JP7044269B2 - Alcohol concentration calculation method - Google Patents
Alcohol concentration calculation method Download PDFInfo
- Publication number
- JP7044269B2 JP7044269B2 JP2019560020A JP2019560020A JP7044269B2 JP 7044269 B2 JP7044269 B2 JP 7044269B2 JP 2019560020 A JP2019560020 A JP 2019560020A JP 2019560020 A JP2019560020 A JP 2019560020A JP 7044269 B2 JP7044269 B2 JP 7044269B2
- Authority
- JP
- Japan
- Prior art keywords
- density
- sample
- extract
- pure water
- specific gravity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N9/00—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
- G01N9/36—Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明はアルコール濃度測定方法に関し、特に、留液を得るための蒸留工程を必要としないアルコール濃度算出方法に関するものである。 The present invention relates to a method for measuring an alcohol concentration, and more particularly to a method for calculating an alcohol concentration, which does not require a distillation step for obtaining a distillate.
酒類のアルコール濃度を測定するについて、蒸留酒以外ではエキス分を含むことから、エキス分のない試料すなわち、試料を一旦蒸留した留液のアルコール濃度を得るようにしている。 Regarding the measurement of the alcohol concentration of alcoholic beverages, since the alcohol content is contained in other than distilled alcoholic beverages, the alcohol concentration of the sample without the extract, that is, the distillate obtained by distilling the sample once is obtained.
蒸留の方法としては直火蒸留、水蒸気蒸留等があるが、例えば水蒸気蒸留を用いる場合、試料の100ml(15℃)を計量し、これに対して水蒸気蒸留をする。98mlまで留液を回収し、これを100ml(15℃)にメスアップしてその密度から留液のアルコール容量%(v/v%)を求めることで、試料のアルコール容量%(v/v%)を求めることができる。これにより、エキス分の影響を排除したアルコール濃度が得られることになる。このとき、残渣には当然のことながらエキス分が残ることになる。 Distillation methods include direct-fire distillation, steam distillation, and the like. For example, when steam distillation is used, 100 ml (15 ° C) of the sample is weighed and steam distillation is performed. By collecting the distillate up to 98 ml, measuring it to 100 ml (15 ° C), and determining the alcohol content% (v / v%) of the distillate from the density, the alcohol content% (v / v%) of the sample is obtained. ) Can be obtained. As a result, an alcohol concentration excluding the influence of the extract component can be obtained. At this time, as a matter of course, the extract component remains in the residue.
一方、ウイスキー、ブランデー等の蒸留酒はエキス分が少ない、あるいは殆ど零であるため、前記の蒸留工程を省いてアルコール濃度を求めることができるものがある。すなわち、蒸留酒の所定温度(15℃)での所定容量の重量から直接アルコール濃度を求める方法が許容されているものがある。 On the other hand, since distilled liquors such as whiskey and brandy have a small or almost zero extract content, there are some that can omit the above-mentioned distillation step to determine the alcohol concentration. That is, there are some that allow a method of directly obtaining the alcohol concentration from the weight of a predetermined volume of distilled liquor at a predetermined temperature (15 ° C.).
上記の留液あるいは蒸留酒の場合は試料そのもののアルコール濃度を算出するについて、密度からアルコール濃度を換算するテーブルが用意されている(所定分析法第2表:国税庁提示)。 In the case of the above distillate or distilled liquor, a table for converting the alcohol concentration from the density is prepared for calculating the alcohol concentration of the sample itself (Table 2 of the predetermined analysis method: presented by the National Tax Agency).
前記サンプルを一旦蒸留して留液を得る必要のある場合には、当該蒸留工程に時間を要する上、厳密な温度管理下での厳密な容量測定が必要となる。また、蒸留法では試料を留液として完全に回収できないところから、得られた値には-0.3~-0.1vol%の誤差を含んでいる(後掲表2参照)。 When it is necessary to once distill the sample to obtain a distillate, the distillation step requires time and strict volume measurement under strict temperature control is required. In addition, since the sample cannot be completely recovered as a distillate by the distillation method, the obtained value contains an error of -0.3 to -0.1 vol% (see Table 2 below).
また、樽貯蔵を行っている蒸留酒(例えばウイスキー、ブランデー)は、蒸留酒であっても貯蔵中に樽から色素とともにエキス分が溶出しており、測定値には多くて-0.5vol%の誤差があるため、蒸留後の密度測定によるアルコール濃度測定が義務付けられている。 In addition, distilled liquor (for example, whiskey, brandy) that is stored in barrels has an extract content eluted from the barrel along with the pigment during storage even if it is distilled liquor, and the measured value is at most -0.5 vol%. Due to the error, it is obligatory to measure the alcohol concentration by measuring the density after distillation.
本発明は上記従来の事情に鑑みて提案されたものであって、エキス分を含む酒類であっても、留液を得るための蒸留工程を経ないで精度の高いアルコール濃度を得る方法を提供することを目的とするものである。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and provides a method for obtaining a highly accurate alcohol concentration even for alcoholic beverages containing an extract without going through a distillation step for obtaining a distillate. The purpose is to do.
本発明は以下の手段を採用する。 The present invention employs the following means.
まず、容量V1の蒸留前試料をアルコールが抜ける程度に水蒸気蒸留もしくは加水しながら加熱し、容量V2,密度ρR(もしくは比重R)のエキス分と純水からなる試料(蒸留残液)を得る。First, a pre-distillation sample having a volume of V 1 is heated by steam distillation or adding water to the extent that alcohol is removed, and then a sample consisting of an extract having a volume of V 2 and a density of ρ R (or specific gravity R) and pure water (distillation residual liquid). To get.
次いで、前記V1,V2,ρR(もしくはR)と純水の密度ρW(15℃)に基づいて、元容V1に戻したときのエキス分と純水からなる試料の密度ρCE(もしくは比重SGE)を例えば以下の式で算出する。Next, based on the density ρ W (15 ° C) of V 1 , V 2 , ρ R (or R) and pure water, the density ρ of the sample consisting of the extract and pure water when returned to the original volume V 1 CE (or specific density SG E ) is calculated by, for example, the following formula.
ρCE=(ρR-ρW)×(V2/V1)+ρW
更に、上記のようにして得られた、エキス分と純水からなる試料の密度(もしくは比重SGE)と、蒸留前試料の密度ρSAMP(もしくは比重S)とに基づいて、蒸留前試料のエキス分の影響を補正した密度ρCA(もしくは比重A)を得ることができる。ρ CE = (ρ R -ρ W ) × (V 2 / V 1 ) + ρ W
Further, based on the density (or specific density SGE ) of the sample composed of the extract and pure water obtained as described above and the density ρ SAMP (or specific gravity S) of the pre-distillation sample, the pre-distillation sample It is possible to obtain a density ρ CA (or specific density A) corrected for the influence of the extract component.
前記蒸留前試料のエキス分の影響を補正した密度ρCAを得る式は例えば以下の式が用いられる。For example, the following formula is used as a formula for obtaining the density ρ CA in which the influence of the extract content of the pre-distillation sample is corrected.
ΔρCE=ρCE-ρW
ρCA=ρSAMP-ΔρCE
尚、日本の国税庁は、エキス分濃度に対応する比重Eを求める式として、以下の式を提示している。Δρ CE = ρ CE -ρ W
ρ CA = ρ SAMP -Δρ CE
The National Tax Agency of Japan has presented the following formula as a formula for obtaining the specific gravity E corresponding to the extract concentration.
E=(S-A)×α+β
α=260、β=0.21、
ここで、純水密度をρ0(4℃)、ρW(15℃)として、前記エキス分と純水からなる液を試料として得られる比重S0=ρCE/ρ0と、純水の比重A0=1(ρW/ρW)とに基づいて求めたエキス分濃度に対応する比重Eを用いると、アルコール濃度(比重Aに対応)が逆算できる。E = (SA) × α + β
α = 260, β = 0.21,
Here, the density of pure water is ρ 0 (4 ° C) and ρ W (15 ° C), and the specific gravity S 0 = ρ CE / ρ 0 obtained by using the liquid composed of the extract and pure water as a sample, and the pure water The alcohol concentration (corresponding to the specific gravity A) can be calculated back by using the specific gravity E corresponding to the extract content concentration obtained based on the specific gravity A 0 = 1 (ρ W / ρ W ).
上記で、従来のように蒸留前試料の留液を得る必要がないため、アルコールを全部追い出す水蒸気蒸留もしくは加水しながらの加熱処理で足りる。また、アルコール分を含まない試料のエキス分から、蒸留前試料のアルコール濃度に含まれるエキス分による誤差を補正することができる。 In the above, since it is not necessary to obtain a distillate of the sample before distillation as in the conventional case, steam distillation to expel all alcohol or heat treatment while adding water is sufficient. In addition, it is possible to correct an error due to the extract content contained in the alcohol concentration of the pre-distillation sample from the extract content of the sample containing no alcohol content.
アルコール濃度と密度(または比重)との関係は、アルコール濃度が増えるに従って密度は低下する。一方、酒類に含まれるエキス分の濃度と密度(または比重)との関係は、エキス分濃度が増えるに従って密度は増加する。 The relationship between alcohol concentration and density (or specific gravity) decreases as the alcohol concentration increases. On the other hand, the relationship between the concentration of the extract contained in alcoholic beverages and the density (or specific gravity) increases as the concentration of the extract increases.
以上のことから、酒類(エキス分濃度が比較的少ない酒類)は、密度を測定するだけでは真のアルコール濃度が得られたことにはならず、エキス分によるアルコール濃度の誤差を補正する必要がある。 From the above, for alcoholic beverages (alcoholic beverages with a relatively low extract content), the true alcohol concentration cannot be obtained simply by measuring the density, and it is necessary to correct the error in alcohol concentration due to the extract content. be.
以下の説明に当たって用いられる符号について、以下の表1に定義しておく。 The codes used in the following description are defined in Table 1 below.
まず、容積V1の試料を水蒸気蒸留(または加水しながら加熱)して、アルコール分を追い出し、純水とエキス分からなる試料を形成する。(以下前記蒸留前の試料を「蒸留前試料」、蒸留後に残った試料を「蒸留残試料」とする。)
前記蒸留残試料は、水蒸気蒸留で容積が前記V1より大きい容積になっているものとし、当該蒸留残液の密度をρR、前記容積をV2とすると、体積を元容(V1)に戻した純水とエキス分からなる試料の密度ρCE(比重SGE)は例えば以下の式で算出できる。First, a sample having a volume of V 1 is steam-distilled (or heated while adding water) to expel the alcohol content, and a sample consisting of pure water and an extract content is formed. (Hereinafter, the sample before distillation is referred to as "pre-distillation sample", and the sample remaining after distillation is referred to as "distillation residual sample".)
It is assumed that the volume of the distilled residual sample is larger than V 1 by steam distillation, and the density of the distilled residual liquid is ρ R , and the volume is V 2 , the volume is the original volume (V 1 ). The density ρ CE (specific gravity SG E ) of the sample consisting of the pure water returned to the above and the extract can be calculated by the following formula, for example.
ρCE =(ρR-ρW)×(V2/V1)+ρW・・・(1)
SGE=ρCE/ρ0 (ρ0:4℃の純水の密度)
一方、純水中のアルコール濃度(エタノール濃度)が増加した場合、純水とアルコールの混合物の密度は低下するが、このときの前記アルコールと純水の混合物の密度ρCAを次のように考えることができる。:
ΔρCA =ρCA-ρW・・・(2)
ΔρCA : 特定のアルコール濃度での密度変化量
また、純水中のエキス分濃度が増加した場合は、エキス分と純水の混合物の密度が上昇し、このときのエキス分と純水の混合物の密度ρCEを次のように考えることができる。ρ CE = (ρ R -ρ W ) × (V 2 / V 1 ) + ρ W・ ・ ・ (1)
SG E = ρ CE / ρ 0 (ρ 0 : density of pure water at 4 ° C)
On the other hand, when the alcohol concentration (ethanol concentration) in pure water increases, the density of the mixture of pure water and alcohol decreases, but the density ρ CA of the mixture of alcohol and pure water at this time is considered as follows. be able to. :
Δρ CA = ρ CA -ρ W ... (2)
Δρ CA : Density change at a specific alcohol concentration In addition, when the concentration of the extract in pure water increases, the density of the mixture of extract and pure water increases, and the mixture of extract and pure water at this time increases. The density ρ CE of can be considered as follows.
ΔρCE =ρCE-ρW・・・(3)
ΔρCE : 特定のエキス濃度での密度変化量
蒸留前試料は純水+アルコール分+エキス分と仮定することができ、エキス分濃度が小さい場合には、密度の加成性が成立しやすい為、次のような式を用いても、補正密度を算出することができる。Δρ CE = ρ CE -ρ W ... (3)
Δρ CE : Amount of change in density at a specific extract concentration The pre-distillation sample can be assumed to be pure water + alcohol + extract, and if the extract concentration is small, density additiveity is likely to be established. , The correction density can also be calculated by using the following formula.
ρSAMP =ρW+ΔρCA+ΔρCE・・・(4)
ρCA=ρW+ΔρCA=ρSAMP-ΔρCE・・・(5)
上記式(5)で試料の真のアルコール密度ρCAが求まったことになるので、アルコール濃度から密度を計算する式を使用し、前記密度ρCAからアルコール濃度を逆計算して求めることができる。ρ SAMP = ρ W + Δρ CA + Δρ CE・ ・ ・ (4)
ρ CA = ρ W + Δρ CA = ρ SAMP -Δρ CE・ ・ ・ (5)
Since the true alcohol density ρ CA of the sample is obtained by the above formula (5), the alcohol concentration can be calculated back from the density ρ CA by using the formula for calculating the density from the alcohol concentration. ..
以上のことから、蒸留前試料の密度ρSAMPは、密度―アルコール濃度―エキス分濃度の3次元空間に存在することになる。From the above, the density ρ SAMP of the sample before distillation exists in the three-dimensional space of density-alcohol concentration-extract concentration.
ここで、理解しやすいように、前記3次元空間を密度―アルコール濃度面と、密度―エキス分濃度面に分けて表すと、図1のようになる。 Here, for easy understanding, the three-dimensional space is divided into a density-alcohol concentration surface and a density-extract concentration surface, as shown in FIG.
すなわち、密度―アルコール濃度面(a)(エキス濃度零)上には、アルコール濃度の増加にともなって密度が低下する、密度―アルコール濃度曲線P1を引くことができる。一方、密度―エキス分濃度面(b)(エキスアルコール濃度零)上にはエキス濃度が増加するにともなって密度が増加する曲線Q1を引くことができる。温度は15℃である。That is, on the density-alcohol concentration surface (a) (extract concentration zero), a density - alcohol concentration curve P1 can be drawn in which the density decreases as the alcohol concentration increases. On the other hand, on the density-extract concentration surface (b) (extract alcohol concentration zero), a curve Q1 can be drawn in which the density increases as the extract concentration increases. The temperature is 15 ° C.
ここで、特定の成分のエキス濃度曲線Q1の蒸留前試料の密度ρSAMPを、予め密度計(例えば振動式密度計)で測定しておき、エキス分密度ρCEが前記式(1)で求まると、図1で密度―エキス分濃度面(b)で曲線Q1上の前記ρCEに対応する点と、エキス分濃度に対応する密度の増加分ΔρCEが得られることになる。Here, the density ρ SAMP of the pre-distilled sample of the extract concentration curve Q1 of the specific component is measured in advance with a densitometer (for example, a vibration densitometer), and the extract density ρ CE is expressed by the above formula (1). When it is obtained, the point corresponding to the ρ CE on the curve Q 1 on the density-extract concentration plane (b) in FIG. 1 and the increase in density Δρ CE corresponding to the extract concentration can be obtained.
前記密度―エキス分濃度面(b)上のエキス分密度ρCEを、密度―アルコール濃度面(a)の密度軸に移行し、当該点から前記密度―アルコール濃度曲線P1に平行な曲線P2を描くと、前記蒸留前試料の密度ρSAMPはこの曲線P2上にあることになる。The extract density ρ CE on the density-extract concentration plane (b) is transferred to the density axis of the density-alcohol concentration plane (a), and the curve P parallel to the density-alcohol concentration curve P 1 from that point. When 2 is drawn, the density ρ SAMP of the pre-distilled sample is on this curve P 2 .
そこで、前記曲線P2上で蒸留前試料の密度ρSAMPに対応する点を求めると、この点に対応するエキス分零の密度―アルコール濃度曲線P1上の点を得ることができ、この点は前記密度ρSAMP、から前記増加分ΔρCEを引いた位置に存在し、この点が求めるアルコール濃度に対応する密度ρCAとなる。Therefore, if a point corresponding to the density ρ SAMP of the sample before distillation is obtained on the curve P 2 , a point on the density-alcohol concentration curve P 1 of the extract content corresponding to this point can be obtained, and this point can be obtained. Is present at the position where the increase Δρ CE is subtracted from the density ρ SAMP , and the density ρ CA corresponding to the alcohol concentration obtained at this point is obtained.
前記密度―エキス分濃度面(b)上では、密度ρCAを起点として前記曲線Q1に平行な曲線Q2上の前記ρCEに対応する点が蒸留前試料の密度ρSAMPとなる。On the density-extract concentration plane (b), the point corresponding to the ρ CE on the curve Q 2 parallel to the curve Q 1 from the density ρ CA is the density ρ SAMP of the pre-distillation sample.
前記密度―アルコール濃度の関係を表す曲線P1は、既に明らかな事項であり、前記曲線Q(Q1・Q2・Q3)は、エキス成分が分かっている場合は予め測定することができる。従って、エキス成分が分かっている場合は、蒸留前試料の密度ρSAMPが得られると一義的にエキス分濃度による影響を補正した真のアルコール濃度を得ることができる。The curve P 1 representing the density-alcohol concentration relationship is already clear, and the curve Q (Q 1 , Q 2 , Q 3 ) can be measured in advance if the extract component is known. .. Therefore, when the extract component is known, when the density ρ SAMP of the pre-distillation sample is obtained, the true alcohol concentration can be obtained by correcting the influence of the extract concentration.
日本の国税庁は、国税庁所定分析法3-7でエキス分濃度(比重E)を求める式として下記(11)式を用いることを提示している。 The National Tax Agency of Japan has proposed to use the following formula (11) as a formula for obtaining the extract concentration (specific gravity E) by the National Tax Agency prescribed analysis method 3-7.
E=(S-A)×α+β・・・(11)
S:試料比重、蒸留前試料密度(15℃)/純水密度(4℃)
A:留液比重、留液密度(15℃)/純水密度(15℃)、従って、Aは留液のアルコール濃度を比重に換算した値。但し「留液」は、蒸留前試料が所定量になるまで蒸留したときの留液を元容にまでメスアップした状態をいう。E = (SA) × α + β ... (11)
S: Sample specific gravity, sample density before distillation (15 ° C) / pure water density (4 ° C)
A: Distillate specific gravity, distillate density (15 ° C) / pure water density (15 ° C), therefore, A is the value obtained by converting the alcohol concentration of the distillate into specific gravity. However, the "distillate" refers to a state in which the distillate when the sample before distillation is distilled to a predetermined amount is made up to the original volume.
α、β:係数(国税庁所定分析法3-7ではα=260、β=0.21)。
従って、この式からA:アルコール濃度を逆算すると、以下のようになる。α, β: Coefficient (α = 260, β = 0.21 in the National Tax Agency prescribed analysis method 3-7).
Therefore, the back calculation of A: alcohol concentration from this equation is as follows.
A=S-{(E-β)/α}・・・(12)
この式を前記式(5)と比較すると、
ΔρCE={(E-β)/α}×ρ0
となり、式(5)と式(12)の整合性が取れることになる。A = S- {(E-β) / α} ... (12)
Comparing this equation with the equation (5),
Δρ CE = {(E-β) / α} × ρ 0
Therefore, the consistency between the equation (5) and the equation (12) can be obtained.
ここで、前記蒸気加熱によって得られた純水とエキス分よりなる蒸留残試料(容積V2)を元容(V1)に戻した試料を、前記比重Sの対象となる試料とするとき、その密度は、前記式(1)で得られることになり、前記式(11)の比重SをS0と置き直すと、当該比重S0は以下のようになる。Here, when the sample obtained by returning the distillation residual sample (volume V 2 ) composed of pure water and the extract obtained by the steam heating to the original volume (V 1 ) is used as the sample to be the target of the specific density S. The density is obtained by the above formula (1), and when the specific gravity S of the above formula (11) is replaced with S 0 , the specific gravity S 0 becomes as follows.
S0=ρCE/ρ0
(ρ0=0.99997は4℃での純水の密度)
また、純水とエキス分よりなる試料の液分は純水と仮定できるので、式(11)の比重Aの対象は純水である。従って、ρwを15℃の純水の密度とし、比重AをA0と置き直すと、
A0=ρw/ρw=1
となる。S 0 = ρ CE / ρ 0
(Ρ 0 = 0.99997 is the density of pure water at 4 ° C)
Further, since the liquid content of the sample composed of pure water and the extract can be assumed to be pure water, the target of the specific density A in the formula (11) is pure water. Therefore, if ρ w is the density of pure water at 15 ° C and the specific gravity A is replaced with A 0 ,
A 0 = ρ w / ρ w = 1
Will be.
従って、式(11)より、エキス分濃度に対応する比重Eは、前記式(11)より、
E={(ρCE/ρ0)-1.00000}×α+β・・・(13)
となる。Therefore, from the formula (11), the specific gravity E corresponding to the extract content concentration is from the above formula (11).
E = {(ρ CE / ρ 0 ) -1.00000} × α + β ・ ・ ・ (13)
Will be.
エキス分濃度に対応する比重Eが得られたので、式(12)に基づいて試料のアルコール濃度を算出することができる。 Since the specific gravity E corresponding to the extract content concentration was obtained, the alcohol concentration of the sample can be calculated based on the formula (12).
式(12)での蒸留前試料の比重Sは、15℃での蒸留前試料の密度(実測値)と4℃での純水密度の比(ρSAMP /ρ0)であり、当該蒸留前試料の比重Sと前記エキス分濃度に対応する比重Eを式(13)に代入することによって、蒸留前試料のエキス分濃度による誤差を除いた比重Aが得られる。このアルコール比重に対応する密度を濃度に換算(前記所定分析法、第2表)すると、求めるアルコール濃度が得られることになる。The specific gravity S of the pre-distillation sample in the formula (12) is the ratio of the density of the pre-distillation sample at 15 ° C. (measured value) to the density of pure water at 4 ° C. (ρ SAMP / ρ 0 ). By substituting the specific gravity S of the sample and the specific gravity E corresponding to the extract content concentration into the equation (13), the specific gravity A excluding the error due to the extract content concentration of the pre-distilled sample can be obtained. When the density corresponding to this alcohol specific gravity is converted into a concentration (predetermined analysis method, Table 2), the desired alcohol concentration can be obtained.
以上に基づいてエキス分による誤差を補正したアルコール濃度の具体例を、国税庁所定分析法3-7に準拠(α=260、β=0.21)して求めると以下のようになる。 Based on the above, a specific example of the alcohol concentration corrected for the error due to the extract content is as follows when obtained in accordance with the National Tax Agency prescribed analysis method 3-7 (α = 260, β = 0.21).
(a) アルコール分を含まない試料(残試料)のエキス分濃度の計算
蒸留前試料の体積(測定値):10.067ml(V1)
蒸留残試料の体積(測定値):63.711ml(V2)
蒸留残試料の密度(測定値):0.99917g/cm3:(ρR)
純水の密度(文献値): 0.99910g/cm3:(ρw)
以上に基づいて(1)式を計算するとアルコール分を含まない試料の密度(推定値)ρCEを求めることができる。(A) Calculation of the extract concentration of the sample containing no alcohol (residual sample) Volume of the sample before distillation (measured value): 10.067 ml (V 1 )
Volume of distillation residual sample (measured value): 63.711 ml (V 2 )
Distillation residual sample density (measured value): 0.99917 g / cm 3 : (ρ R )
Density of pure water (literature value): 0.99910g / cm 3 : (ρ w )
By calculating Eq. (1) based on the above, the density (estimated value) ρ CE of the sample containing no alcohol can be obtained.
ρCE=[ (0.99917-0.99910)×(63.711/10.067)]+0.99910=0.99954
ここで式(11)E=(S-A)×260+0.21のS=S0とA=A0とおくと、アルコール分を含まない試料のエキス分濃度に対応する比重Eは、
S0:残試料の比重(15℃/4℃):ρCE/ρ0=0.99957
A0:純水の比重(15℃/15℃): 1.00000(ρw/ρw)
アルコール濃度0 vol%を比重(15℃/15℃)に換算
であるので、エキス分濃度に対応する比重Eは、
E= (0.99957-1.00000)×260+0.21=0.10
従って、試料のエキス分濃度(推定値)に対応する比重Eは0.10
(b) 試料比重S、エキス分濃度に対応する比重Eと式(12)より、アルコール度の逆算をすると以下のようになる。ρ CE = [(0.99917-0.99910) × (63.711 / 10.067)] +0.99910 = 0.99954
Here, if S = S 0 and A = A 0 of the formula (1) E = (SA) × 260 + 0.21, the specific density E corresponding to the extract concentration of the sample containing no alcohol is calculated.
S 0 : Specific gravity of the remaining sample (15 ° C / 4 ° C): ρ CE / ρ 0 = 0.99957
A 0 : Specific gravity of pure water (15 ℃ / 15 ℃): 1.00000 (ρ w / ρ w )
Since the alcohol concentration of 0 vol% is converted to the specific gravity (15 ° C / 15 ° C), the specific density E corresponding to the extract concentration is
E = (0.99957-1.00000) × 260 + 0.21 = 0.10
Therefore, the specific gravity E corresponding to the extract concentration (estimated value) of the sample is 0.10.
(b) From the sample specific density S, the specific gravity E corresponding to the extract concentration, and the formula (12), the alcohol content is calculated back as follows.
S:試料比重(15℃/4℃)(計算値):0.95547
試料密度(15℃の測定値): 0.95544g/cm3
純水密度(4℃): 0.99997g/cm3
A=0.95547-[(0.10-0.21)/260]=0.95589
アルコール比重(15℃/15℃)(推定値) A:0.95589
アルコール密度(推定値):0.95589×ρw=0.95503g/cm3
アルコール濃度(密度から計算):37.440vol%
となる。S: Sample specific density (15 ° C / 4 ° C) (calculated value): 0.95547
Sample density (measured at 15 ° C): 0.95544g / cm 3
Pure water density (4 ℃): 0.99997g / cm 3
A = 0.95547-[(0.10-0.21) / 260] = 0.95589
Alcohol specific density (15 ℃ / 15 ℃) (estimated value) A: 0.95589
Alcohol density (estimated value): 0.95589 × ρ w = 0.95503g / cm 3
Alcohol concentration (calculated from density): 37.440vol%
Will be.
(c)上記は、国税庁提示の式を用いたが、式(5)を用いると以下のようになる。 (C) The above formula uses the formula presented by the National Tax Agency, but when formula (5) is used, it becomes as follows.
ΔρCE=0.99954(ρCE)-0.99910(ρW)=0.00044
ρCA=ρSAMP-ΔρCE=0.95544-0.00044=0.95500 g/cm3
となり、前記式(12)から得られた値0.95503g/cm3との誤差は殆どないことが分かる。Δρ CE = 0.99954 (ρ CE ) -0.99910 (ρ W ) = 0.00044
ρ CA = ρ SAMP -Δρ CE = 0.95544-0.00044 = 0.95500 g / cm 3
It can be seen that there is almost no error from the value 0.95503 g / cm 3 obtained from the above equation (12).
上記本発明に係る方法を用いて測定したウィスキーのアルコール濃度について、従来から用いられている所定法(直火法)、SDK法での測定と比較した結果を表2に示す。ここで、後述の手順で得られる、測定対象のウィスキーの推定アルコール濃度の真値は37.680vol%である。 Table 2 shows the results of comparison between the alcohol concentration of whiskey measured by the method according to the present invention and the measurement by the predetermined method (direct flame method) and SDK method which have been conventionally used. Here, the true value of the estimated alcohol concentration of the whiskey to be measured, which is obtained by the procedure described later, is 37.680 vol%.
尚、直火法は、所定量の試料を直火で70%以上流出するまで蒸留し、留液に水を加えて15℃での前記所定量にまでメスアップして、15℃における比重を得、当該比重を前記表を用いてアルコール濃度に換算する方法である。 In the direct flame method, a predetermined amount of sample is distilled by direct flame until 70% or more of the sample flows out, water is added to the distillate, the volume is increased to the predetermined amount at 15 ° C, and the specific density at 15 ° C is adjusted. It is a method of obtaining and converting the specific gravity into an alcohol concentration using the above table.
SDK法は、試料の15℃における密度をρ15、重量をm15、当該試料を蒸気蒸留して得た留液の15℃の密度がρ20、重量がm20である場合、前記表を用いて留液の前記密度ρ20からアルコール濃度Aを得たとき、試料のアルコール濃度XはX=A・m20・ρ15/(m15・ρ20)であることを利用して、温度管理、メスアップを伴わずに測定できる方法である。The SDK method uses the above table when the density of the sample at 15 ° C is ρ 15 and the weight is m 15 , and the distillate obtained by steam distilling the sample has a density of ρ 20 and a weight of m 20 . When the alcohol concentration A is obtained from the density ρ 20 of the distillate using the sample, the alcohol concentration X of the sample is X = A · m 20 · ρ 15 / (m 15 · ρ 20 ). It is a method that can be measured without management and measurement.
上記本発明に係る方法は、国税庁提示の式を用いた「本願発明の方法(1)」と、式(5)を用いた「本願発明の方法(2)」である。 The method according to the present invention is the "method of the present invention (1)" using the formula presented by the National Tax Agency and the "method (2) of the present invention" using the formula (5).
各測定法で3回の平均値より推定真値との差を得たが、本発明に係る方法で得た2通りの結果が従来法と同等かそれより誤差が小さいことが確認できる。 Although the difference from the estimated true value was obtained from the average value of three times in each measurement method, it can be confirmed that the two results obtained by the method according to the present invention are equal to or smaller than the conventional method.
前記推定真値は以下のようにして求める。 The estimated true value is obtained as follows.
真値が判っているエタノール標準液(ラベル表示濃度40.640 vol%)を直火法とSDK法で測定すると表3に示すようになる。ここで両法についての真値との差(直火法-0.065 vol%、SDK法-0.47 vol%)の平均値-0.056 vol%を得る。一方、両法でのウィスキーの測定結果の平均値は37.623 vol%であり、この値に前記0.056 vol%を加算すると、推定真値37.680 vol%が得られる。 Table 3 shows the measurement of the ethanol standard solution (label display concentration 40.640 vol%) whose true value is known by the direct flame method and the SDK method. Here, the average value of the difference between the true values for both methods (direct flame method -0.065 vol%, SDK method -0.47 vol%) -0.056 vol% is obtained. On the other hand, the average value of whiskey measurement results by both methods is 37.623 vol%, and when the above 0.056 vol% is added to this value, an estimated true value of 37.680 vol% is obtained.
尚、表3の最終段(ウイスキー推定値)は、直火法、SDK法それぞれの測定濃度の平均値37.637 vol%、37.610 vol%のそれぞれに前記0.056 vol%を加算して得られる値である。 The final stage (estimated whiskey value) in Table 3 is a value obtained by adding the above 0.056 vol% to each of the average values of 37.637 vol% and 37.610 vol% of the measured concentrations of the direct flame method and the SDK method, respectively. ..
以上説明したように、本発明は留液を得るための蒸留工程を経ないで、エキス分によるアルコール濃度の誤差を補正したアルコール濃度を得ることができるので、従来の直火法、SDK法に比してより正確に、しかも簡単に酒類のアルコール濃度を求める作業が極めて簡単になる。 As described above, the present invention can obtain an alcohol concentration in which the error of the alcohol concentration due to the extract is corrected without going through the distillation step for obtaining the distillate. In comparison, the task of finding the alcohol concentration of alcoholic beverages more accurately and easily becomes extremely easy.
P1、P2・・ アルコール濃度曲線
Q1、Q2・・ エキス濃度曲線
ρSAMP・・・試料密度
ρCA・・・・アルコール分と純水からなる試料の密度
ρCE・・・・エキス分と純水からなる試料の密度
ΔρCE・・・純粋密度とρCEとの差P 1 , P 2 ... Alcohol concentration curve Q 1 , Q 2 ... Extract concentration curve ρ SAMP・ ・ ・ Sample density ρ CA・ ・ ・ ・ Sample density consisting of alcohol and pure water ρ CE・ ・ ・ ・ Extract Density of sample consisting of minutes and pure water Δρ CE・ ・ ・ Difference between pure density and ρ CE
Claims (8)
前記V1,V2,ρR(もしくはR)と純水の密度ρW(15℃)に基づいて、エキス分と純水からなる試料の密度ρCE(もしくは比重SGE)を算出するステップと、
よりなる、エキス分算出方法。A step of heating a pre-distillation sample having a capacity of V 1 while steam-distilling or adding water to the extent that alcohol is removed to obtain a sample consisting of an extract having a capacity of V 2 and a density of ρ R (or specific gravity R) and pure water.
Step to calculate the density ρ CE (or specific gravity SG E ) of a sample consisting of extract and pure water based on the above V 1 , V 2 , ρ R (or R) and the density ρ W (15 ° C) of pure water. When,
A method for calculating the extract content.
ρCE=(ρR-ρW)×(V2/V1)+ρW
である請求項1に記載のエキス分算出方法。The formula for calculating the density ρ CE of the sample consisting of the extract and pure water is
ρ CE = (ρ R -ρ W ) × (V 2 / V 1 ) + ρ W
The extract content calculation method according to claim 1.
前記V1,V2,ρR(もしくはR)と純水の密度ρWに基づいて、エキス分と純水からなる試料の密度ρCE、(もしくは比重SGE)を算出するステップと、
前記蒸留前試料の密度ρSAMPと、純水密度ρWとエキス分と純水からなる試料の密度ρCE、(もしくは比重SGE)とに基づいて蒸留前試料のエキス分の影響を修正した密度ρCAを算出するステップと、
前記蒸留前試料のエキス分の影響を修正した密度ρCAをアルコール濃度に換算するステップと、
よりなるアルコール濃度算出方法。A step of heating a pre-distillation sample having a volume of V 1 while steam-distilling or adding water to the extent that alcohol is removed to obtain a sample consisting of an extract having a volume of V 2 and a density of ρ R (or specific gravity R) and pure water.
Based on the above V 1 , V 2 , ρ R (or R) and the density ρ W of pure water, the step of calculating the density ρ CE , (or specific gravity SG E ) of the sample consisting of the extract and pure water, and
The influence of the extract content of the pre-distillation sample was corrected based on the density ρ SAMP of the pre-distillation sample, the pure water density ρ W , the density ρ CE of the sample consisting of the extract and pure water, and (or the specific gravity SG E ). Steps to calculate the density ρ CA and
The step of converting the density ρ CA corrected for the influence of the extract content of the pre-distillation sample into the alcohol concentration, and
A method for calculating the alcohol concentration.
ρCE=(ρR-ρW)×(V2/V1)+ρW
である請求項4に記載のアルコール濃度算出方法。The formula for calculating the density ρ CE of the sample consisting of the extract and pure water is ρ CE = (ρ R -ρ W ) × (V 2 / V 1 ) + ρ W.
The alcohol concentration calculation method according to claim 4.
ΔρCE =ρCE-ρW
ρCA =ρSAMP-ΔρCE The alcohol concentration calculation method according to claim 4, wherein the density ρ CA obtained by correcting the influence of the extract content of the pre-distillation sample is calculated by the following formula.
Δρ CE = ρ CE -ρ W
ρ CA = ρ SAMP -Δρ CE
E=(S-A)×α+β
S:試料比重、蒸留前試料密度(15℃)/純水密度(4℃)
A:留液比重、留液密度(15℃)/純水密度(15℃)
α、β:係数(国税庁所定分析法3-7ではα=260、β=0.21)
前記ΔρCE={(E-β)/α}×ρ0
であらわされる請求項6に記載のアルコール濃度算出方法。When the extract concentration E is expressed by the following formula,
E = (SA) × α + β
S: Sample specific gravity, sample density before distillation (15 ° C) / pure water density (4 ° C)
A: Distillate specific gravity, distillate density (15 ℃) / pure water density (15 ℃)
α, β: Coefficient (α = 260, β = 0.21 in the National Tax Agency prescribed analysis method 3-7)
Δρ CE = {(E-β) / α} × ρ 0
The alcohol concentration calculation method according to claim 6.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016247894 | 2016-12-21 | ||
PCT/JP2017/045306 WO2018117023A1 (en) | 2016-12-21 | 2017-12-18 | Method for measuring concentration of alcohol |
JPPCT/JP2017/045306 | 2017-12-18 | ||
PCT/JP2018/023617 WO2019123693A1 (en) | 2016-12-21 | 2018-06-21 | Method for calculating alcohol concentration |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019123693A1 JPWO2019123693A1 (en) | 2020-12-17 |
JP7044269B2 true JP7044269B2 (en) | 2022-03-30 |
Family
ID=62626553
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018557763A Active JP6966787B2 (en) | 2016-12-21 | 2017-12-18 | Alcohol concentration measurement method |
JP2019560020A Active JP7044269B2 (en) | 2016-12-21 | 2018-06-21 | Alcohol concentration calculation method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018557763A Active JP6966787B2 (en) | 2016-12-21 | 2017-12-18 | Alcohol concentration measurement method |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6966787B2 (en) |
WO (2) | WO2018117023A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6082832B1 (en) | 2016-04-05 | 2017-02-15 | 株式会社アクアティカ | Message management apparatus and message management method |
JP2017194332A (en) | 2016-04-20 | 2017-10-26 | 京都電子工業株式会社 | Alcohol concentration measurement system and alcohol concentration measurement method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6082832A (en) * | 1983-10-13 | 1985-05-11 | Kanegafuchi Chem Ind Co Ltd | Concentration measuring method of alcohol and extract component in liquid |
JPS6258147A (en) * | 1985-09-06 | 1987-03-13 | Denki Kagaku Keiki Co Ltd | Method for measuring concentration |
JP5295028B2 (en) * | 2009-07-24 | 2013-09-18 | 京都電子工業株式会社 | Vibrating density meter |
JP2015004611A (en) * | 2013-06-21 | 2015-01-08 | 京都電子工業株式会社 | Concentration measurement device and concentration measurement method |
-
2017
- 2017-12-18 JP JP2018557763A patent/JP6966787B2/en active Active
- 2017-12-18 WO PCT/JP2017/045306 patent/WO2018117023A1/en active Application Filing
-
2018
- 2018-06-21 WO PCT/JP2018/023617 patent/WO2019123693A1/en active Application Filing
- 2018-06-21 JP JP2019560020A patent/JP7044269B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6082832B1 (en) | 2016-04-05 | 2017-02-15 | 株式会社アクアティカ | Message management apparatus and message management method |
JP2017194332A (en) | 2016-04-20 | 2017-10-26 | 京都電子工業株式会社 | Alcohol concentration measurement system and alcohol concentration measurement method |
Non-Patent Citations (2)
Title |
---|
国税庁,国税庁所定分析法,日本,2007年,3-15ページ |
大場孝宏,水蒸気蒸留装置及び重量法を組み合わせたアルコール分の迅速分析法,日本醸造協会誌,第109巻第3号,日本,2014年03月,187~193頁 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018117023A1 (en) | 2019-10-24 |
JP6966787B2 (en) | 2021-11-17 |
JPWO2019123693A1 (en) | 2020-12-17 |
WO2018117023A1 (en) | 2018-06-28 |
WO2019123693A1 (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Millero et al. | The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale | |
Copp et al. | Thermodynamics of binary mixtures containing amines | |
Scatchard et al. | The application of equations for the chemical potentials to partially miscible solutions | |
Rose et al. | Vapor Pressure and Vapor-Liquid Equilibrium Data for Methyl Esters of the Common Saturated Normal Fatty Acids. | |
JP7044269B2 (en) | Alcohol concentration calculation method | |
Harvey et al. | Effect of dissolved air on the density and refractive index of water | |
Luten Jr | The refractive index of H 2 H 2 O; the refractive index and density of solutions of H 2 H 2 O in H 1 H 1 O | |
Waldron et al. | Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous‐flow isotope‐ratio mass spectrometry | |
Verhoeye | System cyclohexane-2-propanol-water | |
Pavlik et al. | Number-average molecular weights of natural organic matter, hydrophobic acids, and transphilic acids from the Suwannee River, Georgia, as determined using vapor pressure osmometry | |
JP6777924B2 (en) | Alcohol concentration measurement system, alcohol concentration measurement method | |
Clark | A new general equation for the liquid-vapour relations of binary systems. Part I. Theoretical and experimental basis | |
Schneider et al. | The ternary system: dioxane—ethanol—water | |
Noyes et al. | THE BOILING-POINT CURVE FOR MIXTURES OF ETHYL ALCOHOL AND WATER. | |
Andersen | Understanding uncertainty to weighing by electronic-analytical balances | |
Zhuchkov et al. | Experimental research and mathematical modeling of vapor-liquid equilibrium in the ternary benzene—Hexafluorobenzene—Dimethyl sulfoxide system | |
Sherman | Methods of organic analysis | |
Roberts et al. | The Region of Critical Solution of Binary Liquids, Evidence for an Anomalous First‐Order Transition in the System Triethyl Amine‐Water | |
Pambianchi | Benchmarking of ABV Analysis Instruments and Methods in Wine Applications | |
CN102645512A (en) | Method for quickly determining content of hydrophilic organic solvent by utilizing dual-aqueous phase system | |
Jasper et al. | The partially miscible system water-normal amyl alcohol | |
Gros et al. | Uncertainty budget for simultaneous determination of minor and major ions in seawater with ion chromatography confronted with uncertainties in concentrations of calibration standards | |
Pavlíček et al. | Azeotropic Behavior of the 2-Methylpropan-2-ol+ water+ 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide System | |
Donovan et al. | Software Methods and Tools for WDS Light Element Analysis | |
Rieder | The mineralogical system: 2D projections and their potential in mineral identification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7044269 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |