JP2022029519A - 二成分系現像剤 - Google Patents

二成分系現像剤 Download PDF

Info

Publication number
JP2022029519A
JP2022029519A JP2020132808A JP2020132808A JP2022029519A JP 2022029519 A JP2022029519 A JP 2022029519A JP 2020132808 A JP2020132808 A JP 2020132808A JP 2020132808 A JP2020132808 A JP 2020132808A JP 2022029519 A JP2022029519 A JP 2022029519A
Authority
JP
Japan
Prior art keywords
particles
resin
toner
acid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020132808A
Other languages
English (en)
Inventor
良 中島
Makoto Nakajima
尚邦 小堀
Naokuni Kobori
望 小松
Nozomi Komatsu
一幸 坂本
Kazuyuki Sakamoto
伊知朗 菅野
Ichiro Sugano
博之 藤川
Hiroyuki Fujikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020132808A priority Critical patent/JP2022029519A/ja
Publication of JP2022029519A publication Critical patent/JP2022029519A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】高温高湿環境下において、長期使用下の濃度低下および画像均一性の低下を抑制した二成分系現像剤を提供する。【解決手段】トナーおよび磁性キャリアを含む二成分系現像剤において、トナーは、結着樹脂を含有するトナー粒子と、トナー粒子表面に存在するチタン酸ストロンチウム粒子を含有し、チタン酸ストロンチウム粒子は、立方体状又は直方体状の粒子形状を有し、トナー粒子表面に存在するチタン酸ストロンチウム粒子の含有量は、トナー粒子100質量部に対し、1.0質量部以上10.0質量部以下であり、磁性キャリアは、磁性キャリアコア粒子と磁性キャリアコア粒子表面に樹脂被覆層を有する磁性キャリア粒子を含有する磁性キャリアであって、樹脂被覆層は結晶性ポリエステル樹脂を含有することを特徴とする。【選択図】なし

Description

本発明は、電子写真法によって静電潜像(静電荷像)を現像(顕像化)するための二成分系現像剤に用いられるトナー、磁性キャリア、及び、該トナーと該磁性キャリアを有する二成分系現像剤に関する。
近年、電子写真分野の技術進化により、装置の高速化、高寿命化はもとより高精細化、画像品位の安定化を有することが要求されている。画像品位の安定化を達成するためには、ユーザーの使用環境や材料の耐久劣化に関わらず、トナーを安定的に帯電させることが必要である。
トナーを安定的に帯電させるために、キャリアコートの耐久性を向上させることで、トナーへの帯電性能を維持するキャリアの提案や、トナーの帯電性能を高めるトナーの提案がされている。
例えば特許文献1では、キャリアの被覆層に結晶性ポリエステルを含有させ、キャリア被覆層の耐久性を向上させるキャリアの提案がされている。また、特許文献2では、トナーに特定の粒径のチタン酸ストロンチウム粒子を添加させてトナーの帯電安定性を向上させるトナーが提案されている。
特開2010-210703号公報 特開2017-003916号公報
本発明者らの検討によれば、いずれの方法においても高温高湿環境下で、長期使用下におけるトナーの帯電安定性の維持という面で不十分であった。
キャリア被覆層の耐久性向上に関して、結晶性ポリエステルを含有させることは非常に有効であるが、結晶性ポリエステルは、高い水分吸着性を持つため、キャリア被覆層に含有させることで高温高湿環境下での長期使用時にキャリア被覆層表面に水分吸着が発生し
トナーの帯電性能が不安定化され、画像品位が低下する問題がある。
本発明の目的は、上記の課題を解決した二成分系現像剤を提供することにある。具体的には、高温高湿環境下での長期使用下においてもキャリア被覆層の耐久性およびトナーの安定的な帯電性能を維持し、画像品位を担保できる二成分系現像剤を提供することである。
上記の課題は、下記の構成の二成分系現像剤により解決することができる。
本発明は、トナーおよび磁性キャリアを含む二成分系現像剤において、
該トナーは、結着樹脂を含有するトナー粒子と、トナー粒子表面に存在するチタン酸ストロンチウム粒子を含有し、
該チタン酸ストロンチウムは、立方体状又は直方体状の粒子形状を有し、
該トナー粒子表面に存在するチタン酸ストロンチウム粒子の含有量は、トナー粒子100質量部に対し、1.0質量部以上10.0質量部以下であり、
該磁性キャリアは、磁性キャリアコア粒子と該磁性キャリアコア粒子表面に樹脂被覆層を有する磁性キャリア粒子を含有する磁性キャリアであって、該樹脂被覆層は結晶性ポリエステルを含有することを特徴とする二成分系現像剤である。
本発明によれば、高温高湿環境の連続印字においても安定した帯電性を維持できる磁性キャリア、及び現像剤を提供することができる。
本発明のトナーに対して熱により表面処理を行う表面処理装置の一例を示す説明図である。
本発明において、数値範囲を表す「○○以上××以下」や「○○~××」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
本発明の二成分系現像剤を用いることによる作用効果について、本発明者らは以下のように考える。
トナーには、シリカ等の無機微粉末が外添剤として用いられることが多いが、高温高湿環境下でキャリア被覆層表面が水分吸着することで、長期使用によりトナーから遊離した外添剤がキャリアに付着しやすくなる。しかし、トナーに研磨効果のある立方体状の粒子形状又は直方体状の粒子形状を有するチタン酸ストロンチウム粒子が含有されることで、キャリア被覆層表面を研磨し、帯電性能を維持できると考えている。
また、トナー表面の固着率及びトナー表面に固着したチタン酸ストロンチウム粒子の粒径が本発明の範囲にあることで、トナーとキャリアの接点が増加し、効果的にキャリア表面の研磨効果が発現すると考えている。
また、チタン酸ストロンチウム粒子の誘電率が本発明の範囲にあることで、電荷がトナー粒子から漏洩することなくトナーの帯電性能を維持できると考えている。
また、キャリア樹脂被覆層に含有される結晶性ポリエステル樹脂の含有量が本発明の範囲であること、本発明に記載の共重合体を含有することにより、キャリア樹脂被覆層のトナー帯電付与性能と耐久性の両立が可能であると考えている。
以下に、本発明において好ましい二成分系現像剤に用いるトナー及び磁性キャリアの構成を詳述する。
<トナー>
[チタン酸ストロンチウム粒子]
本発明におけるトナーは、立方体状又は直方体状の粒子形状のチタン酸ストロンチウム粒子を含有することを特徴とする。
また、本発明のチタン酸ストロンチウム粒子の個数平均粒子径は、10nm以上150nm以下が好ましく、20nm以上60nm以下がさらに好ましい。また、それらの粒度分布において、個数頻度のピークトップが上記粒径範囲にあることが好ましい。個数平均粒子径が上記範囲であると、トナー粒子に対して固着しやすく、少ない個数でトナー粒子を被覆でき、脱離もしにくいため、高温高湿環境下における、低印字耐久後の帯電安定性が向上する効果を発現しやすくなる。
また、トナー粒子表面における、該チタン酸ストロンチウム粒子の固着率が、20%以上100%以下であることが好ましく、60%以上100%以下であることがより好ましい。上記範囲であると、チタン酸ストロンチウム粒子の脱離が抑制できるため、キャリア表面の研磨効果が得られやすい。該固着率は、チタン酸ストロンチウム粒子の添加量、及びトナー粒子との混合時間、熱風処理の温度(熱風処理の詳細は後述)などにより制御できる。
また、本発明のチタン酸ストロンチウム粒子の誘電率は、25℃、1MHzにおける誘電率の測定において、誘電率が25pF/m以上100pF/m以下であることが好ましい。この範囲であると均一性が安定化し、トナーの帯電安定性が向上する。帯電性向上の観点から、チタン酸ストロンチウム粒子の誘電率は、30pF/m以上50pF/m以下がより好ましい。
本発明のチタン酸ストロンチウム粒子は、表面処理剤により粒子表面を疎水化させることが好ましい。表面処理剤としては、脂肪酸又はその金属塩、ジシリルアミン化合物、ハロゲン化シラン化合物、シリコーンオイル、シランカップリング剤、チタンカップリング剤などが、トナーの帯電安定性を向上できる点で好ましい。その中でも、n-オクチルエトキシシラン処理や3,3,3-トリフロロプロピルトリメトキシシラン処理がより、帯電安定性の効果を高める点で好ましい。
トナー中の前記チタン酸ストロンチウム粒子の含有量は、トナー粒子100質量部に対して、1.0質量部以上10.0質量部以下である。1.0質量部よりも少ないとキャリア被覆層への研磨効果を十分に発揮できない。また、10.0質量部よりも多いと定着時にトナーへの熱の伝わり方にむらが生じ、低温定着性や定着分離性が低下する。帯電安定性及び定着性の観点から、3.0質量部以上6.0質量部以下であることが好ましい。
トナー粒子と前記チタン酸ストロンチウム粒子との混合は、ヘンシェルミキサー、メカノハイブリッド(日本コークス社製)、スーパーミキサー、ノビルタ(ホソカワミクロン社製)等の公知の混合機を用いることができ、特に限定されるものではない。
本発明のチタン酸ストロンチウム粒子は、常圧加熱反応法により得ることができる。このとき、酸化チタン源としてチタン化合物の加水分解物の鉱酸解膠品を用い、また酸化ストロンチウム源としては水溶性酸性ストロンチウム化合物を用いることが好ましい。それらの混合液に60℃以上でアルカリ水溶液を添加しながら反応させ、次いで酸処理する方法で製造することができる。
(常圧加熱反応法)
酸化チタン源としてはチタン化合物の加水分解物の鉱酸解膠品を用いることができる。好ましくは、硫酸法で得られたSO3含有量が1.0質量%以下、好ましくは0.5質量%以下のメタチタン酸を、塩酸でpHを0.8以上1.5以下に調整して解膠したものを用いることができる。
酸化ストロンチウム源としては、金属の硝酸塩、塩酸塩などを使用することができ、例えば、硝酸ストロンチウム、塩化ストロンチウムを使用することができる。
アルカリ水溶液としては、苛性アルカリを使用することができるが、中でも水酸化ナトリウム水溶液が好ましい。
チタン酸ストロンチウム粒子の製造方法において、粒子径に影響を及ぼす因子としては、反応時における酸化チタン源と酸化ストロンチウム源の混合割合、反応初期の酸化チタン源濃度、並びにアルカリ水溶液を添加するときの温度及び添加速度などが挙げられる。目的の粒子径及び粒度分布のものを得るためこれらを適宜調整することができる。なお、反応過程における炭酸塩の生成を防ぐために窒素ガス雰囲気下で反応させる等、炭酸ガスの混入を防ぐことが好ましい。
得られるチタン酸ストロンチウム粒子の製造方法において、誘電率に影響を及ぼす因子としては、粒子結晶性を崩す条件/操作が挙げられる。特に低誘電率のチタン酸ストロンチウム粒子を得るためには、反応液の濃度を大きくした状態で結晶成長を乱すエネルギーを与える操作を行うのが好ましい。具体的な方法としては例えば結晶成長工程に窒素によるマイクロバブリングを加える事が挙げられる。また、立方体及び直方体形状の粒子の含有量もこの窒素のマイクロバブリングの流量により制御できる。
反応時における酸化チタン源と酸化ストロンチウム源の混合割合は、SrO/TiO2のモル比で、0.9以上1.4以下が好ましく、1.05以上1.20以下がより好ましい。上記範囲であると、未反応の酸化チタンが残存しにくい。反応初期の酸化チタン源の濃度としては、TiO2として、好ましくは0.05mol/L以上1.3mol/L以下、より好ましくは0.08mol/L以上1.0mol/L以下である。
アルカリ水溶液を添加するときの温度は、60℃以上100℃以下が好ましい。また、アルカリ水溶液の添加速度は、添加速度が遅いほど大きな粒子径のチタン酸ストロンチウム粒子が得られ、添加速度が速いほど小さな粒子径のチタン酸ストロンチウム粒子が得られる。アルカリ水溶液の添加速度は、仕込み原料に対し、好ましくは0.001当量/h以上1.2当量/h以下、より好ましくは0.002当量/h以上1.1当量/h以下であり、得ようとする粒子径に応じて適宜調整することができる。
(酸処理)
常圧加熱反応によって得たチタン酸ストロンチウム粒子をさらに酸処理することが好ましい。常圧加熱反応を行って、チタン酸ストロンチウム粒子を合成する際に、酸化チタン源と酸化ストロンチウム源の混合割合がSrO/TiO2のモル比で、1.0を超える場合、反応終了後に残存した未反応のチタン以外の金属源が空気中の炭酸ガスと反応して、金属炭酸塩などの不純物を生成してしまう場合がある。表面に金属炭酸塩などの不純物が残存すると、疎水性を付与するための有機表面処理をする際に、不純物の影響で有機表面処理剤を均一に被覆することができない。したがって、アルカリ水溶液を添加した後、未反応の金属源を取り除くため酸処理を行うことが好ましい。
酸処理では、塩酸を用いてpH2.5以上7.0以下、より好ましくはpH4.5以上6.0以下に調整することが好ましい。酸としては、塩酸の他に硝酸、酢酸等を酸処理に用いることができる。
[その他外添剤]
トナーには、前述したチタン酸ストロンチウム粒子のほかに、帯電量や流動性を調整するために必要に応じて他の無機微粉末を含有させることもできる。無機微粉末は、トナー粒子に内添してもよいし外添してもよい。外添剤としては、シリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、炭酸カルシウムのような無機微粉末が好ましい。無機微粉末は、シラン化合物、シリコーンオイル又はそれらの混合物のような疎水化剤で疎水化されていることが好ましい。
用いられる外添剤の比表面積としては、比表面積が10m2/g以上50m2/g以下の無機微粒子が、外添剤の埋め込み抑制の観点で好ましい。
また、該外添剤は、トナー粒子100質量部に対して、0.1質量部以上5.0質量部以下使用されることが好ましい。
トナー粒子と外添剤との混合は、ヘンシェルミキサーの如き公知の混合機を用いることができるが、混合できればよく、特に装置は限定されるものではない。
[結着樹脂]
本発明のトナーに使用される結着樹脂としては、特に限定されず、下記の重合体又は樹脂を用いることが可能である。
例えば、ポリスチレン、ポリ-p-クロルスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;スチレン-p-クロルスチレン共重合体、スチレン-ビニルトルエン共重合体、スチレン-ビニルナフタリン共重合体、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体、スチレン-α-クロルメタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、スチレン-ビニルメチルエーテル共重合体、スチレン-ビニルエチルエーテル共重合体、スチレン-ビニルメチルケトン共重合体、スチレン-アクリロニトリル-インデン共重合体などのスチレン系共重合体;ポリ塩化ビニル、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂、ポリエステル、ポリウレタン、ポリアミド、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロン-インデン樹脂、石油系樹脂などが使用できる。
これらの中で、帯電安定性向上の観点で、ポリエステルを用いることが好ましい。
本発明で用いられるポリエステルとしては、「ポリエステルユニット」を樹脂鎖中に有している樹脂であり、該ポリエステルユニットを構成する成分としては、具体的には、2価以上のアルコールモノマー成分と、2価以上のカルボン酸、2価以上のカルボン酸無水物及び2価以上のカルボン酸エステル等の酸モノマーとが挙げられる。
例えば、2価以上のアルコールモノマーとして、ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3.3)-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.0)-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.0)-ポリオキシエチレン(2.0)-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)-2,2-ビス(4-ヒドロキシフェニル)プロパン等のビスフェノールAのアルキレンオキシド付加物、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-ブテンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ソルビット、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセリン、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5-トリヒドロキシメチルベンゼン等が挙げられる。
これらの中で好ましく用いられるアルコールモノマーとしては、芳香族ジオールであり、ポリエステルを構成するアルコールモノマーにおいて、芳香族ジオールは、80モル%以上の割合で含有することが好ましい。
一方、2価以上のカルボン酸、2価以上のカルボン酸無水物及び2価以上のカルボン酸エステル等の酸モノマー成分としては、フタル酸、イソフタル酸及びテレフタル酸の如き芳香族ジカルボン酸類又はその無水物;コハク酸、アジピン酸、セバシン酸及びアゼライン酸の如きアルキルジカルボン酸類又はその無水物;炭素数6~18のアルキル基又はアルケニル基で置換されたコハク酸もしくはその無水物;フマル酸、マレイン酸及びシトラコン酸の如き不飽和ジカルボン酸類又はその無水物;が挙げられる。
これらの中で好ましく用いられる酸モノマーとしては、テレフタル酸、コハク酸、アジピン酸、フマル酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸やその無水物等の多価カルボン酸である。
また、ポリエステルの酸価は、20mgKOH/g以下であることが、顔料の分散性及び帯電安定性向上の観点で好ましい。さらに、15mgKOH/g以下であることがより好ましい。酸価が20mgKOH/gを超えてしまう場合、顔料の分散性が低下し、トナーの帯電安定性に影響することがある。
なお、酸価は、樹脂に用いるモノマーの種類や配合量を調整することにより、上記範囲とすることができる。具体的には、樹脂製造時のアルコールモノマー成分比/酸モノマー成分比、分子量を調整することにより制御できる。また、エステル縮重合後、末端アルコールを多価酸モノマー(例えば、トリメリット酸)で反応させることに制御できる。
[ビニル系樹脂成分と炭化水素化合物が反応した構造を有する樹脂組成物]
本発明に係るトナー粒子は、必要に応じてビニル系樹脂成分と炭化水素化合物が反応した構造を有する樹脂組成物を含有してもよい。このような樹脂組成物を含有することで、トナー中の顔料及びワックスをより均一に微分散させることが可能となる。
ビニル系樹脂成分と炭化水素化合物が反応した構造を有する樹脂組成物としては、ビニル系樹脂成分にポリオレフィンがグラフトした構造を有するグラフト重合体、又はポリオレフィンにビニル系樹脂成分がグラフトしたグラフト重合体が特に好ましい。
ビニル系樹脂成分と炭化水素化合物が反応した構造を有する樹脂組成物は、トナー製造時の混練工程や表面平滑工程において溶融した結着樹脂とワックスに対し界面活性剤的な働きをする。従って、該樹脂組成物は、トナー粒子中のワックスの一次平均分散粒径のコントロールや、必要に応じ熱風により表面処理を行う際のワックスのトナー表面への移行速度のコントロールができるため好ましい。
グラフト重合体を形成する際に用いることができるポリオレフィンは、特に限定されず、特にポリエチレン系、ポリプロピレン系が好ましく用いられる。
一方、ビニル系樹脂成分を得るためのビニル系モノマーとしては、以下のものが挙げられる。
スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロルスチレン、3,4-ジクロルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレンのようなスチレン及びその誘導体などのスチレン系モノマー。
メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルのようなアミノ基含有α-メチレン脂肪族モノカルボン酸エステル類;アクリロニトリル、メタアクリロニトリル、アクリルアミドのようなアクリル酸又はメタクリル酸誘導体などの窒素原子を含むビニル系モノマー。
マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸のような不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物のような不飽和二塩基酸無水物;マレイン酸メチルハーフエステル、マレイン酸エチルハーフエステル、マレイン酸ブチルハーフエステル、シトラコン酸メチルハーフエステル、シトラコン酸エチルハーフエステル、シトラコン酸ブチルハーフエステル、イタコン酸メチルハーフエステル、アルケニルコハク酸メチルハーフエステル、フマル酸メチルハーフエステル、メサコン酸メチルハーフエステルのような不飽和二塩基酸のハーフエステル;ジメチルマレイン酸、ジメチルフマル酸のような不飽和二塩基酸エステル;アクリル酸、メタクリル酸、クロトン酸、ケイヒ酸のようなα,β-不飽和酸;クロトン酸無水物、ケイヒ酸無水物のようなα,β-不飽和酸無水物、前記α,β-不飽和酸と低級脂肪酸との無水物;アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物、及びこれらのモノエステルなどのカルボキシル基を含むビニル系モノマー。
2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート等のアクリル酸又はメタクリル酸エステル類、4-(1-ヒドロキシ-1-メチルブチル)スチレン、4-(1-ヒドロキシ-1-メチルヘキシル)スチレンなどの水酸基を含むビニル系モノマー。
アクリル酸メチル、アクリル酸エチル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸プロピル、アクリル酸-n-オクチル、アクリル酸ドデシル、アクリル酸-2-エチルヘキシル、アクリル酸ステアリル、アクリル酸-2-クロルエチル、アクリル酸フェニルのようなアクリル酸エステル類などのアクリル酸エステル。
メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-n-オクチル、メタクリル酸ドデシル、メタクリル酸-2-エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルのようなα-メチレン脂肪族モノカルボン酸エステル類などのメタクリル酸エステル。ビニル系モノマーとしては、スチレン系モノマーと、アクリロニトリル、又はメタアクリロニトリルを用いることが好ましい。
ビニル系樹脂成分と炭化水素化合物が反応した構造を有する樹脂組成物は、前述したこれらのモノマー同士の反応や、一方の重合体のモノマーと他方の重合体との反応等、公知の方法によって得ることができる。
樹脂組成物中の炭化水素化合物とビニル系樹脂成分の質量比(炭化水素化合物/ビニル系樹脂成分)は1/99~75/25であることが好ましい。炭化水素化合物とビニル系樹脂成分を上記範囲で用いることが、トナー粒子中へ顔料を分散させるために好ましい。
上記ビニル系樹脂成分と炭化水素化合物が反応した構造を有する樹脂組成物の含有量は、結着樹脂100質量部に対して、0.2質量部以上20質量部以下であることが好ましく、3.0質量部以上10質量部以下であることがより好ましい。
また、該樹脂組成物の重量平均分子量(Mw)は、6000以上8000以下であることが好ましく、数平均分子量(Mn)は1500以上5000以下であることが好ましい。
[ワックス]
本発明のトナーには、必要に応じてワックスを含有させることもできる。低分子量ポリエチレン、低分子量ポリプロピレン、アルキレン共重合体、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックスの如き炭化水素系ワックス;酸化ポリエチレンワックスの如き炭化水素系ワックスの酸化物又はそれらのブロック共重合物;カルナバワックスの如き脂肪酸エステルを主成分とするワックス類;脱酸カルナバワックスの如き脂肪酸エステル類を一部又は全部を脱酸化したもの。さらに、以下のものが挙げられる。パルミチン酸、ステアリン酸、モンタン酸の如き飽和直鎖脂肪酸類;ブラシジン酸、エレオステアリン酸、バリナリン酸の如き不飽和脂肪酸類;ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコールの如き飽和アルコール類;ソルビトールの如き多価アルコール類;パルミチン酸、ステアリン酸、ベヘン酸、モンタン酸の如き脂肪酸類と、ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコールの如きアルコール類とのエステル類;リノール酸アミド、オレイン酸アミド、ラウリン酸アミドの如き脂肪酸アミド類;メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミドの如き飽和脂肪酸ビスアミド類;エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’ジオレイルアジピン酸アミド、N,N’ジオレイルセバシン酸アミドの如き不飽和脂肪酸アミド類;m-キシレンビスステアリン酸アミド、N,N’ジステアリルイソフタル酸アミドの如き芳香族系ビスアミド類;ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムの如き脂肪族金属塩(一般に金属石けんといわれているもの);脂肪族炭化水素系ワックスにスチレンやアクリル酸の如きビニル系モノマーを用いてグラフト化させたワックス類;ベヘニン酸モノグリセリドの如き脂肪酸と多価アルコールの部分エステル化物;植物性油脂の水素添加によって得られるヒドロキシル基を有するメチルエステル化合物。
これらのワックスの中でも、帯電安定性を向上させるという観点で、フィッシャートロプシュワックスが好ましい。
ワックスの含有量は、結着樹脂100質量部に対して、0.5質量部以上20質量部以下で使用されることが好ましい。さらに3.0質量部以上12質量部以下がより好ましい。また、トナーの帯電安定性向上の観点から、示差走査熱量分析装置(DSC)で測定される昇温時の吸熱曲線において、温度30℃以上200℃以下の範囲に存在する最大吸熱ピークのピーク温度が、50℃以上110℃以下であることが好ましい。さらに、70℃以上100℃以下であることがより好ましい。
[ワックス分散剤]
ワックスの結着樹脂への分散性を向上させるために、ワックス成分に近い極性部位と樹脂極性に近い部位を併せ持つ樹脂をワックス分散剤として添加してもよい。具体的には、炭化水素化合物でグラフト変性されたスチレンアクリル系樹脂が好ましい。
ワックス分散剤はその樹脂部分に、環式炭化水素基または芳香環を導入すると、トナーの帯電維持性が向上する。これによりトナー粒子による本発明の無機微粒子の帯電特性を高める点で好ましい。
[着色剤]
本発明のトナーに含有できる着色剤としては、以下のものが挙げられる。
黒色着色剤としては、カーボンブラック;イエロー着色剤とマゼンタ着色剤及びシアン着色剤とを用いて黒色に調色したものが挙げられる。着色剤には、顔料を単独で使用してもかまわないが、染料と顔料とを併用してその鮮明度を向上させた方がフルカラー画像の画質の点からより好ましい。
マゼンタ着色顔料としては、以下のものが挙げられる。C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48:2、48:3,48:4、49、50、51、52、53、54、55、57:1、58、60、63、64、68、81:1、83、87、88、89、90、112、114、122、123、146、147、150、163、184、202、206、207、209、238、269、282;C.I.ピグメントバイオレット19;C.I.バットレッド1、2、10、13、15、23、29、35。
マゼンタ着色染料としては、以下のものが挙げられる。C.I.ソルベントレッド1、3、8、23、24、25、27、30、49、81、82、83、84、100、109、121;C.I.ディスパースレッド9;C.I.ソルベントバイオレット8、13、14、21、27;C.I.ディスパーバイオレット1などの油溶染料、C.I.ベーシックレッド1、2、9、12、13、14、15、17、18、22、23、24、27、29、32、34、35、36、37、38、39、40;C.I.ベーシックバイオレット1、3、7、10、14、15、21、25、26、27、28などの塩基性染料。
シアン着色顔料としては、以下のものが挙げられる。C.I.ピグメントブルー2、3、15:2、15:3、15:4、16、17;C.I.バットブルー6;C.I.アシッドブルー45、フタロシアニン骨格にフタルイミドメチル基を1~5個置換した銅フタロシアニン顔料。
シアン着色染料としては、C.I.ソルベントブルー70がある。
イエロー着色顔料としては、以下のものが挙げられる。C.I.ピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、62、65、73、74、83、93、94、95、97、109、110、111、120、127、128、129、147、151、154、155、168、174、175、176、180、181、185;C.I.バットイエロー1、3、20。
イエロー着色染料としては、C.I.ソルベントイエロー162がある。
上記着色剤の使用量は、結着樹脂100質量部に対して、0.1質量部以上30質量部以下で使用されることが好ましい。
[荷電制御剤]
本発明のトナーには、必要に応じて荷電制御剤を含有させることもできる。トナーに含有される荷電制御剤としては、公知のものが利用できるが、特に、無色でトナーの帯電スピードが速く且つ一定の帯電量を安定して保持できる芳香族カルボン酸の金属化合物が好ましい。
ネガ系荷電制御剤としては、サリチル酸金属化合物、ナフトエ酸金属化合物、ジカルボン酸金属化合物、スルホン酸又はカルボン酸を側鎖に持つ高分子型化合物、スルホン酸塩或いはスルホン酸エステル化物を側鎖に持つ高分子型化合物、カルボン酸塩或いはカルボン酸エステル化物を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリックスアレーンが挙げられる。荷電制御剤はトナー粒子に対して内添しても良いし外添しても良い。荷電制御剤の添加量は、結着樹脂100質量部に対して、0.2質量部以上10質量部以下が好ましい。
[製造方法]
本発明のトナーの製造方法は、特に限定されることなく、公知の製造方法を用いることができる。ここでは、粉砕法を用いたトナーの製造方法を例に挙げて説明する。
原料混合工程では、トナー粒子を構成する材料として、例えば、結着樹脂及びワックス、並びに必要に応じて着色剤、荷電制御剤等の他の成分を、所定量秤量して配合し、混合する。混合装置の一例としては、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサー、メカノハイブリッド(日本コークス工業株式会社製)などが挙げられる。
次に、混合した材料を溶融混練して、結着樹脂中に着色剤等を分散させる。溶融混練工程では、加圧ニーダー、バンバリィミキサーの如きバッチ式練り機や、連続式の練り機を用いることができ、連続生産できる優位性から、1軸又は2軸押出機が主流となっている。例えば、KTK型2軸押出機(神戸製鋼所社製)、TEM型2軸押出機(東芝機械社製)、PCM混練機(池貝鉄工製)、2軸押出機(ケイ・シー・ケイ社製)、コ・ニーダー(ブス社製)、ニーデックス(日本コークス工業株式会社製)などが挙げられる。更に、溶融混練することによって得られる混練物は、2本ロール等で圧延され、冷却工程で水などによって冷却してもよい。
ついで、混練物の冷却物は、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、例えば、クラッシャー、ハンマーミル、フェザーミルの如き粉砕機で粗粉砕した後、更に、例えば、クリプトロンシステム(川崎重工業社製)、スーパーローター(日清エンジニアリング社製)、ターボ・ミル(ターボ工業製)やエアージェット方式による微粉砕機で微粉砕する。
その後、必要に応じて慣性分級方式のエルボージェット(日鉄鉱業社製)、遠心力分級方式のターボプレックス(ホソカワミクロン社製)、TSPセパレータ(ホソカワミクロン社製)、ファカルティ(ホソカワミクロン社製)の如き分級機や篩分機を用いて分級し、トナー粒子を得る。
その後、必要に応じ選択された無機微粉体や樹脂粒子などの外部添加剤を加えて混合(外添)することにより、例えば流動性付与、帯電安定性を向上させ、トナーを得る。混合装置としては、撹拌部材を有する回転体と、撹拌部材と間隙を有して設けられた本体ケーシングとを有する混合装置によって行われる。
このような混合装置の一例としては、ヘンシェルミキサー(三井鉱山社製);スーパーミキサー(カワタ社製);リボコーン(大川原製作所社製);ナウターミキサー、タービュライザー、サイクロミックス(ホソカワミクロン社製);スパイラルピンミキサー(太平洋機工社製);レーディゲミキサー(マツボー社製)、ノビルタ(ホソカワミクロン株式会社製)等が挙げられる。特に、均一に混合しシリカ凝集体をほぐすためには、ヘンシェルミキサー(三井鉱山社製)が好ましく用いられる。
混合の装置条件としては、処理量、撹拌軸回転数、撹拌時間、撹拌羽根形状、槽内温度などが挙げられるが、所望のトナー性能を達成するために、熱処理トナー粒子の諸物性や添加剤の種類などを鑑みて適宜選定するものであり、とくに限定されるものではない。
さらには、例えば添加剤の粗大凝集物が、得られたトナー中に遊離して存在する場合などには、必要に応じて篩分機などを用いてもよい。
本発明では、得られたトナー粒子とチタン酸ストロンチウム粒子の混合物を熱処理工程で図1のような熱処理装置を用いて、チタン酸ストロンチウム粒子の固着率を高める処理を行うことが好ましい。
原料定量供給手段1により定量供給された混合物は、圧縮気体調整手段2により調整された圧縮気体によって、原料供給手段の鉛直線上に設置された導入管3に導かれる。導入管を通過した混合物は、原料供給手段の中央部に設けられた円錐状の突起状部材4により均一に分散され、放射状に広がる8方向の供給管5に導かれ熱処理が行われる処理室6に導かれる。
このとき、処理室に供給された混合物は、処理室内に設けられた混合物の流れを規制するための規制手段9によって、その流れが規制される。このため処理室に供給された混合物は、処理室内を旋回しながら熱処理された後、冷却される。
供給された混合物を熱処理するための熱は、熱風供給手段7から供給され、分配部材12で分配され、熱風を旋回させるための旋回部材13により、処理室内に熱風を螺旋状に旋回させて導入される。その構成としては、熱風を旋回させるための旋回部材13が、複数のブレードを有しており、その枚数や角度により、熱風の旋回を制御することができる。処理室内に供給される熱風は、熱風供給手段7の出口部における温度が100℃以上300℃以下であることが好ましく、130℃以上170℃以下であることがより好ましい。熱風供給手段の出口部における温度が上記の範囲内であれば、混合物を加熱しすぎることによるトナー粒子の融着や合一を防止しつつ、トナー粒子を均一に球形化処理することが可能となる。このときの円形度としては、0.955以上0.980以下であることが好ましい。熱風は熱風供給手段出口11から供給される。
更に熱処理された熱処理トナー粒子は冷風供給手段8から供給される冷風によって冷却され、冷風供給手段8から供給される温度は-20℃乃至30℃であることが好ましい。冷風の温度が上記の範囲内であれば、熱処理トナー粒子を効率的に冷却することができ、混合物の均一な球形化処理を阻害することなく、熱処理トナー粒子の融着や合一を防止することができる。冷風の絶対水分量は、0.5g/m3以上15.0g/m3以下であることが好ましい。
次に、冷却された熱処理トナー粒子は、処理室の下端にある回収手段10によって回収される。なお、回収手段の先にはブロワー(不図示)が設けられ、それにより吸引搬送される構成となっている。
また、粉体粒子供給口14は、供給された混合物の旋回方向と熱風の旋回方向が同方向になるように設けられており、表面処理装置の回収手段10は、旋回された粉体粒子の旋回方向を維持するように、処理室の外周部に設けられている。さらに、冷風供給手段8から供給される冷風は、装置外周部から処理室内周面に、水平かつ接線方向から供給されるよう構成されている。粉体供給口から供給される熱処理前トナー粒子の旋回方向、冷風供給手段から供給された冷風の旋回方向、熱風供給手段から供給された熱風の旋回方向がすべて同方向である。そのため、処理室内で乱流が起こらず、装置内の旋回流が強化され、熱処理前トナー粒子に強力な遠心力がかかり、熱処理前トナー粒子の分散性が更に向上するため、合一粒子の少ない、形状の揃った熱処理トナー粒子を得ることができる。
<磁性キャリア>
本発明の磁性キャリア粒子は、樹脂被覆層を有するものである。磁性キャリア粒子は、磁性キャリアコア粒子及び前記磁性キャリアコア粒子表面上に形成された樹脂被覆層を有することが好ましい。ここで、該樹脂被覆層には、結晶性ポリエステルが含有されている。また、該樹脂被覆層には、脂環式の炭化水素基を有する(メタ)アクリル酸エステルモノマー、及びアクリル酸メチル、メタクリル酸メチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2-エチルヘキシル及びメタクリル酸2-エチルヘキシルからなる群より選択される少なくとも1種のモノマーの重合体であるマクロモノマーとの共重合体を含有することがより好ましい。
[結晶性ポリエステル]
本発明のキャリアの被覆層には、結晶性ポリエステルが含有されている。
結晶性ポリエステルの含有量は、被覆樹脂100.0質量部に対して、1.0質量部以上50.0質量部以下であることが好ましく、1.0質量部以上20.0質量部以下であることがより好ましい。
本発明において、結晶性樹脂とは、示差走査熱量測定(DSC)において吸熱ピークが観測される樹脂である。
結晶性ポリエステルは、2価以上の多価カルボン酸とジオールの反応により得ることができる。その中でも、脂肪族ジオールと脂肪族ジカルボン酸とを縮重合して得られる樹脂であることが、結晶化度が高いため、キャリア被覆層の耐久性を向上させるために好ましい。また、結晶性ポリエステルは、1種類のみを用いても、複数種を併用してもよい。
結晶性ポリエステルは、炭素数2以上22以下の脂肪族ジオール及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物を含有するアルコール成分と、炭素数2以上22以下の脂肪族ジカルボン酸及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物を含有するカルボン酸成分とを縮重合して得られる樹脂であることが好ましい。
その中でも、結晶性ポリエステルは、炭素数6以上12以下の脂肪族ジオール及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物を含有するアルコール成分と、炭素数6以上12以下の脂肪族ジカルボン酸及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物を含有するカルボン酸成分とを縮重合して得られる結晶性ポリエステルであることが、帯電安定性向上の観点からより好ましい。
結晶性ポリエステルの脂肪族ジカルボン酸の分子量が大きいほど、結晶性ポリエステルの結晶性が強く働くため、キャリアの被覆層の耐久性向上の観点からより好ましい。
例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-ブタジエングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、及び1,12-ドデカンジオールが挙げられる。
これらの中でも、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、及び1,12-ドデカンジオールなどのような直鎖脂肪族α,ω-ジオールが好ましく例示される。
誘導体としては、縮重合により同様の樹脂構造が得られるものであれば特に限定されない。例えば、上記ジオールをエステル化した誘導体が挙げられる。
結晶性ポリエステルを構成するアルコール成分において、上記炭素数2以上22以下(好ましくは炭素数6以上12以下)の脂肪族ジオール及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物が、全アルコール成分に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
本発明において、脂肪族ジオール以外の多価アルコールを用いることもできる。
多価アルコールのうち、脂肪族ジオール以外のジオールとしては、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールAなどの芳香族アルコール;1,4-シクロヘキサンジメタノールなどが挙げられる。
また、多価アルコールのうち3価以上の多価アルコールとしては、1,3,5-トリヒドロキシメチルベンゼンなどの芳香族アルコール;ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセリン、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、及びトリメチロールプロパンなどの脂肪族アルコールなどが挙げられる。
さらに、本発明において、結晶性ポリエステルの特性を損なわない程度に1価のアルコールを用いてもよい。1価のアルコールとしては、n-ブタノール、イソブタノール、sec-ブタノール、n-ヘキサノール、n-オクタノール、2-エチルヘキサノール、シクロヘキサノール、ベンジルアルコールなどが挙げられる。
一方、炭素数2以上22以下(好ましくは炭素数6以上12以下)の脂肪族ジカルボン酸としては、特に限定されないが、鎖状(好ましくは直鎖状)の脂肪族ジカルボン酸であるとよい。
例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、グルタコン酸、アゼライン酸、セバシン酸、ノナンジカルボン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸が挙げられる。
これらの酸無水物又は低級アルキルエステルを加水分解したものなども含まれる。
本発明において、誘導体としては、上記縮重合により同様の樹脂構造が得られるものであれば特に限定されない。例えば、上記ジカルボン酸成分の酸無水物、ジカルボン酸成分をメチルエステル化、エチルエステル化、又は酸クロライド化した誘導体が挙げられる。
本発明において、結晶性ポリエステルを構成するカルボン酸成分において、上記炭素数2以上22以下(好ましくは炭素数6以上12以下)の脂肪族ジカルボン酸及びこれらの誘導体からなる群より選ばれた少なくとも1種の化合物が、全カルボン酸成分に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
本発明において、脂肪族ジカルボン酸以外の多価カルボン酸を用いることもできる。多価カルボン酸のうち、脂肪族ジカルボン酸以外の2価のカルボン酸としては、イソフタル酸、テレフタル酸などの芳香族カルボン酸;n-ドデシルコハク酸、n-ドデセニルコハク酸などの脂肪族カルボン酸;シクロヘキサンジカルボン酸などの脂環式カルボン酸が挙げられ、これらの酸無水物又は低級アルキルエステルなども含まれる。
また、その他の多価カルボン酸において、3価以上の多価カルボン酸としては、1,2,4-ベンゼントリカルボン酸(トリメリット酸)、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、及びピロメリット酸などの芳香族カルボン酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシル-2-メチル-2-メチレンカルボキシプロパンなどの脂肪族カルボン酸が挙げられ、これらの酸無水物又は低級アルキルエステルなどの誘導体なども含まれる。
さらに、結晶性ポリエステルの特性を損なわない程度に1価のカルボン酸を用いてもよい。1価のカルボン酸としては、安息香酸、ナフタレンカルボン酸、サリチル酸、4-メチル安息香酸、3-メチル安息香酸、フェノキシ酢酸、ビフェニルカルボン酸、酢酸、プロピオン酸、酪酸、オクタン酸などが挙げられる。
本発明において、結晶性ポリエステルは、通常のポリエステル合成法に従って製造することができる。例えば、上記カルボン酸成分とアルコール成分とをエステル化反応、又はエステル交換反応させた後、減圧下又は窒素ガスを導入して常法に従って縮重合反応させることで結晶性ポリエステルを得ることができる。
エステル化又はエステル交換反応は、必要に応じて硫酸、チタンブトキサイド、2-エチルヘキサン酸錫、ジブチルスズオキサイド、酢酸マンガン、及び酢酸マグネシウムなどの通常のエステル化触媒又はエステル交換触媒を用いて行うことができる。
また、縮重合反応は、通常の重合触媒、例えばチタンブトキサイド、2-エチルヘキサン酸錫、ジブチルスズオキサイド、酢酸スズ、酢酸亜鉛、二硫化スズ、三酸化アンチモン、及び二酸化ゲルマニウムなど公知の触媒を使用して行うことができる。重合温度、触媒量は特に限定されるものではなく、適宜に決めればよい。
エステル化若しくはエステル交換反応、又は重縮合反応において、得られる結晶性ポリエステルの強度を上げるために全モノマーを一括に仕込むことや、低分子量成分を少なくするために2価のモノマーを先ず反応させた後、3価以上のモノマーを添加して反応させたりするなどの方法を用いてもよい。
次に、磁性キャリアコアについて説明する。
磁性キャリアに用いる磁性キャリアコアとしては、公知の磁性キャリアコアを用いることができるが、樹脂成分中に磁性体が分散された磁性体分散型樹脂粒子、又は空孔部に樹脂を含有する多孔質磁性コア粒子を用いることが好ましい。これらは、磁性キャリアの真密度を低くできるため、トナーへの負荷を軽減することができる。これにより、長期間の使用においても、画質の劣化が少なく、トナーと磁性キャリアで構成された二成分現像剤の交換頻度を減らすことが可能となる。しかし磁性体分散型樹脂粒子、あるいは多孔質磁性コア粒子ではなく、市販の磁性キャリアコアを用いても、本発明の効果は十分に発揮する。
上記磁性体分散型樹脂粒子に使用する磁性体成分としては、マグネタイト粒子粉末、マグヘマイト粒子粉末、又はこれらにケイ素の酸化物、ケイ素の水酸化物、アルミニウムの酸化物及びアルミニウムの水酸化物から選ばれる1種又は2種以上が含まれる磁性鉄酸化物粒子粉末、バリウム、ストロンチウム又はバリウム-ストロンチウムを含むマグネトプランバイト型フェライト粒子粉末、マンガン、ニッケル、亜鉛、リチウム及びマグネシウムから選ばれた1種又は2種以上を含むスピネル型フェライト粒子粉末などの各種磁性鉄化合物粒子粉末が使用できる。これらの中でも、磁性鉄酸化物粒子粉末が好ましく使用できる。
さらに上記磁性体成分の他に、ヘマタイト粒子粉末のような非磁性鉄酸化物粒子粉末、ゲータイト粒子粉末のような非磁性含水酸化第二鉄粒子粉末、酸化チタン粒子粉末、シリカ粒子粉末、タルク粒子粉末、アルミナ粒子粉末、硫酸バリウム粒子粉末、炭酸バリウム粒子粉末、カドミウムイエロー粒子粉末、炭酸カルシウム粒子粉末、亜鉛華粒子粉末などの比磁性無機化合物粒子粉末を、磁性鉄化合物粒子粉末と併用して使用できる。
磁性鉄化合物粒子粉末と非磁性無機化合物粒子粉末とを混合して使用する場合には、これらの混合割合は、磁性鉄化合物粒子粉末が少なくとも30質量%含有されていることが好ましい。
上記磁性鉄化合物粒子粉末は、その全部又は一部が親油化処理剤で処理されていることが好ましい。
その場合に用いられる親油化処理剤としては、エポキシ基、アミノ基、メルカプト基、有機酸基、エステル基、ケトン基、ハロゲン化アルキル基及びアルデヒド基からから選ばれた1種又は2種以上の官能基を有する有機化合物やそれらの混合物が使用できる。
官能基を有する有機化合物としてはカップリング剤が好ましく、より好ましくはシランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤であり、シラン系カップリング剤が特に好ましい。
上記磁性体分散型樹脂粒子を構成するバインダー樹脂としては、熱硬化性樹脂が好ましい。
熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂などがあるが、安価で製法面の容易性からフェノール樹脂を含有していることが好ましい。例えば、フェノール-ホルムアルデヒド樹脂が挙げられる。
磁性体分散型樹脂粒子を構成するバインダー樹脂と磁性鉄化合物粒子粉末との含有割合は、バインダー樹脂1質量%以上20質量%以下と磁性鉄化合物粒子粉末80質量%以上99質量%以下であることが好ましい。
次に、磁性体分散型樹脂粒子の製造方法について述べる。
磁性体分散型樹脂粒子は、例えば、後述する実施例に記載されている通り、磁性の無機化合物粒子粉末及び塩基性触媒の存在下で、フェノール類とアルデヒド類とを水性媒体中で撹拌を行う。その後フェノール類とアルデヒド類とを反応および硬化させて、磁性鉄酸化物粒子粉末などの無機化合物粒子とフェノール樹脂とを含有する複合体粒子を生成する方法がある。
また磁性鉄酸化物粒子粉末などの無機化合物粒子を含有したバインダー樹脂を粉砕する、所謂、混練粉砕法などによって製造することもできる。磁性キャリアの粒径を容易に制御し、シャープな粒度分布にするために、前者の方法が好ましい。
次に、多孔質磁性コア粒子について説明する。
多孔質磁性コア粒子の材質としては、マグネタイト又はフェライトが好ましい。さらに、多孔質磁性コア粒子の材質は、フェライトであることが多孔質磁性コア粒子の多孔質の構造を制御したり、抵抗を調整できるため、より好ましい。
フェライトは次の一般式で表される焼結体である。
(M12O)x(M2O)y(Fe23z
(式中、M1は1価、M2は2価の金属であり、x+y+z=1.0としたとき、x及びyは、それぞれ0≦(x、y)≦0。8であり、zは、0.2<z<1.0である)
式中において、M1及びM2としては、Li、Fe、Mn、Mg、Sr、Cu、Zn、Caからなる群から選ばれる1種類以上の金属原子を用いることが好ましい。そのほかにもNi、Co、Ba、Y、V、Bi、In、Ta、Zr、B、Mo、Na、Sn、Ti、Cr、Al、Si、希土類なども用いることができる。
磁性キャリアでは、磁化量を適度に維持し、細孔径を所望の範囲にするためや多孔質磁性コア粒子表面の凹凸状態を好適にすることが求められる。また、フェライト化反応の速度を容易にコントロールでき、多孔質磁性コアの比抵抗と磁気力を好適にコントロールできることも求められる。以上の観点から、Mn元素を含有する、Mn系フェライト、Mn-Mg系フェライト、Mn-Mg-Sr系フェライト、Li-Mn系フェライトがより好ましい。
以下に、磁性キャリアコアとして多孔質磁性コア粒子を用いる場合の製造工程の一例を詳細に説明する。
<工程1(秤量・混合工程)>
上記フェライトの原料を、秤量し、混合する。
フェライト原料としては、上記金属元素の金属粒子、又はその酸化物、水酸化物、シュウ酸塩、炭酸塩などが挙げられる。
混合する装置としては、例えば以下のものが挙げられる。ボールミル、遊星ミル、ジオットミル、振動ミル。特にボールミルが混合性の観点から好ましい。
具体的には、ボールミル中に、秤量したフェライト原料、ボールを入れ、0.1時間以上20.0時間以下、粉砕・混合する。
<工程2(仮焼成工程)>
粉砕・混合したフェライト原料を、大気中又は窒素雰囲気下で焼成温度700℃以上1200℃以下の範囲で、0.5時間以上5.0時間以下仮焼成し、フェライト化する。焼成には、例えば以下の炉が用いられる。バーナー式焼却炉、ロータリー式焼成炉、電気炉などが挙げられる。
<工程3(粉砕工程)>
工程2で作製した仮焼フェライトを粉砕機で粉砕する。
粉砕機としては、所望の粒径が得られれば特に限定されない。例えば以下のものがあげられる。クラッシャーやハンマーミル、ボールミル、ビーズミル、遊星ミル、ジオットミルなどが挙げられる。
フェライト粉砕品を所望の粒径にするために、例えば、ボールミルやビーズミルでは用いるボールやビーズの素材、粒径、運転時間を制御することが好ましい。具体的には、仮焼フェライトスラリーの粒径を小さくするためには、真密度の重いボールを用いたり、粉砕時間を長くすればよい。また、仮焼フェライトの粒度分布を広くするためには、真密度の重いボールやビーズを用い、粉砕時間を短くすることで得ることができる。また、粒径の異なる複数の仮焼フェライトを混合することでも分布の広い仮焼フェライトを得ることができる。
また、ボールミルやビーズミルは、乾式より湿式の法が、粉砕品がミルの中で舞い上がることがなく粉砕効率が高い。このため、乾式より湿式の方がより好ましい。
<工程4(造粒工程)>
仮焼フェライトの粉砕品に対し、水、バインダーと、必要に応じて、細孔調整剤を加える。細孔調整剤としては、発泡剤や樹脂微粒子が挙げられる。発泡剤として、例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸アンモニウムが挙げられる。樹脂微粒子として、例えば、ポリエステル、ポリスチレン、スチレン-ビニルトルエン共重合体、スチレン-ビニルナフタリン共重合体、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体、スチレン-α-クロルメタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、スチレン-ビニルメチルケトン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-アクリロニトリル-インデン共重合体のようなスチレン共重合体;ポリ塩化ビニル、フェノール樹脂、変性フェノール樹脂、マレイン樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂;脂肪族多価アルコール、脂肪族ジカルボン酸、芳香族ジカルボン酸、芳香族ジアルコール類及びジフェノール類から選択されるモノマーを構造単位として有するポリエステル樹脂;ポリウレタン樹脂、ポリアミド樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂、石油樹脂、ポリエステルユニットとビニル系重合体ユニットを有しているハイブリッド樹脂の微粒子が挙げられる。
上記バインダーとしては、例えば、ポリビニルアルコールが用いられる。
工程3において、湿式で粉砕した場合は、フェライトスラリー中に含まれている水も考慮し、バインダーと必要に応じて細孔調整剤を加えることが好ましい。
得られたフェライトスラリーを、噴霧乾燥機を用い、100℃以上200℃以下の加温雰囲気下で、乾燥・造粒する。噴霧乾燥機としては、所望の多孔質磁性コア粒子の粒径が得られれば特に限定されない。例えば、スプレードライヤーが使用できる。
<工程5(本焼成工程)>
次に、造粒品を800℃以上1400℃以下で1時間以上24時間以下焼成する。
焼成温度を上げ、焼成時間を長くすることで、多孔質磁性コア粒子の焼成が進み、その結果、細孔径は小さく、かつ、細孔の数も減る。
<工程6(選別工程)>
以上の様に焼成した粒子を解砕した後に、必要に応じて、分級や篩で篩分して粗大粒子や微粒子を除去してもよい。
磁性コア粒子の体積分布基準50%粒径(D50)は、18.0μm以上68.0μm以下であることが、画像への磁性キャリアの付着とガサツキの抑制のためより望ましい。
<工程7(充填工程)>
多孔質磁性コア粒子は、内部の細孔容積によっては物理的強度が低くなることがあり、磁性キャリアとしての物理的強度を高めるために、多孔質磁性コア粒子の空孔の少なくとも一部に樹脂の充填を行うことが好ましい。多孔質磁性コア粒子に充填される樹脂の量としては、多孔質磁性コア粒子に対して2質量%以上15質量%以下であることが好ましい。磁性キャリア毎の樹脂含有量にバラつきが少なければ、内部空隙内の一部にのみ樹脂が充填されていても、多孔質磁性コア粒子の表面近傍の空隙にのみ樹脂が充填され内部に空隙が残っていても、内部空隙が完全に樹脂で充填されていてもよい。
多孔質磁性コア粒子の空孔に、樹脂を充填する方法としては、特に限定されないが、浸漬法、スプレー法、ハケ塗り法、及び流動床のような塗布方法により多孔質磁性コア粒子を樹脂溶液に含浸させ、その後、溶剤を揮発させる方法が挙げられる。多孔質磁性コア粒子の空隙に樹脂を充填させる方法としては、樹脂を溶剤に希釈し、これを多孔質磁性コア粒子の空隙に添加する方法が採用できる。ここで用いられる溶剤は、樹脂を溶解できるものであればよい。有機溶剤に可溶な樹脂である場合は、有機溶剤として、トルエン、キシレン、セルソルブブチルアセテート、メチルエチルケトン、メチルイソブチルケトン、メタノールが挙げられる。また、水溶性の樹脂又はエマルジョンタイプの樹脂である場合には、溶剤として水を用いればよい。
上記樹脂溶液における樹脂固形分の量は、好ましくは1質量%以上50質量%以下であり、より好ましくは1質量%以上30質量%以下である。樹脂固形分の量が50質量%以下であると、樹脂溶液の粘度が低いため多孔質磁性コア粒子の空隙に樹脂溶液が均一に浸透しやすい。また、1質量%以上であると樹脂量が多く、多孔質磁性コア粒子への樹脂の付着力がより高まる。
上記多孔質磁性コア粒子の空隙に充填する樹脂としては、熱可塑性樹脂、熱硬化性樹脂のどちらを用いてもかまわない。多孔質磁性コア粒子に対する親和性が高いものであることが好ましく、親和性が高い樹脂を用いた場合には、多孔質磁性コア粒子の空隙への樹脂の充填時に、同時に多孔質磁性コア粒子表面も樹脂で覆うこともできる。
上記充填する樹脂として、熱可塑性樹脂としては、ノボラック樹脂、飽和アルキルポリエステル樹脂、ポリアリレート、ポリアミド樹脂、アクリル樹脂などが挙げられる。
また、上記熱硬化性樹脂としては、フェノール系樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂などが挙げられる。
また、磁性キャリア粒子は、前記磁性キャリアコア表面を樹脂で被覆し、樹脂被覆層を形成させたものである。
磁性キャリアコアの表面を樹脂で被覆する方法としては、特に限定されないが、浸漬法、スプレー法、ハケ塗り法、乾式法、及び流動床のような塗布方法により被覆する方法が挙げられる。
また、樹脂被覆層に導電性を有する粒子や荷電制御性を有する粒子や材料を含有させて用いてもよい。導電性を有する粒子としては、カーボンブラック、マグネタイト、グラファイト、酸化亜鉛、酸化錫などが挙げられる。
導電性を有する粒子の添加量としては、被覆樹脂100質量部に対し、0.1質量部以上10.0質量部以下であることが磁性キャリアの抵抗を調整するためには好ましい。
荷電制御性を有する粒子としては、有機金属錯体の粒子、有機金属塩の粒子、キレート化合物の粒子、モノアゾ金属錯体の粒子、アセチルアセトン金属錯体の粒子、ヒドロキシカルボン酸金属錯体の粒子、ポリカルボン酸金属錯体の粒子、ポリオール金属錯体の粒子、ポリメチルメタクリレート樹脂の粒子、ポリスチレン樹脂の粒子、メラミン樹脂の粒子、フェノール樹脂の粒子、ナイロン樹脂の粒子、シリカの粒子、酸化チタンの粒子、アルミナの粒子など挙げられる。荷電制御性を有する粒子の添加量としては、被覆樹脂100質量部に対し、0.5質量部以上50.0質量部以下であることが摩擦帯電量を調整するためには好ましい。
次に、本発明における各種物性の測定法について以下に説明する。
[樹脂のピーク分子量(Mp)、数平均分子量(Mn)、重量平均分子量(Mw)の測定方法]
ピーク分子量(Mp)、数平均分子量(Mn)、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により、以下のようにして測定する。
まず、室温で24時間かけて、試料(樹脂)をテトラヒドロフラン(THF)に溶解する。そして、得られた溶液を、ポア径が0.2μmの耐溶剤性メンブランフィルター「マエショリディスク」(東ソー社製)で濾過してサンプル溶液を得る。尚、サンプル溶液は、THFに可溶な成分の濃度が約0.8質量%となるように調整する。このサンプル溶液を用いて、以下の条件で測定する。
装置 :HLC8120 GPC(検出器:RI)(東ソー社製)
カラム :Shodex KF-801、802、803、804、805、806、807の7連(昭和電工社製)
溶離液 :テトラヒドロフラン(THF)
流速 :1.0ml/min
オーブン温度 :40.0℃
試料注入量 :0.10ml
試料の分子量の算出にあたっては、標準ポリスチレン樹脂(例えば、商品名「TSKスタンダード ポリスチレン F-850、F-450、F-288、F-128、F-80、F-40、F-20、F-10、F-4、F-2、F-1、A-5000、A-2500、A-1000、A-500」、東ソ-社製)を用いて作成した分子量校正曲線を使用する。
[樹脂の軟化点の測定方法]
樹脂の軟化点の測定は、定荷重押し出し方式の細管式レオメータ「流動特性評価装置 フローテスターCFT-500D」(島津製作所社製)を用い、装置付属のマニュアルに従って行う。本装置では、測定試料の上部からピストンによって一定荷重を加えつつ、シリンダに充填した測定試料を昇温させて溶融し、シリンダ底部のダイから溶融された測定試料を押し出し、この際のピストン降下量と温度との関係を示す流動曲線を得ることができる。
本発明においては、「流動特性評価装置 フローテスターCFT-500D」に付属のマニュアルに記載の「1/2法における溶融温度」を軟化点とする。尚、1/2法における溶融温度とは、次のようにして算出されたものである。まず、流出が終了した時点におけるピストンの降下量Smaxと、流出が開始した時点におけるピストンの降下量Sminとの差の1/2を求める(これをXとする。X=(Smax-Smin)/2)。そして、流動曲線においてピストンの降下量がXとなるときの流動曲線の温度が、1/2法における溶融温度である。
測定試料は、約1.0gの樹脂を、25℃の環境下で、錠剤成型圧縮機(例えば、NT-100H、エヌピーエーシステム社製)を用いて約10MPaで、約60秒間圧縮成型し、直径約8mmの円柱状としたものを用いる。
CFT-500Dの測定条件は、以下の通りである。
試験モード:昇温法
開始温度:40℃
到達温度:200℃
測定間隔:1.0℃
昇温速度:4.0℃/min
ピストン断面積:1.000cm2
試験荷重(ピストン荷重):10.0kgf(0.9807MPa)
予熱時間:300秒
ダイの穴の直径:1.0mm
ダイの長さ:1.0mm
[樹脂の酸価の測定方法]
酸価は試料1gに含まれる酸を中和するために必要な水酸化カリウムのmg数である。結着樹脂の酸価はJIS K 0070-1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
(1)試薬の準備
フェノールフタレイン1.0gをエチルアルコール(95vol%)90mlに溶かし、イオン交換水を加えて100mlとし、フェノールフタレイン溶液を得る。
特級水酸化カリウム7gを5mlの水に溶かし、エチルアルコール(95vol%)を加えて1lとする。炭酸ガス等に触れないように、耐アルカリ性の容器に入れて3日間放置後、ろ過して、水酸化カリウム溶液を得る。得られた水酸化カリウム溶液は、耐アルカリ性の容器に保管する。前記水酸化カリウム溶液のファクターは、0.1モル/l塩酸25mlを三角フラスコに取り、前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定し、中和に要した前記水酸化カリウム溶液の量から求める。前記0.1モル/l塩酸は、JIS K 8001-1998に準じて作製されたものを用いる。
(2)操作
(A)本試験
試料2.0gを200mlの三角フラスコに精秤し、トルエン/エタノール(2:1)の混合溶液100mlを加え、5時間かけて溶解する。次いで、指示薬として前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液を用いて滴定する。尚、滴定の終点は、指示薬の薄い紅色が約30秒間続いたときとする。
(B)空試験
試料を用いない(すなわちトルエン/エタノール(2:1)の混合溶液のみとする)以外は、上記操作と同様の滴定を行う。
(3)得られた結果を下記式に代入して、酸価を算出する。
A=[(C-B)×f×5.61]/S
ここで、A:酸価(mgKOH/g)、B:空試験の水酸化カリウム溶液の添加量(ml)、C:本試験の水酸化カリウム溶液の添加量(ml)、f:水酸化カリウム溶液のファクター、S:試料(g)である。
[樹脂の水酸基価の測定方法]
水酸基価とは、試料1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムのmg数である。結着樹脂の水酸基価はJIS K 0070-1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
(1)試薬の準備
特級無水酢酸25gをメスフラスコ100mlに入れ、ピリジンを加えて全量を100mlにし、十分に振りまぜてアセチル化試薬を得る。得られたアセチル化試薬は、湿気、炭酸ガス等に触れないように、褐色びんにて保存する。
フェノールフタレイン1.0gをエチルアルコール(95vol%)90mlに溶かし、イオン交換水を加えて100mlとし、フェノールフタレイン溶液を得る。
特級水酸化カリウム35gを20mlの水に溶かし、エチルアルコール(95vol%)を加えて1lとする。炭酸ガス等に触れないように、耐アルカリ性の容器に入れて3日間放置後、ろ過して、水酸化カリウム溶液を得る。得られた水酸化カリウム溶液は、耐アルカリ性の容器に保管する。前記水酸化カリウム溶液のファクターは、0.5モル/l塩酸25mlを三角フラスコに取り、前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定し、中和に要した前記水酸化カリウム溶液の量から求める。前記0.5モル/l塩酸は、JIS K 8001-1998に準じて作製されたものを用いる。
(2)操作
(A)本試験
粉砕した結着樹脂の試料1.0gを200ml丸底フラスコに精秤し、これに前記のアセチル化試薬5.0mlをホールピペットを用いて正確に加える。この際、試料がアセチル化試薬に溶解しにくいときは、特級トルエンを少量加えて溶解する。
フラスコの口に小さな漏斗をのせ、約97℃のグリセリン浴中にフラスコ底部約1cmを浸して加熱する。このときフラスコの首の温度が浴の熱を受けて上昇するのを防ぐため、丸い穴をあけた厚紙をフラスコの首の付根にかぶせることが好ましい。
1時間後、グリセリン浴からフラスコを取り出して放冷する。放冷後、漏斗から水1mlを加えて振り動かして無水酢酸を加水分解する。さらに完全に加水分解するため、再びフラスコをグリセリン浴中で10分間加熱する。放冷後、エチルアルコール5mlで漏斗およびフラスコの壁を洗う。
指示薬として前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定する。尚、滴定の終点は、指示薬の薄い紅色が約30秒間続いたときとする。
(B)空試験
結着樹脂の試料を用いない以外は、上記操作と同様の滴定を行う。
(3)得られた結果を下記式に代入して、水酸基価を算出する。
A=[{(B-C)×28.05×f}/S]+D
ここで、A:水酸基価(mgKOH/g)、B:空試験の水酸化カリウム溶液の添加量(ml)、C:本試験の水酸化カリウム溶液の添加量(ml)、f:水酸化カリウム溶液のファクター、S:試料(g)、D:結着樹脂の酸価(mgKOH/g)である。
[ワックス及び結晶性ポリエステルの最大吸熱ピークの測定]
ワックスの最大吸熱ピークのピーク温度は、示差走査熱量分析装置「Q1000」(TA Instruments社製)を用いてASTM D3418-82に準じて測定する。装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。
具体的には、試料約5mgを精秤し、これをアルミニウム製のパンの中に入れ、リファレンスとして空のアルミニウム製のパンを用い、測定温度範囲30~200℃の間で、昇温速度10℃/minで測定を行う。尚、測定においては、一度200℃まで昇温させ、続いて30℃まで降温し、その後に再度昇温を行う。この2度目の昇温過程での温度30~200℃の範囲におけるDSC曲線の最大の吸熱ピークを示す温度を、ワックスの最大吸熱ピークのピーク温度とする。
[トナー粒子の重量平均粒径(D4)の測定方法]
トナー粒子の重量平均粒径(D4)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター(株)製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター(株)製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出する。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター(株)製)が使用できる。
なお、測定、解析を行う前に、以下のように前記専用ソフトの設定を行う。
前記専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50,000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター(株)製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1,600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μm以上60μm以下に設定する。
具体的な測定法は以下のとおりである。
(1)Multisizer 3専用のガラス製250mL丸底ビーカーに前記電解水溶液約200mLを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100mL平底ビーカーに前記電解水溶液約30mLを入れ、この中に分散剤として下記の希釈液を約0.3mL加える。
・希釈液:「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業(株)製)をイオン交換水で3質量倍に希釈した希釈液
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力が120Wである下記の超音波分散器の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2mL添加する。
・超音波分散器:「Ultrasonic Dispension System Tetora150」(日科機バイオス(株)製)
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が15℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50,000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出する。なお、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
[トナーの平均円形度]
トナーの平均円形度は、フロー式粒子像分析装置「FPIA-3000」(シスメックス(株)製)によって、校正作業時の測定及び解析条件で測定する。
具体的な測定方法は、以下のとおりである。まず、ガラス製の容器中に予め不純固形物などを除去したイオン交換水約20mLを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業(株)製)をイオン交換水で約3質量倍に希釈した希釈液を約0。2mL加える。更に測定試料を約0。02g加え、超音波分散器を用いて2分間分散処理を行い、測定用の分散液とする。その際、分散液の温度が10℃以上40℃以下となる様に適宜冷却する。超音波分散器としては、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散器(例えば「VS-150」((株)ヴェルヴォクリーア製))を用いる。水槽内には所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2mL添加する。
測定には、対物レンズとして「UPlanApro」(倍率10倍、開口数0。40)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE-900A」(シスメックス(株)製)を使用した。前記手順に従い調整した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて3000個のトナー粒子を計測する。そして、粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径1.985μm以上39.69μm未満に限定し、トナーの平均円形度を求める。
測定にあたっては、測定開始前に標準ラテックス粒子を用いて自動焦点調整を行う。標
準ラテックス粒子としては、例えば以下のものが挙げられる。
・Duke Scientific社製の「RESEARCH AND TEST PA
RTICLES Latex Microsphere Suspensions 52
00A」をイオン交換水で希釈。
その後、測定開始から2時間毎に焦点調整を実施することが好ましい。
なお、本願実施例では、シスメックス(株)による校正作業が行われた、シスメックス
(株)が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用した。解析粒
子径を円相当径1.985μm以上39.69μm未満に限定した以外は、校正証明を受
けた時の測定及び解析条件で測定を行った。
[チタン酸ストロンチウム粒子の個数平均粒径]
チタン酸ストロンチウム粒子の個数平均粒径は、日立超高分解能電界放出形走査電子顕微鏡S-4800((株)日立ハイテクノロジーズ)にて撮影されたトナー表面の画像から算出される。S-4800の画像撮影条件は以下のとおりである。
(1)試料作製
試料台(アルミニウム試料台15mm×6mm)に導電性ペーストを薄く塗り、その上にトナーを吹きつける。さらにエアブローして、余分なトナーを試料台から除去し十分乾燥させる。試料台を試料ホルダにセットし、試料高さゲージにより試料台高さを36mmに調節する。
(2)S-4800観察条件設定
個数平均径の算出は、S-4800の反射電子像観察により得られた画像を用いて行う。被覆率を測定する際には、予めエネルギー分散型X線分析装置(EDAX)による元素分析を行い、トナー表面におけるケイ素化合物微粒子以外の粒子を除外した上で測定を行う。S-4800の鏡体に取り付けられているアンチコンタミネーショントラップに液体窒素を溢れるまで注入し、30分間置く。S-4800の「PC-SEM」を起動し、フラッシング(電子源であるFEチップの清浄化)を行う。画面上のコントロールパネルの加速電圧表示部分をクリックし、[フラッシング]ボタンを押し、フラッシング実行ダイアログを開く。フラッシング強度が2であることを確認し、実行する。フラッシングによるエミッション電流が20~40μAであることを確認する。試料ホルダをS-4800鏡体の試料室に挿入する。コントロールパネル上の[原点]を押し試料ホルダを観察位置に移動させる。
加速電圧表示部をクリックしてHV設定ダイアログを開き、加速電圧を[1。1kV]、エミッション電流を[20μA]に設定する。オペレーションパネルの[基本]のタブ内にて、信号選択を[SE]に設置し、SE検出器を[上(U)]および[+BSE]を選択し、[+BSE]の右の選択ボックスで[L.A.100]を選択し、反射電子像で観察するモードにする。同じくオペレーションパネルの[基本]のタブ内にて、電子光学系条件ブロックのプローブ電流を[Normal]に、焦点モードを[UHR]に、WDを[4.5mm]に設定する。コントロールパネルの加速電圧表示部の[ON]ボタンを押し、加速電圧を印加する。
(3)焦点調整
操作パネルのフォーカスつまみ[COARSE]を回転させ、ある程度焦点が合ったところでアパーチャアライメントの調整を行う。コントロールパネルの[Align]をクリックし、アライメントダイアログを表示し、[ビーム]を選択する。操作パネルのSTIGMA/ALIGNMENTつまみ(X、Y)を回転し、表示されるビームを同心円の中心に移動させる。次に[アパーチャ]を選択し、STIGMA/ALIGNMENTつまみ(X、Y)を一つずつ回し、像の動きを止める又は最小の動きになるように合わせる。アパーチャダイアログを閉じ、オートフォーカスで、ピントを合わせる。その後、倍率を80、000(80k)倍に設定し、上記と同様にフォーカスつまみ、STIGMA/ALIGNMENTつまみを使用して焦点調整を行い、再度オートフォーカスでピントを合わせる。この操作を再度繰り返し、ピントを合わせる。ここで、観察面の傾斜角度が大きいと被覆率の測定精度が低くなりやすいので、ピント調整の際に観察面全体のピントが同時に合うものを選ぶことで、表面の傾斜が極力無いものを選択して解析する。
(4)画像保存
ABCモードで明るさ合わせを行い、サイズ640×480ピクセルで写真撮影して保存する。この画像ファイルを用いて下記の解析を行う。トナー一つに対して写真を1枚撮影し、少なくともトナー25粒子以上について画像を得る。
(5)画像解析
トナー表面上の少なくとも500個のチタン酸ストロンチウム粒子について粒径を測定して、個数平均粒径を求める。本発明では画像解析ソフトImage-Pro Plus ver.5.0を用いて、上述した手法で得た画像を2値化処理することで個数平均径を算出する。
[トナー表面におけるチタン酸ストロンチウム粒子の固着率の測定]
イオン交換水10.3gにショ糖20.7g(キシダ化学社製)を溶解させたショ糖水溶液に、界面活性剤であるコンタミノンN(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤、和光純薬工業社製)6mLを30mLのガラスバイアル(例えば、日電理化硝子株式会社製、VCV-30、外径:35mm、高さ:70mm)に入れて十分混合し、分散液を作製する。このバイアルにトナー1.0gを添加し、トナーが自然に沈降するまで静置して処理前分散液を作製する。この分散液を振とう機(YS-8D型:(株)ヤヨイ製)にて、振とう速度:200rpmで5分間振とうする。当該振とう後でも剥がれないチタン酸ストロンチウム粒子を固着されているとする。チタン酸ストロンチウム粒子が残存したトナーと脱離したチタン酸ストロンチウム粒子の分離は遠心分離機を用いて行う。遠心分離工程は3700rpmで30分間行う。チタン酸ストロンチウム粒子が残存したトナーを吸引濾過により採取し、乾燥させ分離後のトナーを得る。
固着率の測定は、まず上記分離工程前のトナーに含まれるチタン酸ストロンチウム粒子の定量を行う。これは波長分散型蛍光X線分析装置Axios advanced(PANalytical社製)を用いて、トナー中のSr元素強度:Sr-Bを測定する。次に同様に上記分離工程後のトナーのSr元素強度:Sr-Aを測定する。固着率は(Sr-A/Sr-B)×100(%)で求められる。
[チタン酸ストロンチウム粒子の誘電率測定]
284AプレシジョンLCRメーター(ヒューレット・パッカード社製)を用いて、1kHz及び1MHzの周波数で校正後、周波数1MHzにおける複素誘電率を測定した。測定するチタン酸ストロンチウム粒子に39200kPa(400kg/cm2)の荷重を5分間かけて、直径25mm、厚さ1mm以下(好ましくは0.5~0.9mm)の円盤状の測定試料に成型する。この測定試料を直径25mmの誘電率測定治具(電極)を装着したARES(レオメトリック・サイエンティフィック・エフ・イー社製)に装着し、温度25℃の雰囲気下で0.49N(50g)の荷重をかけた状態で1MHzの周波数で測定することにより得られる。
[磁性キャリア、多孔質磁性コアの体積平均粒径(D50)の測定方法]
粒度分布測定は、レーザー回折・散乱方式の粒度分布測定装置「マイクロトラックMT3300EX」(日機装社製)にて測定を行った。
磁性キャリア、多孔質磁性コアの体積平均粒径(D50)の測定には、乾式測定用の試料供給機「ワンショットドライ型サンプルコンディショナーTurbotrac」(日機装社製)を装着して行った。Turbotracの供給条件として、真空源として集塵機を用い、風量約33l/sec、圧力約17kPaとした。制御は、ソフトウエア上で自動的に行う。粒径は体積平均の累積値である50%粒径(D50)を求める。制御及び解析は付属ソフト(バージョン10.3.3-202D)を用いて行う。測定条件は下記の通りである。
SetZero時間 :10秒
測定時間 :10秒
測定回数 :1回
粒子屈折率 :1.81%
粒子形状 :非球形
測定上限 :1408μm
測定下限 :0.243μm
測定環境 :23℃、50%RH
[磁性キャリアからの樹脂被覆層の分離及び樹脂被覆層中の被覆用樹脂の分取]
磁性キャリアから樹脂被覆層を分離する方法としては、磁性キャリアをカップに取り、テトラヒドロフラン(THF)を用いて被覆用樹脂を分離させる方法がある。キャリアの被覆樹脂層中に結晶性ポリエステルと非晶性樹脂が含有されている場合、非晶性樹脂はTHFに溶出し、結晶性ポリエステルは溶出しない。従って、溶出後のTHF中には非晶性樹脂が含有されており、残固形物にはキャリアコアと結晶性ポリエステルが存在する。
THFに溶出させた非晶性樹脂は、ろ過後に乾固させたのち、再度テトラヒドロフラン(THF)に溶解させ、以下の装置を用いて分取する。
[装置構成]
LC-908(日本分析工業株式会社製)
JRS-86(同社;リピートインジェクタ)
JAR-2(同社;オートサンプラー)
FC-201(ギルソン社;フラクッションコレクタ)
[カラム構成]
JAIGEL-1H~5H(20φ×600mm:分取カラム)(日本分析工業株式会社製)
[測定条件]
温度:40℃
溶媒:THF
流量:5ml/min
検出器:RI
被覆用樹脂の分子量分布に基づき、下記方法で特定した樹脂構成を用いて、被覆用樹脂のピーク分子量(Mp)となる溶出時間を予め測定し、その前後でそれぞれの樹脂成分を分取する。その後溶剤を除去し、乾燥させ、被覆用樹脂を得る。
一方、残固形物のキャリアコア及び結晶性ポリエステル樹脂は、ろ過によりキャリアコアを除去することにより、結晶性ポリエステル樹脂を得ることができる。
以下、実施例を参照して本発明をより具体的に説明するが、本発明はこれら実施例にのみ限定されるものではない。
<チタン酸ストロンチウム粒子1の製造例>
硫酸法で製造されたメタチタン酸を脱鉄漂白処理した後、3モル/L水酸化ナトリウム水溶液を加えpH9.0とし脱硫処理を行い、その後、5モル/L塩酸によりpH5.6まで中和し、ろ過水洗を行った。洗浄済みのケーキに水を加えTiO2として1.90モル/Lのスラリーとした後、塩酸を加えpH1.4とし解膠処理を行った。
脱硫・解膠を行ったメタチタン酸をTiO2として1.90モルを採取し、3Lの反応容器に投入した。該解膠メタチタン酸スラリーに、塩化ストロンチウム水溶液をSrO/TiO2(モル比)で1.15となるよう2.185モル添加した後、TiO2濃度1.039モル/Lに調整した。
次に、撹拌混合しながら90℃に加温した後、10モル/L水酸化ナトリウム水溶液440mLを40分かけて添加し、その後、95℃で45分撹拌を続けたのち、氷水中に投入し急冷させて反応を終了した。
該反応スラリーを70℃まで加熱し、pH5.0となるまで12モル/L塩酸を加え1時間撹拌を続け、得られた沈殿をデカンテーションした。
得られた沈殿物を含むスラリーを40℃に調整し、塩酸を加えてpH2.5に調整したのち、固形分に対して4.6質量%のi-ブチルトリメトキシシランと、4.6質量%のトリフルオロプロピルトリメトキシシランを添加して10時間撹拌を行った。5モル/L水酸化ナトリウム水溶液を加えpH6.5に調整し1時間撹拌を続けた後、ろ過・洗浄を行い、得られたケーキを120℃の大気中に8時間乾燥した後に粉砕処理を施し、チタン酸ストロンチウム粒子1を得た。
<チタン酸ストロンチウム粒子2~13の製造例>
チタン酸ストロンチウムの粒子の製造例1において、一次粒子の個数平均粒子径および誘電率を変化させたものを表1に示した。
Figure 2022029519000001
<結着樹脂の製造例>
[結着樹脂1の製造例]
ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン76.9質量部(0.167モル)、テレフタル酸24.1質量部(0.145モル)、アジピン酸8.0質量部(0.054モル)及びチタンテトラブトキシド0.5質量部をガラス製4リットルの4つ口フラスコに入れ、温度計、撹拌棒、コンデンサー及び窒素導入管を取りつけマントルヒーター内においた。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、4時間反応させた。(第1反応工程)その後、無水トリメリット酸1.2質量部(0.006モル)を添加し、180℃で1時間反応させ(第2反応工程)、結着樹脂1を得た。
この結着樹脂1の酸価は5mgKOH/gであり、水酸基価は65mgKOH/gであった。また、GPCによる分子量は、重量平均分子量(Mw)8,000、数平均分子量(Mn)3,500、ピーク分子量(Mp)5,700、軟化点は90℃であった。
[結着樹脂2の製造例]
ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン71.3質量部(0.155モル)、テレフタル酸24.1質量部(0.145モル)、及びチタンテトラブトキシド0.6質量部をガラス製4リットルの4つ口フラスコに入れ、温度計、撹拌棒、コンデンサー及び窒素導入管を取りつけマントルヒーター内においた。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、2時間反応させた。(第1反応工程)その後、無水トリメリット酸5.8質量部(0.030モル%)を添加し、180℃で10時間反応させ(第2反応工程)、結着樹脂2を得た。
この結着樹脂2の酸価は15mgKOH/gであり、水酸基価は7mgKOH/gである。また、GPCによる分子量は、重量平均分子量(Mw)200,000、数平均分子量(Mn)5,000、ピーク分子量(Mp)10,000、軟化点は130℃であった。
<トナー1の製造例>
・結着樹脂1 70.0質量部
・結着樹脂2 30.0質量部
・フィッシャートロプシュワックス(最大吸熱ピークのピーク温度78℃)5.0質量部
・C.I.ピグメントブルー15:3 5.0質量部
・3,5-ジ-t-ブチルサリチル酸アルミニウム化合物 0.5質量部
上記処方で示した原材料をヘンシェルミキサー(FM-75型、日本コークス工業(株)製)を用いて、回転数20s-1、回転時間5分で混合した後、温度125℃に設定した二軸混練機(PCM-30型、(株)池貝製)にて混練した。得られた混練物を冷却し、ハンマーミルにて1mm以下に粗粉砕し、粗砕物を得た。得られた粗砕物を、機械式粉砕機(T-250、フロイント・ターボ(株)製)にて微粉砕した。さらに回転型分級機(200TSP、ホソカワミクロン(株)製)を用い、分級を行い、トナー粒子を得た。回転型分級機(200TSP、ホソカワミクロン(株)製)の運転条件は、分級ローター回転数を50.0s-1で分級を行った。得られたトナー粒子は、重量平均粒径(D4)が5.9μmであった。
得られたトナー粒子100質量部に、チタン酸ストロンチウム1を5.0質量部添加し、ヘンシェルミキサー(FM-75型、日本コークス工業(株)製)で、回転数30s-1、回転時間5分で混合し、図1で示す表面処理装置によって熱処理を行った。運転条件はフィード量=5kg/時間とし、また、熱風温度=150℃、熱風流量=6m3/分、冷風温度=5℃、冷風流量=4m3/分、冷風絶対水分量=3g/m3、ブロワー風量=20m3/分、インジェクションエア流量=1m3/分とした。
得られた熱処理トナー母粒子1を、慣性分級方式のエルボージェット(日鉄鉱業(株)製)を用いて分級し、熱処理トナー母粒子1Mを得た。得られた熱処理トナー母粒子1Mは、重量平均粒径(D4)が5.0μmであった。
・熱処理トナー母粒子1M 100質量部
・シリカ微粒子(一次粒子の個数平均径(D1)が5nm) 2.5質量部
上記処方で示した原材料をヘンシェルミキサー(FM-10C型、日本コークス(株)製)を用いて、回転数67s-1(4000rpm)、回転時間2minで混合した後、目開き54μmの超音波振動篩を通過させ、トナー1を得た。得られたトナー1は、平均円形度が0.966であった。
<トナー2~19の製造例>
トナー1の製造例において、表1のように原材料および熱処理条件を変更すること以外は同様にしてトナー2~19を得た。
<トナー20の製造例>
トナー1の製造例において、チタン酸ストロンチウムを酸化チタンに変えて原材料および熱処理条件を変更すること以外は同様にしてトナー20を得た。
<トナー21の製造例>
・結着樹脂1 70.0質量部
・結着樹脂2 30.0質量部
・フィッシャートロプシュワックス(最大吸熱ピークのピーク温度78℃)5.0質量部
・C.I.ピグメントブルー15:3 5.0質量部
・3,5-ジ-t-ブチルサリチル酸アルミニウム化合物 0.5質量部
上記処方で示した原材料をヘンシェルミキサー(FM-75型、日本コークス工業(株)製)を用いて、回転数20s-1、回転時間5分で混合した後、温度125℃に設定した二軸混練機(PCM-30型、(株)池貝製)にて混練した。得られた混練物を冷却し、ハンマーミルにて1mm以下に粗粉砕し、粗砕物を得た。得られた粗砕物を、機械式粉砕機(T-250、フロイント・ターボ(株)製)にて微粉砕した。さらに回転型分級機(200TSP、ホソカワミクロン(株)製)を用い、分級を行い、トナー粒子を得た。回転型分級機(200TSP、ホソカワミクロン(株)製)の運転条件は、分級ローター回転数を50.0s-1で分級を行った。得られたトナー粒子は、重量平均粒径(D4)が5.9μmであった。
得られたトナー粒子100質量部に、シリカ微粒子(一次粒子の個数平均径(D1)が5nm)を5.0質量部添加し、ヘンシェルミキサー(FM-75型、日本コークス工業(株)製)で、回転数30s-1、回転時間5分で混合し、図1で示す表面処理装置によって熱処理を行った。運転条件はフィード量=5kg/時間とし、また、熱風温度=150℃、熱風流量=6m3/分、冷風温度=5℃、冷風流量=4m3/分、冷風絶対水分量=3g/m3、ブロワー風量=20m3/分、インジェクションエア流量=1m3/分とした。
得られた熱処理トナー母粒子21を、慣性分級方式のエルボージェット(日鉄鉱業(株)製)を用いて分級し、熱処理トナー母粒子21Mを得た。得られた熱処理トナー母粒子21Mは、重量平均粒径(D4)が5.0μmであった。
・熱処理トナー母粒子21M 100質量部
・シリカ微粒子(一次粒子の個数平均径(D1)が5nm) 2.5質量部
上記処方で示した原材料をヘンシェルミキサー(FM-10C型、日本コークス(株)製)を用いて、回転数67s-1(4000rpm)、回転時間2minで混合した後、目開き54μmの超音波振動篩を通過させ、トナー21を得た。得られたトナー21は、平均円形度が0.964であった。
Figure 2022029519000002
[磁性キャリアコア1の製造例]
工程1(秤量・混合工程)
Fe23 68.3質量%
MnCO3 28.5質量%
Mg(OH)2 2.0質量%
SrCO3 1.2質量%
上記フェライト原材料を秤量し、フェライト原料80質量部に水20質量部を加え、その後、直径(φ)10mmのジルコニアを用いてボールミルで3時間湿式混合しスラリーを調製した。スラリーの固形分濃度は、80質量%とした。
工程2(仮焼成工程)
混合したスラリーをスプレードライヤー(大川原化工機社製)により乾燥した後、バッチ式電気炉で、窒素雰囲気下(酸素濃度1.0体積%)、温度1050℃で3.0時間焼成し、仮焼フェライトを作製した。
工程3(粉砕工程)
仮焼フェライトをクラッシャーで0.5mm程度に粉砕した後に、水を加え、スラリーを調製した。スラリーの固形分濃度を70質量%とした。1/8インチのステンレスビーズを用いた湿式ボールミルで3時間粉砕し、スラリーを得た。さらにこのスラリーを直径1mmのジルコニアを用いた湿式ビーズミルで4時間粉砕し、体積基準の50%粒子径(D50)が1.3μm仮焼フェライトスラリーを得た。
工程4(造粒工程)
上記仮焼フェライトスラリーに、100質量部に対し、分散剤としてポリカルボン酸アンモニウム1.0質量部、バインダーとしてポリビニルアルコール1.5質量部の割合で添加した後、スプレードライヤー(大川原化工機社製)で球状粒子に造粒、乾燥した。得られた造粒物に対して、粒度調整を行った後、ロータリー式電気炉を用いて700℃で2時間加熱し、分散剤やバインダー等の有機物を除去した。
工程5(焼成工程)
窒素雰囲気下(酸素濃度1.0体積%)で、室温から焼成温度(1100℃)になるまでの時間を2時間とし、温度1100℃で4時間保持し、焼成した。その後、8時間をかけて温度60℃まで降温し、窒素雰囲気から大気に戻し、温度40℃以下で取り出した。
工程6(選別工程)
凝集した粒子を解砕した後に、目開き150μmの篩で篩分して粗大粒子を除去、風力分級を行って微粉を除去し、さらに磁力選鉱により低磁力分を除去して多孔質磁性コア粒子1を得た。
多孔質磁性コア粒子1を100質量部、混合撹拌機(ダルトン社製の万能撹拌機NDMV型)の撹拌容器内に入れ、60℃に温度を保ち、常圧でメチルシリコーンオリゴマー:95.0質量%、γ-アミノプロピルトリメトキシシラン:5.0質量%からなる充填樹脂を5質量部滴下した。
滴下終了後、時間を調整しながら撹拌を続け、70℃まで温度を上げ、各多孔質磁性コアの粒子内に樹脂組成物を充填した。
冷却後得られた樹脂充填型磁性コア粒子を、回転可能な混合容器内にスパイラル羽根を有する混合機(杉山重工業社製のドラムミキサーUD-AT型)に移し、窒素雰囲気下で、2℃/分の昇温速度で、撹拌しながら140℃まで上昇させた。その後140℃で50分間加熱撹拌を続けた。
その後室温まで冷却し、樹脂が充填、硬化されたフェライト粒子を取り出し、磁力選鉱機を用いて、非磁性物を取り除いた。さらに、振動篩にて粗大粒子を取り除き樹脂が充填された磁性キャリアコア1を得た。
[結晶性ポリエステル1の製造例]
・ヘキサンジオール:
33.9質量部(0.29モル;多価アルコール総モル数に対して100.0mol%)
・ドデカン二酸:
66.1質量部(0.29モル;多価カルボン酸総モル数に対して100.0mol%)
冷却管、撹拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、140℃の温度で撹拌しつつ、3時間反応させた。
その後、2-エチルヘキサン酸錫0.5質量部を加え、反応槽内の圧力を8.3kPaに下げ、温度200℃に維持したまま、4時間反応させた。
その後、反応槽内を5kPa以下へ減圧して200℃で3時間反応させることにより、結晶性ポリエステル1を得た。
[被覆樹脂1の調製]
シクロヘキシルメタクリレートモノマー 26.8質量%
メチルメタクリレートモノマー 0.2質量%
メチルメタクリレートマクロモノマー 8.4質量%
(片末端にメタクリロイル基を有する重量平均分子量5000のマクロモノマー)
トルエン 31.3質量%
メチルエチルケトン 31.3質量%
結晶性ポリエステル1 10.0質量%
アゾビスイソブチロニトリル 2.0質量%
上記材料のうち、シクロヘキシルメタクリレート、メチルメタクリレート、メチルメタクリレートマクロモノマー、トルエン、メチルエチルケトン、結晶性ポリエステル1を、還流冷却器、温度計、窒素導入管及び撹拌装置を取り付けた四つ口のセパラブルフラスコに添加し、窒素ガスを導入して充分に窒素雰囲気にした後、80℃まで加温し、アゾビスイソブチロニトリルを添加して5時間還流し重合させた。得られた反応物にヘキサンを注入して共重合体を沈殿析出させ、沈殿物を濾別後、真空乾燥して被覆樹脂1を得た。得られた被覆樹脂1を30質量部、トルエン40質量部、メチルエチルケトン30質量部に溶解させて、重合体溶液1(固形分30質量%)を得た。
[被覆樹脂溶液1の調製]
重合体溶液1(樹脂固形分濃度30質量%) 33.3質量%
トルエン 66.4質量%
カーボンブラック(Regal330;キャボット社製) 0.3質量%
(一次粒径25nm、窒素吸着比表面積94m2/g、DBP吸油量75ml/100g)
を、直径0.5mmのジルコニアビーズを用いて、ペイントシェーカーで1時間分散をおこなった。得られた分散液を、5.0μmのメンブランフィルターで濾過をおこない、被覆樹脂溶液1を得た。
<磁性キャリア1の製造例>
(樹脂被覆工程):
常温で維持されている真空脱気型ニーダーに、磁性キャリアコア粒子1及び被覆樹脂溶液1を投入した(被覆樹脂溶液1の投入量は、100質量部の磁性キャリアコア粒子1に対して樹脂成分として2.5部になる量)。投入後、回転速度30rpmで15分間撹拌し、溶媒が一定以上(80質量%)揮発した後、減圧混合しながら80℃まで昇温し、2時間かけてトルエンを留去した後冷却した。得られた磁性キャリアを、磁力選鉱により低磁力品を分別し、開口70μmの篩を通した後、風力分級器で分級し、体積分布基準の50%粒径(D50)38.2μmの磁性キャリア1を得た。
[結晶性ポリエステル2~3の製造例]
結晶性ポリエステル1の製造例において、脂肪族ジオール及び脂肪族ジカルボン酸が表3の記載となるように変更した以外は、結晶性ポリエステル1の製造例と同様の操作を行い、結晶性ポリエステル2~3を得た。
Figure 2022029519000003
<磁性キャリア2~5の製造例>
磁性キャリア1の製造例において、被覆樹脂溶液1に含有される結晶性ポリエステルを表4のように変化させた被覆樹脂を調整し、磁性キャリア2~5を得た。
[被覆樹脂6の調製]
メチルメタクリレートモノマー 35.4質量%
トルエン 31.3質量%
メチルエチルケトン 31.3質量%
結晶性ポリエステル1 20.0質量%
アゾビスイソブチロニトリル 2.0質量%
上記材料のうち、メチルメタクリレートモノマー、トルエン、メチルエチルケトン、結晶性ポリエステル1を、還流冷却器、温度計、窒素導入管及び撹拌装置を取り付けた四つ口のセパラブルフラスコに添加し、窒素ガスを導入して充分に窒素雰囲気にした後、83℃まで加温し、アゾビスイソブチロニトリルを添加して5時間還流し重合させた。得られた反応物にヘキサンを注入して共重合体を沈殿析出させ、沈殿物を濾別後、真空乾燥して被覆樹脂6を得た。得られた被覆樹脂6を30質量部、トルエン40質量部、メチルエチルケトン30質量部に溶解させて、重合体溶液6(固形分30質量%)を得た。
[被覆樹脂溶液6の調製]
被覆樹脂溶液1の製造例において、重合体溶液1を重合体溶液6に変更する以外は同様の操作を行い、被覆樹脂溶液6を得た。
<磁性キャリア6の製造例>
(樹脂被覆工程):
常温で維持されている真空脱気型ニーダーに、磁性キャリアコア粒子1及び被覆樹脂溶液6を投入した(被覆樹脂溶液6の投入量は、100質量部の磁性キャリアコア粒子1に対して樹脂成分として2.5質量部になる量)。投入後、回転速度30rpmで15分間撹拌し、溶媒が一定以上(80質量%)揮発した後、減圧混合しながら80℃まで昇温し、2時間かけてトルエンを留去した後冷却した。得られた磁性キャリアを、磁力選鉱により低磁力品を分別し、開口70μmの篩を通した後、風力分級器で分級し、体積分布基準の50%粒径(D50)38.2μmの磁性キャリア6を得た。
<磁性キャリア7~14の製造例>
磁性キャリア6の製造例において、被覆樹脂溶液6に含有される結晶性ポリエステルを表4のように変化させた被覆樹脂を調製し、磁性キャリア7~14を得た。
Figure 2022029519000004
<二成分系現像剤1の製造例>
92.0部の磁性キャリア1と8.0部のトナー1をV型混合機(V-20、セイシン企業製)により混合し、二成分系現像剤1を得た。
<二成分系現像剤2~26の製造例>
二成分系現像剤1の製造例において、表5のように変更する以外は同様の操作を行い、二成分系現像剤2~26を得た。
Figure 2022029519000005
<実施例1~20及び比較例1~6>
評価する画像形成装置として、キヤノン製フルカラー複写機imagePRESS C800改造機を用いた。この画像形成装置は、像坦持体として静電潜像を形成させる感光体を有し、感光体の静電潜像を二成分現像器によりトナー像として現像する現像工程を有する。さらに、現像されたトナー像を中間転写体に転写し、その後に中間転写体のトナー像を紙に転写する転写工程を有し、紙上のトナー像を熱により定着する定着工程を有する。この画像形成装置のシアンステーションの現像器に、二成分系現像剤1を投入し、下記評価を行った。評価結果を表6に示す。
同様に、二成分系現像剤2~26についても評価を行い、評価結果を表6に示す。
[評価1]耐久安定性の評価
画像形成装置としてキヤノン製フルカラー複写機imagePress C800を用いて、上記二成分系現像剤を、画像形成装置のシアン用現像器に入れて後述の評価を行った。改造点は、現像器内部で過剰になった磁性キャリアを現像器から排出する機構を取り外したことである。
FFh画像(ベタ画像)におけるトナーの紙上への載り量が0.45mg/cm2となるように、調整した。FFhとは、256階調を16進数で表示した値であり、00hが256階調の1階調目(白地部)であり、FFが256階調の256階調目(ベタ部)である。
条件:
紙 レーザービームプリンター用紙CF―081(81.4g/m2
(キヤノンマーケティングジャパン株式会社)
画像形成速度 A4サイズ、フルカラーで85枚/min
現像条件 現像コントラストを任意値で調整可能にし、本体による自動補正が作動し
ないように改造した。
交番電界のピーク間の電圧(Vpp)は、周波数2.0kHz、Vppが
0.7kVから1.8kVまで0.1kV刻みで変えられるように改造し
た。
各色とも、単色で画像が出力できるように改造した。
耐久画像出力試験では、画像比率40%で、1万枚の耐久画像出力試験を行った。試験環境は、高温高湿(HH)環境下(温度30℃、相対湿度80%)においてそれぞれ行った。1万枚連続通紙中は、1枚目と同じ現像条件、転写条件(キャリブレーション無し)で通紙を行うこととした。
初期(1枚目)と1万枚連続通紙時の画出し評価の項目と評価基準を以下に示す。また評価結果を表6に示す。
X-Riteカラー反射濃度計(500シリーズ:X-Rite社製)を使用し、初期(1枚目)及び1万枚目のFFh画像部:ベタ部の画像濃度を測定し、両画像濃度の差Δから、以下の基準でランク付けした。
A:0.05未満(非常に優れている。)
B:0.05以上0.10未満(良好である。)
C:0.10以上、0.15未満(本発明の効果が得られている。)
D:0.15以上(本発明の効果が得られていない)
[評価2]画像均一性の評価
上記1万枚の耐久出力後にベタ画像を出力し、2cm角の画像をデジタルマイクロスコープにて取り込み、取り込んだ画像をImage-Jにて8bitグレースケール変換を行った後、濃度ヒストグラムを計測し、その標準偏差を求めた。その標準偏差の値に応じ以下の評価基準にてランク付けを行った。
A:標準偏差2.0未満(非常に優れている、肉眼では不均一性を認識できない)
B:標準偏差2.0以上4.0未満(かなり優れている)
C:標準偏差4.0以上6.0未満(本発明の効果が得られている)
D:標準偏差6.0以上(本発明の効果が得られていない、遠目で不均一性を感じる)
Figure 2022029519000006
1.原料定量供給手段、2.圧縮気体流量調整手段、3.導入管、4.突起状部材、5.供給管、6.処理室、7.熱風供給手段、8(8-1,8-2,8-3).冷風供給手段、9.規制手段、10.回収手段、11.熱風供給手段出口、12.分配部材、13.旋回部材、14.粉体粒子供給口

Claims (7)

  1. トナーおよび磁性キャリアを含む二成分現像剤において、
    該トナーは、結着樹脂を含有するトナー粒子と、トナー粒子表面に存在するチタン酸ストロンチウム粒子を含有し、
    該チタン酸ストロンチウム粒子は、立方体状又は直方体状の粒子形状を有し、
    該トナー粒子表面に存在するチタン酸ストロンチウム粒子の含有量は、トナー粒子100質量部に対し、1.0質量部以上10.0質量部以下であり、
    該磁性キャリアは、磁性キャリアコア粒子と該磁性キャリアコア粒子表面に樹脂被覆層を有する磁性キャリア粒子を含有する磁性キャリアであって、該樹脂被覆層は結晶性ポリエステル樹脂を含有することを特徴とする二成分系現像剤。
  2. 該チタン酸ストロンチウム粒子は、一次粒子の個数平均粒径が10nm以上150nm以下である請求項1に記載の二成分系現像剤。
  3. 該トナー表面に対して、該チタン酸ストロンチウム粒子の固着率が20%以上100%以下である請求項1又は2に記載の二成分系現像剤。
  4. 該トナー表面に固着する該チタン酸ストロンチウム粒子は、一次粒子の個数平均粒径が10nm以上60nm以下である請求項1乃至3のいずれか1項に記載の二成分系現像剤。
  5. 該トナー表面に固着する該チタン酸ストロンチウム粒子の誘電率が、25℃、1MHzにおける誘電率の測定において、25pF/m以上100pF/m以下である請求項1乃至4のいずれか1項に記載の二成分系現像剤。
  6. 該樹脂被覆層に含有される、該結晶性ポリエステル樹脂の含有量は被覆樹脂100.0質量部に対して1.0質量部以上50.0質量部以下である請求項1乃至5のいずれか1項に記載の二成分系現像剤。
  7. 前記磁性キャリアコア粒子表面の樹脂被覆層は、脂環式の炭化水素基を有する(メタ)アクリル酸エステル、及びマクロモノマーを含むモノマーの共重合体を含有する請求項1乃至6のいずれか1項に記載の二成分系現像剤。
JP2020132808A 2020-08-05 2020-08-05 二成分系現像剤 Pending JP2022029519A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020132808A JP2022029519A (ja) 2020-08-05 2020-08-05 二成分系現像剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020132808A JP2022029519A (ja) 2020-08-05 2020-08-05 二成分系現像剤

Publications (1)

Publication Number Publication Date
JP2022029519A true JP2022029519A (ja) 2022-02-18

Family

ID=80324931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020132808A Pending JP2022029519A (ja) 2020-08-05 2020-08-05 二成分系現像剤

Country Status (1)

Country Link
JP (1) JP2022029519A (ja)

Similar Documents

Publication Publication Date Title
JP7433869B2 (ja) トナー
US10451986B2 (en) Toner
JP6914741B2 (ja) トナーおよび画像形成方法
JP6808538B2 (ja) トナー
US10955765B2 (en) Magnetic carrier and two-component developer
JP7293010B2 (ja) 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法
JP7293009B2 (ja) 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法
JP2018072389A (ja) トナー
JP7062485B2 (ja) トナー
JP7034658B2 (ja) 二成分系現像剤
JP7321882B2 (ja) 磁性キャリア及び二成分系現像剤
JP7254612B2 (ja) 二成分系現像剤、補給用現像剤、及び画像形成方法
US10852652B2 (en) Toner
JP7350565B2 (ja) トナー
JP2022029519A (ja) 二成分系現像剤
JP6448393B2 (ja) トナー
JP7207984B2 (ja) トナー
JP7346112B2 (ja) トナー
JP7077124B2 (ja) イエロートナー
JP6929738B2 (ja) トナー
US20230375953A1 (en) Toner
JP7387337B2 (ja) 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法
JP7146527B2 (ja) 光輝性トナー
JP6987657B2 (ja) 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法ならびに磁性キャリアの製造方法
JP7187159B2 (ja) トナー及びトナーの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625