JP6966787B2 - Alcohol concentration measurement method - Google Patents

Alcohol concentration measurement method Download PDF

Info

Publication number
JP6966787B2
JP6966787B2 JP2018557763A JP2018557763A JP6966787B2 JP 6966787 B2 JP6966787 B2 JP 6966787B2 JP 2018557763 A JP2018557763 A JP 2018557763A JP 2018557763 A JP2018557763 A JP 2018557763A JP 6966787 B2 JP6966787 B2 JP 6966787B2
Authority
JP
Japan
Prior art keywords
sample
alcohol
density
specific gravity
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018557763A
Other languages
Japanese (ja)
Other versions
JPWO2018117023A1 (en
Inventor
武志 松岡
奈奈美 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Publication of JPWO2018117023A1 publication Critical patent/JPWO2018117023A1/en
Application granted granted Critical
Publication of JP6966787B2 publication Critical patent/JP6966787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture

Landscapes

  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はアルコール濃度測定方法に関し、特に、留液を得るための蒸留工程を必要としないアルコール濃度測定方法に関するものである。 The present invention relates to an alcohol concentration measuring method, and more particularly to an alcohol concentration measuring method that does not require a distillation step for obtaining a distillate.

酒類のアルコール濃度を測定するについて、蒸留酒以外ではエキス分を含むことから、エキス分のない試料すなわち、試料を一旦蒸留した留液のアルコール濃度を得るようにしている。 Regarding the measurement of the alcohol concentration of alcoholic beverages, since the alcohol content is contained in other than distilled alcoholic beverages, the alcohol concentration of the sample without the extract, that is, the distillate obtained by distilling the sample once is obtained.

蒸留の方法としては直火蒸留、水蒸気蒸留等があるが、例えば水蒸気蒸留を用いる場合、試料の100ml(15℃)を計量し、これに対して水蒸気蒸留をする。98mlまで留液を回収し、これを100ml(15℃)にメスアップしてその密度から留液のアルコール容量%(v/v%)を求めることで、試料のアルコール容量%(v/v%)を求めることができる。これにより、エキス分の影響を排除したアルコール濃度が得られることになる。このとき、残渣には当然のことながらエキス分が残ることになる。 Distillation methods include direct-fire distillation, steam distillation, and the like. For example, when steam distillation is used, 100 ml (15 ° C) of the sample is weighed and steam distillation is performed. By collecting the distillate up to 98 ml, measuring it to 100 ml (15 ° C), and determining the alcohol content% (v / v%) of the distillate from the density, the alcohol content% (v / v%) of the sample is obtained. ) Can be obtained. As a result, an alcohol concentration excluding the influence of the extract component can be obtained. At this time, as a matter of course, the extract component remains in the residue.

一方、ウイスキー、ブランデー等の蒸留酒はエキス分が少ない、あるいは殆ど零であるため、前記の蒸留工程を省いてアルコール濃度を求めることができるものがある。すなわち、蒸留酒の所定温度(15℃)での所定容量の重量から直接アルコール濃度を求める方法が許容されているものがある。 On the other hand, since distilled liquors such as whiskey and brandy have a small or almost zero extract content, there are some that can omit the above-mentioned distillation step to determine the alcohol concentration. That is, there are some that allow a method of directly obtaining the alcohol concentration from the weight of a predetermined volume of distilled liquor at a predetermined temperature (15 ° C.).

上記の留液あるいは蒸留酒の場合は試料そのもののアルコール濃度を算出するについて、密度からアルコール濃度を換算するテーブルが用意されている(所定分析法第2表:国税庁提示)。 In the case of the above distillate or distilled liquor, a table for converting the alcohol concentration from the density is prepared for calculating the alcohol concentration of the sample itself (Prescribed Analysis Method Table 2: Presented by the National Tax Agency).

国税庁 所定分析法3−7 National Tax Agency Prescribed Analysis Method 3-7

前記サンプルを一旦蒸留して留液を得る必要のある場合には、当該蒸留工程に時間を要する上、厳密な温度管理下での厳密な容量測定が必要となる。また、蒸留法では試料を留液として完全に回収できないところから、得られた値には-0.3〜-0.1vol%の誤差を含んでいる(後掲表2参照)。 When it is necessary to once distill the sample to obtain a distillate, the distillation step requires time and strict volume measurement under strict temperature control is required. In addition, since the sample cannot be completely recovered as a distillate by the distillation method, the obtained value contains an error of -0.3 to -0.1 vol% (see Table 2 below).

また、樽貯蔵を行っている蒸留酒(例えばウイスキー、ブランデー)は、蒸留酒であっても貯蔵中に樽から色素とともにエキス分が溶出しており、測定値には多くて−0.5vol%の誤差があるため、蒸留後の密度測定によるアルコール濃度測定が義務付けられている。 In addition, distilled liquor (for example, whiskey, brandy) that is stored in barrels has an extract content eluted from the barrel along with the pigment during storage even if it is distilled liquor, and the measured value is at most -0.5 vol%. Due to the error, it is obligatory to measure the alcohol concentration by measuring the density after distillation.

本発明は上記従来の事情に鑑みて提案されたものであって、エキス分を含む酒類であっても、留液を得るための蒸留工程を経ないで精度の高いアルコール濃度を得る方法を提供することを目的とするものである。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and provides a method for obtaining a highly accurate alcohol concentration even for alcoholic beverages containing an extract without going through a distillation step for obtaining a distillate. The purpose is to do.

国税庁所定分析法3−7には前記蒸留法でのエキス分濃度(比重)Eの計算方式を提示している。 The National Tax Agency Prescribed Analytical Method 3-7 presents a method for calculating the extract concentration (specific gravity) E in the distillation method.

E=(S−A)×260+0.21・・・(1)
S:試料比重、試料密度(15℃)/純水密度(4℃)
A:留液比重、留液密度(15℃)/純水密度(15℃)、従って、Aは留液のアルコール濃度を比重に換算した値
まず、試料(容量V1)をアルコールが抜ける程度に水蒸気蒸留もしくは水蒸気による加熱をし、アルコール分を含まない試料(容量V2、密度ρ2)を得る。
E = (SA) x 260 + 0.21 ... (1)
S: Sample specific gravity, sample density (15 ° C) / pure water density (4 ° C)
A: distillate specific gravity, distillate Density (15 ° C.) / pure water Density (15 ° C.), thus, A is a value obtained by converting the specific gravity of the alcohol concentration in the distillate First, the extent to which the sample (volume V 1) leaves the alcohol Is distilled with steam or heated with steam to obtain a sample containing no alcohol (volume V 2 , density ρ 2).

次いで、前記(1)式に基づいて、アルコール分を含まない試料のエキス分濃度Eを算出する。 Next, the extract concentration E of the sample containing no alcohol is calculated based on the above equation (1).

E=(S0−A0)×260+0.21・・・(1´)
0:アルコール分を含まない試料の比重(15/4℃) =ρ30
0:純水の比重(15/15℃)=1
ρ3={(ρ210)×V2/V1}+ρ10
ρ0:4℃での純水密度=0.99997、ρ10:15℃での純水密度=0.99910
ρ3:15℃でのアルコール分を含まない試料の密度
一方、エキス濃度Eが求まると(1)式は(2)式のように変換してアルコール濃度Aを求めることができる。
E = (S 0 −A 0 ) × 260 + 0.21 ・ ・ ・ (1 ´)
S 0 : Specific gravity of sample containing no alcohol (15/4 ° C) = ρ 3 / ρ 0
A 0 : Specific gravity of pure water (15/15 ℃) = 1
ρ 3 = {(ρ 210 ) × V 2 / V 1 } + ρ 10
ρ 0 : Pure water density at 4 ° C = 0.99997, ρ 10 : Pure water density at 15 ° C = 0.99910
ρ 3 : The density of the sample containing no alcohol at 15 ° C. On the other hand, when the extract concentration E is obtained, the formula (1) can be converted into the formula (2) to obtain the alcohol concentration A.

A=S−{(E-0.21)/260}・・・(2)
E:上記(1´)式の演算で求められる値
A = S- {(E-0.21) / 260} ・ ・ ・ (2)
E: Value obtained by the calculation of the above formula (1')

上記で、従来のように試料の留液を得る必要がないため、アルコールを全部追い出す水蒸気蒸留もしくは水蒸気による加熱処理で足りる。また、アルコール分を含まない試料のエキス分から、蒸留しない試料のアルコール濃度に含まれるエキス分による誤差を補正することができる。 In the above, since it is not necessary to obtain a distillate of the sample as in the conventional case, steam distillation to expel all alcohol or heat treatment with steam is sufficient. In addition, it is possible to correct an error due to the extract content contained in the alcohol concentration of the non-distilled sample from the extract content of the sample containing no alcohol content.

まず、国税庁所定分析法3−7には上記蒸留法でのエキス分濃度の計算方式を提示している。 First, the National Tax Agency Prescribed Analytical Method 3-7 presents a method for calculating the extract concentration in the above distillation method.

E=(S−A)×260+0.21・・・(1)
E:エキス分(度)
S:試料比重、試料密度(15℃)/純水密度(4℃)
A:留液比重、試料密度(15℃)/純水密度(15℃)、従って、Aは留液のアルコール濃度を比重に換算した値
従って、この式からA:アルコール濃度を逆算すると、以下のようになる。
E = (SA) x 260 + 0.21 ... (1)
E: Extract content (degree)
S: Sample specific gravity, sample density (15 ° C) / pure water density (4 ° C)
A: Distillate specific gravity, sample density (15 ° C) / pure water density (15 ° C), therefore, A is the value obtained by converting the alcohol concentration of the distillate into specific gravity. become that way.

A=S−{(E-0.21)/260}・・・(2)
そこで15℃での試料の容量V1を得るとともに、当該試料の15℃での密度ρ1を得る。これを水蒸気蒸留もしくは水蒸気加熱し、アルコール分を含まない試料を得て、これについて15℃での容量V2と密度ρ2を得ておく。ここで、アルコール分を含まない試料とは、アルコール分が完全に抜け去った後の液と、そこに残る不揮発性の溶解物を言う。また、試料の容量V1は、そこから得られる前記アルコール分を含まない試料が少量で分析可能であるため、少量で足りる。さらに、水蒸気蒸留もしくは水蒸気加熱を使用するので、アルコール分を含まない試料の容量V2は試料容量V1より大きくなる。
A = S- {(E-0.21) / 260} ・ ・ ・ (2)
Therefore, the volume V 1 of the sample at 15 ° C. is obtained, and the density ρ 1 of the sample at 15 ° C. is obtained. This is steam-distilled or steam-heated to obtain a sample containing no alcohol, and the volume V 2 and the density ρ 2 at 15 ° C. are obtained. Here, the sample containing no alcohol means a liquid after the alcohol content is completely removed and a non-volatile solution remaining therein. Further, the volume V 1 of the sample is sufficient because the sample obtained from the sample containing no alcohol can be analyzed in a small amount. Further, since steam distillation or steam heating is used, the capacity V 2 of the sample containing no alcohol is larger than the sample capacity V 1.

ここで、本発明では上記アルコール分が抜けた試料を用いて、エキス濃度Eを求めることになる。 Here, in the present invention, the extract concentration E is obtained by using the sample from which the alcohol content has been removed.

前記試料容量V1は試料の密度ρ1と重量M1とから、アルコール分を含まない試料(以下残試料という)の容量V2は当該残試料の密度ρ2と重量M2とから得られることになる。また前記密度ρ1、ρ2は振動式密度計で得ることができる。The sample volume V 1 is obtained from the density ρ 1 and the weight M 1 of the sample, and the volume V 2 of the sample containing no alcohol (hereinafter referred to as the residual sample) is obtained from the density ρ 2 and the weight M 2 of the remaining sample. It will be. Further, the densities ρ 1 and ρ 2 can be obtained by a vibration type densitometer.

ここで前記残試料は純水にエキス分が溶解した状態であると仮定し、純水の15℃での密度(ρ10=0.99910)を考慮すると、前記残試料の密度ρ3は以下の(3)式となる。Here, assuming that the residual sample is in a state where the extract is dissolved in pure water, and considering the density of pure water at 15 ° C. (ρ 10 = 0.99910), the density ρ 3 of the residual sample is as follows (ρ 3). 3) Equation.

ρ3={(ρ210)×V2/V1}+ρ10・・・(3)
この残試料の密度ρ3から当該残試料の比重S0(式(1)(2)でのS)を求めることができる。すなわち、
0=ρ30
(ρ0=0.99997は4℃での純水の密度)
また、当該残試料のアルコール濃度(15℃の純水に対する比重)A0(式(1)(2)でのA)は、ここでは以下の理由で当該残試料を純水と仮定できるので、
0=ρ1010=1
である。すなわち前記式(1)の留液のアルコール比重Aはここでは残試料を蒸留したときの留液のアルコール比重ということになるが、残試料は既にアルコール分が抜けた液であるので、その留液は純水と仮定することができる。
ρ 3 = {(ρ 210 ) × V 2 / V 1 } + ρ 10・ ・ ・ (3)
From the density ρ 3 of the remaining sample, the specific gravity S 0 (S in the equations (1) and (2)) of the remaining sample can be obtained. That is,
S 0 = ρ 3 / ρ 0
0 = 0.99997 is the density of pure water at 4 ° C)
Further, the alcohol concentration of the remaining sample (specific gravity with respect to pure water at 15 ° C.) A 0 (A in the formulas (1) and (2)) can be assumed here as pure water for the following reasons.
A 0 = ρ 10 / ρ 10 = 1
Is. That is, the alcohol specific gravity A of the distillate of the above formula (1) is here the alcohol specific gravity of the distillate when the residual sample is distilled, but since the residual sample is a liquid from which the alcohol content has already been removed, the distillate thereof. The liquid can be assumed to be pure water.

従って、式(1)より、試料のエキス分濃度(比重)Eは、前記式(1′)より、
E={(ρ30)-1.00000}×260+0.21・・・(4)
となる。
Therefore, from the formula (1), the extract concentration (specific gravity) E of the sample is from the above formula (1').
E = {(ρ 3 / ρ 0 ) -1.00000} × 260 + 0.21 ・ ・ ・ (4)
Will be.

エキス分濃度Eが得られたので、式(2)に基づいて試料のアルコール濃度を算出することができる。 Since the extract concentration E is obtained, the alcohol concentration of the sample can be calculated based on the formula (2).

式(2)での試料比重Sは、15℃での試料密度と4℃での純水密度の比(ρ10)であり、当該試料比重Sと前記エキス分濃度(比重)Eを(2)式に代入することによって、試料のアルコール比重Aが得られる。このアルコール比重に対応する密度を濃度に換算(前記所定分析法、第2表)すると、求めるアルコール濃度が得られることになる。The sample specific gravity S in the formula (2) is the ratio (ρ 1 / ρ 0 ) of the sample density at 15 ° C. and the pure water density at 4 ° C., and the sample specific gravity S and the extract content concentration (specific gravity) E. Is substituted into Eq. (2) to obtain the alcohol specific density A of the sample. When the density corresponding to this alcohol specific gravity is converted into a concentration (predetermined analysis method, Table 2), the desired alcohol concentration can be obtained.

以上に基づいてエキス分による誤差を補正したアルコール濃度の具体例を上げると以下のようになる。 Based on the above, a specific example of the alcohol concentration corrected for the error due to the extract content is as follows.

(a) アルコール分を含まない試料(残試料)のエキス分濃度の計算
蒸留した試料の体積(測定値):10.067ml(V1)
蒸留後の残試料の体積(測定値):63.711ml(V2)
蒸留後の残試料の密度(測定値):0.99917g/cm3:(ρ2
純水の密度(文献値): 0.99910g/cm3:(ρ10
以上に基づいて(3)式を計算するとアルコール分を含まない試料の密度(推定値)ρ 3を求めることができる。
(A) Calculation of the extract concentration of the sample (residual sample) that does not contain alcohol
Volume of distilled sample (measured value): 10.067 ml (V)1)
Volume of residual sample after distillation (measured value): 63.711 ml (V)2)
Density of residual sample after distillation (measured value): 0.99917 g / cm3: (Ρ2)
Density of pure water (literature value): 0.99910g / cm3: (ΡTen)
When formula (3) is calculated based on the above, the density (estimated value) of the sample containing no alcohol is ρ. 3Can be asked.

ρ3=[ (0.99917-0.99910)×(63.711/10.067)]+0.99910=0.99954
ここで(1)式E=(S−A)×260+0.21のS=S0とA=A0とおくと、アルコール分を含まない試料(残試料)のエキス分濃度Eは、
0:残試料の比重(15℃/4℃):ρ30=0.99957
0:純水の比重(15℃/15℃): 1.00000(ρ1010)
アルコール濃度0 vol%を比重(15℃/15℃)に換算
であるので、エキス分濃度Eは、
E= (0.99957-1.00000)×260+0.21=0.10
従って、試料のエキス分濃度(推定値)Eは0.10
(b) 試料比重・エキス分と(2)式より、アルコール度の逆算をすると以下のようになる。
ρ 3 = [(0.99917-0.99910) × (63.711 / 10.067)] +0.99910 = 0.99954
Here, if S = S 0 and A = A 0 of the formula (1) E = (SA) × 260 + 0.21, the extract concentration E of the sample (residual sample) containing no alcohol is determined.
S 0 : Specific gravity of the remaining sample (15 ° C / 4 ° C): ρ 3 / ρ 0 = 0.99957
A 0 : Specific gravity of pure water (15 ℃ / 15 ℃): 1.00000 (ρ 10 / ρ 10 )
Since the alcohol concentration of 0 vol% is converted to the specific gravity (15 ° C / 15 ° C), the extract concentration E is
E = (0.99957-1.00000) × 260 + 0.21 = 0.10
Therefore, the extract concentration (estimated value) E of the sample is 0.10.
(b) From the sample specific gravity / extract content and equation (2), the alcohol content is calculated back as follows.

S:試料比重(15℃/4℃)(計算値):0.95547
試料密度(15℃の測定値): 0.95544g/cm3
純水密度(4℃): 0.99997g/cm3
A=0.95547-[(0.10-0.21)/260]=0.95589
アルコール比重(15℃/15℃)(推定値) A:0.95589
アルコール密度(推定値):0.95589×ρ10=0.95503g/cm3
アルコール濃度(密度から計算):37.440vol%
となる。
S: Sample specific density (15 ° C / 4 ° C) (calculated value): 0.95547
Sample density (measured at 15 ° C): 0.95544g / cm 3
Pure water density (4 ℃): 0.99997g / cm 3
A = 0.95547-[(0.10-0.21) / 260] = 0.95589
Alcohol specific density (15 ℃ / 15 ℃) (estimated value) A: 0.95589
Alcohol density (estimated value): 0.95589 × ρ 10 = 0.95503g / cm 3
Alcohol concentration (calculated from density): 37.440vol%
Will be.

上記本発明に係る方法を用いて測定したウィスキーのアルコール濃度について、従来から用いられている所定法(直火法)、SDK法での測定と比較した結果を表1に示す。ここで、後述の手順で得られる、測定対象のウィスキーの推定アルコール濃度の真値は37.680V%である。 Table 1 shows the results of comparison between the alcohol concentration of whiskey measured by the method according to the present invention and the measurement by the predetermined method (direct flame method) and SDK method which have been conventionally used. Here, the true value of the estimated alcohol concentration of the whiskey to be measured, which is obtained by the procedure described later, is 37.680 V%.

尚、直火法は、所定量の試料を直火で70%以上流出するまで蒸留し、留液に水を加えて15℃での前記所定量にまでメスアップして、15℃における比重を得、当該比重を前記表を用いてアルコール濃度に換算する方法である。 In the direct flame method, a predetermined amount of sample is distilled by direct flame until 70% or more of the sample flows out, water is added to the distillate, and the sample is adjusted to the predetermined amount at 15 ° C. to obtain a specific density at 15 ° C. It is a method of obtaining and converting the specific gravity into an alcohol concentration using the above table.

SDK法は、試料の15℃における密度をρ15、重量をm15、当該試料を蒸気蒸留して得た留液の15℃の密度がρ20、重量がm20である場合、前記表を用いて留液の前記密度ρ20からアルコール濃度Aを得たとき、試料のアルコール濃度XはX=A・m20・ρ15/(m15・ρ20)であることを利用して、温度管理、メスアップを伴わずに測定できる方法である。The SDK method uses the above table when the density of the sample at 15 ° C is ρ 15 and the weight is m 15 , and the distillate obtained by steam distilling the sample has a density of ρ 20 and a weight of m 20. When the alcohol concentration A is obtained from the density ρ 20 of the distillate using the sample, the alcohol concentration X of the sample is X = A · m 20 · ρ 15 / (m 15 · ρ 20 ). It is a method that can be measured without management and measurement.

各測定法で3回の平均値より推定真値との差を得たが、本発明に係る方法で得た結果が最も誤差が小さいことが理解できる。 Although the difference from the estimated true value was obtained from the average value of three times in each measurement method, it can be understood that the result obtained by the method according to the present invention has the smallest error.

前記推定真値は以下のようにして求める。 The estimated true value is obtained as follows.

真値が判っているエタノール標準液(ラベル表示濃度40.640v%)を直火法とSDK法で測定すると表2に示すようになる。ここで両法についての真値との差(直火法-0.065v%、SDK法-0.47v%)の平均値-0.056v%を得る。一方、両法でのウィスキーの測定結果の平均値は37.623 v%であり、この値に前記0.056v%を加算すると、推定真値37.680 v%が得られる。 Table 2 shows the measurement of the ethanol standard solution (label display concentration 40.640v%) whose true value is known by the direct flame method and the SDK method. Here, the average value -0.056v% of the difference from the true value for both methods (direct fire method-0.065v%, SDK method-0.47v%) is obtained. On the other hand, the average value of whiskey measurement results by both methods is 37.623 v%, and when the above 0.056 v% is added to this value, an estimated true value of 37.680 v% is obtained.

尚、表2の最終段(ウィスキー推定値)は、直火法、SKD法それぞれの測定濃度の平均値37.637 v%、37.610 v%のそれぞれに前記0.056v%を加算して得られる値である。 The final stage (whiskey estimated value) in Table 2 is a value obtained by adding 0.056 v% to each of the average values of 37.637 v% and 37.610 v% of the measured concentrations of the direct flame method and the SKD method, respectively. ..

Figure 0006966787
Figure 0006966787

Figure 0006966787
Figure 0006966787

産業上の利用分野Industrial application field

以上説明したように、本発明は留液を得るための蒸留工程を経ないで、エキス分によるアルコール濃度の誤差を補正したアルコール濃度を得ることができるので、従来の直火法、SDK法に比してより正確に、しかも簡単に酒類のアルコール濃度を求める作業が極めて簡単になる。 As described above, the present invention can obtain an alcohol concentration in which the error of the alcohol concentration due to the extract is corrected without going through the distillation step for obtaining the distillate. In comparison, the task of finding the alcohol concentration of alcoholic beverages more accurately and easily becomes extremely easy.

Claims (1)

試料(容量V1)をアルコールが抜ける程度に水蒸気蒸留もしくは水蒸気による加熱をし、アルコール分を含まない試料(容量V2、密度ρ2)を得るステップと、
式(1)に基づいて、アルコール分を含まない試料のエキス分の比
重Eを算出するステップと、
E=(S0−A0)×260+0.21・・・(1)
S0:アルコール分を含まない試料の比重(15/4℃) =ρ3/0.99997、
A0:アルコール分を含まない留液の比重(15/15℃)=1、
ρ3={(ρ2-ρ10)×V2/V1}+ρ10、
ρ10:純水密度(15℃)、
ρ3:アルコール分を含まない試料のエキス分の密度、
式(2)に基づいてアルコール濃度Aを算出するステップと、
A=S−{(E―0.21)/260}・・・(2)
S:試料比重は、試料密度(15℃)/純水密度(4℃)、
E:上記(1)式の演算で求められる値、
とを備えたことを特徴とするアルコール濃度測定方法。
The step of obtaining a sample (volume V2, density ρ2) containing no alcohol by steam distillation or heating the sample (volume V1) to the extent that alcohol is removed, and
A step of calculating the specific density E of the extract content of the sample containing no alcohol based on the formula (1), and
E = (S0-A0) × 260 + 0.21 ... (1)
S0: Specific gravity of sample containing no alcohol (15/4 ° C) = ρ3 / 0.99997,
A0: Specific gravity of distillate containing no alcohol (15/15 ℃) = 1,
ρ3 = {(ρ2-ρ10) × V2 / V1} + ρ10,
ρ10: Pure water density (15 ° C),
ρ3: Density of the extract of the sample containing no alcohol,
The step of calculating the alcohol concentration A based on the formula (2) and
A = S- {(E-0.21) / 260} ... (2)
S: The sample specific gravity is sample density (15 ° C) / pure water density (4 ° C),
E: The value obtained by the calculation of the above equation (1),
An alcohol concentration measuring method characterized by being provided with.
JP2018557763A 2016-12-21 2017-12-18 Alcohol concentration measurement method Active JP6966787B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016247894 2016-12-21
JP2016247894 2016-12-21
PCT/JP2017/045306 WO2018117023A1 (en) 2016-12-21 2017-12-18 Method for measuring concentration of alcohol

Publications (2)

Publication Number Publication Date
JPWO2018117023A1 JPWO2018117023A1 (en) 2019-10-24
JP6966787B2 true JP6966787B2 (en) 2021-11-17

Family

ID=62626553

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018557763A Active JP6966787B2 (en) 2016-12-21 2017-12-18 Alcohol concentration measurement method
JP2019560020A Active JP7044269B2 (en) 2016-12-21 2018-06-21 Alcohol concentration calculation method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019560020A Active JP7044269B2 (en) 2016-12-21 2018-06-21 Alcohol concentration calculation method

Country Status (2)

Country Link
JP (2) JP6966787B2 (en)
WO (2) WO2018117023A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082832A (en) * 1983-10-13 1985-05-11 Kanegafuchi Chem Ind Co Ltd Concentration measuring method of alcohol and extract component in liquid
JPS6258147A (en) * 1985-09-06 1987-03-13 Denki Kagaku Keiki Co Ltd Method for measuring concentration
JP5295028B2 (en) * 2009-07-24 2013-09-18 京都電子工業株式会社 Vibrating density meter
JP2015004611A (en) * 2013-06-21 2015-01-08 京都電子工業株式会社 Concentration measurement device and concentration measurement method
JP6082832B1 (en) 2016-04-05 2017-02-15 株式会社アクアティカ Message management apparatus and message management method
JP6777924B2 (en) * 2016-04-20 2020-10-28 京都電子工業株式会社 Alcohol concentration measurement system, alcohol concentration measurement method

Also Published As

Publication number Publication date
JPWO2019123693A1 (en) 2020-12-17
WO2018117023A1 (en) 2018-06-28
JP7044269B2 (en) 2022-03-30
WO2019123693A1 (en) 2019-06-27
JPWO2018117023A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
Millero et al. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale
Hill The mutual solubility of liquids. I. The mutual solubility of ethyl ether and water. II. The solubility of water in benzene
RU2015134750A (en) SURFACE GAS CORRECTION USING GROUP CONTRIBUTION EQUILIBRIUM MODEL
CN107782705B (en) Method and device for measuring oil content of rock
Davies et al. Purity assessment of organic calibration standards using a combination of quantitative NMR and mass balance
Washburn et al. THE LAWS OF “CONCENTRATED” SOLUTIONS. VI. THE GENERAL BOILING-POINT LAW.
JP6966787B2 (en) Alcohol concentration measurement method
Son et al. A novel approach for estimating sugar and alcohol concentrations in wines using refractometer and hydrometer
Waldron et al. Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous‐flow isotope‐ratio mass spectrometry
JP6777924B2 (en) Alcohol concentration measurement system, alcohol concentration measurement method
Zaitseva et al. Isothermal vapor–liquid equilibrium and excess molar enthalpies of the binary mixtures furfural+ methyl isobutyl ketone,+ 2-butanol and+ 2-methyl-2-butanol
Sherman Methods of organic analysis
Hodgeson et al. METHOD 552.2 Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization and gas chromatography with electron capture detection
Angell et al. The analysis of carbohydrates of the cell wall of plants: The determination of pentoses as single substances and in mixtures containing uronic acids and hexoses
Jílková et al. Determination of water content in pyrolytic tars using coulometric Karl-Fisher titration
McIlhiney THE DETERMINATION OF THE BROMINE ABSORPTION OF OILS.
Gross The determination of the solubility of slightly soluble liquids in water and the solubilities of the dichloro-ethanes and-propanes
Uemura et al. Deuterium and oxygen‐18 determination of microliter quantities of a water sample using an automated equilibrator
King et al. Electrothermal atomic absorption spectrometric determination of aluminum in blood serum
US2470230A (en) Distillation vapor loss detector
Pambianchi Benchmarking of ABV Analysis Instruments and Methods in Wine Applications
Hampel Densities and boiling points of sea water concentrates
Gros et al. Uncertainty budget for simultaneous determination of minor and major ions in seawater with ion chromatography confronted with uncertainties in concentrations of calibration standards
Fung Effect of Varying Salt Concentration on Partition Properties of Ethanol and 1-Propanol
Billa et al. Evaluation of micro-colorimetric lipid determination method with samples prepared using sonication and accelerated solvent extraction methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211015

R150 Certificate of patent or registration of utility model

Ref document number: 6966787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150