JP2022053329A - 半導体装置の製造方法、基板処理方法、プログラム及び基板処理装置 - Google Patents

半導体装置の製造方法、基板処理方法、プログラム及び基板処理装置 Download PDF

Info

Publication number
JP2022053329A
JP2022053329A JP2020160111A JP2020160111A JP2022053329A JP 2022053329 A JP2022053329 A JP 2022053329A JP 2020160111 A JP2020160111 A JP 2020160111A JP 2020160111 A JP2020160111 A JP 2020160111A JP 2022053329 A JP2022053329 A JP 2022053329A
Authority
JP
Japan
Prior art keywords
substrate
gas
wafer
predetermined
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020160111A
Other languages
English (en)
Other versions
JP7179806B2 (ja
Inventor
一樹 野々村
Kazuki NONOMURA
健一 寿崎
Kenichi Suzaki
佳将 永冨
Yoshimasa Nagatomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP2020160111A priority Critical patent/JP7179806B2/ja
Priority to TW110132956A priority patent/TWI818311B/zh
Priority to KR1020210120076A priority patent/KR20220040993A/ko
Priority to US17/474,693 priority patent/US20220093386A1/en
Priority to CN202111096352.8A priority patent/CN114250448A/zh
Publication of JP2022053329A publication Critical patent/JP2022053329A/ja
Application granted granted Critical
Publication of JP7179806B2 publication Critical patent/JP7179806B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/12Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

Figure 2022053329000001
【課題】表面にパターンが形成された基板上に形成される膜の面内膜厚分布を制御する。
【解決手段】(a)表面にパターンが形成された基板に対して、基板の外周から基板の面内に向けて所定元素を含む原料ガスを供給することで、基板の表面に所定元素を含む第1層を形成する工程と、(b)基板に対して、基板の外周から基板の面内に向けて酸化ガスを供給することで、第1層を酸化し、表面に所定元素を含む酸化層を形成する工程と、を非同時に所定回数実行することで基板上に所定元素を含む酸化膜を形成し、(b)では酸化膜の基板面内における厚さ分布が所定の分布となるように、酸化ガスを基板に供給する供給時間が選択される。
【選択図】図4

Description

本開示は、半導体装置の製造方法、基板処理装置、およびプログラムに関する。
表面にパターンが形成された基板を分散装填した基板支持具を処理室に収容して、当該基板の表面に所定の膜を形成することがある(例えば特許文献1参照)。
国際公開第2017/168675号パンフレット
表面にパターンが形成された基板の表面に所定の膜を形成する場合、表面にパターンが形成されて表面積が大きくなることにより基板の面内膜厚均一性が悪化することがある。
本開示は、表面にパターンが形成された基板上に形成される膜の面内膜厚分布を制御することを目的とする。
本開示の一態様によれば、
(a)表面にパターンが形成された基板に対して、前記基板の外周から前記基板の面内に向けて所定元素を含む原料ガスを供給することで、前記表面に前記所定元素を含む第1層を形成する工程と、
(b)前記基板に対して、前記基板の外周から前記基板の面内に向けて酸化ガスを供給することで、前記第1層を酸化し、前記表面に前記所定元素を含む酸化層を形成する工程と、
を非同時に所定回数実行することで前記基板上に前記所定元素を含む酸化膜を形成し、
(b)では前記酸化膜の前記基板面内における厚さ分布が所定の分布となるように、前記酸化ガスを前記基板に供給する供給時間が選択される、
技術が提供される。
本開示によれば、表面にパターンが形成された基板上に形成される膜の面内膜厚分布を制御することが可能となる。
本開示の好ましい実施の形態において基板に成膜するのに使用される基板処理装置を説明するための概略縦断面図である。 図1のA-A線概略横断面図である。 本開示の好ましい実施の形態の基板処理装置のコントローラを説明するための概略図である。 本開示の好ましい実施の形態の好適な成膜処理フローを説明するためのフローチャートである。 実施例に用いた評価方法を説明するための図である。 図6(A)は、基板間のピッチが第1距離のベア面に形成された酸化膜の膜厚分布と酸化ガスの供給時間との関係を示した図であり、図6(B)は、基板間のピッチが第1距離のパターン面に形成された酸化膜の膜厚分布と酸化ガスの供給時間との関係を示した図である。 図7(A)は、基板間のピッチが第2距離のベア面に形成された酸化膜の膜厚分布と酸化ガスの供給時間との関係を示した図であり、図7(B)は、基板間のピッチが第2距離のパターン面に形成された酸化膜の膜厚分布と酸化ガスの供給時間との関係を示した図である。 ベア面とパターン面のそれぞれの面の中心に形成された酸化膜の膜厚と、酸化ガスの供給時間と、基板間ピッチとの関係を示した図である。 基板の中心から150mmまでの膜厚凸量と、基板の中心から100mmまでの膜厚凸量と、酸化ガスの供給時間との関係を示した図である。
<本開示の一実施形態>
以下、本開示の一実施形態について説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面上の各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
(1)基板処理装置の構成
本開示の好ましい実施の形態の基板処理装置10は、処理炉202を備えている。処理炉202は加熱系(温度調整部)としてのヒータ207を有している。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、赤外線を用いて、後述する処理室201内を所定温度で加熱する。
ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220が設けられている。マニホールド209がヒータベース(図示せず)に支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を、基板保持具としてのボート217によって水平姿勢で垂直方向に多段に積載した状態で収容可能に構成されている。なお、ヒータ207は、少なくともウエハ200が配列されるウエハ配列領域の一端側から他端側まで加熱するように設けられている。
処理室201内には、ノズル410,420が、マニホールド209の側壁を貫通するように設けられている。ノズル410,420には、ガス供給ラインとしてのガス供給管310,320が、それぞれ接続されている。このように、処理容器(マニホールド209)には2本のノズル410,420と、2本のガス供給管310,320とが接続されており、処理室201内へ複数種類のガスを供給することが可能となっている。
ガス供給管310,320には、上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322および開閉弁であるバルブ314,324がそれぞれ設けられている。ガス供給管310,320のバルブ314,324よりも下流側には、不活性ガスを供給するガス供給ラインとしてのガス供給管510,520がそれぞれ接続されている。ガス供給管510,520には、上流側から順に、流量制御器(流量制御部)であるMFC512,522および開閉弁であるバルブ514,524がそれぞれ設けられている。
ガス供給管310,320の先端部には、ノズル410,420がそれぞれ接続されている。ノズル410,420は、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がり、延在するようにそれぞれ設けられている。すなわち、ノズル410,420は、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。すなわち、ノズル410,420は、処理室201内へ搬入された各ウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直にそれぞれ設けられている。ノズル410,420はL字型のロングノズルとしてそれぞれ構成されており、それらの各水平部はマニホールド209の側壁を貫通するように設けられており、それらの各垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がり、当該一端側から当該他端側まで延在するように設けられている。
ノズル410,420の側面のウエハ200と対応する高さ(基板の積載領域に対応する高さ)には、ガスを供給するガス供給口としての複数の供給孔410a(第1のガス供給孔、原料ガス供給孔),420a(第2のガス供給孔、酸化ガス供給孔)がそれぞれ設けられている。供給孔410a,420aは、反応管203の中心を向くように開口しており、ウエハ200の外周からウエハ200の面内に向けてガスを供給することが可能となっている。供給孔410a,420aは、反応管203のウエハ200の存在する領域、すなわち、ボート217と対向する位置、換言すると、ヒータ207の下端部から上部にわたって複数設けられている。
供給孔410a,420aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、さらに同じ開口ピッチで設けられている。ただし、供給孔410a,420aは上述の形態に限定されない。例えば、ノズル410,420の下部(上流側)から上部(下流側)に向かって開口面積を徐々に大きくしてもよい。これにより、供給孔410a,420aから供給されるガスの流量をより均一化することが可能となる。
このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部(周縁部)と、で定義される平面視において円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル410,420を経由してガスを搬送している。そして、ノズル410,420にそれぞれ開口された供給孔410a,420aから、ウエハ200の近傍で反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。すなわち、複数の供給孔410a,420aは、ウエハ200の外周に配置され、ウエハ200の外周(端部)からウエハ200の面内(例えば中央)に向かってガスを供給するように構成(サイドフロー構成)されている。
ガス供給管310からは、所定の元素を含む原料ガスが、MFC312、バルブ314、ノズル410を介して処理室201内へ供給される。ノズル410から原料ガスを流す場合、ノズル410を原料ガスノズルと称してもよい。
原料ガスとは、気体状態の原料、例えば、常温常圧下で気体状態である気体原料や、常温常圧下で液体状態である液体原料を気化することで得られるガス等のことである。本明細書において「原料」という言葉を用いた場合は、「液体状態である原料」を意味する場合、「気体状態である原料(原料ガス)」を意味する場合、または、それらの両方を意味する場合がある。TMAやTEMAHやTEMAZ等の有機系化合物は、液体原料なので、気化器等を用いて気化してガス化したものが原料ガスとして使用される。
ガス供給管320からは、酸化ガス(酸化剤)としての酸素含有ガスが、MFC322、バルブ324、ノズル420を介して処理室201内へ供給される。
ガス供給管510,520からは、不活性ガスが、それぞれMFC512,522、バルブ514,524、ガス供給管310,320、ノズル410,420を介して処理室201内へ供給される。
ガス供給管310から原料ガスを供給する場合、主に、ガス供給管310、MFC312、バルブ314、ノズル410により、原料ガス供給系が構成される。原料ガス供給系を原料供給系と称することもできる。
ガス供給管320から酸化ガスを供給する場合、主に、ガス供給管320、MFC322、バルブ324、ノズル420により、酸化ガス供給系が構成される。
主に、ガス供給管510,520、MFC512,522、バルブ514,524により、不活性ガス供給系が構成される。
原料ガス供給系、酸化ガス供給系を合わせてガス供給系と称することもできる。不活性ガス供給系をガス供給系に含めて考えてもよい。
マニホールド209には、処理室201内の雰囲気を排気する排気流路としての排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および排気バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ243を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ243、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の処理室201と反対側には、ボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ(図示せず)が設けられている。シャッタ(図示せず)は、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタ(図示せず)の上面には、マニホールド209の下端と当接するシール部材としてのOリング(図示せず)が設けられている。シャッタ(図示せず)の開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構(図示せず)により制御される。
基板支持具(基板搭載手段)としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、所定の間隔(ウエハ間ピッチ)を空けて多段に配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される図示しない断熱板が多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。但し、例えば、ボート217の下部に断熱板を設けずに、石英やSiC等の耐熱性材料により構成される筒状の部材として構成された断熱筒218を設けてもよい。
反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル410,420と同様にL字型に構成されており、反応管203の内壁に沿って設けられている。
図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する成膜処理における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それら両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
I/Oポート121dは、上述のMFC512,522,312,322、バルブ514,524,314,324、圧力センサ245、APCバルブ243、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構(図示せず)等に接続されている。
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すことが可能なように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC512,522,312,322による各種ガスの流量調整動作、バルブ514,524,314,324の開閉動作、APCバルブ243の開閉動作および圧力センサ245に基づくAPCバルブ243による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構(図示せず)によるシャッタ(図示せず)の開閉動作等を制御することが可能なように構成されている。
コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやSSD等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
上述の基板処理装置10を用い、半導体装置(デバイス)の製造工程の一工程として、表面にパターンが形成されたウエハ200上に膜を形成するシーケンス例について、図4を参照して説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
本実施形態において、ウエハ200は、表面にパターンが形成されており、表面にパターンが形成されていないベアウエハの上面の表面積に対して、例えば3/2倍以上、好適には10倍以上、より好適には50倍以上の上面の表面積を有する大表面積基板である。すなわち、ウエハ200が円形の場合、ウエハ200の半径rに対して、パターンが形成された上面の表面積は、例えば3πr以上である。
また、本実施形態では、複数のウエハ200が積載された状態で収容された処理室201を所定温度で加熱しつつ、処理室201に、ノズル410に開口する複数の供給孔410aから原料ガスとして所定元素を含むガスを供給する工程と、ノズル420に開口する複数の供給孔420aから酸化ガスを供給する工程と、を非同時に所定回数(n回)実行することで、ウエハ200上に、所定元素を含む酸化膜(以下、単に酸化膜と称することがある)を形成する。
本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」をいう言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージ・ボートロード)(ステップS101、S102)
複数枚のウエハ200がボート217に装填(ウエハチャージ)される(ステップS101)。シャッタ開閉機構(図示せず)によりシャッタが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200が収容されたボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される(ステップS102)。この状態で、シールキャップ219は、Oリング220を介してマニホールド209の下端をシールした状態となる。
(圧力・温度調整)(ステップS103)
処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。続いて、回転機構267によりボート217及びウエハ200の回転を開始する。回転機構267によるボート217及びウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。
(成膜工程)(ステップS110)
その後、原料ガス供給ステップ(ステップS111)、残留ガス除去ステップ(ステップS112)、酸化ガス供給ステップ(ステップS113)、残留ガス除去ステップ(ステップS114)をこの順で非同時に所定回数実行する。
〔原料ガス供給ステップ〕(ステップS111)
バルブ314を開き、ガス供給管310へ原料ガスを流す。原料ガスは、MFC312により流量調整され、ノズル410に開口する供給孔410aからウエハ200に対して供給される。すなわちウエハ200は原料ガスに暴露される。供給孔410aから供給された原料ガスは、排気管231から排気される。このとき同時に、バルブ514を開き、ガス供給管510内にキャリアガスとして不活性ガスを流す。不活性ガスは、MFC512により流量調整され、原料ガスと一緒にノズル410の供給孔410aから処理室201内に供給され、排気管231から排気される。
なお、不活性ガスとしては、例えば、窒素(N)ガスや、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。不活性ガスとしては、これらのうち1以上を用いることができる。この点は、後述する各ステップにおいても同様である。
また、ノズル420への原料ガスの侵入を防止(逆流を防止)するため、バルブ524を開き、ガス供給管520内へ不活性ガスを流す。不活性ガスは、ガス供給管520、ノズル420を介して処理室201内へ供給され(パージ)、排気管231から排気される。
このとき、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~1000Pa、好ましくは1~100Pa、より好ましくは10~50Paの範囲内の圧力とする。なお、本明細書では、数値の範囲として、例えば1~1000Paと記載した場合は、1Pa以上1000Pa以下を意味する。すなわち、数値の範囲内には1Paおよび1000Paが含まれる。圧力のみならず、流量、時間、温度等、本明細書に記載される全ての数値についても同様である。MFC312で制御する原料ガスの供給流量は、例えば、10~2000sccm、好ましくは50~1000sccm、より好ましくは100~500sccmの範囲内の流量とする。MFC512で制御する不活性ガスの供給流量は、例えば、1~30slm、好ましくは1~20slm、より好ましくは1~10slmの範囲内の流量とする。原料ガスをウエハ200に対して供給する時間は、例えば、1~60秒、好ましくは1~20秒、より好ましくは2~15秒の範囲内とする。
ヒータ207は、ウエハ200の温度が、例えば、室温~450℃、好ましくは350~420℃の範囲内の所定の温度となるように加熱する。350℃未満の場合、酸化ガスによる実用的な酸化速度を得られない可能性があり、420℃以上の場合、原料ガスの熱分解等に起因して成膜処理のステップカバレッジが低下する可能性がある。350℃以上420℃以下とすることで、ステップカバレッジを維持しながら、実用的な酸化速度を得ることが容易となる。温度が高い方が後述する酸化ガス供給ステップ(ステップS113)において用いる酸化ガス(特にOガス)の失活速度が大きくなるため、ウエハ200の温度は、450℃以下とするのが好ましい。
原料ガスとして、例えば所定元素としてアルミニウム(Al)を含有するガスを、上述の条件下で処理室201内へ供給することにより、ウエハ200の最表面に、第1層としてのAl含有層が形成される。Al含有層は、Al層の他、原料ガスに含まれる炭素(C)および水素(H)を含み得る。Al含有層は、ウエハ200の最表面に、原料ガスが物理吸着したり、原料ガスの一部が分解した物質が化学吸着したり、原料ガスが熱分解することでAlが堆積したりすること等により形成される。すなわち、Al含有層は、原料ガスや原料ガスの一部が分解した物質の吸着層(物理吸着層や化学吸着層)であってもよく、Alの堆積層(Al層)であってもよい。
また原料ガスとしては、例えば、所定元素としてAlを含むガスであるトリメチルアルミニウム((CHAl、TMA)ガス等の有機系Al含有ガスを用いることができる。また、Al含有ガスとして、塩化アルミニウム(AlCl)ガス等のハロゲン系Al含有ガスを用いることができる。また、所定元素として他の金属元素を含むガスを用いることができる。例えば、原料ガスとして、ハフニウム(Hf)を含むガスであるテトラキスエチルメチルアミノハフニウム([(CH)(C)N]Hf,TEMAH)ガス等の有機系Hf含有ガスや、塩化ハフニウム(HfCl)ガス等のハロゲン系Hf含有ガスを用いることができる。また、例えば、原料ガスとして、ジルコニウム(Zr)を含むガスであるテトラキスエチルメチルアミノジルコニウム((NCH、TEMAZ)ガス等の有機系Zr含有ガスや、塩化ジルコニウム(ZrCl)ガス等のハロゲン系Zr含有ガスを用いることができる。その他、原料ガスとして、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)等の金属元素又はシリコン(Si)等の半導体元素を所定元素として含むガスを用いることができる。
〔残留ガス除去ステップ〕(ステップS112)
Al含有層が形成された後、バルブ314を閉じ、原料ガスの供給を停止する。このとき、APCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応又はAl含有層形成に寄与した後の原料ガスを処理室201内から排除する。バルブ514,524は開いた状態で不活性ガスの処理室201内への供給を維持する。不活性ガスはパージガスとして作用し、処理室201内に残留する未反応又はAl含有層形成に寄与した後の原料ガスを処理室201内から排除する効果を高めることができる。なお、バルブ514,524からの不活性ガスは残留ガス除去ステップの間、常に流し続けてもよいし、断続的(パルス的)に供給してもよい。
〔酸化ガス供給ステップ〕(ステップS113)
処理室201内の残留ガスを除去した後、バルブ324を開き、ガス供給管320内に酸素含有ガスを酸化ガス(反応ガス)として流す。酸化ガスは、MFC322により流量調整され、ノズル420の供給孔420aから処理室201内のウエハ200に対して供給され、排気管231から排気される。すなわちウエハ200は酸化ガスに暴露される。このとき、バルブ524を開き、ガス供給管520内に不活性ガスを流す。不活性ガスは、MFC522により流量調整され、酸化ガスと共に処理室201内に供給されて、排気管231から排気される。このとき、ノズル410内への酸化ガスの侵入を防止(逆流を防止)するために、バルブ514を開き、ガス供給管510内へ不活性ガスを流す。不活性ガスは、ガス供給管510、ノズル410を介して処理室201内に供給され(パージ)、排気管231から排気される。
このとき、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~1000Pa、好ましくは1~100Pa、より好ましくは10~40Paの範囲内の圧力とする。MFC322で制御する酸化ガスの供給流量は、例えば、5~40slm、好ましくは5~30slm、より好ましくは10~20slmの範囲内の流量とする。その他の処理条件は、上述の原料ガス供給ステップと同様の処理条件とする。
酸化ガスとしては、酸素(O)ガス、オゾン(O)ガス、プラズマ励起されたO(O )ガス、Oガス+水素(H)ガス、水蒸気(HOガス)、過酸化水素(H)ガス、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等の酸素(O)含有ガス等を用いることができる。酸化ガスとしては、これらのうち1以上を用いることができる。
このとき処理室201内に流しているガスは、酸化ガスと不活性ガスのみである。酸化ガスは、原料ガス供給ステップでウエハ200上に形成されたAl含有層の少なくとも一部と反応する。第1層であるAl含有層は酸化され、金属酸化層としてAlとOとを含むアルミニウム酸化層(Al酸化層)が形成される。すなわちAl含有層はAl酸化層へと改質される。
〔残留ガス除去ステップ〕(ステップS114)
Al酸化層が形成された後、バルブ324を閉じて、酸化ガスの供給を停止する。このとき、APCバルブ243は開いたままとし、バルブ514,524は開いた状態で不活性ガスの処理室201内への供給を維持して(パージ)、原料ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはAl酸化層の形成に寄与した後の酸化ガスや反応副生成物を処理室201内から排除する。
〔所定回数実施〕(ステップS115)
上述の原料ガス供給ステップ、残留ガス除去ステップ、酸化ガス供給ステップ、残留ガス供給ステップを順に行うサイクルを非同時に1回以上(所定回数)実行することにより、ウエハ200上に所定元素であるAlを含む酸化膜(Al酸化膜)が形成される。このサイクルの回数は、最終的に形成する酸化膜において必要とされる膜厚に応じて適宜選択されるが、このサイクルは、複数回繰り返すことが好ましい。酸化膜の厚さ(膜厚)は、例えば、0.1~150nm、好ましくは0.1~10nmとする。150nm以下とすることで表面粗さを小さくすることができ、0.1nm以上とすることで下地膜との応力差に起因する膜剥がれの発生を抑制することができる。
(アフターパージ・大気圧復帰)(ステップS121、S122)
成膜工程が終了したら、バルブ514,524を開き、ガス供給管310,320のそれぞれから不活性ガスを処理室201内へ供給し、排気管231から排気する。不活性ガスはパージガスとして作用し、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)(ステップS121)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力は常圧に復帰される(大気圧復帰)(ステップS122)。
(ボートアンロード・ウエハディスチャージ)(ステップS123、S124)
その後、ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出される(ステップS123)。その後、シャッタ(図示せず)が移動させられ、マニホールド209の下端開口がOリング(図示せず)を介してシャッタ(図示せず)によりシールされる。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ステップS124)。
上述の酸化ガス供給ステップ(ステップS113)において、酸化ガスのウエハ200に対して供給する時間が短い場合には、ウエハ200上に凸形状(ウエハ中央の膜厚がウエハ中央よりも外側の膜厚よりも相対的に大きい分布)に酸化膜が形成され、酸化ガスのウエハ200に対して供給する時間を長くすることにより、ウエハ200上に形成される酸化膜が凸形状から凹形状(ウエハ中央の膜厚がウエハ中央よりも外側の膜厚よりも相対的に小さい分布)となる方向に変化することを、本開示者達は見出した。そして、本開示者達は、その結果、酸化ガスのウエハ200に対して供給する時間を制御することにより、表面にパターンが形成されたウエハ上に形成される酸化膜の膜厚分布を制御し、膜厚面内均一性を向上させることができることを見出した。
ここで、パターンが形成されたウエハであるパターンウエハは、パターンが形成されていないウエハであるベアウエハに比較して、表面積が大きい為、ガスの消費量が大きい。また、上述の基板処理装置10では、複数のウエハ200が所定の間隔でボート217上に多段に配列され、ウエハ200の外周側から面内に向かってガスが供給されることとなるため、酸化ガスは、原料ガス供給ステップでウエハ200上に形成されたAl含有層の少なくとも一部とウエハ200の外周側から反応する。
酸化ガスのウエハ200に対して供給する時間が短い場合には、外周側から供給された酸化ガスがウエハの外周側から消費されてしまい、ウエハ200の中央まで十分に酸化(反応)されないこととなる。このため、酸化ガスがAl含有層の少なくとも一部と反応して酸化層を形成するが、酸化不足であるウエハ中央では、酸化不足によって酸化層の表面に原料ガスが吸着するOH基等の吸着サイトが余分に形成されてしまうために、より多くの原料ガスが吸着し、ウエハの外周側の膜厚よりも酸化不足であるウエハ中央の膜厚が増膜して、ウエハ200上に凸形状に酸化膜が形成されるものと推測される。
また、酸化ガスのウエハ200に対して供給する時間を長くすると、酸化が進行し、外周側から供給された酸化ガスがウエハの外周側から中央まで酸化(反応)する。このため、酸化ガスがAl含有層の少なくとも一部と反応して酸化層を形成する際、余分なOH基等の吸着サイトが形成されず、ウエハ中央においても、ウエハの外周側と同様に酸化膜が形成されることになり、酸化不足の場合に比べて酸化膜の膜厚が減膜するものと推測される。そして、さらに酸化が進行し、酸化層における酸化が飽和すると、酸化層の下地(界面)が酸化され、界面の体積が増加して、ウエハ中央よりも先に酸化が進行するウエハの外周側の膜厚が増膜して、ウエハ200上に凸形状から凹形状に変化するように酸化膜が形成されるものと推測される。酸化不足による増膜は、特に炭化水素基(例えばアルキル基、メチル基、エチル基等)を有する原料ガスを用いる場合に顕著に生じやすいものと推測される。
したがって、酸化ガスをウエハ200に対して供給する時間は、酸化膜のウエハ面内における厚さ分布が所定の分布となるように選択される。酸化ガスの供給時間が長くなるよう選択されることにより、酸化膜のウエハ200面内における厚さ分布を、凸形状から凹形状となる方向に調整することができる。また、酸化ガス供給時間を、面内膜厚分布が凸形状から略均一となる時間であって、凹形状に変化する時間より短くすることによって、ウエハの面内膜厚分布を均一にすることができる。また、酸化ガス供給時間を、面内膜厚分布が凹形状に変化する時間よりも短くすることにより、ウエハの外周から進む酸化膜の下地(界面)の酸化を抑制することができる。
すなわち、記憶装置121c又は外部記憶装置123に、酸化ガス供給時間と酸化膜の面内膜厚分布とを関連づけたデータを格納し、面内膜厚分布が所定の分布となるよう酸化ガス供給時間が選択されて、本ステップが実行される。
言い換えれば、酸化ガスの供給時間は、酸化膜のウエハ面内における厚さ分布が所定の分布となるように、酸化膜のウエハ200面内における厚さ分布が凸形状になる酸化ガスの供給時間よりも長くなるように選択される。また、酸化ガスの供給時間は、酸化膜のウエハ面内における厚さ分布が所定の分布となるように、酸化膜のウエハ200面内における厚さ分布が凹形状になる酸化ガスの供給時間よりも短くなるように選択される。また、酸化ガスの供給時間は、酸化膜のウエハ面内における厚さ分布が均一となるように選択され、酸化膜のウエハ200面内における厚さの面内均一性が例えば10%以下になる長さが選択される。ここで面内均一性は、(最大膜厚―最小膜厚)/平均膜厚で算出される。
また、酸化ガスの供給時間は、ウエハ200の所定の間隔であるウエハ間ピッチに基づいて、酸化膜の面内における厚さの分布が所定の分布となるように選択される。ウエハ間ピッチが狭いほど、酸化ガスの供給時間による面内膜厚分布の凸形状が強くなる。このため、酸化ガスの供給時間を長くすることにより、面内膜厚分布を均一に近づけることができる。つまり、酸化ガスの供給時間は、ウエハ間ピッチが狭いほど長くなるように選択される。ウエハ間ピッチは、例えば50~3mmである。ウエハ間ピッチは、大きいほどウエハの面内膜厚均一性を向上させることができるが、酸化ガス供給時間の調整によってウエハの面内膜厚分布の制御を可能にするという効果を得るためには、50mm以下であることが好ましい。50mm超の場合、当該効果を十分に得られない可能性がある。また、ウエハ間ピッチは、3mm未満とした場合、酸化ガス供給時間を長くして面内膜厚分布を凸形状から均一な形状に近づける際に、ウエハ中央側の減膜よりも先にウエハ外周側の酸化膜厚の増大が進行する可能性がある。そのため、ウエハ間ピッチは、3mm以上とすることが好ましい。
また、酸化ガスの供給時間は、ウエハ200の上面の表面積に基づいて、酸化膜の面内における厚さの分布が所定の分布となるように選択される。ウエハの上面の表面積が大きいほど、酸化ガスの供給時間による面内膜厚分布の凸形状が強くなる。このため、酸化ガスの供給時間を長くすることにより、面内膜厚分布を均一に近づけることができる。つまり、酸化ガスの供給時間は、ウエハ200の上面の表面積が大きいほど長くなるように選択される。
(3)本実施形態による効果
本実施形態によれば、以下に示す一つ又は複数の効果が得られる。
(a)基板上に形成された酸化膜の面内膜厚分布を制御することが可能となる。
(b)基板上に形成された酸化膜の面内膜厚均一性を向上させることが可能となる。
(c)酸化ガスの供給時間として、面内膜厚分布に応じた時間が選択されることにより、スループットが向上される。
(d)面内膜厚分布を均一にすることにより、酸化膜の下地(界面)の酸化を抑制することができる。
<他の実施形態>
以上、本開示の実施形態を具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
また、上記実施形態では、所定元素を含む原料ガスとして、TMAガスを用いる例を用いて説明したが、これに限らず、所定元素を含む原料ガスとして、アルキル基、メチル基、エチル基等の炭化水素基を有するガスを用いることができる。
また、上記実施形態では、所定元素を含む酸化膜としてAlを含むAlO膜を形成する例を用いて説明したが、これに限らず、所定元素を含む酸化膜としてシリコン酸化(SiO)膜、酸化ハフニウム(HfO)膜、酸化ジルコニウム(ZrO)膜、酸化チタン(TiO)膜、酸化タンタル(TaO)膜、酸化モリブデン(MoO)膜、酸化タングステン(WO)膜等の酸化膜を形成する場合にも、好適に適用できる。
また、上記実施形態では、ウエハ200の外周から面内(中央)に向かってガスを供給する例を用いて説明したが、これに限らず、ウエハ200の外周から拡散によってウエハ200の面内(中央)へガスを供給する場合にも、好適に適用できる。
なお、基板処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、基板処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することが可能となる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。
上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更してもよい。
これらの基板処理装置を用いる場合においても、上述の実施形態と同様な処理手順、処理条件にて成膜処理を行うことができ、上述の実施形態と同様の効果が得られる。
本実施例では、図1に示す基板処理装置10を用い、ボート217に、図5に示すように、パターンが形成された面を下側にしたウエハ200間に、モニタウエハ300を載置して、図4に示すシーケンスの酸化ガス供給ステップ(ステップS113)における酸化ガスの供給時間を制御してモニタウエハ300の上下面にそれぞれ形成された酸化膜の面内膜厚分布を評価した。パターンが形成されたウエハ200の表面は、ベアウエハに対して50倍の表面積を有している。モニタウエハ300の上面であって、ウエハ200のパターンが形成された面と対向する面300A(以下、パターン面300Aと記す)に形成された酸化膜の膜厚を、パターンが形成されたウエハ上に形成された酸化膜の膜厚と同等とし、モニタウエハ300の下面であって、ウエハ200のパターンが形成されていない面と対向する面300B(以下、ベア面300Bと記す)に形成された酸化膜の膜厚を、パターンが形成されていないベアウエハ上に形成された酸化膜の膜厚と同等として評価した。
先ず、ウエハの表面積とウエハ間のピッチと酸化ガス供給時間と面内膜厚分布との関係について評価した。なお、本実施例では、一例として、原料ガスとしてTMAガスを、酸化ガスとしてOガスを用いる。
図6(A)は、ウエハ間のピッチPが第1距離(16mm)のベア面300B上に形成された酸化膜の膜厚分布と酸化ガスの供給時間との関係を示した図であり、図6(B)は、ウエハ間のピッチPが第1距離のパターン面300A上に形成された酸化膜の膜厚分布と酸化ガスの供給時間との関係を示した図である。また、図7(A)は、ウエハ間のピッチPが第2距離(8mm)のベア面300B上に形成された酸化膜の膜厚分布と酸化ガスの供給時間との関係を示した図であり、図7(B)は、ウエハ間のピッチPが第2距離のパターン面300A上に形成された酸化膜の膜厚分布と酸化ガスの供給時間との関係を示した図である。
図6(A)及び図7(A)に示すように、ベア面300B上に形成された酸化膜は、面内膜厚分布が略均一となり、酸化ガス供給時間を長くすると面内膜厚分布が略均一な状態で膜厚が増膜した。
これに対して、図6(B)に示すように、ウエハ間ピッチが第1距離の場合のパターン面300A上に形成された酸化膜は、酸化ガスの供給時間が20秒の場合はウエハ中央が凸の凸形状の膜厚分布となり、酸化ガスの供給時間が50秒の場合にウエハ中央の膜厚が減膜して面内膜厚分布が均一に近い分布となった。そして、さらに酸化ガスの供給時間を長くすると、ウエハの外周側が増膜して凹形状の膜厚分布となった。
また、図7(B)に示すように、ウエハ間ピッチが第2距離の場合のパターン面300A上に形成された酸化膜は、酸化ガスの供給時間が20秒の場合は凸形状の膜厚分布となり、酸化ガスの供給時間が50秒の場合にウエハ中央の膜厚が減膜し、酸化ガスの供給時間が100秒の場合にウエハ中央の膜厚がさらに減膜して面内膜厚分布が均一に近い分布となった。そして、さらに酸化ガスの供給時間を長くすると、ウエハの外周側が増膜して凹形状の膜厚分布となった。
すなわち、ウエハの上面の表面積やウエハ間のピッチによって、形成される酸化膜の面内膜厚分布が異なることが確認された。また、ウエハの上面の表面積が大きいほど、酸化ガスの供給時間を長くすることにより凸形状から面内膜厚分布が均一に近い分布となり、さらに酸化ガス供給時間を長くすることにより凹形状に変化することが確認された。また、ウエハ間のピッチが狭いほど、酸化ガス供給時間を長くすることにより凸形状から面内膜厚分布が均一に近い分布となり、さらに酸化ガス供給時間を長くすることにより凹形状に変化することが確認された。
次に、ウエハ間ピッチが第2距離のベア面300Bとパターン面300Aのそれぞれの中心における膜厚の変化と、ウエハ間ピッチが第1距離のベア面300Bとパターン面300Aのそれぞれの中心における膜厚の変化を比較した。図8は、ベア面300Bとパターン面300Aのそれぞれの面の中心に形成された酸化膜の膜厚と、酸化ガスの供給時間と、ウエハ間ピッチPとの関係を示した図である。
図8に示すように、ベア面300B中心では、ウエハ間ピッチが第2距離の場合も第1距離の場合も酸化ガスの供給時間を長くすることにより、酸化膜が増膜されることが確認された。また、ウエハ間ピッチが狭いウエハ間ピッチが第2距離の場合の方がウエハ間ピッチが第1距離の場合よりも増膜が小さかった。
一方、パターン面300A中心では、ウエハ間ピッチが第2距離の場合も第1距離の場合も酸化ガスの供給時間を長くすることにより、酸化膜が減膜されることが確認された。また、ウエハ間ピッチが第2距離の場合の方がウエハ間ピッチが第1距離の場合よりもウエハ中心における膜厚が大きく、酸化ガスの供給時間を150秒程度まで長くすると、ウエハ間ピッチが広いウエハ間ピッチが第1距離の場合の方がウエハ間ピッチが第2距離の場合よりもウエハ中心における膜厚が大きくなった。すなわち、ウエハ間ピッチが広い方が酸化が進行することにより増膜されたことが確認された。
すなわち、パターンが形成されたウエハ中心では、酸化が不足することにより凸形状となり、酸化ガスの供給時間を長くすることにより酸化が進行するとウエハ中心が減膜されていくが、酸化ガスの供給時間を長くすることにより、さらに酸化が進行すると増膜することが確認された。
次に、ウエハの中心から150mmの位置(ウエハ端部)までの膜厚凸量(0-150)と、ウエハの中心から100mmの位置までの膜厚凸量(0-100)と、酸化ガスの供給時間との関係を比較した。図9は、ウエハの中心から150mmまでの膜厚凸量と、ウエハの中心から100mmまでの膜厚凸量と、酸化ガスの供給時間との関係を示した図である。
図9に示すように、ウエハの中心から端部までの膜厚の差分である膜厚凸量(0-150)は、酸化ガスの供給時間が20秒では約11Åだった。そして、酸化ガスの供給時間を長くすると膜厚凸量が小さくなり、酸化ガスの供給時間が100秒で膜厚凸量は0に近くなった。そして、酸化ガスの供給時間が150秒で膜厚凸量は-3Åとなった。
また、ウエハの中心から100mmの位置までの膜厚の差分である膜厚凸量(0-100)は、酸化ガスの供給時間が20秒では約3Åだった。そして、酸化ガスの供給時間を長くすると膜厚凸量が小さくなり、酸化ガスの供給時間が150秒で膜厚凸量は約1Åとなった。
すなわち、酸化ガスの供給時間を長くすることにより酸化膜の膜厚分布が凸形状から凹形状に変化することが確認された。
<本開示の好ましい態様>
以下、本開示の好ましい態様について付記する。
(付記1)
本開示の一態様によれば、
(a)表面にパターンが形成された基板に対して、前記基板の外周から前記基板の面内に向けて所定元素を含む原料ガスを供給することで、前記表面に前記所定元素を含む第1層を形成する工程と、
(b)前記基板に対して、前記基板の外周から前記基板の面内に向けて酸化ガスを供給することで、前記第1層を酸化し、前記表面に前記所定元素を含む酸化層を形成する工程と、
を非同時に所定回数実行することで前記基板上に前記所定元素を含む酸化膜を形成し、
(b)では前記酸化膜の前記基板面内における厚さ分布が所定の分布となるように、前記酸化ガスを前記基板に供給する供給時間が選択される、
半導体装置の製造方法が提供される。
(付記2)
付記1に記載の方法であって、好ましくは、
(b)では、前記酸化ガスの供給時間が長くなるよう選択されることにより、前記酸化膜の前記基板面内における厚さ分布を、凸形状から凹形状となる方向に調整する。
(付記3)
付記1に記載の方法であって、好ましくは、
前記供給時間は、前記酸化膜の前記基板面内における厚さ分布が凸形状になる前記酸化ガスの供給時間よりも長くなるように選択される。
(付記4)
付記1に記載の方法であって、好ましくは、
前記供給時間は、前記酸化膜の前記基板面内における厚さ分布が均一になる長さが選択される。
(付記5)
付記4に記載の方法であって、好ましくは、
前記供給時間は、前記酸化膜の前記基板面内における厚さの面内均一性が所定の値以下になる長さが選択される。
(付記6)
付記1に記載の方法であって、好ましくは、
前記供給時間は、前記酸化膜の前記基板面内における厚さ分布が凹形状になる前記酸化ガスの供給時間よりも短くなるように選択される。
(付記7)
付記1に記載の方法であって、好ましくは、
(b)では、前記酸化ガスを前記基板の外周から中央に向かって供給する。
(付記8)
付記7に記載の方法であって、好ましくは、
(b)では、前記基板の外周に配置された供給口から前記基板の中央に向かって前記酸化ガスを供給する。
(付記9)
付記7に記載の方法であって、好ましくは、
(b)では、前記基板の外周から拡散によって前記基板の面内へ前記酸化ガスを供給する。
(付記10)
付記1に記載の方法であって、好ましくは、
前記基板は、所定の間隔で多段に配列された複数の基板により構成される。
(付記11)
付記10に記載の方法であって、好ましくは、
前記所定の間隔に基づいて、前記酸化膜の前記基板面内における厚さの分布が所定の分布となるように、前記酸化ガスの供給時間が選択される。
(付記12)
付記11に記載の方法であって、好ましくは、
前記酸化ガスの供給時間は、前記所定の間隔が狭いほど長くなるように選択される。
(付記13)
付記1に記載の方法であって、
前記基板の上面の表面積に基づいて、前記酸化膜の前記基板面内における厚さの分布が所定の分布となるように、前記酸化ガスの供給時間が選択される。
(付記14)
付記13に記載の方法であって、
前記酸化ガスの供給時間は、前記基板の上面の表面積が大きいほど長くなるように選択される。
(付記15)
本開示の他の態様によれば、
処理室と、
前記処理室内の表面にパターンが形成された基板に対して、前記基板の外周から前記基板の面内に向けて所定元素を含む原料ガスを供給する原料ガス供給系と、
前記処理室内の前記基板に対して、前記基板の外周から前記基板の面内に向けて酸化ガスを供給する酸化ガス供給系と、
前記処理室内の前記基板に対して、付記1における各処理(各工程)を行わせるように、前記原料ガス供給系と前記酸化ガス供給系を制御することが可能なよう構成される制御部と、
を有する基板処理装置が提供される。
(付記16)
本開示のさらに他の態様によれば、
付記1における各手順(各工程)をコンピュータによって基板処理装置に実行させるプログラム、又は当該プログラムが記録されたコンピュータにより読み取り可能な記録媒体が提供される。
121 コントローラ(制御部)
200 ウエハ(基板)
202 処理炉
本開示は、半導体装置の製造方法、基板処理方法、プログラム及び基板処理装置に関する。

Claims (5)

  1. (a)表面にパターンが形成された基板に対して、前記基板の外周から前記基板の面内に向けて所定元素を含む原料ガスを供給することで、前記表面に前記所定元素を含む第1層を形成する工程と、
    (b)前記基板に対して、前記基板の外周から前記基板の面内に向けて酸化ガスを供給することで、前記第1層を酸化し、前記表面に前記所定元素を含む酸化層を形成する工程と、
    を非同時に所定回数実行することで前記基板上に前記所定元素を含む酸化膜を形成し、
    (b)では前記酸化膜の前記基板面内における厚さ分布が所定の分布となるように、前記酸化ガスを前記基板に供給する供給時間が選択される、
    半導体装置の製造方法。
  2. 前記基板は、所定の間隔で多段に配列された複数の基板により構成され、
    前記酸化ガスの供給時間は、前記所定の間隔に基づいて、前記酸化膜の前記基板面内における厚さの分布が所定の分布となるように選択される
    請求項1記載の半導体装置の製造方法。
  3. 前記酸化ガスの供給時間は、前記基板の上面の表面積に基づいて、前記酸化膜の前記基板面内における厚さの分布が所定の分布となるように選択される請求項1記載の半導体装置の製造方法。
  4. 処理室と、
    前記処理室内の表面にパターンが形成された基板に対して、前記基板の外周から前記基板の面内に向けて所定元素を含む原料ガスを供給する原料ガス供給系と、
    前記処理室内の前記基板に対して、前記基板の外周から前記基板の面内に向けて酸化ガスを供給する酸化ガス供給系と、
    前記処理室内の前記基板に対して、
    (a)前記原料ガスを供給して、前記基板の表面に前記所定元素を含む第1層を形成する処理と、
    (b)前記酸化ガスを供給して、前記第1層を酸化し、前記基板の表面に前記所定元素を含む酸化層を形成する処理と、
    を非同時に所定回数実行することで前記基板上に前記所定元素を含む酸化膜を形成し、
    (b)では前記酸化膜の前記基板面内における厚さ分布が所定の分布となるように、前記酸化ガスを前記基板に供給する供給時間が選択されるように、前記原料ガス供給系と前記酸化ガス供給系を制御することが可能なよう構成される制御部と、
    を有する基板処理装置。
  5. 基板処理装置の処理室内の表面にパターンが形成された基板に対して、
    (a)前記基板の外周から前記基板の面内に向けて所定元素を含む原料ガスを供給することで、前記基板の表面に前記所定元素を含む第1層を形成する手順と、
    (b)前記基板の外周から前記基板の面内に向けて酸化ガスを供給することで、前記第1層を酸化し、前記表面に前記所定元素を含む酸化層を形成する手順と、
    を非同時に所定回数実行することで前記基板上に前記所定元素を含む酸化膜を形成し、
    (b)では前記酸化膜の前記基板面内における厚さ分布が所定の分布となるように、前記酸化ガスを前記基板に供給する供給時間が選択される手順をコンピュータによって前記基板処理装置に実行させるプログラム。
JP2020160111A 2020-09-24 2020-09-24 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置 Active JP7179806B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020160111A JP7179806B2 (ja) 2020-09-24 2020-09-24 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
TW110132956A TWI818311B (zh) 2020-09-24 2021-09-06 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式
KR1020210120076A KR20220040993A (ko) 2020-09-24 2021-09-09 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
US17/474,693 US20220093386A1 (en) 2020-09-24 2021-09-14 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
CN202111096352.8A CN114250448A (zh) 2020-09-24 2021-09-17 半导体器件的制造方法、衬底处理方法、衬底处理装置及记录介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020160111A JP7179806B2 (ja) 2020-09-24 2020-09-24 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置

Publications (2)

Publication Number Publication Date
JP2022053329A true JP2022053329A (ja) 2022-04-05
JP7179806B2 JP7179806B2 (ja) 2022-11-29

Family

ID=80741236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020160111A Active JP7179806B2 (ja) 2020-09-24 2020-09-24 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置

Country Status (5)

Country Link
US (1) US20220093386A1 (ja)
JP (1) JP7179806B2 (ja)
KR (1) KR20220040993A (ja)
CN (1) CN114250448A (ja)
TW (1) TWI818311B (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992623A (ja) * 1995-07-13 1997-04-04 Semiconductor Energy Lab Co Ltd 減圧cvd装置
JP2010028095A (ja) * 2008-06-20 2010-02-04 Hitachi Kokusai Electric Inc 基板処理方法及び基板処理装置
JP2014038923A (ja) * 2012-08-14 2014-02-27 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2018026513A (ja) * 2016-08-01 2018-02-15 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2018087370A (ja) * 2016-11-30 2018-06-07 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、およびプログラム
WO2020066800A1 (ja) * 2018-09-26 2020-04-02 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142482A (ja) * 2011-01-05 2012-07-26 Hitachi Kokusai Electric Inc 基板処理装置
KR102052435B1 (ko) 2016-03-31 2019-12-05 가부시키가이샤 코쿠사이 엘렉트릭 반도체 장치의 제조 방법, 기판 장전 방법 및 기록 매체
JP6756689B2 (ja) * 2017-10-13 2020-09-16 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992623A (ja) * 1995-07-13 1997-04-04 Semiconductor Energy Lab Co Ltd 減圧cvd装置
JP2010028095A (ja) * 2008-06-20 2010-02-04 Hitachi Kokusai Electric Inc 基板処理方法及び基板処理装置
JP2014038923A (ja) * 2012-08-14 2014-02-27 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2018026513A (ja) * 2016-08-01 2018-02-15 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2018087370A (ja) * 2016-11-30 2018-06-07 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、およびプログラム
WO2020066800A1 (ja) * 2018-09-26 2020-04-02 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、及びプログラム

Also Published As

Publication number Publication date
US20220093386A1 (en) 2022-03-24
KR20220040993A (ko) 2022-03-31
CN114250448A (zh) 2022-03-29
TWI818311B (zh) 2023-10-11
JP7179806B2 (ja) 2022-11-29
TW202227660A (zh) 2022-07-16

Similar Documents

Publication Publication Date Title
US9437421B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP2017147262A (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP2017005090A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP7066829B2 (ja) 基板処理装置、ガスノズルおよび半導体装置の製造方法
JP6994483B2 (ja) 半導体装置の製造方法、プログラム、及び基板処理装置
WO2020189205A1 (ja) 基板処理装置、半導体装置の製造方法およびノズル
JP7033622B2 (ja) 気化装置、基板処理装置、クリーニング方法および半導体装置の製造方法
WO2020188857A1 (ja) 基板処理装置、反応容器、半導体装置の製造方法および記録媒体
WO2019188037A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
US20200411330A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11866822B2 (en) Vaporizer, substrate processing apparatus, and method of manufacturing semiconductor device
JP7016920B2 (ja) 基板処理装置、基板支持具、半導体装置の製造方法および基板処理方法
JP7079340B2 (ja) 半導体装置の製造方法、基板処理装置、及びプログラム
JP7179806B2 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
US11929272B2 (en) Substrate processing apparatus, substrate support, and method of manufacturing semiconductor device
JP7324740B2 (ja) 基板処理方法、プログラム、基板処理装置及び半導体装置の製造方法
JP7179962B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
WO2020066701A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
KR20240034774A (ko) 코팅 방법, 처리 장치, 프로그램, 기판 처리 방법 및 반도체 장치의 제조 방법
JP2023046964A (ja) 基板処理方法、基板処理装置、半導体装置の製造方法およびプログラム
JPWO2020175427A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20201102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221116

R150 Certificate of patent or registration of utility model

Ref document number: 7179806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150