JP2022002238A - 量子デバイス及びその製造方法 - Google Patents

量子デバイス及びその製造方法 Download PDF

Info

Publication number
JP2022002238A
JP2022002238A JP2020106152A JP2020106152A JP2022002238A JP 2022002238 A JP2022002238 A JP 2022002238A JP 2020106152 A JP2020106152 A JP 2020106152A JP 2020106152 A JP2020106152 A JP 2020106152A JP 2022002238 A JP2022002238 A JP 2022002238A
Authority
JP
Japan
Prior art keywords
quantum
metal film
interposer
wiring layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020106152A
Other languages
English (en)
Inventor
兼二 難波
Kenji Nanba
彩未 山口
Ayami Yamaguchi
明 宮田
Akira Miyata
克 菊池
Masaru Kikuchi
秀 渡辺
Hide Watanabe
教徳 西
Norinari Nishi
英行 佐藤
Hideyuki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2020106152A priority Critical patent/JP2022002238A/ja
Priority to US17/349,281 priority patent/US11696517B2/en
Publication of JP2022002238A publication Critical patent/JP2022002238A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Abstract

【課題】品質を向上させることが可能な量子デバイス及びその製造方法を提供すること。【解決手段】量子デバイス100は、インターポーザ112と、量子チップ111と、インターポーザ112と量子チップ111との間に設けられ、インターポーザ112の配線層と量子チップ111の配線層とを電気的に接続する接続部130と、を備え、接続部130は、インターポーザ112の主面に配置された複数のピラー131と、複数のピラー131の表面において量子チップ111の配線層と接触するように、かつ、複数のピラー131のそれぞれの先端外周部における厚みが先端中央部における厚みよりも厚くなるように設けられた金属膜132と、を有する。【選択図】図1

Description

本発明は、量子デバイス及びその製造方法に関する。
量子コンピュータ装置では、超電導材料を用いて構成された量子デバイスが搭載されている。この量子デバイスは、極低温の環境下に置かれることで、超電導現象を利用した動作を実現することができる。なお、極低温とは、例えば、ニオブ(Nb)の場合には9K程度、アルミニウム(Al)の場合には1.2K程度である。
量子デバイスに関連する技術は、例えば特許文献1に開示されている。特許文献1には、量子ドットデバイスパッケージとインターポーザとが結合コンポーネント(ソルダボール等を含む)によって結合された構造が開示されている。
特表2019−537239号公報
特許文献1には、量子ドットデバイスパッケージ(量子チップ)と、インターポーザとが、結合コンポーネントによってどのように結合されているのか具体的な内容が開示されていない。したがって、特許文献1では、デバイス冷却時などにおいて、各部材の熱膨張計数の差に起因して発生する意図しない応力が結合コンポーネントに加わってしまい、結合コンポーネントによる良好な結合を維持することができない可能性がある。つまり、特許文献1の構造では、量子デバイスの品質を低下させてしまうという課題があった。
本開示の目的は、上述した課題を解決する量子デバイス及びその製造方法を提供することにある。
一実施の形態によれば、量子デバイスは、インターポーザと、量子チップと、前記インターポーザと前記量子チップとの間に設けられ、前記インターポーザの配線層と前記量子チップの配線層とを電気的に接続する接続部と、を備え、前記接続部は、前記インターポーザの主面に配置された複数のピラーと、前記複数のピラーの表面において前記量子チップの配線層と接触するように、かつ、前記複数のピラーのそれぞれの先端外周部における厚みが先端中央部における厚みよりも厚くなるように設けられた金属膜と、を有する。
一実施の形態によれば、量子デバイスの製造方法は、インターポーザの主面に複数のピラーを配置するステップと、前記複数のピラーの表面に金属膜を設けるステップと、量子チップの配線層と前記金属膜とが接するように、前記インターポーザの主面に前記量子チップを配置するステップと、を備え、前記金属膜を設けるステップでは、前記金属膜を、前記複数のピラーのそれぞれの先端外周部における厚みが先端中央部における厚みよりも厚くなるように設ける。
前記一実施の形態によれば、品質を向上させることが可能な量子デバイス及びその製造方法を提供することができる。
実施の形態1に係る量子デバイスの概略断面図である。 図1に示す量子デバイスの接続部を拡大した概略断面図である。 図1に示す量子デバイスの製造方法を説明するための図である。 図1に示す量子デバイスの変形例の接続部を拡大した概略断面図である。 構想段階の量子デバイスの概略断面図である。 図5に示す量子デバイスの接続部を拡大した概略断面図である。
以下、図面を参照しつつ、実施の形態について説明する。なお、図面は簡略的なものであるから、この図面の記載を根拠として実施の形態の技術的範囲を狭く解釈してはならない。また、同一の要素には、同一の符号を付し、重複する説明は省略する。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明する。ただし、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、応用例、詳細説明、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。例えば、量子チップ、インターポーザがそれぞれ複数構成されることも含む。
さらに、以下の実施の形態において、その構成要素(動作ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数等(個数、数値、量、範囲等を含む)についても同様である。
以下、量子コンピューティングとは、量子力学的な現象(量子ビット)を用いてデータを操作する領域のことである。量子力学的な現象とは、複数の状態の重ね合わせ(量子変数が複数の異なる状態を同時にとること)、もつれ(複数の量子変数が空間または時間に関わらず関係する状態)などとなる。量子チップには、量子ビットを生成する量子回路が設けられている。
<発明者らによる事前検討>
実施の形態1に係る量子デバイス100について説明する前に、発明者らが事前検討した内容について説明する。
図5は、実施の形態1に至る前の構想段階の量子デバイス500の概略断面図である。また、図6は、図5に示す量子デバイス500の接続部を拡大した概略断面図である。量子デバイス500は、量子コンピュータ装置に搭載されており、極低温の環境下に置かれることで、超電導現象を利用した動作を実現している。
具体的には、量子デバイス500は、量子チップ511と、インターポーザ512と、接続部530と、試料台516と、ベース基板528と、ボンディングワイヤ526と、を備える。
試料台516の主面には、インターポーザ512及びベース基板528が近接配置されている。なお、試料台516は、冷却機能を有している。
インターポーザ512は、インターポーザ基板512aと、配線層512bと、金属膜512cと、を備える。インターポーザ基板512a(以下、単にインターポーザ512とも称す)の一方の主面(試料台516に接する面とは逆の面)には、配線層512bが形成され、さらにその表面には、金属膜512cが配線層512bの一部として形成されている。
なお、配線層512bは、超電導材料及び常電導材料の何れかによって構成されている。超電導材料とは、例えば、ニオブ(Nb)、ニオブ窒化物(NbN)、アルミニウム(Al)、インジウム(In)、鉛(Pb)、スズ(Sn)、レニウム(Re)、パラジウム(Pd)、チタン(Ti)、チタン窒化物(TiN)、タンタル(Ta)、及び、これらの何れかを含む合金等の金属材料のことである。常電導材料とは、例えば、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、及び、これらの何れかを含む合金等の金属材料のことである。本例では、配線層512bが常電導材料のCuによって構成されている場合について説明する。
また、金属膜512cは、超電導材料によって構成されている。超電導材料とは、例えば、ニオブ(Nb)、ニオブ窒化物(NbN)、アルミニウム(Al)、インジウム(In)、鉛(Pb)、スズ(Sn)、レニウム(Re)、パラジウム(Pd)、チタン(Ti)、チタン窒化物(TiN)、タンタル(Ta)、及び、これらの何れかを含む合金等の金属材料のことである。本例では、金属膜512cが、Nbによって構成されている場合について説明する。
量子チップ511は、量子チップ本体511aと、配線層511bと、を備える。配線層511bは、量子チップ本体511a(以下、単に量子チップ511とも称す)の一方の主面に形成されている。なお、量子チップ511の配線層511bは、超電導材料によって構成されている。本例では、配線層511bが、Nbによって構成されている場合について説明する。
量子チップ511とインターポーザ512とは、互いの配線層同士が対向するように配置されている。
接続部530は、量子チップ511とインターポーザ512との間に設けられ、量子チップ511の配線層511bと、インターポーザ512の配線層512bと、を電気的に接続している。それにより、量子チップ511及びインターポーザ512間の信号の受け渡しが可能となる。なお、量子チップ511及びインターポーザ512間では非接触の信号の受け渡しが行われる場合もある。
具体的には、接続部530は、複数のピラー531と、金属膜532と、を備える。複数のピラー531は、インターポーザ512の一方の主面から突出するようにして形成(配置)されている。例えば、各ピラー531の先端中央部は、インターポーザ512の一方の主面から最も突出しており、各ピラー531の先端外周部は、丸みを帯びている(R形状を有している)。金属膜532は、複数のピラー531の表面に形成(配置)されている。ここで、金属膜532は、インターポーザ512の配線層512bの表面に形成された金属膜512cに連なるようにして、複数のピラー531の表面に形成されている。
なお、複数のピラー531は、超電導材料及び常電導材料の何れかによって構成されている。本例では、複数のピラー531が、常電導材料のCuによって構成されている場合について説明する。また、金属膜532は、金属膜512cと同じく超電導材料によって構成されている。本例では、金属膜532が、Nbによって構成されている場合について説明する。
インターポーザ512の配線層512b(金属膜512cを含む)と、ベース基板528の配線層527とは、ボンディングワイヤ526によって接続されている。それにより、量子チップ511の信号線(端子)は、インターポーザ512、及び、ボンディングワイヤ526を介して外部に引き出される。
また、量子チップ511の熱は、インターポーザ512を介して、冷却機能を有する試料台516に放熱される。それにより、量子デバイス500は、超電導現象を利用可能な極低温の状態に保たれる。
ここで、図6を参照すると、量子デバイス500に設けられた接続部530では、ピラー531の表面に形成された金属膜532の厚みが均一になっている。具体的には、ピラー531の先端中央部における金属膜532の厚みd5と、ピラー531の先端外周部における金属膜532の厚みd6とが、同等程度となっている。それにより、接続部530と量子チップ511の配線層511bとの接触面が小さくなってしまうため、例えばデバイス冷却時などにおいて、各部材の熱膨張率の差に起因して発生した意図しない応力がピラー531の先端中央部に集中してしまう可能性がある。その場合、量子デバイス500は、接続部530による良好な接続を維持することができない。換言すると、量子デバイス500は、高い品質を維持することができない。また、歩留まりも低下してしまう。
そこで、品質及び歩留まりを向上させることが可能な、実施の形態1にかかる量子デバイス100が見いだされた。
<実施の形態1>
図1は、実施の形態1に係る量子デバイス100の概略断面図である。また、図2は、図1に示す量子デバイス100の接続部を拡大した概略断面図である。量子デバイス100は、量子コンピュータ装置に搭載されており、極低温の環境下に置かれることで、超電導現象を利用した動作を実現している。
具体的には、量子デバイス100は、量子チップ111と、インターポーザ112と、接続部130と、試料台116と、ベース基板128と、ボンディングワイヤ126と、を備える。
試料台116の主面には、インターポーザ112及びベース基板128が近接配置されている。なお、試料台116は、冷却機能を有している。具体的には、試料台116は、熱伝導の関係から銅(Cu)、銅を含む合金、又は、アルミニウム(Al)によって構成されることが好ましい。試料台116がアルミニウムによって構成される場合、アルマイト処理による絶縁化が施されてもよい。
インターポーザ112は、インターポーザ基板112aと、配線層112bと、金属膜112cと、を備える。インターポーザ基板112a(以下、単にインターポーザ112とも称す)の一方の主面(試料台116に接する面とは逆の面)には、配線層112bが形成され、さらにその表面には、金属膜112cが配線層112bの一部として形成されている。インターポーザ112は、例えば、シリコン(Si)を含んでいる。なお、インターポーザ112は、量子チップ111を実装することができるのであれば、シリコンを含むものに限らず、サファイア、化合物半導体材料(IV族、III−V族、II−VI族)、ガラス、セラミック等の他の電子材料を含んでもよい。インターポーザ基板112aの表面は、シリコン酸化膜(SiO2、TEOS膜等)で覆われていることが好ましい。
なお、配線層112bは、超電導材料及び常電導材料の何れかによって構成されている。超電導材料とは、例えば、ニオブ(Nb)、ニオブ窒化物(NbN)、アルミニウム(Al)、インジウム(In)、鉛(Pb)、スズ(Sn)、レニウム(Re)、パラジウム(Pd)、チタン(Ti)、チタン窒化物(TiN)、タンタル(Ta)、及び、これらの何れかを含む合金等の金属材料のことである。常電導材料とは、例えば、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、及び、これらの何れかを含む合金等の金属材料のことである。本例では、配線層112bが常電導材料のCuによって構成されている場合について説明する。
また、金属膜112cは、超電導材料によって構成されている。超電導材料とは、例えば、ニオブ(Nb)、ニオブ窒化物(NbN)、アルミニウム(Al)、インジウム(In)、鉛(Pb)、スズ(Sn)、レニウム(Re)、パラジウム(Pd)、チタン(Ti)、チタン窒化物(TiN)、タンタル(Ta)、及び、これらの何れかを含む合金等の金属材料のことである。本例では、金属膜112cが、Nbによって構成されている場合について説明する。
量子チップ111は、量子チップ本体111aと、配線層111bと、を備える。配線層111bは、量子チップ本体111a(以下、単に量子チップ111とも称す)の一方の主面に形成されている。量子チップ111は、例えば、シリコン(Si)を含んでいる。なお、量子チップ111は、当該量子チップ111が量子ビットを構成することができるのであれば、シリコンを含むものに限らず、サファイアや化合物半導体材料(IV族、III−V族、II−VI族)等の他の電子材料を含んでもよい。また、量子チップ111は、単結晶である方が望ましいが、多結晶やアモルファスでも構わない。さらに、量子チップ111の配線層111bは、超電導材料によって構成されている。本例では、配線層111bが、Nbによって構成されている場合について説明する。
量子チップ111とインターポーザ112とは、互いの配線層同士が対向するように配置されている。
接続部130は、量子チップ111とインターポーザ112との間に設けられ、量子チップ111の配線層111bと、インターポーザ112の配線層112bと、を電気的に接続している。それにより、量子チップ111及びインターポーザ112間の信号の受け渡しが可能となる。なお、量子チップ111及びインターポーザ112間では非接触の信号の受け渡しが行われる場合もある。
具体的には、接続部130は、複数のピラー131と、金属膜132と、を備える。複数のピラー131は、インターポーザ112の一方の主面から突出するようにして形成(配置)されている。例えば、各ピラー131の先端中央部は、インターポーザ112の一方の主面から最も突出しており、各ピラー131の先端外周部は、丸みを帯びている(R形状を有している)。金属膜132は、複数のピラー131の表面に形成(配置)されている。ここで、金属膜132は、インターポーザ112の配線層112bの表面に形成された金属膜112cに連なるようにして、複数のピラー131の表面に形成されている。
なお、複数のピラー131は、超電導材料及び常電導材料の何れかによって構成されている。例えば、冷却性能を高める場合には、常電導材料によって構成されることが好ましい。本例では、複数のピラー131が、常電導材料のCuによって構成されている場合について説明する。また、金属膜132は、金属膜112cと同じく超電導材料によって構成されている。本例では、金属膜132が、Nbによって構成されている場合について説明する。
インターポーザ112の配線層112b(金属膜112cを含む)と、ベース基板128の配線層127とは、ボンディングワイヤ126によって接続されている。それにより、量子チップ111の信号線(端子)は、インターポーザ112、及び、ボンディングワイヤ126を介して外部に引き出される。
また、量子チップ111の熱は、インターポーザ112を介して、冷却機能を有する試料台116に放熱される。それにより、量子デバイス100は、超電導現象を利用可能な極低温の状態に保たれる。
ここで、図2を参照すると、量子デバイス100に設けられた接続部130では、ピラー131の表面に形成された金属膜132の厚みが均一になっていない。具体的には、ピラー131の先端外周部における金属膜132の厚みd2が、ピラー131の先端中央部における金属膜132の厚みd1よりも厚くなっている。換言すると、金属膜132は、ピラー131の先端中央部から先端外周部にかけて徐々に厚みを増すように形成されている。それにより、接続部130と量子チップ111の配線層111bとの接触面が大きくなるため、デバイス冷却時等において、各部材の熱膨張率の差に起因して意図しない応力が発生した場合でも、ピラー131の先端中央部に応力が集中するのを防ぐことができる。つまり、デバイス冷却時などにおいて、各部材の熱膨張率の差に起因して意図しない応力が発生した場合でも、ピラー131に加わる応力を分散させることができる。その結果、本実施の形態に係る量子デバイス100は、接続部130による量子チップ111及びインターポーザ112間の安定した接続を確保することが可能になるため、品質及び歩留まりを向上させることができる。
続いて、図3を用いて、量子デバイス100の製造方法の一部を簡単に説明する。
図3は、量子デバイス100の製造方法を説明するための図である。
まず、インターポーザ112の主面に、配線層112bを形成し、その後、インターポーザ112の主面から突出するように複数のピラー131を形成する。その後、複数のピラー131の表面に、金属膜132を形成する。それにより、接続部130が形成される。なお、金属膜132は、配線層112bの表面に形成された金属膜112cに連なるようにして形成される。ここで、金属膜132を形成する工程では、金属膜132を、複数のピラー131のそれぞれの先端外周部における厚みが先端中央部における厚みよりも厚くなるように形成する。
その後、量子チップ111を、吸着孔161aから吸い上げることによって、実装ヘッド161に吸着させる。また、インターポーザ112を、吸着孔162aから吸い上げることによって、実装ステージ162に吸着させる。そして、実装ヘッド161及び実装ステージ162の少なくとも一方を移動させることにより、量子チップ111の配線層111bとインターポーザ112の配線層112bとを対向させる(ステップS101)。
その後、実装ヘッド161及び実装ステージ162の少なくとも一方をさらに移動させることにより、インターポーザ112の配線層112bに形成された接続部130と、量子チップ111の配線層111bと、接触させる(ステップS102)。
量子チップ111がインターポーザ112上に設置(固定)されると、実装ヘッド161及び実装ステージ162による吸着は解除され、量子デバイス100が取り出される(ステップS103)。
このように、本実施の形態に係る量子デバイス100では、複数のピラー131のそれぞれの先端外周部における金属膜132の厚みが先端中央部における金属膜132の厚みよりも厚くなっている。それにより、接続部130と量子チップ111の配線層111bとの接触面が大きくなるため、デバイス冷却時等において、各部材の熱膨張率の差に起因して意図しない応力が発生した場合でも、ピラー131の先端中央部に応力が集中するのを防ぐことができる。その結果、本実施の形態に係る量子デバイス100は、接続部130による量子チップ111及びインターポーザ112間の安定した接続を確保することが可能になるため、品質及び歩留まりを向上させることができる。
本実施の形態では、インターポーザ112の配線層112bが常電導材料によって構成され、その表面に形成された金属膜112cが超電導材料によって構成された場合を例に説明したが、これに限られない。インターポーザ112の配線層112bは、Nb等の超電導材料によって構成されてもよい。この場合、配線層112bの表面に金属膜112cが形成される必要は無い。またこの場合、例えば、インターポーザ112の配線層112bと、複数のピラー131のそれぞれの表面に形成された金属膜132とは、連なるようにして形成(一体形成)される。
(量子デバイス100の変形例)
図4は、量子デバイス100の変形例である量子デバイス100aの接続部130を拡大した概略断面図である。量子デバイス100では、接続部130の構成要素である金属膜132(及び金属膜112c)が単層構造であった。それに対し、量子デバイス100aでは、金属膜132(及び金属膜112c)が多層構造を有している。
具合的には、量子デバイス100aでは、接続部130の構成要素である金属膜132が、三層構造を有し、最下位層132aがNbにより構成され、最上位層132bがInにより構成され、それらの間の中間層132cがTi又はTiNにより構成されている。なお、Ti又はTiNの中間層132cは、Nb層132aとIn層132bとの間の接着性を向上させるためのものである。金属膜132に連なって配線層112bの表面に金属膜112cについては、金属膜132の場合と同様であるため、その説明を省略する。
なお、量子チップ111の配線層111bと接続部130との接合は、超音波接合によるIn層132bに対する局所的な加熱によって行われる。それにより、量子素子への熱的なダメージが抑制される。
ここで、金属膜132の三層構造のうち、量子チップ111の配線層111bに接する最上位層132bは、他の層よりも展延性の高い金属材料(ここではIn)によって構成されている。この展延性の高い金属材料によって、デバイス冷却時等において発生する意図しない応力はさらに緩和される。それにより、量子デバイス100aは、接続部130による量子チップ111及びインターポーザ112間のより安定した接続を確保することが可能になるため、品質及び歩留まりをさらに向上させることができる。
このように、量子デバイス100aは、金属膜132の三層構造のうち、量子チップ111の配線層111bに接する最上位層132bに展延性の高い金属材料を用いることにより、デバイス冷却時等において発生する意図しない応力をさらに緩和させることができる。それにより、量子デバイス100aは、接続部130による量子チップ111及びインターポーザ112間のより安定した接続を確保することが可能になるため、品質及び歩留まりをさらに向上させることができる。
以上、図面を参照して、本開示の実施の形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、本開示の要旨を逸脱しない範囲内において様々な設計変更等が可能である。
図4では、量子チップ111の配線層111bがNbによって構成され、接続部130の金属膜132が、三層構造を有し、最下位層がNbによって構成され、最上位層がInによって構成され、中間層がTi又はTiNによって構成された場合を説明したが、これに限られない。
例えば、量子チップ111の配線層111bは、Alによって構成され、接続部130が配置される部位には、Ti又はTiNからなる層がさらに配置されてもよい。また、接続部130の金属膜132は、三層構造を有し、最下位層から最上位層にかけて順にAl、Ti(又はTiN)、In又はこれを含む合金によって構成されてもよい。なお、In又はこれを含む合金の代わりに、Sn、Pb、又は、これらの何れかを含む合金が用いられても良い。Ti層又はTiN層は、AlとInとの合金化を防ぐために設けられている。これは、配線層112bの表面に形成された金属膜112cについても同様である。
或いは、例えば、量子チップ111の配線層111bは、Taによって構成され、接続部130の金属膜132は、二層構造を有し、最下位層がTaによって構成され、最上位層がIn、Sn、Pb又はこれらの何れかを含む合金によって構成されてもよい。これは、配線層112bの表面に形成された金属膜112cについても同様である。
要するに、接続部130の構成要素である金属膜132は、単層又は多層構造を有し、少なくとも一層が超電導材料によって構成されていればよい。
100 量子デバイス
100a 量子デバイス
111 量子チップ
111a 量子チップ本体
111b 配線層
112 インターポーザ
112a インターポーザ基板
112b 配線層
112c 金属膜
116 試料台
126 ボンディングワイヤ
127 配線層
128 ベース基板
130 接続部
131 ピラー
132 金属膜
132a Nb層
132b In層
132c Ti又はTiNの層
161 実装ヘッド
161a 吸着孔
162 実装ステージ
162a 吸着孔
500 量子デバイス
511 量子チップ
511a 量子チップ本体
511b 配線層
512 インターポーザ
512a インターポーザ基板
512b 配線層
512c 金属膜
516 試料台
526 ボンディングワイヤ
527 配線層
528 ベース基板
530 接続部
531 ピラー
532 金属膜

Claims (9)

  1. インターポーザと、
    量子チップと、
    前記インターポーザと前記量子チップとの間に設けられ、前記インターポーザの配線層と前記量子チップの配線層とを電気的に接続する接続部と、
    を備え、
    前記接続部は、
    前記インターポーザの主面に配置された複数のピラーと、
    前記複数のピラーの表面において前記量子チップの配線層と接触するように、かつ、前記複数のピラーのそれぞれの先端外周部における厚みが先端中央部における厚みよりも厚くなるように設けられた金属膜と、
    を有する、
    量子デバイス。
  2. 前記金属膜は、単層構造を有し、超電導材料によって構成されている、
    請求項1に記載の量子デバイス。
  3. 前記金属膜は、Nb又はそれを含む合金によって構成されている、
    請求項2に記載の量子デバイス。
  4. 前記金属膜は、多層構造を有し、少なくとも一つの層が超電導材料によって構成されている、
    請求項1に記載の量子デバイス。
  5. 前記金属膜は、多層構造を有し、最上位層がそれ以外の層よりも展延性の高い金属材料によって構成されている、
    請求項4に記載の量子デバイス。
  6. 前記金属膜は、多層構造を有し、前記複数のピラーに接する層がNb又はそれを含む合金によって構成され、かつ、最上位層がIn又はそれを含む合金によって構成されている、
    請求項4又は5に記載の量子デバイス。
  7. 前記金属膜は、三層構造を有し、前記複数のピラーに接する層がNb又はそれを含む合金によって構成され、最上位層がIn又はそれを含む合金によって構成され、かつ、これらの間の層がTi又はTiNによって構成されている、
    請求項4〜6の何れか一項に記載の量子デバイス。
  8. 前記金属膜は、前記インターポーザの配線層の表面から連続するようにして、前記複数のピラーの表面に設けられている、
    請求項1〜7の何れか一項に記載の量子デバイス。
  9. インターポーザの主面に複数のピラーを配置するステップと、
    前記複数のピラーの表面に金属膜を設けるステップと、
    量子チップの配線層と前記金属膜とが接するように、前記インターポーザの主面に前記量子チップを配置するステップと、
    を備え、
    前記金属膜を設けるステップでは、前記金属膜を、前記複数のピラーのそれぞれの先端外周部における厚みが先端中央部における厚みよりも厚くなるように設ける、
    量子デバイスの製造方法。
JP2020106152A 2020-06-19 2020-06-19 量子デバイス及びその製造方法 Pending JP2022002238A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020106152A JP2022002238A (ja) 2020-06-19 2020-06-19 量子デバイス及びその製造方法
US17/349,281 US11696517B2 (en) 2020-06-19 2021-06-16 Quantum device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106152A JP2022002238A (ja) 2020-06-19 2020-06-19 量子デバイス及びその製造方法

Publications (1)

Publication Number Publication Date
JP2022002238A true JP2022002238A (ja) 2022-01-06

Family

ID=79022333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106152A Pending JP2022002238A (ja) 2020-06-19 2020-06-19 量子デバイス及びその製造方法

Country Status (2)

Country Link
US (1) US11696517B2 (ja)
JP (1) JP2022002238A (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6938621B2 (ja) 2016-09-29 2021-09-22 インテル・コーポレーション 量子コンピューティングアセンブリ

Also Published As

Publication number Publication date
US20210399194A1 (en) 2021-12-23
US11696517B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
US8409929B2 (en) Forming a semiconductor package including a thermal interface material
US8472190B2 (en) Stacked semiconductor chip device with thermal management
JPS59151443A (ja) 半導体装置
JPH06283622A (ja) 多層相互接続金属構造体およびその形成方法
JPH0294532A (ja) 半導体パッケージ及びそれを用いたコンピュータ
US20050136640A1 (en) Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same
JP2002305282A (ja) 半導体素子とその接続構造及び半導体素子を積層した半導体装置
KR20080079074A (ko) 반도체 패키지 및 그 제조방법
US6534792B1 (en) Microelectronic device structure with metallic interlayer between substrate and die
US11871682B2 (en) Quantum device and method of manufacturing the same
US8901753B2 (en) Microelectronic package with self-heating interconnect
JP2022002238A (ja) 量子デバイス及びその製造方法
US11798895B2 (en) Quantum device including shield part and method of manufacturing the same
JP2023105033A (ja) 量子デバイス
JP2022002234A (ja) 量子デバイス
JP4580027B1 (ja) 回路基板及び電子デバイス
JP7456304B2 (ja) 量子デバイス
US20210408358A1 (en) Quantum device and method of manufacturing the same
US20210399195A1 (en) Quantum device
US20240136274A1 (en) Quantum device
JP7015489B2 (ja) マイクロ電子構造体における相互接続パッドの表面仕上げ材
US20210398893A1 (en) Quantum device
US6617697B2 (en) Assembly with connecting structure
JP2015226061A (ja) 電子包装組立体のための相互接続デバイス
JP2022176437A (ja) 超伝導デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240214