersed in the solution.
Usually, the sensitive substance is formed by spin coating, vapor deposition, deposition, LB film formation, or the like.

図3は、導電体材料と絶縁体材料が交互に連続して配列した、ゴム材の高分子弾性体4については、数十ミクロンから百ミクロン厚みの導電体材料と絶縁体材料が交互に、長手方向(ひも状)に配列・形成され、両終端部を接合して、リング状の形状に成形したもので、この断面およびリングの形状は、通常円形であるが、特に其の形状はこだわらない。ただし、センサ素子の主面外周部2面を挟持する構造であるので、板厚の中心を通り板厚に平行な面に対し、対象に配置されることが望ましい。
センサ素子上の電極2と外部電極とは、この長手方向に導電体材料と絶縁体材料が交互に配列したリング状のゴム材の高分子弾性体4の導電部を介して接続され、発振動作を可能としている。この交互に配置する導電体材料と絶縁体材料により質量センサ素子上の電極と外部接続端子との他電極とが分離して接続導通させることができる。
FIG. 3 shows a rubber-like polymer elastic body 4 in which a conductor material and an insulator material are alternately and continuously arranged. A conductor material and an insulator material having a thickness of several tens to a hundred microns are alternately arranged. It is arranged and formed in the longitudinal direction (string shape), and both ends are joined to form a ring shape. The cross section and ring shape are usually circular, but the shape is particularly difficult. Absent. However, since the sensor element has a structure in which the two outer peripheral portions of the main surface of the sensor element are sandwiched, it is desirable that the sensor element be disposed on the surface that passes through the center of the plate thickness and is parallel to the plate thickness.
The electrode 2 on the sensor element and the external electrode are connected via a conductive portion of a ring-shaped rubber material polymer elastic body 4 in which conductor materials and insulator materials are alternately arranged in the longitudinal direction, and oscillates. Is possible. With the alternately arranged conductor material and insulator material, the electrode on the mass sensor element and the other electrode of the external connection terminal can be separated and connected.

図4は、本質量センサ素子3をホルダに組み込んだときの様子の構造を断面図で表したもので、ホルダの片側端付近の内周径部を大きくして、リング状のゴム材の高分子弾性体4が入るようにし、段違い部分で固定できる構造となっている。この高分子弾性体4は、溶液に接することになるので全体が絶縁体で作製される。その次にセンサ素子を反応面を溶液側になるように入れた後、導電体材料と絶縁体材料が交互に配列したリング状のゴム材の高分子弾性体4を入れ、ストッパにより規格化された圧力で固定する。このとき、高分子弾性体4は、適度につぶされてホルダ内周部にあらかじめ作製された電極と導通して、センサ素子と外部(発振器)との導通が確立する。   FIG. 4 is a cross-sectional view showing the structure of the mass sensor element 3 incorporated in a holder. The inner peripheral diameter portion near one end of the holder is enlarged to increase the height of the ring-shaped rubber material. The structure is such that the molecular elastic body 4 can be inserted and can be fixed at a stepped portion. Since the polymer elastic body 4 comes into contact with the solution, the whole is made of an insulator. Next, after putting the sensor element so that the reaction surface is on the solution side, a polymer elastic body 4 of a ring-shaped rubber material in which a conductor material and an insulator material are alternately arranged is put and standardized by a stopper. Fix at a constant pressure. At this time, the polymer elastic body 4 is appropriately crushed and is electrically connected to an electrode prepared in advance on the inner peripheral portion of the holder, thereby establishing electrical connection between the sensor element and the outside (oscillator).

図6は、本発明の質量センサを用いて質量を計測する装置の構成図の例である。ただし、質量センサ部は断面を示す。上記構造で作製された質量センサは、発振回路共々、温度変動の影響を除外する目的で、正確に温度制御された恒温槽内に置かれ、更に、測定に使用される溶液もこの恒温槽の温度条件で管理される。周波数の計測には、周波数カウンタが用いられるが、カウンタの基準は、Rb発振、及び、高安定水晶発振器で作られた信号を使用することが望ましい。周波数カウンタで得られたデータはコンピュータで、希望するアルゴリズムで処理が出来る構造となっている。   FIG. 6 is an example of a configuration diagram of an apparatus for measuring mass using the mass sensor of the present invention. However, the mass sensor section shows a cross section. The mass sensor fabricated with the above structure is placed in a thermostat that is precisely temperature controlled for the purpose of eliminating the influence of temperature fluctuations, together with the oscillation circuit, and the solution used for the measurement is also stored in the thermostat. Managed by temperature conditions. For frequency measurement, a frequency counter is used. As a reference of the counter, it is desirable to use a signal generated by an Rb oscillation and a highly stable crystal oscillator. Data obtained by the frequency counter has a structure that can be processed by a computer with a desired algorithm.

なお本発明の他の実施例として、図5に示すように圧電単結晶基板1上の電極2両方が気相環境を実現するホルダ構造であっても構わない。   As another embodiment of the present invention, as shown in FIG. 5, both electrodes 2 on the piezoelectric single crystal substrate 1 may have a holder structure that realizes a gas phase environment.

本センサは、溶液内での反応、結合に対する質量変化を計測する例について述べてきたが、例えば、ダイオキシンなどの環境汚染物質の含有量計測のような気相中の計測に関しても有効であり、多種多様の感応物質の加工の簡便性や、センサ素子の支持がソフトに固定できるため、非常に安定した周波数が得られるため、計測環境が気相・液相を問わず、正確な測定が可能となる。   This sensor has been described with respect to examples of measuring mass changes due to reactions and bonds in solution, but it is also effective for measurements in the gas phase, such as measuring the content of environmental pollutants such as dioxins. Easy processing of a wide variety of sensitive materials and the support of the sensor element can be fixed softly, so a very stable frequency can be obtained, enabling accurate measurement regardless of the gas phase or liquid phase. It becomes.

従来の液相計測質量センサの一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional liquid phase measurement mass sensor. 本発明に使用するセンサ素子を示す部分拡大図である。It is the elements on larger scale which show the sensor element used for this invention. リング状ゴム材料の高分子弾性体の概念図である。It is a conceptual diagram of the polymeric elastic body of a ring-shaped rubber material. 本質量センサの構造を示す断面図である。It is sectional drawing which shows the structure of this mass sensor. 本発明の他の実施例である気相環境で使用する質量センサの一例を示す概念図である。It is a conceptual diagram which shows an example of the mass sensor used in the gaseous-phase environment which is another Example of this invention. 微少質量計測装置の構成例を示す概念図である。It is a conceptual diagram which shows the structural example of a minute mass measuring device.

符号の説明Explanation of symbols

1 圧電単結晶基板
2 電極
3 質量センサ素子
4 高分子弾性体(リング状)
DESCRIPTION OF SYMBOLS 1 Piezoelectric single crystal substrate 2 Electrode 3 Mass sensor element 4 Polymer elastic body (ring shape)

Claims (1)

圧電単結晶基板の両面に電極が形成され、該電極が該圧電単結晶基板周囲に引き出されている質量センサにおいて、ホルダに該質量センサ素子を保持する段違い部分が形成され、該段違い部分に該質量センサ素子と、該質量センサ素子の基板主面外周部をリング状で少なくとも一方は導電体材料と絶縁材材料が交互に連続して配列された高分子弾性体で挟持する構造で配置され、該質量センサ素子上の前記基板主面外周部の該電極と該ホルダの外部接続端子が接続導通されることを特徴とする質量センサ。 Are formed electrodes on both surfaces of a piezoelectric single crystal substrate, in the mass sensor in which the electrodes are drawn out around the piezoelectric single crystal substrate, the holder is formed a stepped portion for holding the mass sensor element, the stepped difference portion The mass sensor element and the outer peripheral portion of the main surface of the substrate of the mass sensor element are arranged in a ring shape, and at least one of the mass sensor elements is arranged in a structure sandwiched by a polymer elastic body in which conductive material and insulating material are alternately arranged. The mass sensor, wherein the electrode on the outer peripheral portion of the substrate main surface on the mass sensor element and the external connection terminal of the holder are connected and connected .
JP2003307475A 2003-08-29 2003-08-29 Mass sensor Expired - Fee Related JP4180472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307475A JP4180472B2 (en) 2003-08-29 2003-08-29 Mass sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307475A JP4180472B2 (en) 2003-08-29 2003-08-29 Mass sensor

Publications (2)

Publication Number Publication Date
JP2005077231A JP2005077231A (en) 2005-03-24
JP4180472B2 true JP4180472B2 (en) 2008-11-12

Family

ID=34410253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307475A Expired - Fee Related JP4180472B2 (en) 2003-08-29 2003-08-29 Mass sensor

Country Status (1)

Country Link
JP (1) JP4180472B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491111B2 (en) * 2009-09-17 2014-05-14 セイコー・イージーアンドジー株式会社 Micro sensing device
JP2011145195A (en) * 2010-01-15 2011-07-28 Ulvac Japan Ltd Detection chip, and flow-through cell with the same

Also Published As

Publication number Publication date
JP2005077231A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
EP0943091B2 (en) Method and apparatus for characterizing materials by using a mechanical resonator
CN101371132B (en) Self-exciting, self-sensing piezoelectric cantilever sensor
US6494079B1 (en) Method and apparatus for characterizing materials by using a mechanical resonator
US8809065B2 (en) Detection and measurement of mass change using an electromechanical resonator
US20100207602A1 (en) Resonant sensors and methods of use thereof for the determination of analytes
Beardslee et al. Liquid-phase chemical sensing using lateral mode resonant cantilevers
JP2010526286A (en) Mass sensing chemical sensor
US7335336B1 (en) Sensor array using lateral field excited resonators
CA2271179A1 (en) Process for monitoring and detecting small molecule - biomolecule interactions
JP4083621B2 (en) Analysis method using vibrator
JP2003307481A (en) Multichannel biosensor
Lec et al. Acoustic wave biosensors
US7331232B2 (en) Measurement method and biosensor apparatus using resonator
JP4180472B2 (en) Mass sensor
US7993584B1 (en) Caustic, corrosive or conductive liquid/gas sensor using lateral-field-excited resonator
Lee et al. Measurement of hepatitis B surface antigen concentrations using a piezoelectric microcantilever as a mass sensor
JP4158971B2 (en) Mass sensor
Ogi et al. Replacement-free electrodeless quartz crystal microbalance biosensor using nonspecific-adsorption of streptavidin on quartz
Plata et al. Characterization and analytical validation of a microcantilever-based sensor for the determination of total carbonate in soil samples
Dultsev et al. QCM operating in threshold mode as a gas sensor
JP2005106580A (en) Mass sensor
JP4216692B2 (en) Mass sensor
JP2005134327A (en) Mass sensor
EP1361428A2 (en) Method and apparatus for characterizing materials by using a mechanical resonator
JP2005214989A (en) Qcm sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R150 Certificate of patent or registration of utility model

Ref document number: 4180472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees