JP2005134327A - Mass sensor - Google Patents

Mass sensor Download PDF

Info

Publication number
JP2005134327A
JP2005134327A JP2003373010A JP2003373010A JP2005134327A JP 2005134327 A JP2005134327 A JP 2005134327A JP 2003373010 A JP2003373010 A JP 2003373010A JP 2003373010 A JP2003373010 A JP 2003373010A JP 2005134327 A JP2005134327 A JP 2005134327A
Authority
JP
Japan
Prior art keywords
mass sensor
sensor element
piezoelectric single
single crystal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003373010A
Other languages
Japanese (ja)
Inventor
Masako Takada
雅子 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2003373010A priority Critical patent/JP2005134327A/en
Publication of JP2005134327A publication Critical patent/JP2005134327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain the structure of a mass sensor element for accurately inspecting DNAs and improving the measurement precision of a piezoelectric single-crystal substrate. <P>SOLUTION: In the mass sensor having a holder for retaining the mass sensor which uses a piezoelectric single-crystal substrate for a substrate and the piezoelectric single-crystal substrate, where the mass sensor and the holder are integrated and the entire part is made of a piezoelectric single crystal, the mass sensor element section of the mass sensor is formed by a plate thickness that is thinner than the entire mass sensor, and holders for covering the thin part of at least the mass sensor element are laminated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧電単結晶基板上に介在する、種々の微少質量(物)を付着させたとき、質量変化を周波数変化の大きさで計測する「Sauerbreyの理論」を用いた、QCM式の質量センサに関する。   The present invention relates to a mass of QCM using “Sauerbrey's theory” that measures mass change by the magnitude of frequency change when various minute masses (objects) interposed on a piezoelectric single crystal substrate are attached. It relates to sensors.

近年では、地球環境汚染問題や、ヒトの遺伝子解明などの研究が進められており、例えば、環境ホルモン種の同定、抗原−抗体反応、高分子蛋白同士(DNA−DNA、DNA−RNA)の結合反応、酵素反応の解析、プロテオーム解析などが盛んに行われている。そして、これら分析手法として、ガスクロマトグラフィ質量分析器(GC−MS)、高速液体クロマトグラフ(HPLC)や、表面プラズモン共鳴計測装置(SPR)の様な装置が使用されている。これら装置は、大型で高価な設備であると同時に分析感度はかなり高いが、試料の前処理にはかなりの手間と時間が必要だったり、更に、多成分の同時解析が困難などの問題がある。また、常々反応の過程をリアルタイムで観測したいという要求もあるが、上記設備ではそのようなことは不可能である。   In recent years, research on global environmental pollution problems and human genetic elucidation has been conducted. For example, identification of environmental hormone species, antigen-antibody reaction, binding of high molecular proteins (DNA-DNA, DNA-RNA) Reactions, analysis of enzyme reactions, proteome analysis, etc. are actively performed. And as these analysis methods, apparatuses, such as a gas chromatography mass spectrometer (GC-MS), a high performance liquid chromatograph (HPLC), and a surface plasmon resonance measuring device (SPR), are used. These instruments are large and expensive equipment, and at the same time have a very high analytical sensitivity. However, pretreatment of the sample requires considerable labor and time, and it is difficult to analyze multiple components simultaneously. . In addition, there is always a demand to observe the reaction process in real time, but this is not possible with the above equipment.

抗原−抗体反応、DNA−RNA結合など、相補的結合反応が生じたとき、重量変化や、誘電率変化が発生する。QCM式質量センサでは、このような微少な変化を捉えることが可能である。
圧電単結晶をセンサ素子として使用した質量センサでは、ng(ナノグラム)レベルの重量測定が可能であることから、抗体(或いは、抗原)をデバイス表面に固定化することで抗原(或いは、抗体)の検知が可能となる。また、PH値(モル濃度で表した水素イオン濃度の逆数の常用対数)や導電率についても、導電率変化を音響電気相互作用により検出することが可能となる。
When a complementary binding reaction such as an antigen-antibody reaction or DNA-RNA binding occurs, a change in weight or a change in dielectric constant occurs. With the QCM mass sensor, it is possible to capture such minute changes.
In a mass sensor using a piezoelectric single crystal as a sensor element, ng (nanogram) level weight measurement is possible. By immobilizing an antibody (or antigen) on the device surface, the antigen (or antibody) Detection is possible. In addition, regarding the PH value (the common logarithm of the reciprocal of the hydrogen ion concentration expressed in terms of molar concentration) and the conductivity, it is possible to detect a change in conductivity by an acoustoelectric interaction.

そして、反応の過程を周波数変化として捉えられることから、周波数変化の様子をリアルタイム計測、記録することでリアルタイム定量解析が可能となる。
特開平6−018394号公報 特開2001−153777号公報 特開昭62−064934号公報 (1) N.Miura,H.Higabashi,G.Sakai 他: Piezoelectric crystal immunosensor for sensitive detection of methamphetamine(stimulant drug) in human urine Proc. Fourth Int. Meeting on Chemical Sensors, Technical Digest, Tokyo. pp.13-17(1992)
And since the process of reaction can be grasped as frequency change, real-time quantitative analysis becomes possible by measuring and recording the state of frequency change in real time.
JP-A-6-018394 JP 2001-153777 A JP-A-62-064934 (1) N. Miura, H. Higabashi, G. Sakai et al .: Piezoelectric crystal immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine Proc. Fourth Int. Meeting on Chemical Sensors, Technical Digest, Tokyo. Pp. 13- 17 (1992)

図6に示す質量センサは、抗原−抗体反応、DNA−RNA結合など、相補的結合反応を捕らえる場合、あらかじめセンサ素子の反応部(通常は、Au、Alなどの金属電極)上に、対応する抗原や抗体、または、DNAなどの感応物を付加しておき、この状態で発振回路などにより固有振動周波数で励振させたまま溶液中に浸漬して対象物質との反応や結合の状態により変化する質量変化による周波数変化を計測することになる。   When the mass sensor shown in FIG. 6 captures a complementary binding reaction such as an antigen-antibody reaction or DNA-RNA binding, the mass sensor corresponds in advance to a reaction part of a sensor element (usually a metal electrode such as Au or Al). A sensitive substance such as an antigen, antibody, or DNA is added, and in this state, it is immersed in a solution while being excited at the natural vibration frequency by an oscillation circuit or the like, and changes depending on the reaction or binding state with the target substance. The frequency change due to the mass change is measured.

このとき、センサ素子の固有振動の姿態は「厚みすべり振動」であり、この振動姿態を自励する為、センサ素子の主面表裏には対向して金属電極が必要となる。従って、この構成で溶液中に浸漬すると、2電極間には溶液を介して電気的リークの発生により、不安定、かつ、有限のインピーダンスをもって接続された回路が付加されることとなり、発振周波数は不安定となり計測が困難となる。   At this time, the state of the natural vibration of the sensor element is “thickness shear vibration”, and in order to self-excited this vibration state, a metal electrode is required oppositely on the front and back of the main surface of the sensor element. Therefore, when immersed in a solution with this structure, an unstable circuit connected with a finite impedance is added between the two electrodes due to the occurrence of electrical leakage through the solution, and the oscillation frequency is Measurement becomes difficult due to instability.

この対策として、反応などに寄与しない反対側主面上に絶縁処理を施し溶液中に浸漬することが考えられるが、励振の負荷が大きくなり、容易に発振させることが困難となる。従って、通常、反応主面は溶液中に露出せざるを得ないが、反対側の主面は気相中に露出する構造をとる。これは、センサ素子の外周寸法に近似したセラミック材料から成る円筒状のホルダの片端に、開口部を塞ぐようにしてセンサ素子をエポキシ系接着剤で固定、円筒内に溶液を導入できる構造あるいは円筒を液中に浸積できる構造とし、反対側主面は気相中に露出されているものである。   As a countermeasure against this, it is conceivable that the opposite main surface that does not contribute to the reaction is subjected to an insulation treatment and immersed in a solution, but the excitation load becomes large and it is difficult to oscillate easily. Therefore, usually, the reaction main surface must be exposed in the solution, but the opposite main surface is exposed in the gas phase. This is a structure or cylinder in which a sensor element can be fixed with an epoxy-based adhesive at one end of a cylindrical holder made of a ceramic material that approximates the outer circumference of the sensor element, and the solution can be introduced into the cylinder. Is structured so as to be immersed in the liquid, and the opposite main surface is exposed in the gas phase.

この構造は、気相、液相を分離することができるが、ホルダの底面ひとつにセンサ素子となる圧電単結晶基板を取り付ける構造をとる。また、質量センサのホルダ材質がセラミック材料であることと、質量センサ素子本体が圧電単結晶基板(水晶材料)ということで、微少の周波数変化を質量変化として検出する測定であることから、正確にDNA検体の状態変化を計ることが難しい構造となってしまう。   This structure can separate the gas phase and the liquid phase, but has a structure in which a piezoelectric single crystal substrate serving as a sensor element is attached to one bottom surface of the holder. In addition, because the mass sensor holder material is a ceramic material and the mass sensor element body is a piezoelectric single crystal substrate (quartz crystal material), it is a measurement that detects minute frequency changes as mass changes. This makes it difficult to measure changes in the state of the DNA sample.

本発明は、以上の問題点を解決するためになされたもので、圧電単結晶基板を基板に使用した質量センサと該圧電単結晶基板を保持するホルダを有する質量センサにおいて、該質量センサと該ホルダを一体化し全体を圧電単結晶で形成し、該質量センサの質量センサ素子部分が該質量センサ全体より薄い板厚で形成されており、少なくとも該質量センサ素子の薄い部分を被うホルダが貼り合わさっていることを特徴とし、質量センサを圧電単結晶基板である水晶材料で形成した質量センサである。   The present invention has been made to solve the above-described problems. A mass sensor using a piezoelectric single crystal substrate as a substrate and a mass sensor having a holder for holding the piezoelectric single crystal substrate. The holder is integrated and formed as a whole by a piezoelectric single crystal, and the mass sensor element portion of the mass sensor is formed with a plate thickness thinner than the entire mass sensor, and a holder that covers at least the thin portion of the mass sensor element is attached. The mass sensor is characterized in that the mass sensor is formed of a quartz crystal material that is a piezoelectric single crystal substrate.

上記のような質量センサ素子の形態により、検体測定に対する測定精度を向上し、また質量センサ自体の構成を簡略することで質量センサ素子自身の製造工数とコストの低減を実現することから質量センサの設計の自由度を広げることができる。   The above-described configuration of the mass sensor element improves the measurement accuracy for the analyte measurement, and simplifies the configuration of the mass sensor itself, thereby reducing the manufacturing man-hour and cost of the mass sensor element. Design freedom can be expanded.

本発明は、質量センサ全体を圧電単結晶基板で構成することにより、質量センサ素子に対する歪み成分を大幅に改善することにより、測定対象物であるDNAの微少な経時変化を正確に測定することが可能となった。その結果、検体測定の自由度を大幅に改善し検体測定作業性を向上することができた。   The present invention can accurately measure a minute change in DNA as a measurement object by significantly improving a distortion component with respect to a mass sensor element by configuring the entire mass sensor with a piezoelectric single crystal substrate. It has become possible. As a result, it was possible to greatly improve the degree of freedom of sample measurement and improve sample measurement workability.

抗原−抗体反応や、DNA−DNA結合反応など、生体系由来の相補的結合反応を計測するQCM式質量センサにおける計測は、このセンサがリアルタイム定量解析も可能であり、反応形態を解析する上においても非常に重要であり、メリットがある。しかしながら従来の質量センサは質量センサ素子を保持する部分が質量センサ素子とは異なる材料で形成されていることから、感応物質の正確な変化の測定を試みたとき、センサ素子とその保持部との歪み成分により微少な変化の測定が難しい現状にある。本発明では従来の質量センサの不具合点を解消し、微少な検出情報でも正確に質量センサとしての測定機能を確保することができ、作業性が簡便・確実で高精度計測が可能となる。   The QCM mass sensor that measures complementary binding reactions derived from biological systems, such as antigen-antibody reactions and DNA-DNA binding reactions, can be used for real-time quantitative analysis. Is also very important and has benefits. However, in the conventional mass sensor, the portion that holds the mass sensor element is formed of a material different from that of the mass sensor element. Therefore, when an accurate change measurement of the sensitive substance is attempted, the sensor element and its holding portion It is difficult to measure minute changes due to distortion components. In the present invention, the problems of the conventional mass sensor are solved, the measurement function as the mass sensor can be ensured accurately even with minute detection information, and the operability is simple and reliable and high-precision measurement is possible.

以下、添付図面に従って本発明の実施例を説明する。図1に示す本発明の質量センサも動作原理は従来の質量センサ(電極からの引き回し接続は特に図示せず)と同様で、抗原−抗体反応、DNA−RNA結合など、相補的結合反応を捕らえる場合、あらかじめセンサ素子の反応部(通常は、Au、Alなどの金属電極)上に、対応する抗原や抗体、または、DNAなどの感応物を付加しておき、溶液中に浸漬すると、2電極間には溶液を介して電気的リークの発生により、不安定、かつ、有限のインピーダンスをもって接続された状態で発振回路などにより固有振動周波数で励振させたまま溶液中に浸漬して対象物質との反応や結合の状態により変化する質量変化による周波数変化を計測するものである。ここで図1(a)は斜視図で図1(b)は断面図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The principle of operation of the mass sensor of the present invention shown in FIG. 1 is the same as that of the conventional mass sensor (the routing connection from the electrode is not particularly shown), and captures complementary binding reactions such as antigen-antibody reaction and DNA-RNA binding. In this case, when a sensitive substance such as a corresponding antigen, antibody, or DNA is added in advance to a reaction part of a sensor element (usually a metal electrode such as Au or Al) and immersed in a solution, two electrodes In the meantime, due to the occurrence of electrical leakage through the solution, it is unstable and connected with a finite impedance. It measures frequency changes due to mass changes that change depending on the state of reaction and bonding. Here, FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view.

図1には質量センサ素子の本体部分を示すもので、構造としては圧電単結晶基板を使用した質量センサにおいて、該質量センサ全体を圧電単結晶で形成し、質量センサ素子の部分は該質量センサ全体の板厚よりも薄くした形態で、質量センサを圧電単結晶基板である水晶材料で形成した質量センサである。なお、外形寸法の一例としてはL=50mm、W=10〜20mmである。   FIG. 1 shows a main body portion of a mass sensor element. In a mass sensor using a piezoelectric single crystal substrate as a structure, the entire mass sensor is formed of a piezoelectric single crystal, and the mass sensor element portion is the mass sensor element. This is a mass sensor in which the mass sensor is formed of a quartz crystal material that is a piezoelectric single crystal substrate in a form that is thinner than the entire plate thickness. As an example of the outer dimensions, L = 50 mm and W = 10 to 20 mm.

そして、図2に示すように質量センサ素子を挟むようにホルダ4も圧電単結晶基板で形成し質量センサを構成するもので、質量センサ全体を圧電単結晶基板で形成したときに、質量センサ素子となる部位は振動し易くするために、該質量センサの質量センサ素子部分が該質量センサ全体より薄い板厚で形成されており、その状態を形成するために該質量センサ素子1とホルダ4との少なくとも2枚貼り合わさった形態であることも特徴とするものである。なお、図2の図面中に点線で描画する質量センサ素子の上方にも圧電単結晶基板を配置することで、質量センサ素子の電極引き回しを保護する構造を採ることができ有効である。ここで図2(a)は斜視図で図2(b)は断面図で、各基板の厚みは実際と異なり厚みを誇張して描画したものである。   As shown in FIG. 2, the holder 4 is also formed of a piezoelectric single crystal substrate so as to sandwich the mass sensor element, and constitutes a mass sensor. When the entire mass sensor is formed of a piezoelectric single crystal substrate, the mass sensor element In order to easily vibrate, the mass sensor element portion of the mass sensor is formed with a plate thickness thinner than the entire mass sensor, and the mass sensor element 1 and the holder 4 It is also characterized by a form in which at least two of the above are laminated. In addition, it is effective that a structure for protecting the electrode routing of the mass sensor element can be adopted by arranging the piezoelectric single crystal substrate also above the mass sensor element drawn with a dotted line in the drawing of FIG. Here, FIG. 2A is a perspective view, FIG. 2B is a cross-sectional view, and the thickness of each substrate is drawn exaggerating the thickness.

図3は本発明の一実施例を示した水晶振動板の斜視図(図3(a))と断面図(図3(b))である。なお、本実施例に示す振動子は、発振周波数を5〜30MHzを想定しており質量センサ素子3の厚みは55〜335μmを例とし、前記の厚みまでは圧電結晶基板1を機械加工や化学加工(エッチング)を用いて加工する。エッチングはドライエッチングや薬液によるウエットエッチングのどちらを用いても構わない。   3A and 3B are a perspective view (FIG. 3A) and a cross-sectional view (FIG. 3B) of a crystal diaphragm showing an embodiment of the present invention. In the vibrator shown in this embodiment, the oscillation frequency is assumed to be 5 to 30 MHz, and the thickness of the mass sensor element 3 is 55 to 335 μm. The piezoelectric crystal substrate 1 is machined or chemically processed up to the above thickness. Processing is performed using processing (etching). Etching may be either dry etching or wet etching with a chemical solution.

圧電結晶基板1の大きさはL=50mm、W=10〜20mmとして振動部分である質量センサ素子3については、圧電単結晶基板1のW寸法よりも小さければその形状の大きさに拘るものでは無い。圧電単結晶基板1を加工し質量センサ素子3を形成することによって、接着剤による振動漏れが減少し、高感度でかつ装置性能の信頼性と歩留まりの向上を図ることができる。   The size of the piezoelectric crystal substrate 1 is L = 50 mm, W = 10 to 20 mm, and the mass sensor element 3 that is a vibrating portion is not limited to the size of the piezoelectric crystal substrate 1 if it is smaller than the W dimension of the piezoelectric single crystal substrate 1. No. By processing the piezoelectric single crystal substrate 1 to form the mass sensor element 3, vibration leakage due to the adhesive is reduced, and high sensitivity, reliability of the device performance, and improvement in yield can be achieved.

本発明の質量センサ素子は、素子を構成する圧電単結晶基板のほぼ中央部には、厚みすべり振動モードの基本波を励振するために質量センサ素子3の主面表裏に対向して金属電極2が形成されている。金属電極膜は密着膜としてTi、Ni、NiCrなどと電極材としてAuまたはAlなどを蒸着法またはスパッタリング法を用いて金属電極膜を堆積させる。   In the mass sensor element of the present invention, the metal electrode 2 faces the front and back of the main surface of the mass sensor element 3 in order to excite the fundamental wave of the thickness-shear vibration mode at the substantially central portion of the piezoelectric single crystal substrate constituting the element. Is formed. The metal electrode film is formed by depositing Ti, Ni, NiCr or the like as an adhesion film and Au or Al as an electrode material using an evaporation method or a sputtering method.

そして図3に示すように、質量センサ全体を圧電単結晶で形成し、質量センサ素子の部分は質量センサ全体の板厚よりも薄くした形態で、質量センサを圧電単結晶基板である水晶材料で形成した質量センサであることから、圧電センサを少なくとも2つの圧電単結晶基板の貼り合わせで実現した形態を表現するものである。なお、質量センサを形成している圧電単結晶基板を挟み込む基板(質量センサ素子3を構成する基板)は振動する部分の厚みと同等か、あるいは薄いものとする。そしてこれらの基板を貼り合わせるのには、実際の測定の際に影響を与えない絶縁性の接着剤を用いる。   Then, as shown in FIG. 3, the entire mass sensor is formed of a piezoelectric single crystal, and the mass sensor element is thinner than the entire thickness of the mass sensor. The mass sensor is made of a crystal material that is a piezoelectric single crystal substrate. Since it is a formed mass sensor, it represents a form in which the piezoelectric sensor is realized by bonding at least two piezoelectric single crystal substrates. It is assumed that the substrate (substrate constituting the mass sensor element 3) sandwiching the piezoelectric single crystal substrate forming the mass sensor is equal to or thinner than the thickness of the vibrating portion. In order to bond these substrates together, an insulating adhesive that does not affect the actual measurement is used.

以上のように質量センサ素子の振動部である薄い部分を形成する平板と、その周囲全体を形成する部分との少なくとも2つの圧電単結晶基板を貼り合わせることでひとつの質量センサを構成するものである。本実施例では素子の全面をホルダに貼り合わせているが、最低限素子部分(薄い部分)を圧電単結晶基板で被うことでも十分である。   As described above, one mass sensor is configured by bonding at least two piezoelectric single crystal substrates of a flat plate forming a thin portion which is a vibrating portion of the mass sensor element and a portion forming the entire periphery thereof. is there. In this embodiment, the entire surface of the element is bonded to the holder, but it is sufficient to cover at least the element portion (thin portion) with the piezoelectric single crystal substrate.

以上のように質量センサ素子としてDNAを吸着させ、溶液中でその状態変化を圧電単結晶基板の周波数変化で測定する質量センサを実現するのに必要な質量センサ素子の電極からの引き回し電極などを、図3に示すような形態で構成すると前記の引き回し電極を2枚の圧電単結晶基板で挟み込むことができるため、質量センサを溶液中に浸す測定方法では大変有力な構造として使うことができる。
ここで図4に本発明の質量センサの測定状態の概念図を示す。図4からも分かるように、質量センサ素子3の電極部2にDNAなどの検体を塗り、この部分を溶液に浸すことで検体変化を周波数の変化として捉えるものである。
As described above, DNA is adsorbed as a mass sensor element, and a lead electrode from the electrode of the mass sensor element necessary for realizing a mass sensor that measures a change in the state of the piezoelectric single crystal substrate with a frequency change in a solution is provided. If the configuration shown in FIG. 3 is adopted, the lead-out electrode can be sandwiched between two piezoelectric single crystal substrates, so that it can be used as a very powerful structure in a measurement method in which a mass sensor is immersed in a solution.
FIG. 4 shows a conceptual diagram of the measurement state of the mass sensor of the present invention. As can be seen from FIG. 4, a sample such as DNA is applied to the electrode portion 2 of the mass sensor element 3 and this portion is immersed in a solution to capture the change in the sample as a change in frequency.

図5は本発明の質量センサを用いて質量を計測する装置の構成図の一例である。図5で示す構成は、発振回路共々、温度変動の影響を除外する目的で、正確に温度制御された恒温槽内に置かれ、更に、測定に使用される溶液もこの恒温槽の温度条件で管理される。周波数の計測には、周波数カウンタが用いられるが、カウンタの基準は、Rb発振、及び高安定水晶発振器で作られた信号を使用することが望ましい。周波数カウンタで得られたデータはコンピュータで、希望するアルゴリズムで処理ができる。   FIG. 5 is an example of a configuration diagram of an apparatus for measuring mass using the mass sensor of the present invention. The configuration shown in FIG. 5 is placed in a thermostat that is precisely temperature controlled for the purpose of excluding the influence of temperature fluctuations, together with the oscillation circuit, and the solution used for the measurement also depends on the temperature conditions of this thermostat. Managed. For frequency measurement, a frequency counter is used. As a reference of the counter, it is desirable to use a signal generated by an Rb oscillation and a highly stable crystal oscillator. Data obtained by the frequency counter can be processed by a computer with a desired algorithm.

本センサは、溶液内での反応、結合に対する質量変化を計測する例について述べてきたが、例えば、ダイオキシンなどの環境汚染物質の含有量計測のような気相中の計測に関しても有効であり、多種多様の感応物質に対する測定ができる。   This sensor has been described with respect to examples of measuring mass changes due to reactions and bonds in solution, but it is also effective for measurements in the gas phase, such as measuring the content of environmental pollutants such as dioxins. It can measure a wide variety of sensitive substances.

本発明の質量センサ素子の一例を示す斜視図である。It is a perspective view which shows an example of the mass sensor element of this invention. 本発明の質量センサの構造を示す斜視図である。It is a perspective view which shows the structure of the mass sensor of this invention. 本発明の質量センサの概念図を説明する斜視図と断面図である。It is the perspective view and sectional drawing explaining the conceptual diagram of the mass sensor of this invention. 本発明の質量センサを用いた検体測定の状態を示す概念図である。It is a conceptual diagram which shows the state of the sample measurement using the mass sensor of this invention. 本発明の質量センサ素子を用いた質量計測装置の構成例を示す概念図である。It is a conceptual diagram which shows the structural example of the mass measuring device using the mass sensor element of this invention. 従来の液相計測質量センサの一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional liquid phase measurement mass sensor.

符号の説明Explanation of symbols

1 圧電単結晶基板
2 電極
3 質量センサ素子
4 ホルダ
1 Piezoelectric single crystal substrate 2 Electrode 3 Mass sensor element 4 Holder

Claims (2)

圧電単結晶基板を基板に使用した質量センサ素子と該圧電単結晶基板を保持するホルダを有する質量センサにおいて、
該質量センサと該ホルダを一体化し全体を圧電単結晶で形成し、該質量センサの質量センサ素子部分が該質量センサ全体より薄い板厚で形成されており、少なくとも該質量センサ素子の薄い部分を被うホルダが貼り合わさっていることを特徴とする質量センサ。
In a mass sensor having a mass sensor element using a piezoelectric single crystal substrate as a substrate and a holder for holding the piezoelectric single crystal substrate,
The mass sensor and the holder are integrated and formed as a whole by a piezoelectric single crystal, the mass sensor element portion of the mass sensor is formed with a plate thickness thinner than the entire mass sensor, and at least the thin portion of the mass sensor element is formed A mass sensor characterized in that a covering holder is bonded.
請求項1に記載の質量センサは水晶材料であることを特徴とする質量センサ。 The mass sensor according to claim 1, wherein the mass sensor is a quartz material.
JP2003373010A 2003-10-31 2003-10-31 Mass sensor Pending JP2005134327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373010A JP2005134327A (en) 2003-10-31 2003-10-31 Mass sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373010A JP2005134327A (en) 2003-10-31 2003-10-31 Mass sensor

Publications (1)

Publication Number Publication Date
JP2005134327A true JP2005134327A (en) 2005-05-26

Family

ID=34649227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373010A Pending JP2005134327A (en) 2003-10-31 2003-10-31 Mass sensor

Country Status (1)

Country Link
JP (1) JP2005134327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534651A (en) * 2006-04-20 2009-09-24 ヴェクトロン インターナショナル,インク Electroacoustic sensor for high pressure environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534651A (en) * 2006-04-20 2009-09-24 ヴェクトロン インターナショナル,インク Electroacoustic sensor for high pressure environment

Similar Documents

Publication Publication Date Title
US8349611B2 (en) Resonant sensors and methods of use thereof for the determination of analytes
EP1977224B1 (en) Self-exciting, self-sensing piezoelectric cantilever sensor
Benes et al. Comparison between BAW and SAW sensor principles
US6626026B2 (en) Acoustic wave based sensor
JP4222513B2 (en) Mass measuring apparatus and method
JP2002506990A (en) Micro mechanical potential difference sensor
CA2651840A1 (en) Self-exciting, self-sensing piezoelectric cantilever sensor for detection of airborne analytes directly in air
JP2003307481A (en) Multichannel biosensor
US7335336B1 (en) Sensor array using lateral field excited resonators
US7398671B2 (en) Micromechanical sensor element
JP2004340766A (en) Apparatus for detecting chemical substance
US7331232B2 (en) Measurement method and biosensor apparatus using resonator
Lee et al. Measurement of hepatitis B surface antigen concentrations using a piezoelectric microcantilever as a mass sensor
CN102608172A (en) Film bulk acoustic galloping resonance biochemistry sensor with direct-current electrodes
JP2005134327A (en) Mass sensor
JP4158971B2 (en) Mass sensor
Ogi et al. Replacement-free electrodeless quartz crystal microbalance biosensor using nonspecific-adsorption of streptavidin on quartz
JP4180472B2 (en) Mass sensor
Li et al. Ferroelectric thin film diaphragm resonators for bio-detection
JP4216692B2 (en) Mass sensor
JP2005106580A (en) Mass sensor
JP4530361B2 (en) Manufacturing method of substance detection element
JP2005077232A (en) Mass sensor and its manufacturing method
Zhang et al. Design and evaluation of a dual channel high frequency Quartz crystal Microbalance
Zhang et al. High-frequency bulk acoustic resonant microbalances in liquid