JP2021525456A - 傾斜角光格子をインプリントする方法 - Google Patents

傾斜角光格子をインプリントする方法 Download PDF

Info

Publication number
JP2021525456A
JP2021525456A JP2020565843A JP2020565843A JP2021525456A JP 2021525456 A JP2021525456 A JP 2021525456A JP 2020565843 A JP2020565843 A JP 2020565843A JP 2020565843 A JP2020565843 A JP 2020565843A JP 2021525456 A JP2021525456 A JP 2021525456A
Authority
JP
Japan
Prior art keywords
stamp
nanoimprint resist
angle
transition
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020565843A
Other languages
English (en)
Other versions
JP7242709B2 (ja
Inventor
マイケル ユタク ヨン,
マイケル ユタク ヨン,
ルドヴィーク ゴデット,
ルドヴィーク ゴデット,
ロバート ヤン フィッサー,
ロバート ヤン フィッサー,
ウェイン マクミラン,
ウェイン マクミラン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2021525456A publication Critical patent/JP2021525456A/ja
Application granted granted Critical
Publication of JP7242709B2 publication Critical patent/JP7242709B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00682Production of light guides with a refractive index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/0075Connectors for light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00769Producing diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0109Head-up displays characterised by optical features comprising holographic elements comprising details concerning the making of holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本明細書に記載の実施形態は、約45°未満の前面角及び約45°未満の背面角を有する格子を有する導波管構造を製造する方法に関する。この方法は、基板上に配置されたナノインプリントレジストにスタンプをインプリントすることを含む。ナノインプリントレジストは、硬化プロセスに曝される。スタンプは、解放方法を用いて解放角θでナノインプリントレジストから解放される。ナノインプリントレジストは、アニールプロセスに曝され、基板の表面の第2の平面に対して約45°未満の前面角α及び背面角βを有する複数の格子を含む導波管構造を形成する。【選択図】図4C

Description

本開示の実施形態は、概して、拡張現実、仮想現実、及び複合現実のための導波管コンバイナに関する。より具体的には、本明細書に記載の実施形態は、ナノインプリントリソグラフィを利用する導波管コンバイナ製造を提供する。
拡張現実により、ユーザは、眼鏡又は他のヘッドマウントディスプレイ(HMD)デバイスのディスプレイレンズを通して、周囲の環境を今まで通り見ることができ、表示のために生成され、環境の一部として現れる仮想オブジェクトの画像をなおも見ることができる経験が可能となる。拡張現実は、音声及び触覚入力のような任意の種類の入力、並びにユーザが経験する環境を強化又は拡張する虚像、グラフィック及びビデオを含みうる。新たな技術として、拡張現実には多くの課題と設計上の制約がある。
そのような課題の1つは、周囲環境上に重ね合わされた虚像を表示することである。導波管コンバイナは、画像の重ね合わせを補助するために使用される。生成された光は、導波管コンバイナに入力結合され、導波管コンバイナを伝搬し、導波管コンバイナから出力結合され、周囲環境上に重ね合わされる。光は、表面レリーフ格子を用いて導波管コンバイナの内外に結合される。入力結合及び出力結合された光の強度は、傾斜角を有する側壁を有する表面レリーフ格子によって制御される。導波管コンバイナは、導波管コンバイナの表面に対して約45度未満、又は導波管コンバイナの表面の法線に対して約45度を超える傾斜角を有する格子を必要とすることがある。導波管コンバイナ又はナノインプリントリソグラフィのためのマスターとして使用するための導波管構造を製造することは、困難となりうる。
特に、導波管構造の表面に対して約45度未満の傾斜角を有する格子を有する導波管構造を製造することは、ナノインプリントレジストを損傷することなく、ナノインプリントレジストから約45度未満の傾斜角を有するナノインプリントリソグラフィスタンプを解放することの難しさ、及び約45度未満の角度でイオンビームを生成するように角度付きエッチングツールを構成することの難しさに起因して、困難となりうる。
したがって、約45度以上の傾斜角を有するナノインプリントリソグラフィスタンプを使用して、導波管コンバイナの表面に対して約45度未満の傾斜角を有する格子を有する導波管構造を形成する方法が、当技術分野で必要とされている。
1つの実施形態では、導波管構造製造方法が提供される。この方法は、基板の表面上に配置されたナノインプリントレジストにスタンプをインプリントすることを含む。スタンプは、スタンプの裏側表面の第1の平面に対して約45°以上の逆前面角α及び逆背面角β、並びに第1の寸法を有する複数の逆格子を含む。ナノインプリントレジストは、硬化プロセスに曝される。スタンプは、解放方法を用いて解放角θでナノインプリントレジストから解放される。ナノインプリントレジストは、アニールプロセスに曝され、基板の表面の第2の平面に対して約45°未満の前面角α及び背面角β、並びに第3の寸法を有する複数の格子を含む導波管構造を形成する。
別の実施形態では、導波管構造製造方法が提供される。この方法は、基板の表面上に配置されたナノインプリントレジストにスタンプをインプリントすることを含む。スタンプは、スタンプの裏側表面の第1の平面に対して約45°以上の逆前面角α及び逆背面角β、並びに第1の寸法を有する複数の逆格子を含む。ナノインプリントレジストは、解放状態になるように、硬化プロセスに曝される。スタンプは、解放角θ’で解放状態にあるナノインプリントレジストからスタンプを剥離する解放方法を用いて、解放状態にあるナノインプリントレジストから解放され、基板の表面の第2の平面及び第2の寸法に対して、遷移前面角α’及び遷移背面角β’を有する複数の遷移格子を形成する。ナノインプリントレジストは、アニールプロセスに曝され、基板の表面の第2の平面に対して約45°未満の前面角α及び背面角β、並びに第3の寸法を有する複数の格子を含む導波管構造を、アニール状態でナノインプリントレジストから形成する。
更に別の実施形態では、導波管構造製造方法が提供される。この方法は、基板の表面上に配置されたナノインプリントレジストにスタンプをインプリントすることを含む。スタンプは、スタンプの裏側表面の第1の平面に対して約45°以上の逆前面角α及び逆背面角β、並びに第1の寸法を有する複数の逆格子を含む。ナノインプリントレジストは、解放状態になるように、硬化プロセスに曝される。スタンプは、解放角θ’’で解放状態にあるナノインプリントレジストからスタンプを持ち上げる解放方法を用いて、解放状態にあるナノインプリントレジストから解放され、基板の表面の第2の平面及び第2の寸法に対して、遷移前面角α’’及び遷移背面角β’’を有する複数の遷移格子を形成する。ナノインプリントレジストは、アニールプロセスに曝され、基板の表面の第2の平面に対して約45°未満の前面角α及び背面角β、並びに第3の寸法を有する複数の格子を含む導波管構造を、アニール状態でナノインプリントレジストから形成する。
本開示の上述の特徴が詳細に理解できるように、上記で概説した本開示のより具体的な説明が実施形態を参照することにより得られ、それら実施形態のいくつかが添付図面に示されている。しかしながら、添付図面は例示的な実施形態を示しているにすぎず、従って、本開示の範囲を限定すると見なされるべきではなく、その他の等しく有効な実施形態を許容しうることに留意されたい。
1つの実施形態による、導波管コンバイナの正面斜視図である。 1つの実施形態による、導波管コンバイナを形成するための方法のフロー図である。 1つの実施形態による、導波管コンバイナを形成するための方法のフロー図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。 1つの実施形態による、導波管コンバイナの一部の概略断面図である。
理解を容易にするため、可能な場合には、図に共通する同一の要素を示すのに同一の参照番号を使用した。1つの実施形態の要素及び特徴は、更なる記述がなくとも、他の実施形態に有益に組み込まれうると想定される。
本明細書に記載の実施形態は、約45°未満の前面角及び約45°未満の背面角を有する格子を有する導波管コンバイナを製造する方法に関する。この方法は、基板上に配置されたナノインプリントレジストにスタンプをインプリントすることを含む。ナノインプリントレジストは、硬化プロセスに曝される。スタンプは、解放方法を用いて解放角θでナノインプリントレジストから解放される。ナノインプリントレジストは、アニールプロセスに曝され、基板の第2の平面に対して約45°未満の前面角α及び背面角βを有する複数の格子を含む導波管構造を形成する。
図1は、導波管コンバイナ100の正面斜視図である。後述する導波管コンバイナ100は、例示的導波管コンバイナであると理解すべきである。導波管コンバイナ100は、複数の格子108によって画定される入力結合領域102と、複数の格子110によって画定される中間領域104と、複数の格子112によって画定される出力結合領域106とを含む。入力結合領域102は、マイクロディスプレイから、強度を有する光(虚像)の入射ビームを受け取る。複数の格子108の各格子は、入射ビームを複数のモードに分割し、各ビームはモードを有する。0次モード(T0)ビームは、導波管コンバイナ100で屈折して戻されるか又は失われ、正の1次モード(T1)ビームは、導波管コンバイナ100を通して中間領域104に結合され、負の1次モード(T−1)ビームは、T1ビームとは反対方向に導波管コンバイナ100内を伝搬する。理想的には、入射ビームは、虚像を中間領域104に向けるために、入射ビームの強度の全てを有するT1ビームに分割される。入射ビームの強度の全てを有するT1ビームに入射ビームを分割する1つの手法は、T−1ビーム及びT0ビームを抑制するために、複数の格子108の各格子の傾斜角を最適化することである。T1ビームは、中間領域104内の複数の格子110に接触するまで、導波管コンバイナ100を通して全内部反射(TIR)を受ける。入力結合領域102の一部は、T−1ビーム及びT0ビームを抑制するために、導波管コンバイナの表面に対して約45°未満の傾斜角を有する格子108を有しうる。
T1ビームは、複数の格子110の1つの格子に接触する。T1ビームは、導波管コンバイナ100で屈折して戻される又は失われるT0ビーム、T1ビームが複数の格子110の別の格子に接触するまで中間領域104でTIRを受けるT1ビーム、及び導波管コンバイナ100を通して出力結合領域106に結合されるT−1ビームに分割される。中間領域104でTIRを受けたT1ビームは、導波管コンバイナ100を介して中間領域104に結合されたT1ビームの強度が空乏化するか、中間領域104を伝搬する残りのT1ビームが中間領域104の端に到達するまで、複数の格子110のいくつかの格子に接触し続ける。複数の格子110は、出力結合領域106に結合されたT−1ビームの強度を制御して、マイクロディスプレイから生成された虚像の視野をユーザの視点から変調し、ユーザが虚像を見ることができる視野角を増大させるために、導波管コンバイナ100を通して中間領域104に結合されたT1ビームを制御するように調整されなければならない。導波管コンバイナ100を介して中間領域104に結合されたT1ビームを制御する1つの手法は、出力結合領域106に結合されたT−1ビームの強度を制御するために、複数の格子110の各格子の傾斜角を最適化することである。中間領域104の一部は、出力結合領域106に結合されたT−1ビームの強度を制御するために、約45°未満の導波管コンバイナの表面に対する傾斜角を有する格子110を有しうる。
導波管コンバイナ100を通して出力結合領域106に結合されたT−1ビームは、T−1ビームが複数の格子112のうちの1つの格子に接触するまで、導波管コンバイナ100内でTIRを受け、この場合、T−1ビームは、導波管コンバイナ100内で屈折して戻されるか又は失われるT0ビーム、T1ビームが複数の格子112の別の格子に接触するまで出力結合領域106内でTIRを受けるT1ビーム、及び導波管コンバイナ100から結合されるT−1ビームに分割される。出力結合領域106でTIRを受けるT1ビームは、導波管コンバイナ100を通して出力結合領域106に結合されるT−1ビームの強度が空乏化するか、又は出力結合領域106を伝搬する残りのT1ビームが出力結合領域106の端に到達するかのどちらかまで、複数の格子112のいくつかの格子に接触し続ける。複数の格子112は、導波管コンバイナ100から連結されたT−1ビームの強度を制御して、マイクロディスプレイから生成された虚像の視野をユーザの視点から更に変調し、ユーザが虚像を見ることができる視野角を更に増大させるために、導波管コンバイナ100を通して出力結合領域106に結合されたT−1ビームを制御するように調整されなければならない。導波管コンバイナ100を通して出力結合領域106に結合されたT−1ビームを制御する1つの手法は、複数の格子112の各格子の傾斜角を最適化して視野を更に変調し、視野角を増大させることである。中間領域104の一部は、導波管コンバイナの表面に対する傾斜角が約45°未満の格子110を有してもよく、更に、視野を変調し、視野角を増大させる。
導波管コンバイナを製造する1つの既存の方法は、ナノインプリントリソグラフィを利用する。図2は、導波管コンバイナ100のような導波管コンバイナの導波管構造を形成するための方法200のフロー図である。工程201において、ナノインプリントレジストは、液体材料注入キャスティングプロセス、スピンオンコーティングプロセス、液体スプレーコーティングプロセス、ドライパウダーコーティングプロセス、スクリーン印刷プロセス、ドクターブレーディングプロセス、物理的気相堆積(PVD)プロセス、化学気相堆積(CVD)プロセス、流動性CVD(FCVD)プロセス、又は原子層堆積(ALD)プロセスを使用して、基板の一部の表面上に堆積される。ナノインプリントレジストは、スピンオンガラス(SOG)、流動性SOG、有機、無機、並びにハイブリッド(有機及び無機)のナノインプリント可能な材料の少なくとも1つを含み、これらの材料は、酸炭化ケイ素(SiOC)、二酸化チタン(TiO)、二酸化ケイ素(SiO)、酸化バナジウム(IV)(VO)、酸化アルミニウム(Al)、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、五酸化タンタル(Ta)、窒化ケイ素(Si)、窒化チタン(TiN)、及び二酸化ジルコニウム(ZrO)含有材料のうちの少なくとも1つを含みうる。ナノインプリントレジストの材料は、方法200から形成される結果として生じる導波管構造の格子の傾斜角、及び基板の屈折率に基づいて、部分的に選択され、光の入力結合及び出力結合を制御し、導波管コンバイナ100を通る光伝搬を容易にする。
工程202では、基板の一部の上に配置されたナノインプリントレジストは、スタンプによってインプリントされる。1つの実施形態では、ナノインプリントレジストは、スタンプがインプリントされる前に加熱される。導波管パターンは、複数の逆格子を有する格子パターンを含む。複数の逆格子の各格子は、スタンプの裏面の第1の平面に対して逆前面角を有し、スタンプの裏面の第1の平面に対して逆背面角を有する。スタンプは、マスターから成形され、溶融シリカ若しくはポリジメチルシロキサン(PDMS)材料などの半透明な材料、又はガラス材料若しくはプラスチック材料などの透明な材料から作られてもよく、赤外線(IR)放射又は紫外線(UV)放射などの電磁放射への露光によってナノインプリントレジストを硬化させることができる。1つの実施形態では、スタンプは、スタンプに機械的強度を加えるために、ガラスのシートなどの剛性裏打ちシートを含む。工程203では、基板の表面上のナノインプリントレジストを硬化させて、ナノインプリントレジストを安定化させる。工程204では、スタンプが解放される。得られた導波管構造は、複数の逆格子に対応する複数の格子を含み、よって、複数の格子の各格子は、基板の表面の第2の平面に対する勾配角又は傾斜角としても知られる前面角、及び表面の第2の平面に対する勾配角又は傾斜角としても知られる背面角を有する。1つの実施形態では、基板の一部の導波管構造は、導波管コンバイナ100の入力結合領域102、中間領域104、及び/又は出力結合領域106に対応する。
約45°未満の前面角、約45°未満の背面角、並びに格子高さ、残留層高さ、格子上部幅、及び格子底部幅などの調整された寸法を有する格子を含む導波管構造を製造することは、約45°未満の逆の前面角及び背面角を有する逆格子を含むスタンプでは困難でありうる。約45°未満の逆前面角、約45°未満の逆背面角、及び高アスペクト比(逆格子高さ対逆格子幅の比)を有する逆格子を含むスタンプをナノインプリントレジストにインプリントし、レジストを硬化させる場合、結果として生じる導波管構造は、重なり合う格子を有する可能性があり、格子の損傷なしにスタンプを除去することが実現できなくなる。例えば、アスペクト比は、約2:1から約3:1でありうる。
図3は、図4A−4Fに示される導波管構造400を形成するための方法300のフロー図である。1つの実施形態では、導波管構造400は、導波管コンバイナ100の入力結合領域102、中間領域104、及び/又は出力結合領域106に対応する。工程301では、図4Aに示すように、ナノインプリントレジスト408が、液体材料注入キャスティングプロセス、スピンオンコーティングプロセス、液体スプレーコーティングプロセス、ドライパウダーコーティングプロセス、スクリーン印刷プロセス、ドクターブレーディングプロセス、PVDプロセス、CVDプロセス、FCVDプロセス、又はALDプロセスを使用して、基板404の一部402の表面406上に堆積される。ナノインプリントレジストは、SiOC、TiO、SiO、VO、Al、ITO、ZnO、Ta、Si、TiN、及び二酸化ジルコニウムZrO含有材料を含む、SOG、流動性SOG、有機、無機、及び/又はハイブリッド有機及び無機のナノインプリント可能な材料のうちの少なくとも1つを含みうる。ナノインプリントレジストの材料は、方法300によって形成される導波管構造400の複数の格子の前面角、背面角、及び調整された寸法に基づいて選択される。1つの実施形態では、ナノインプリントレジストは、SiO、オキシ炭化ケイ素(SiOC)、ZrO、又はTiO含有材料を含みうる、ある割合のゾルゲル溶液を含む。
工程302では、スタンプ410が、ナノインプリントレジスト408にインプリントされる。1つの実施形態では、ナノインプリントレジスト408は、スタンプ410がインプリントされる前に予熱温度まで加熱される。予熱温度は、ナノインプリントレジスト408中の溶媒の蒸発を促進する温度である。1つの実施形態では、予熱温度は約50℃から約60℃である。スタンプ410は、複数の逆格子414を有する。スタンプ410は、マスターから成形され、溶融シリカ若しくはポリジメチルシロキサン(PDMS)材料などの半透明な材料、又はガラス材料若しくはプラスチック材料などの透明な材料から作られてもよく、赤外線(IR)放射又は紫外線(UV)放射などの電磁放射への露光によってナノインプリントレジストを硬化させることができる。1つの実施形態では、スタンプ410は、フッ素化コーティングなどの粘着防止表面処理コーティングの単層でコーティングされてもよく、したがって、スタンプ410は、解放角θ’で工作機械によって又は手で剥がすことによって機械的に除去することができる。別の実施形態では、スタンプ410は、スタンプ410に機械的強度を加え、解放角θ’’でスタンプ410を解放するために、ガラスのシートなどの剛性裏打ちシートを含む。
図4Bに示されるように、スタンプ410は、スタンプ410の裏側表面415の第1の平面416に対して、逆前面角α及び逆背面角βを有する複数の逆格子を有する。逆前面角α及び逆背面角βは、約45°以上である。硬化プロセスから解放状態及びアニールプロセスからアニール状態へのナノインプリントレジスト408の収縮を説明し、かつスタンプ410の解放方法及び解放角の結果として、解放状態にあるナノインプリントレジスト408の前面角及び背面角、並びに第2の寸法の修正を説明するため、複数の逆格子414は、高さh、ピッチp、格子上部幅w、及び格子底部幅wの第1の寸法を有している。1つの実施形態では、ナノインプリントレジスト408は、20%収縮しうる。ナノインプリントレジスト408を収縮させることによって、ナノインプリントレジスト408の屈折率が増加しうる。マスターは、マスターから成形されたスタンプ410が、高さh、ピッチp、格子上部幅w、及び格子底部幅wを有する複数の逆格子414を有するようなパターンを有する。高さhは、逆格子上部418から逆格子底部420までの高さである。格子上部幅wは逆格子上部418の幅であり、格子下部幅wは逆格子底部420の幅である。ピッチpは、逆格子上部418の第1のエッジ422間の距離である。
工程303では、ナノインプリントレジスト408が硬化プロセスに曝される。硬化プロセスの前に、ナノインプリントレジスト408は、ゲル状態としても知られるグリーン状態にあり、これは、有機バインダがナノインプリントレジスト408中に存在することを意味する。硬化プロセスは、ナノインプリントレジストが剥離状態に達するまで、赤外線(IR)放射又は紫外線(UV)放射などの電磁放射にナノインプリントレジスト408を曝露することを含む。解放状態において、ナノインプリントレジスト408は、なおもグリーン状態にありうるため、ナノインプリントレジスト408は、解放方法及びスタンプ410の解放角の結果として前面角α’並びに背面角β’及びナノインプリントレジスト408の寸法が修正されるように、可鍛性である。しかしながら、解放状態では、有機バインダの量は減少している。ナノインプリントレジスト408は、ナノインプリントレジスト408が解放状態に対応する硬化温度に達したときには、解放状態にある。1つの実施形態では、硬化温度は約30℃から約80℃である。
工程304では、スタンプ410は、解放状態でナノインプリントレジスト408から解放される。図4Cに示すように、スタンプ410は、解放状態でナノインプリントレジスト408から基板404の表面406の第2の平面438に対して解放角θ’で剥離される。1つの実施形態では、スタンプ410は、解放角θ’で工作機械によって機械的に剥離される。別の実施形態では、スタンプ410は、解放角θ’で、手で剥離される。他の実施形態では、解放角θ’は、約0°から約180°である。1つの実施形態では、スタンプ410は、第1の端424及び第2の端426から、又は第2の端426から第1の端424へと剥離される。例えば、第1の端424から第2の端426への剥離は、より低い前面角及び背面角をもたらし、第2の端426から第1の端424への剥離は、より高い前面角及び背面角をもたらしうる。別の実施形態では、スタンプは、格子線方向442に沿って剥離される。格子線方向442に沿った剥離は、パターンの崩壊を低減する。解放角θ’で剥離されたスタンプ410の後に、ナノインプリントレジスト408の前面角、背面角、及び寸法が修正される。解放状態のナノインプリントレジスト408は、前面角α’及び背面角β’を有する複数の遷移格子412を有する。複数の遷移格子412は、遷移高さh’、遷移ピッチp’、遷移格子上部幅w’、遷移格子底部幅w’、及び遷移残留層高さr’を有する第2の寸法を有する。前面角α’及び背面角β’は、基板404の表面406の第2の平面438に対するものである。遷移残留層高さr’は、基板404の表面406から残留層428の上部430までの高さである。遷移高さh’は、格子上部432から格子底部434までの高さである。遷移格子上部幅w’は、格子上部432の幅であり、遷移格子底部幅w’は、格子底部434の幅である。遷移ピッチp’は、格子上部432の第1のエッジ436間の距離である。1つの実施形態では、前面角α’及び背面角β、遷移高さh’、遷移格子上部幅w’、遷移格子底部幅w’、及び遷移残留層高さr’は、スタンプ410の硬化プロセス及び解放から調整される。
図4Dに示されるように、スタンプ410は、解放状態において、ナノインプリントレジスト408から基板404の表面406の第2の平面438に対して解放角θ’’で持ち上げられる。1つの実施形態では、スタンプ410は、工作機械によって、解放角θ’’で機械的に持ち上げられる。別の実施形態では、スタンプ410は、解放角θ’’で、手で持ち上げられる。いくつかの実施形態では、解放角θ’’は、約0°から約180°である。約90°未満の第2の平面438に対する解放角θ’’は、より高密度の格子をもたらすだろう。スタンプ410が解放角θ’’で持ち上げられた後に、ナノインプリントレジスト408の前面角、背面角、及び寸法が修正される。解放状態にあるナノインプリントレジスト408は、前面角α’’及び背面角β’’、遷移高さh’’、遷移ピッチp’’、遷移格子上部幅w’’、遷移格子底部幅w’’、及び遷移残留層高r’’を有する複数の遷移格子412を有する。1つの実施形態では、剥離からの垂直力が複数の遷移格子412に影響を与えるよう制御されうる際には、剥離からの遷移格子412の前面角、背面角、及び第2の寸法、並びに持ち上げからの遷移格子412の前面角、背面角、及び第2の寸法は異なる。1つの実施形態では、前面角α’’及び背面角β’’、遷移高さh’’、遷移格子上面幅w’’、遷移格子底部幅w’’、及び遷移残留層高さr’’は、スタンプ410の硬化プロセス及びリリースから調整される。
工程305では、導波管構造400は、ナノインプリントレジスト408をアニールプロセスに曝すことによって形成される。アニールプロセスは、ナノインプリントレジストがアニール状態に達するまで、赤外線(IR)放射又は紫外線(UV)放射などの電磁放射にナノインプリントレジスト408を曝露することを含む。アニール状態では、ナノインプリントレジスト408は、剛性があるため、柔軟ではなく、グリーン状態にない。ナノインプリントレジスト408は、アニール状態に対応するアニール温度に達すると、アニール状態になる。1つの実施形態では、アニール温度は約150℃から約250℃である。アニールプロセスは、ナノインプリントレジスト408の体積を減少させる。したがって、図4Eに示されるように、スタンプ410を解放角θ’で剥離することによって形成される導波管構造400は、前面角α及び背面角βを有する複数の格子440を有する。複数の格子440は、高さh、ピッチp、格子上部幅w 、格子底部幅w 、及び残留層高さrを有する第3の寸法を有する。1つの実施形態では、前面角α及び背面角β、高さh、格子上面幅w 、格子底部幅w 、及び残留層高さrは、アニールプロセスから調整される。図4Fに示されるように、スタンプ410を解放角θ’’で持ち上げることによって形成される導波管構造400は、前面角α及び背面角βを有する複数の格子440を有する。複数の格子440は、高さh、ピッチp、格子上部幅w 、格子底部幅w 、及び残留層高さrを有する第3の寸法を有する。1つの実施形態では、前面角α及び背面角β、高さh、格子上面幅w 、格子底部幅w 、及び残留層高さrは、アニールプロセスから調整される。別の実施形態では、剥離からの複数の格子440の前面角、背面角、及び寸法、並びに持ち上げからの遷移格子412の前面角、背面角、及び寸法は異なる。前面角α、背面角β、前面角α、及び背面角βは、約45°未満である。別の実施形態では、前面角α及び背面角βは、約32°から約37°である。更に別の実施形態では、前面角α及び背面角βは、37°未満、例えば約32°から約37°である。
別の実施形態では、工程304の後及び工程305の前に、図4G及び図4Hに示されるように、複数の遷移格子412の各遷移格子の間に裏込め材料401が堆積される。材料401は、ナノインプリントレジスト408の第1の屈折率に実質的に釣り合うか又はそれよりも大きい第2の屈折率を有する。裏込め材料401は、SiOC、TiO、SiO、VO、Al、ITO、ZnO、Ta、Si、TiN、及びZrO含有材料のうちの少なくとも1つといった、SOG、流動性SOG、有機のナノインプリント可能な材料、無機のナノインプリント可能な材料、並びにハイブリッド(有機及び無機)のナノインプリント可能な材料のうちの少なくとも1つを含む。裏込め材料401は、液体材料注入キャスティングプロセス、スピンオンコーティングプロセス、液体スプレーコーティングプロセス、ドライパウダーコーティングプロセス、スクリーン印刷プロセス、ドクターブレーディングプロセス、PVDプロセス、CVDプロセス、FCVDプロセス、又はALDプロセスを使用して、複数の遷移格子412の各遷移格子間に堆積されうる。図4I及び図4Jに示されるように、ナノインプリントレジスト408は、実質的に釣り合った第1の屈折率及び第2の屈折率のため、裏込め材料401と共にアニールプロセスに曝される。裏込め材料401は、スタンプ410を剥離することによって形成される導波管構造400の複数の格子440の前面角α及び背面角βを減少させるために、複数の遷移格子412に更に応力を加える。裏込め材料401は、スタンプ410を持ち上げることによって形成される導波管構造400の前面角α及び背面角βを減少させるために、複数の遷移格子412に更に応力を加える。
まとめると、約45°未満の前面角、約45°未満の背面角、及び調整された寸法を有する格子を備えた導波管コンバイナを製造する方法が、本明細書に記載される。スタンプは、逆前面角α、逆背面角β、及び寸法を有する複数の逆格子を有し、硬化プロセス及びアニールプロセスからのナノインプリントレジストの体積の減少を説明し、解放状態におけるナノインプリントレジストの前面角及び背面角、並びに寸法の修正を説明する。スタンプの解放方法及び解放角の結果として、導波管コンバイナの複数の格子は、45°未満の前面角、45°未満の背面角、及び調整された寸法を有する。
上記は、本開示の実施例を対象としているが、本開示の他の実施例及び更なる実施例が、本開示の基本的な範囲から逸脱することなく考案されてもよく、本開示の範囲は、以下の特許請求の範囲によって決定される。

Claims (15)

  1. 導波管構造製造方法であって、
    基板の表面上に配置されたナノインプリントレジストにスタンプをインプリントすることであって、前記スタンプが、
    前記スタンプの裏側表面の第1の平面に対する約45°以上の逆前面角α、
    前記第1の平面に対する約45°以上の逆背面角β、及び
    第1の寸法
    を有する複数の逆格子を含む、スタンプをインプリントすることと、
    前記ナノインプリントレジストを硬化プロセスに曝すことと、
    解放方法を使用して、前記スタンプを前記ナノインプリントレジストから解放角θで解放することと、
    導波管構造を形成するために、前記ナノインプリントレジストをアニールプロセスに曝すことであって、前記導波管構造が、
    前記基板の前記表面の第2の平面に対する約45°未満の前面角α、
    前記第2の平面に対する約45°未満の背面角β、及び
    第3の寸法
    を有する複数の格子を含む、前記ナノインプリントレジストをアニールプロセスに曝すことと
    を含む方法。
  2. 前記硬化プロセスは、前記ナノインプリントレジストが解放状態に達するまで、前記ナノインプリントレジストを電磁放射に曝露することを含む、請求項1に記載の方法。
  3. 前記スタンプが、解放角θ’で剥離することによって除去されるように、粘着防止表面処理コーティングの単層でコーティングされる、請求項2に記載の方法。
  4. 前記解放角θ’で前記ナノインプリントレジストから前記スタンプを剥離する前記解放方法が、複数の遷移格子を形成し、前記複数の遷移格子が、
    前記基板の前記表面の前記第2の平面に対する遷移前面角α’、
    前記第2の平面に対する遷移背面角β’、及び
    第2の寸法
    を有する、請求項3に記載の方法。
  5. 前記スタンプが、機械的強度を前記スタンプに加えて、解放角θ’’で前記スタンプを解放するための剛性裏打ちシートを含む、請求項2に記載の方法。
  6. 前記解放角θ’’で前記ナノインプリントレジストから前記スタンプを持ち上げる前記解放方法が、複数の遷移格子を形成し、前記複数の遷移格子が、
    前記基板の前記表面の前記第2の平面に対する遷移前面角α’’、
    前記第2の平面に対する遷移背面角β’’、及び
    第2の寸法
    を有する、請求項5に記載の方法。
  7. 前記ナノインプリントレジストが、約30℃から約80℃の硬化温度に達したときに、前記解放状態にある、請求項2に記載の方法。
  8. 前記ナノインプリントレジストが、スピンオンガラス(SOG)、流動性SOG、有機、無機、並びにハイブリッド(有機及び無機)のナノインプリント可能な材料のうちの少なくとも1つを含む、請求項1に記載の方法。
  9. 前記ナノインプリント可能な材料が、オキシ炭化ケイ素(SiOC)、二酸化チタン(TiO)、二酸化ケイ素(SiO)、酸化バナジウム(IV)(VO)、酸化アルミニウム(Al)、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、五酸化タンタル(Ta)、窒化ケイ素(Si)、窒化チタン(TiN)、及び二酸化ジルコニウム(ZrO)含有材料のうちの少なくとも1つを含む、請求項8に記載の方法。
  10. 前記ナノインプリントレジストがゾルゲル溶液を含む、請求項9に記載の方法。
  11. 前記アニールプロセスは、前記ナノインプリントレジストがアニール状態に達するまで、前記ナノインプリントレジストを電磁放射に曝露することを含む、請求項1に記載の方法。
  12. 前記ナノインプリントレジストが、約150℃から約250℃のアニール温度に達するとアニール状態になる、請求項11に記載の方法。
  13. 前記ナノインプリントレジストが、液体材料注入キャスティングプロセス、スピンオンコーティングプロセス、液体スプレーコーティングプロセス、ドライパウダーコーティングプロセス、スクリーン印刷プロセス、ドクターブレーディングプロセス、物理的気相堆積(PVD)プロセス、化学気相堆積(CVD)プロセス、流動性CVD(FCVD)プロセス、又は原子層堆積(ALD)プロセスを使用して、前記基板の前記表面上に堆積される、請求項1に記載の方法。
  14. 導波管構造製造方法であって、
    基板の表面上に配置されたナノインプリントレジストにスタンプをインプリントすることであって、前記スタンプが、
    前記スタンプの裏側表面の第1の平面に対する約45°以上の逆前面角α、
    前記第1の平面に対する約45°以上の逆背面角β、及び
    第1の寸法
    を有する複数の逆格子を含む、スタンプをインプリントすることと、
    前記ナノインプリントレジストが解放状態になるように、前記ナノインプリントレジストを硬化プロセスに曝すことと、
    前記解放状態で前記ナノインプリントレジストから前記スタンプを解放することであって、解放角θ’で前記解放状態において前記ナノインプリントレジストから前記スタンプを剥離して、複数の遷移格子を形成する解放方法を使用することを含み、前記複数の遷移格子が、
    前記基板の前記表面の第2の平面に対する遷移前面角α’、
    前記第2の平面に対する遷移背面角β’、及び
    第2の寸法
    を有する、前記スタンプを解放することと、
    アニール状態で前記ナノインプリントレジストから導波管構造を形成することを含むアニールプロセスに、前記ナノインプリントレジストを曝すことであって、前記導波管構造が、
    前記基板の前記表面の前記第2の平面に対する約45°未満の前面角α
    前記第2の平面に対する約45°未満の背面角β、及び
    第3の寸法
    を有する複数の格子を含む、前記ナノインプリントレジストを曝すことと
    を含む方法。
  15. 導波管構造製造方法であって、
    基板の表面上に配置されたナノインプリントレジストにスタンプをインプリントすることであって、前記スタンプが、
    前記スタンプの裏側表面の第1の平面に対する約45°以上の逆前面角α、
    前記第1の平面に対する約45°以上の逆背面角β、及び
    第1の寸法
    を有する複数の逆格子を含む、スタンプをインプリントすることと、
    前記ナノインプリントレジストが解放状態になるように、前記ナノインプリントレジストを硬化プロセスに曝すことと、
    前記解放状態で前記ナノインプリントレジストから前記スタンプを解放することであって、解放角θ’’で前記解放状態において前記ナノインプリントレジストから前記スタンプを持ち上げて、複数の遷移格子を形成する解放方法を使用することを含み、前記複数の遷移格子が、
    前記基板の前記表面の第2の平面に対する遷移前面角α’’、
    前記第2の平面に対する遷移背面角β’’、及び
    第2の寸法
    を有する、前記スタンプを解放することと、
    アニール状態で前記ナノインプリントレジストから導波管構造を形成することを含むアニールプロセスに、前記ナノインプリントレジストを曝すことであって、前記導波管構造が、
    前記基板の前記表面の前記第2の平面に対する約45°未満の前面角α
    前記第2の平面に対する約45°未満の背面角β、及び
    第3の寸法
    を有する複数の格子を含む、前記ナノインプリントレジストを曝すことと
    を含む方法。
JP2020565843A 2018-05-30 2019-04-24 傾斜角光格子をインプリントする方法 Active JP7242709B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862677969P 2018-05-30 2018-05-30
US62/677,969 2018-05-30
US16/191,340 US10955606B2 (en) 2018-05-30 2018-11-14 Method of imprinting tilt angle light gratings
US16/191,340 2018-11-14
PCT/US2019/028985 WO2019231588A1 (en) 2018-05-30 2019-04-24 Method of imprinting tilt angle light gratings

Publications (2)

Publication Number Publication Date
JP2021525456A true JP2021525456A (ja) 2021-09-24
JP7242709B2 JP7242709B2 (ja) 2023-03-20

Family

ID=68694707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020565843A Active JP7242709B2 (ja) 2018-05-30 2019-04-24 傾斜角光格子をインプリントする方法

Country Status (7)

Country Link
US (1) US10955606B2 (ja)
EP (1) EP3803503A4 (ja)
JP (1) JP7242709B2 (ja)
KR (1) KR102550580B1 (ja)
CN (1) CN111971611B (ja)
TW (1) TWI730333B (ja)
WO (1) WO2019231588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203600A1 (ja) * 2022-04-18 2023-10-26 Cellid株式会社 投影基板及び投影基板の製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10705268B2 (en) * 2018-06-29 2020-07-07 Applied Materials, Inc. Gap fill of imprinted structure with spin coated high refractive index material for optical components
JP2022512366A (ja) * 2018-12-17 2022-02-03 アプライド マテリアルズ インコーポレイテッド 傾斜回折格子のローリングkベクトルの調整
US11342256B2 (en) 2019-01-24 2022-05-24 Applied Materials, Inc. Method of fine redistribution interconnect formation for advanced packaging applications
US10809448B1 (en) * 2019-04-18 2020-10-20 Facebook Technologies, Llc Reducing demolding stress at edges of gratings in nanoimprint lithography
IT201900006740A1 (it) 2019-05-10 2020-11-10 Applied Materials Inc Procedimenti di strutturazione di substrati
IT201900006736A1 (it) 2019-05-10 2020-11-10 Applied Materials Inc Procedimenti di fabbricazione di package
US11931855B2 (en) 2019-06-17 2024-03-19 Applied Materials, Inc. Planarization methods for packaging substrates
US11391950B2 (en) * 2019-06-26 2022-07-19 Meta Platforms Technologies, Llc Techniques for controlling effective refractive index of gratings
US11862546B2 (en) 2019-11-27 2024-01-02 Applied Materials, Inc. Package core assembly and fabrication methods
US11257790B2 (en) 2020-03-10 2022-02-22 Applied Materials, Inc. High connectivity device stacking
US11454884B2 (en) 2020-04-15 2022-09-27 Applied Materials, Inc. Fluoropolymer stamp fabrication method
CN111443571B (zh) * 2020-05-11 2024-04-09 京东方科技集团股份有限公司 压印模板及压印方法
US11400545B2 (en) 2020-05-11 2022-08-02 Applied Materials, Inc. Laser ablation for package fabrication
US11543584B2 (en) * 2020-07-14 2023-01-03 Meta Platforms Technologies, Llc Inorganic matrix nanoimprint lithographs and methods of making thereof with reduced carbon
US11232951B1 (en) 2020-07-14 2022-01-25 Applied Materials, Inc. Method and apparatus for laser drilling blind vias
US11676832B2 (en) 2020-07-24 2023-06-13 Applied Materials, Inc. Laser ablation system for package fabrication
CN111929985A (zh) * 2020-08-13 2020-11-13 杭州欧光芯科技有限公司 一种斜齿光栅的纳米压印方法
US11521937B2 (en) 2020-11-16 2022-12-06 Applied Materials, Inc. Package structures with built-in EMI shielding
US11404318B2 (en) 2020-11-20 2022-08-02 Applied Materials, Inc. Methods of forming through-silicon vias in substrates for advanced packaging
US11705365B2 (en) 2021-05-18 2023-07-18 Applied Materials, Inc. Methods of micro-via formation for advanced packaging
CN115032734B (zh) * 2022-08-11 2023-01-24 歌尔光学科技有限公司 光波导结构、制作方法及电子设备
WO2024081026A1 (en) * 2022-10-14 2024-04-18 Magic Leap, Inc. Slanted grating fabrication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344683A (ja) * 2002-05-28 2003-12-03 National Institute Of Advanced Industrial & Technology 光導波路及びその形成方法
JP2008068611A (ja) * 2006-06-30 2008-03-27 Asml Netherlands Bv インプリントリソグラフィ
JP2009516225A (ja) * 2005-11-18 2009-04-16 ナノコンプ オイ リミテッド 回折格子の製造方法
JP2010085722A (ja) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd 光学素子及びパターン形成方法
WO2010064535A1 (ja) * 2008-12-05 2010-06-10 昭和電工株式会社 造形方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758794B2 (en) * 2001-10-29 2010-07-20 Princeton University Method of making an article comprising nanoscale patterns with reduced edge roughness
DE10200293B4 (de) 2002-01-07 2007-12-20 Carl Zeiss Laser Optics Gmbh Optische Anordnung sowie Verfahren zur Herstellung einer solchen
TW200404172A (en) 2002-08-22 2004-03-16 Showa Electric Wire & Cable Co Pseudo slant fiber Bragg grating, multiple series fiber Bragg grating, optical fiber type coupler and optical connector
FR2914754B1 (fr) * 2007-04-05 2009-07-17 Commissariat Energie Atomique Dispositif de concentration de lumiere plan a epaisseur reduite
US8466067B2 (en) * 2009-10-05 2013-06-18 Applied Materials, Inc. Post-planarization densification
EP2533077A1 (en) 2011-06-08 2012-12-12 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Diffraction grating and method for producing same
CN102360093A (zh) * 2011-10-19 2012-02-22 苏州大学 一种全息闪耀光栅制作方法
CN103257383B (zh) * 2013-04-16 2015-06-10 华中科技大学 一种可变闪耀角的闪耀光栅和双闪耀光栅制备方法及产品
JP6163892B2 (ja) * 2013-06-06 2017-07-19 凸版印刷株式会社 微細凹凸回折構造を有する表示体
CN103499851B (zh) * 2013-09-29 2015-06-10 清华大学深圳研究生院 一种闪耀凹面光栅制作方法
CN103576220B (zh) * 2013-10-11 2016-01-06 中国科学院上海光学精密机械研究所 Te偏振的石英1×2分束斜光栅
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US9429692B1 (en) * 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
NZ738352A (en) * 2015-06-15 2019-07-26 Magic Leap Inc Method of manufacturing a liquid crystal device
US9791696B2 (en) 2015-11-10 2017-10-17 Microsoft Technology Licensing, Llc Waveguide gratings to improve intensity distributions
CN106842397B (zh) * 2017-01-05 2020-07-17 苏州苏大维格光电科技股份有限公司 一种树脂全息波导镜片及其制备方法、及三维显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344683A (ja) * 2002-05-28 2003-12-03 National Institute Of Advanced Industrial & Technology 光導波路及びその形成方法
JP2009516225A (ja) * 2005-11-18 2009-04-16 ナノコンプ オイ リミテッド 回折格子の製造方法
JP2008068611A (ja) * 2006-06-30 2008-03-27 Asml Netherlands Bv インプリントリソグラフィ
JP2010085722A (ja) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd 光学素子及びパターン形成方法
WO2010064535A1 (ja) * 2008-12-05 2010-06-10 昭和電工株式会社 造形方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203600A1 (ja) * 2022-04-18 2023-10-26 Cellid株式会社 投影基板及び投影基板の製造方法

Also Published As

Publication number Publication date
EP3803503A4 (en) 2022-03-23
US20190369321A1 (en) 2019-12-05
TW202004228A (zh) 2020-01-16
KR20210003300A (ko) 2021-01-11
WO2019231588A1 (en) 2019-12-05
TWI730333B (zh) 2021-06-11
EP3803503A1 (en) 2021-04-14
US10955606B2 (en) 2021-03-23
CN111971611A (zh) 2020-11-20
JP7242709B2 (ja) 2023-03-20
KR102550580B1 (ko) 2023-07-04
CN111971611B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
JP2021525456A (ja) 傾斜角光格子をインプリントする方法
KR102438014B1 (ko) 도파관 결합기들의 방향성 식각 제조 방법
JP7331024B2 (ja) 光学部品のためのスピンコーティングされた高屈折率材料を用いたインプリント構造の間隙充填
KR102444339B1 (ko) 도파관 결합기들의 제조 방법
US10564332B2 (en) Controlling grating outcoupling strength for AR waveguide combiners
CN113167945A (zh) 用于目镜的叠加衍射光栅
JP6825238B2 (ja) 表示体およびその製造方法
JP7196295B2 (ja) テーパー状の傾斜したフィンを作製するための制御されたハードマスク成形
JP2023516802A (ja) レーザアブレーションによる可変深度構造の形成
US20220252779A1 (en) Method for amorphous, high-refractive-index encapsulation of nanoparticle imprint films for optical devices
TWI840434B (zh) 產生錐形傾斜鰭片之受控硬遮罩成形
TW202340795A (zh) 導引溶劑移除方向及維持關鍵尺寸的印模處理
CN113448013A (zh) 一种浮雕型波导结构及其制作方法
JP2864672B2 (ja) アクティブマトリックス光変調素子及び表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7242709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150