JP2021190248A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2021190248A
JP2021190248A JP2020092982A JP2020092982A JP2021190248A JP 2021190248 A JP2021190248 A JP 2021190248A JP 2020092982 A JP2020092982 A JP 2020092982A JP 2020092982 A JP2020092982 A JP 2020092982A JP 2021190248 A JP2021190248 A JP 2021190248A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
gas
cell system
scavenging process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020092982A
Other languages
English (en)
Other versions
JP7298547B2 (ja
Inventor
真弘 小関
Masahiro Koseki
政史 戸井田
Seiji Toida
裕晃 森
Hiroaki Mori
季幸 真田
Sueyuki Sanada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020092982A priority Critical patent/JP7298547B2/ja
Priority to US17/189,623 priority patent/US11437635B2/en
Priority to CN202110346835.2A priority patent/CN113745584B/zh
Publication of JP2021190248A publication Critical patent/JP2021190248A/ja
Application granted granted Critical
Publication of JP7298547B2 publication Critical patent/JP7298547B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】燃料電池システムにおいて、停止期間中の掃気処理の性能を高くすることができる技術を提供する。【解決手段】燃料電池システムは、反応ガスの供給を受けて発電する燃料電池と、燃料電池の発電に用いられる複数の補機部品と、燃料電池システムから負荷に電力を供給していない停止期間において、予め定められた掃気開始条件が成立したときに燃料電池を発電させ、燃料電池の発電電力を用いて複数の補機部品を制御して、反応ガスを用いて反応ガスの流路に存在する水分を除去する掃気処理を行う制御装置と、を備える。【選択図】図2

Description

本開示は、燃料電池システムに関する。
燃料電池の運転停止後に畜電部に蓄電された電力によって、燃料電池のガス流路の残留水分を除去させる掃気処理を実行する掃気処理実行手段を備える燃料電池システムが知られている(例えば、特許文献1)。
特開2009−117242号公報
燃料電池の運転停止後の掃気処理では、例えば、掃気処理を実行可能な期間が蓄電部の蓄電量によって制限され、ガス流路の残留水分を充分に除去できないことがある。そのため、燃料電池システムの停止期間中に充分な掃気処理を行うことができる技術が望まれていた。
本開示は、以下の形態として実現することが可能である。
(1)本開示の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、反応ガスの供給を受けて発電する燃料電池と、前記燃料電池の発電に用いられる複数の補機部品と、前記燃料電池システムから負荷に電力を供給していない停止期間において、予め定められた掃気開始条件が成立したときに前記燃料電池を発電させ、前記燃料電池の発電電力を用いて前記複数の補機部品を制御して、前記反応ガスを用いて前記反応ガスの流路に存在する水分を除去する掃気処理を行う制御装置と、を備える。この形態の燃料電池システムによれば、制御装置は、燃料電池システムの停止期間において、燃料電池を発電させた後に、複数の補機部品を制御して掃気処理を行う。燃料電池の発電電力を用いて各補機部品を駆動させるので、二次電池の充電量による制限を受けることなく停止期間中の掃気処理を実行することができる。したがって、二次電池の電力を用いて実行される掃気処理に比べて、反応ガスの流路や複数の補機に存在する液水を充分に排出することができ、停止期間中での燃料電池システムの掃気処理の性能を高くすることができる。
(2)上記形態の燃料電池システムにおいて、さらに、前記複数の補機部品のうち少なくとも一つの補機部品の温度である第一温度を取得する第一温度センサ、を備えてよい。前記制御装置は、前記停止期間において、前記第一温度を取得し、取得した前記第一温度が予め定められた第一閾温度未満である場合に、前記燃料電池を発電させて前記掃気処理を行ってよい。この形態の燃料電池システムによれば、掃気処理の開始条件に補機部品の温度を用いることにより、補機の始動性に影響がある温度での掃気処理を実行することができる。したがって、掃気処理の開始条件に燃料電池の温度のみを用いる場合に比べて、停止期間中における燃料電池システム全体の掃気処理の性能を高くすることができる。
(3)上記形態の燃料電池システムにおいて、前記制御装置は、前記掃気処理の前に、前記燃料電池の発電による前記燃料電池の暖機運転を行ってよい。この形態の燃料電池システムによれば、制御装置は、第一温度が第一閾温度未満である場合に、燃料電池の暖機運転を行ったうえで掃気処理を行う。燃料電池の暖機運転による発熱によって各補機部品の温度を上昇させることにより、補機部品の掃気性を高めることができ、燃料電池システム全体の始動性能を高くすることができる。
(4)上記形態の燃料電池システムにおいて、さらに、前記燃料電池の温度である第二温度を取得する第二温度センサ、を備えてよい。前記制御装置は、前記第一温度が前記第一閾温度未満である場合において、前記第二温度が予め定められた第二閾温度未満である場合に、前記掃気処理の前に、前記燃料電池の発電による前記燃料電池の暖機運転を行い、前記第二温度が前記第二閾温度以上である場合に、前記燃料電池を発電させて、前記暖機運転を行うことなく前記掃気処理を行ってよい。この形態の燃料電池システムによれば、暖機運転により燃料電池の温度を上昇させて、より高い温度環境で掃気処理を実行することができるので、停止期間中の掃気処理の性能をより高くすることができる。
(5)上記形態の燃料電池システムにおいて、前記第二閾温度は、前記第一閾温度よりも低い温度に設定されてよい。この形態の燃料電池システムによれば、補機に比べて低温環境での始動性が高い燃料電池に対して、補機に対する掃気処理の開始条件よりも低い温度で掃気処理の開始条件を設定することにより、不要な反応ガスの消費を抑制することができる。
(6)上記形態の燃料電池システムにおいて、前記第一温度は、前記複数の補機部品のうち、前記停止期間において、前記燃料電池より低い温度を示す補機部品の温度であってよい。この形態の燃料電池システムによれば、第一温度を取得する対象の補機を、低い温度を示す傾向にある補機に限定し、第一温度センサの増設を抑制して、掃気処理の開始条件を効率良く判定することができる。
(7)上記形態の燃料電池システムにおいて、前記複数の補機部品は、前記燃料電池で消費された前記反応ガスに含まれる液水を分離するための気液分離器、または前記燃料電池に前記反応ガスを循環させる循環ポンプの少なくともいずれかを含み、前記第一温度は、前記気液分離器または前記循環ポンプのいずれかの温度であってよい。燃料電池システムが有する複数の補機のうち、最も低い温度を示す傾向にある気液分離器や循環ポンプの温度を掃気処理の開始条件の判定に用いることにより、第一温度を取得する対象の補機をより限定し、掃気処理の開始条件をより効率良く判定することができる。
本開示は、上記以外の種々の形態で実現可能であり、例えば、燃料電池システムを搭載した車両、燃料電池システムの制御方法、掃気処理の必要性判定方法、これらの方法を実現するためのコンピュータプログラム、かかるコンピュータプログラムを記憶した記憶媒体等の形態で実現可能である。
第1実施形態の燃料電池システムの構成を示す説明図。 制御装置が実行する運転停止期間掃気処理を示すフロー図。 第2実施形態の運転停止期間掃気処理を示すフロー図。 第3実施形態の運転停止期間掃気処理を示すフロー図。
A.第1実施形態:
図1は、本実施形態における燃料電池システム100の構成を示す説明図である。燃料電池システム100は、例えば、燃料電池20を駆動源とする燃料電池車両に搭載される。燃料電池システム100は、燃料電池20の発電電力を利用して負荷LDに含まれる各種のデバイスを駆動させる。燃料電池システム100は、燃料電池20、二次電池40、制御装置60、酸化ガス給排系30、燃料ガス給排系50、冷媒循環系70、を有する。
燃料電池20は、電解質膜の両側にアノードとカソードとの両電極を接合させた膜電極接合体(Membrane Electrode Assembly/MEA)を有する複数の燃料電池セルを積層したスタック構造を有する。燃料電池20は、燃料ガスとしての水素ガスと、酸化ガスとしての空気とを反応ガスとして供給されて発電する固体高分子形燃料電池であり、その発電電力を用いて負荷LDを駆動させる。負荷LDとしては、例えば、燃料電池車両の駆動力を発生する駆動モータや、燃料電池車両内の空調のために用いられるヒータ等が含まれる。燃料電池20は、固体高分子形に限らず、りん酸形、溶融炭酸塩形、固体酸化物形などの種々の方式の燃料電池であってよい。燃料電池システム100は、燃料電池車両のほか、家庭用電源や定置発電などに用いられてもよい。
本実施形態において、燃料電池20には、インピーダンス計測部42が接続されている。インピーダンス計測部42は、燃料電池20内の水分量を取得する。より具体的には、インピーダンス計測部42は、運転状態の燃料電池20に交流電流を流し、交流インピーダンス法を用いて燃料電池20のインピーダンスを算出する。インピーダンス計測部42は、予め設定された燃料電池20のインピーダンスと、燃料電池20の水分量との対応マップを用いて、取得したインピーダンスから燃料電池20の水分量を導出する。インピーダンス計測部42による計測結果は、制御装置60に送信される。後述する掃気処理の開始条件や終了条件に燃料電池20の水分量が用いられない場合には、インピーダンス計測部42は、備えられなくともよい。
二次電池40は、燃料電池20とともに負荷LDに対する電力源として機能する。二次電池40は、例えば、200V〜400Vの出力電圧を有する高電圧二次電池である。二次電池40としては、例えば、ニッケル水素電池や、リチウムイオン電池などを用いることができる。二次電池40としては、さらに、制御装置60等の電源として、10〜30V程度の出力電圧を有する鉛蓄電池等の低電圧二次電池が搭載されてよい。二次電池40と燃料電池20との間には、二次電池40の充放電を制御するための図示しないDC−DCコンバータが配置されている。DC−DCコンバータは、二次電池40のSOC(State Of Charge:残容量)を計測し、制御装置60に送信する。燃料電池20と負荷LDの間には、二次電池40または燃料電池20から供給される直流の電力を、例えば3相交流等の交流電力に変換するインバータが備えられてよい。
制御装置60は、論理演算を実行するマイクロプロセッサやROM、RAM等のメモリを備えるマイクロコンピュータで構成される。制御装置60は、マイクロプロセッサがメモリ内に記憶されるプログラムを実行することにより、燃料電池20の発電や、掃気処理に用いられる複数の補機部品の駆動制御を含む燃料電池システム100の種々の制御を実行する。「掃気処理」とは、複数の補機部品を駆動して反応ガスを流動させることにより、反応ガスの流路や複数の補機部品に存在する水分を除去する処理を意味する。本実施形態において、掃気処理は、燃料電池20のアノード側の流路を含むアノード側の掃気処理と、燃料電池20のカソード側の流路を含むカソード側の掃気処理との双方を含む。アノード側の掃気処理と、カソード側の掃気処理とのいずれか一方の掃気処理のみが実行されてもよい。「掃気処理に用いられる補機部品」は、燃料電池20の発電にも用いられる補機部品であり、例えば、酸化ガス給排系30、燃料ガス給排系50に含まれている各バルブや各管路、インジェクタ54、循環ポンプ55、気液分離器57、エアコンプレッサ33、インタークーラ35等が含まれる。制御装置60によってアノード側とカソード側とのいずれか一方の掃気処理のみが実行される場合には、当該掃気処理を実行する各補機部品を意味する。一般に、掃気処理は、液水を排出するという観点から、温度が高い環境で実行されるほど効果が大きくなる。したがって、各補機部品は、燃料電池20と熱的に結合されており、例えば、燃料電池20の温度が上昇することにより各補機部品の温度も上昇し得るように構成されることが好ましい。燃料電池20との熱的な結合は、例えば、冷媒循環系70など冷媒を循環する冷却システムのほか、ヒートパイプやヒートポンプ、管路などの部材を介した燃料電池20との接続、燃料電池20と同一空間に配置されることなどによって実現することができる。なお、各バルブ、インジェクタ54、エアコンプレッサ33、循環ポンプ55、冷媒循環ポンプ74は、上述した負荷LDに含まれてよい。
燃料ガス給排系50は、アノードガス供給機能を有する燃料ガス供給系50Aと、アノードガス排出機能を有する燃料ガス排出系50Cと、アノードガス循環機能を有する燃料ガス循環系50Bと、を備える。アノードガス供給機能とは、燃料電池20のアノードに、燃料ガスを含むアノードガスを供給する機能を意味する。アノードガス排出機能とは、燃料電池20のアノードから排出される排ガスであるアノードオフガスを外部に排出する機能を意味する。アノードガス循環機能とは、アノードオフガスに含まれる水素を燃料電池システム100内において循環させる機能を意味する。
燃料ガス供給系50Aは、燃料電池20のアノードに水素を含むアノードガスを供給する。燃料ガス供給系50Aは、アノード供給配管501と、燃料ガスタンク51と、開閉弁52と、レギュレータ53と、インジェクタ54と、を備えている。
アノード供給配管501は、水素の供給源である燃料ガスタンク51と、燃料電池20のアノードの入口とを接続する管路であり、燃料電池20にアノードガスを導く。開閉弁52は、アノード供給配管501において燃料ガスタンク51の出口近傍に設けられている。開閉弁52は、主止弁とも呼ばれ、開弁状態において燃料ガスタンク51の水素を下流側へと流通させる。レギュレータ53は、アノード供給配管501において開閉弁52よりも燃料電池20側(下流側)に設けられている。レギュレータ53は、制御装置60の制御によって、インジェクタ54よりも上流側における水素の圧力を調整する。
インジェクタ54は、アノード供給配管501においてレギュレータ53の下流側に設けられている。インジェクタ54は、制御装置60によって制御され、設定された駆動周期や開弁時間に応じて、電磁的に駆動する開閉弁である。インジェクタ54は、燃料電池20に供給するアノードガスの水素量を調整する。
燃料ガス循環系50Bは、燃料電池20のアノードから排出されるアノードオフガスを、液体成分を分離したうえでアノード供給配管501に循環させる。燃料ガス循環系50Bは、アノード循環配管502と、気液分離器57と、循環ポンプ55と、分離器温度センサ59と、を有する。
アノード循環配管502は、燃料電池20のアノード出口とアノード供給配管501とに接続され、アノードから排出されるアノードオフガスをアノード供給配管501へと導く。気液分離器57は、アノード循環配管502に設けられ、アノードオフガスから水蒸気を含む液体成分を分離して貯留する。循環ポンプ55は、アノード循環配管502において、気液分離器57と、アノード供給配管501との間に設けられている。循環ポンプ55は、気液分離器57に流入したアノードオフガスをアノード供給配管501へと送り出すアノードガス循環装置として機能する。
分離器温度センサ59は、気液分離器57の温度を取得する。分離器温度センサ59による計測結果は、制御装置60に送信される。本実施形態において、気液分離器57は、停止期間において燃料電池20から伝熱されず、また、外気温の影響を受けることにより燃料電池20よりも低い温度を示し、燃料電池システム100が有する複数の補機部品のうち、最も低い温度を示す。「複数の補機部品のうち燃料電池20よりも低い温度を示す補機部品」とは、掃気処理に用いられる補機部品であって、燃料電池システム100が直接的または間接的に温度を取得できる補機部品のうち、停止期間中のある時点において取得される温度が燃料電池20よりも低い傾向を示す補機部品を意味する。「複数の補機部品のうち最も低い温度を示す補機部品」とは、掃気処理に用いられる補機部品であって、燃料電池システム100が直接的または間接的に温度を取得できる補機部品のうち、停止期間中のある時点において取得される温度が最も低い傾向を示す補機部品を意味する。掃気処理に用いられる補機部品の温度を、以下「第一温度」とも呼び、補機部品の温度を取得する温度センサを、以下「第一温度センサ」とも呼ぶ。気液分離器57の温度は、「第一温度」に該当し、分離器温度センサ59は、「第一温度センサ」に該当する。第一温度の取得対象となる補機部品は、掃気処理に用いられる複数の補機部品のうち少なくとも一つの補機部品であれば足り、気液分離器57のほか、例えば、循環ポンプ55であってもよく、燃料電池システム100が有する2以上の補機部品の温度やすべての補機部品の温度を第一温度として取得してもよい。第一温度としては、複数の補機部品の温度が取得される場合には、取得した複数の補機部品の温度のうち最低値が用いられてもよく、取得した複数の補機部品の温度の平均値が用いられてもよい。第一温度の取得対象となる補機部品は、試験などの結果に基づいて予め設定されてよく、燃料電池システム100に備えられる各補機部品の温度の取得結果に基づいて適宜に変更されてもよい。補機部品の温度とは、補機部品自体の温度には限定されず、補機部品近傍の温度を用いて間接的に取得される補機部品の温度であってよく、補機部品以外の温度を用いて算出される補機部品の温度の推定値であってよい。例えば、気液分離器57の温度は、気液分離器57自体の温度に限らず、気液分離器57内部を流通するアノードオフガスや液水の温度、気液分離器57近傍となるアノード循環配管502やアノード排出配管504の温度やこれらの内部の液水やガスの温度を用いて間接的に気液分離器57の温度を取得してよく、これらの温度を用いて算出される気液分離器57の温度の推定値であってもよい。補機部品の温度が例えば氷点未満である場合には、補機部品や補機部品内の液水の凍結により補機部品の始動に影響を与え得る。
燃料ガス排出系50Cは、アノードオフガスや気液分離器57に貯留された液水を排ガス配管306へと排出する。燃料ガス排出系50Cは、アノード排出配管504と、排気排水弁58と、を有する。アノード排出配管504は、気液分離器57の排出口と、排ガス配管306とを接続する管路であり、気液分離器57からの排水と、気液分離器57内を通過するアノードオフガスの一部とを燃料ガス給排系50から排出する。排気排水弁58は、アノード排出配管504に設けられ、アノード排出配管504の流路を開閉する。排気排水弁58としては、例えば、ダイヤフラム弁を用いることができる。排気排水弁58が開かれると、気液分離器57に貯留された液水とアノードオフガスとが、排ガス配管306を通じて大気中へ排出される。
酸化ガス給排系30は、カソードガス供給機能を有する酸化ガス供給系30Aと、カソードガス排出機能およびカソードガスバイパス機能を有する酸化ガス排出系30Bと、を備える。カソードガス供給機能とは、燃料電池20のカソードに、酸素を含む空気をカソードガスとして供給する機能を意味する。カソードガス排出機能とは、燃料電池20のカソードから排出される排ガスであるカソードオフガスを外部に排出する機能を意味する。カソードガスバイパス機能とは、供給されるカソードガスの一部を、燃料電池20に供給せず外部に排出する機能を意味する。
酸化ガス供給系30Aは、燃料電池20のカソードに、カソードガスとしての空気を供給する。酸化ガス供給系30Aは、カソード供給配管302と、エアクリーナ31と、エアコンプレッサ33と、インタークーラ35と、IC温度センサ38と、入口弁36と、を有する。
カソード供給配管302は、燃料電池20のカソードの入口に接続される管路であり、燃料電池20のカソードに対する空気の供給流路である。エアクリーナ31は、カソード供給配管302のうちエアコンプレッサ33よりも空気の導入口側(上流側)に設けられ、燃料電池20に供給される空気中の異物を除去する。エアクリーナ31よりも上流側には外気の温度を測定する外気温センサが設けられてよい。
エアコンプレッサ33は、カソード供給配管302のうち燃料電池20よりも上流側に設けられている。エアコンプレッサ33は、エアクリーナ31を通じて取り込んだ空気を圧縮してカソードに送り出す。エアコンプレッサ33としては、例えばターボコンプレッサが用いられる。エアコンプレッサ33の駆動は、制御装置60によって制御される。
インタークーラ35は、カソード供給配管302のうちエアコンプレッサ33と、燃料電池20との間に設けられている。インタークーラ35は、エアコンプレッサ33によって圧縮されて高温となったカソードガスを冷却する。カソードガスの冷却方法としては、例えば、冷媒循環系70の冷媒をインタークーラ35に循環させることによって実現することができる。
IC温度センサ38は、インタークーラ35の温度を取得する。インタークーラ35は、一般に、外気の導入口の近傍に備えられるので、外気温の影響を受けることにより温度が低下しやすい。本実施形態において、インタークーラ35は、停止期間において燃料電池20よりも低い温度を示し、カソード側の掃気処理を実行するための複数の補機部品のうち、最も低い温度を示す。本実施形態において、インタークーラ35の温度は「第一温度」に該当し、IC温度センサ38は「第一温度センサ」に該当する。インタークーラ35の温度は、インタークーラ35自体の温度に限らず、インタークーラ35内部を流通する空気の温度やインタークーラ35近傍のカソード供給配管302の温度、インタークーラ35を循環する冷媒の温度を用いてもよく、これらの温度を用いて算出されるインタークーラ35の温度の推定値であってもよい。IC温度センサ38によるインタークーラ35の温度の計測結果は、制御装置60に送信される。
入口弁36は、燃料電池20のカソードへのカソードガスの流入を制御する。入口弁36は、予め定められた圧力のカソードガスが流入したときに機械的に開く開閉弁である。
酸化ガス排出系30Bは、カソードオフガス排出機能を有し、排ガス配管306と、バイパス配管308と、を備える。排ガス配管306は、燃料電池20のカソードの出口に接続されるカソードオフガスの排出流路である。排ガス配管306は、カソードオフガスを含む燃料電池20の排ガスを大気中に導く。排ガス配管306から大気中に排出される排ガスには、カソードオフガスの他に、アノードオフガスや、バイパス配管308から流出した空気が含まれる。
排ガス配管306には、出口弁37が設けられている。出口弁37は、排ガス配管306のうちバイパス配管308との接続位置よりも燃料電池20側に配置されている。出口弁37としては、例えば、電磁弁や電動弁を用いることができる。制御装置60は、出口弁37の開度を調整することによって、燃料電池20のカソードの背圧を調整する。
バイパス配管308は、燃料電池20を経由することなく、カソード供給配管302と排ガス配管306とを接続する管路である。バイパス配管308には、バイパス弁39が設けられている。バイパス弁39としては、例えば電磁弁や電動弁を用いることができる。バイパス弁39が開かれると、カソード供給配管302を流れるカソードガスの一部は、排ガス配管306に流入する。制御装置60は、バイパス弁39の開度を調整することによって、バイパス配管308に流入するカソードガスの流量を調整する。
冷媒循環系70は、燃料電池20に冷媒を循環させて、燃料電池20の温度を調節する。冷媒としては、例えば、エチレングリコールなどの不凍液や水などが用いられる。冷媒循環系70は、冷媒循環路79と、冷媒循環ポンプ74と、ラジエータ71と、ラジエータファン72と、燃料電池温度センサ73とを備える。
冷媒循環路79は、燃料電池20に冷媒を供給するための冷媒供給路79Aと、燃料電池20から冷媒を排出するための冷媒排出路79Bとを有する。冷媒循環ポンプ74は、冷媒供給路79Aの冷媒を燃料電池20へ送り出す。ラジエータ71は、ラジエータファン72からの風を受けて放熱し、内部を流通する冷媒を冷却する。
燃料電池温度センサ73は、燃料電池20の温度を取得する。燃料電池20の温度とは、燃料電池20自体の温度には限定されず、燃料電池20近傍の補機部品の温度であってよく、計算値など燃料電池20の温度の推定値であってもよい。本実施形態では、燃料電池温度センサ73は、燃料電池20の温度としての冷媒排出路79B内の冷媒の温度を取得する。燃料電池20の温度を、以下「第二温度」とも呼び、燃料電池20の温度を取得する温度センサを、以下、「第二温度センサ」とも呼ぶ。冷媒排出路79B内の冷媒の温度は、第二温度に該当し、燃料電池温度センサ73は、第二温度センサに該当する。燃料電池温度センサ73による計測結果は、制御装置60に送信される。
図2は、第1実施形態の燃料電池システム100が備える制御装置60によって実行される運転停止期間掃気処理を示すフロー図である。本フローは、例えば、燃料電池システム100を搭載する燃料電池車両のスイッチがオフとされ、燃料電池システム100が運転を停止することにより開始する。燃料電池システム100が運転を停止し、負荷LDに電力を供給していない期間を、以下、「停止期間」と呼ぶ。停止期間は、運転停止期間やソーク期間とも呼ばれる。本フローは、停止期間において予め定められた期間ごとに繰り返し実行されてよい。停止期間が開始してから一定期間を経過すると、制御装置60は、二次電池40からの電力を用いて燃料電池システム100を起動する(ステップS10)。ステップS10において、制御装置60は、第一温度センサや第二温度センサなど、本フローの各処理に必要な燃料電池システム100の一部のみを起動してよい。
制御装置60は、燃料電池システム100の運転を停止する際に掃気処理(以下、「終了時掃気処理」とも呼ぶ)を実行したか否かを確認する(ステップS20)。「燃料電池システム100の運転を停止する際」とは、ユーザや制御装置60の指令により、燃料電池システム100の運転の終了準備を開始するときを意味し、燃料電池システム100が運転を完全に終了して停止期間が開始する前の段階を意味する。終了時掃気処理を実行している場合(S20:YES)、制御装置60は、燃料電池システム100の運転を停止して(ステップS70)、処理を終了する。この形態の燃料電池システム100によれば、終了時掃気処理を実行された場合に、運転停止期間中の掃気処理が省略されることにより、停止期間中の電力の消費を抑制することができる。なお、燃料電池システム100の運転停止期間中での掃気処理を確実に実行するために、ステップS20は省略されてもよい。
制御装置60は、終了時掃気処理を実行していないと判定すると(S20:NO)、第一温度を取得する。本実施形態では、制御装置60は、分離器温度センサ59から取得した気液分離器57の温度の計測結果と、IC温度センサ38から取得したインタークーラ35の温度の計測結果とを第一温度T1として取得する(ステップS30)。アノード側の掃気処理と、カソード側の掃気処理とのいずれかのみが実行される場合には、気液分離器57またはインタークーラ35のうちいずれか一方の温度のみを取得してもよい。制御装置60は、取得した第一温度T1が予め定められた第一閾温度TA1未満であるか否かを判定する(ステップS32)。第一閾温度TA1は、掃気処理を実行することなく補機部品が正常に駆動できる程度に充分な温度を用いて任意に設定することができる。第一閾温度TA1は、液水の凍結を回避するために、氷点近傍であることが好ましい。本実施形態において、第一閾温度TA1は、掃気処理に用いられる気液分離器57内部を流通する液水の凍結を回避する観点から氷点で設定されている。氷点より低い温度であっても補機部品を正常に始動できる場合には、第一閾温度TA1は、氷点よりも低い温度で設定されてもよい。第一閾温度TA1は、氷点や氷点未満に限らず、氷点より高い温度で設定されてもよい。第一閾温度TA1は、例えば、−10度から5度の温度範囲で設定されることが好ましい。第一閾温度TA1は、アノード側の補機部品と、カソード側の補機部品とで低温環境での始動性に違いがある場合には、アノード側の補機部品と、カソード側の補機部品とで異なる温度で設定されてもよい。本実施形態において、制御装置60は、すべての補機部品の温度を第一温度T1とし、気液分離器57の温度およびインタークーラ35の温度がともに氷点以上である場合に、第一温度T1が第一閾温度TA1以上と判定する。第一温度T1が第一閾温度TA1以上である場合(S32:NO)、制御装置60は、燃料電池システム100の運転を停止して(ステップS70)、処理を終了する。ステップS32において、制御装置60は、第一閾温度TA1との比較には、例えば、気液分離器57の温度およびインタークーラ35の温度のうち、低い温度を示したいずれかの温度を第一温度T1として用いてよく、気液分離器57の温度およびインタークーラ35の温度の平均値を第一温度T1として用いてよい。
制御装置60は、第一温度T1が第一閾温度TA1未満である場合(S32:YES)、第二温度を取得する。より具体的には、制御装置60は、燃料電池温度センサ73から取得した燃料電池20の温度を第二温度T2として取得する(ステップS40)。制御装置60は、取得した第二温度T2が予め定められた第二閾温度TB未満であるか否かを判定する(ステップS42)。第二閾温度TBは、掃気処理を実行することなく燃料電池20が正常に発電を開始できる程度に充分な温度を用いて任意に設定することができる。第二閾温度TBは、例えば、燃料電池20の生成水による反応ガス流路の閉塞を回避するために、氷点近傍であることが好ましい。燃料電池20は、補機部品に比べて低温環境での始動性が高く、補機部品よりも掃気処理の開始条件としての閾温度を低く設定することができる。第二閾温度TBは、例えば、−20度から5度の温度範囲で設定されることが好ましい。本実施形態では、このような燃料電池20と補機部品との低温環境での始動性能の違いから、第二閾温度TBは、第一閾温度TA1よりも低い温度として−10度で設定されている。燃料電池20と補機部品との始動性能の違いがない場合には、第二閾温度TBは、第一閾温度TA1と同一の温度で設定されてよい。第二閾温度TBは、第一閾温度TA1や第一閾温度TA1未満に限らず、第一閾温度TA1よりも高い温度で設定されてよい。
第二温度T2が第二閾温度TB未満である場合(S42:YES)、制御装置60は、二次電池40の電力を用いて各補機部品を駆動させて燃料電池20の発電を開始し、燃料電池20の発電による燃料電池20の暖機運転を開始する(ステップS50)。より具体的には、制御装置60は、燃料電池20に供給される酸化ガスのストイキ比が、通常運転でのストイキ比よりも小さくなるように酸化ガス給排系30と燃料ガス給排系50とを制御する。「酸化ガスのストイキ比」とは、要求発電電力を発電するために必要な酸化ガスの量の理論値に対する実際の酸化ガスの供給量の比を意味する。この制御によって、カソードでの濃度過電圧が増大し、燃料電池20の発電効率が低下するため、燃料電池20の発熱量が通常運転時よりも増大し、燃料電池20の昇温速度を高めることができる。暖機運転における酸化ガスのストイキ比としては、例えば、1.0程度で設定することができる。制御装置60は、暖機運転用のストイキ比で反応ガスを燃料電池20に供給しつつ、燃料電池20の電流を制御して燃料電池20を目標の発熱量で発熱するように発電させる。制御装置60は、現在の外気温や第一温度、ならびに第二温度が低いほど、目標発熱量を大きい値に設定してよい。
制御装置60は、暖機運転を実行した後に、燃料電池20の発電電力を用いて各補機部品を駆動させて掃気処理を行う(ステップS60)。より具体的には、制御装置60は、インジェクタ54の駆動を停止させた状態で、循環ポンプ55を駆動させて、気液分離器57で分離された排ガスの気体成分を掃気ガスとして、燃料ガス循環系50Bと燃料電池20との間で循環させるとともに、適宜に排気排水弁58を開弁することにより、アノード側の掃気処理を実行する。排ガスの気体成分の循環によって、アノード循環配管502や燃料電池20内の流路を含む燃料ガスの流路が掃気される。本実施形態では、制御装置60は、燃料電池20のアノード側の掃気処理に加えて、カソード側の掃気処理として、エアコンプレッサ33を駆動させることによって、外気を用いて燃料電池20内のカソード側の流路を含む酸化ガスの流路を掃気する。
掃気処理の完了条件が満たされると、制御装置60は、掃気処理を終了して燃料電池システム100を停止させて(ステップS70)、処理を完了する。本実施形態において、制御装置60は、インピーダンス計測部42から取得した燃料電池20の含水量が予め定められた閾値よりも低下したときに掃気処理の完了条件を満たすと判定する。掃気処理の完了条件のその他の例としては、例えば、掃気が予め定められた期間だけ継続されたとき、燃料電池20から排出される掃気ガスの湿潤度が予め定められた閾値よりも低下したとき等が挙げられる。
第二温度T2が第二閾温度TB以上である場合(S42:NO)、制御装置60は、燃料電池20の発電を開始し、燃料電池20の通常運転を開始する(ステップS52)。制御装置60は、燃料電池20の発電電力を用いて各補機部品を駆動させて掃気処理を実行する(ステップS62)。掃気処理の制御は、ステップS60と同様の制御であってよく、掃気処理を効率よく行うために掃気時間を短縮するなど条件の異なる制御であってもよい。掃気処理の完了条件が満たされると、制御装置60は、掃気処理を終了して燃料電池システム100を停止し(ステップS70)、処理を完了する。
以上、説明したように、本実施形態の燃料電池システム100によれば、制御装置60は、燃料電池システム100の停止時から始動時までの停止期間において、燃料電池20を発電させた後に、複数の補機部品を制御して掃気処理を行う。燃料電池20の発電電力を用いて各補機部品を駆動させるので、二次電池40の充電量による制限を受けることなく掃気処理を実行することができる。二次電池40の電力を用いて実行される掃気処理に比べて、掃気処理の期間を長く設定することができる。しがたって、反応ガスの流路や複数の補機部品に存在する液水を充分に排出することができ、停止期間中での燃料電池システム100の掃気処理の性能を高くすることができる。本実施形態の燃料電池システム100によれば、掃気処理の開始前に燃料電池20を発電させるため、燃料電池20や各補機部品の温度を上昇させることができる。したがって、二次電池40の電力を用いて実行される掃気処理に比べて高い温度環境での掃気処理を実行することができ、停止期間中の掃気処理の性能を高くすることができる。本実施形態の燃料電池システム100によれば、燃料電池20を発電させて燃料電池20を運転状態とすることにより燃料電池20のインピーダンスを計測して燃料電池20の水分量を取得することができる。したがって、二次電池40の電力を用いて実行される掃気処理に比べて、掃気処理の完了条件の判定精度を高くすることができ、停止期間中における掃気処理の性能を高くすることができる。
本実施形態の燃料電池システム100は、さらに、補機部品の温度である第一温度T1を取得する第一温度センサを備える。制御装置60は、第一温度T1が予め定められた第一閾温度TA1未満である場合に掃気処理を行う。掃気処理の開始条件に補機部品の温度を用いることにより、補機部品の始動性に影響がある温度での掃気処理を実行することができる。したがって、掃気の開始条件に燃料電池20の温度のみを用いる場合に比べて、停止期間中における燃料電池システム100全体の掃気処理の性能を高くすることができる。本実施形態の燃料電池システム100によれば、例えば、掃気処理の開始条件を、氷点下など液水が凍結しやすく掃気処理がより有効とされる温度条件に設定することにより、停止期間中の掃気処理を効率良く実行することができる。
本実施形態の燃料電池システム100によれば、さらに、燃料電池20の温度である第二温度T2を取得する第二温度センサが備えられる。制御装置60は、第一温度T1が第一閾温度TA1未満、かつ第二温度T2が第二閾温度TB未満である場合に、燃料電池20の暖機運転を行ったうえで掃気処理を行う。暖機運転により燃料電池20の温度を上昇させて、より高い温度環境で掃気処理を実行することができるので、停止期間中の掃気処理の性能をより高くすることができる。各補機部品が燃料電池20との熱的な結合を有する場合には、燃料電池20の暖機運転による発熱により各補機部品の温度を上昇させることにより、各補機部品の掃気性を高めることができ、燃料電池システム100全体の始動性能をより高くすることができる。また、本実施形態の燃料電池システム100によれば、制御装置60は、第一温度T1が第一閾温度TA1未満、かつ第二温度T2が第二閾温度TB以上である場合には、暖機運転を行うことなく掃気処理を行う。暖機運転の開始条件が、第一温度T1と第二温度T2とがともに低温であり、暖機運転を特に有効とされる条件に限定されることにより、不要な燃料ガスの消費を抑制することができる。
本実施形態の燃料電池システム100によれば、第二閾温度TBは−10度で設定され、第一閾温度TA1よりも低い温度で設定される。補機部品に比べて低温環境での始動性が高い燃料電池20に対して、補機部品に対する掃気処理の開始条件よりも低い温度で掃気処理の開始条件を設定することにより、不要な燃料ガスの消費を抑制することができる。
本実施形態の燃料電池システム100によれば、燃料電池システム100が停止している期間において燃料電池20よりも低い温度を示す補機部品の温度が第一温度T1として用いられる。第一温度T1を取得する対象の補機部品を、低い温度を示す傾向にある補機部品に限定し、第一温度センサの増設を抑制して、掃気処理の開始条件を効率良く判定することができる。
本実施形態の燃料電池システム100によれば、気液分離器57やインタークーラ35の温度を第一温度T1として用いる。燃料電池システム100が有する複数の補機部品のうち、最も低い温度を示す傾向にある気液分離器57やインタークーラ35の温度を掃気処理の開始条件の判定に用いることにより、第一温度T1を取得する対象の補機部品をより限定し、掃気処理の開始条件をより効率良く判定することができる。
B.第2実施形態:
図3は、第2実施形態の燃料電池システム100の制御装置60によって実行される運転停止期間掃気処理を示すフロー図である。第2実施形態の運転停止期間掃気処理は、ステップS40,S42,S52,S62を備えない点で第1実施形態の運転停止期間掃気処理と相違し、その他の構成は第1実施形態と同様である。本実施形態では、制御装置60は、第二温度T2としての燃料電池20の温度を用いることなく、停止期間中の掃気処理を実行するか否かを判定する。
制御装置60は、第1実施形態と同様に、ステップS10〜S20を実行した後、ステップS30において、分離器温度センサ59から第一温度T1としての気液分離器57の温度を取得する。制御装置60は、第一温度T1が第一閾温度TA2未満であるか否かを判定する(ステップS32)。第一温度T1が第一閾温度TA2以上である場合には(S32:NO)、制御装置60は、燃料電池システム100の運転を停止して(ステップS70)、処理を終了する。
第一温度T1が第一閾温度TA2未満である場合(S32:YES)、制御装置60は、二次電池40の電力を用いて各補機部品を駆動して燃料電池20の発電を開始し、燃料電池20の暖機運転を開始する(ステップS50)。第一閾温度TA2は、第1実施形態での第一閾温度TA1と同一の温度であってもよく、第一閾温度TA1とは異なる温度であってもよい。例えば、低温環境での補機部品の始動性能を考慮して、第一閾温度TA2を第一閾温度TA1よりも低い温度で設定してもよい。掃気処理の開始条件をより低温に限定することにより、不要な暖機運転や掃気処理の実行を抑制することができる。ステップS50で燃料電池20の暖機運転を実行する観点から、第一閾温度TA2は、上述した第二閾温度TBと同じ温度で設定されてもよい。制御装置60は、暖機運転を実行した後に、燃料電池20の発電電力を用いて各補機部品を駆動させて掃気処理を行う(ステップS60)。掃気処理の完了条件が満たされると、制御装置60は、掃気処理を終了して燃料電池システム100を停止させて(ステップS70)、処理を完了する。
本実施形態の燃料電池システム100によれば、制御装置60は、第一温度T1が第一閾温度TA2未満である場合に、燃料電池20の暖機運転を行ったうえで掃気処理を行う。燃料電池20の暖機運転による発熱によって各補機部品の温度を上昇させることにより、補機部品の掃気性を高めることができ、燃料電池システム100全体の始動性能を高くすることができる。制御装置60は、掃気処理の開始条件の判定に第二温度T2としての燃料電池20の温度を用いないので、処理フローを簡略化することができる。
C.第3実施形態:
図4は、第3実施形態の燃料電池システム100の制御装置60によって実行される運転停止期間掃気処理を示すフロー図である。第3実施形態の運転停止期間掃気処理は、ステップS20に代えてステップS22を備え、ステップS60に代えてステップS64を備え、ステップS30からステップS42およびステップS50,S60を備えない点で第1実施形態の運転停止期間掃気処理と相違し、その他の構成は第1実施形態と同様である。本実施形態では、制御装置60は、掃気処理を実行するにあたり、二次電池40のSOCを取得し、二次電池40のSOCに応じて燃料電池20を発電させるか否かを判定する。
制御装置60は、第1実施形態と同様に、ステップS10を実行した後、二次電池40のSOCを取得して、予め定められた閾値と比較する(ステップS22)。閾値としては、ステップS64において充分な期間だけ各補機部品を駆動させて掃気処理を実行できる程度の二次電池40の蓄電量を用いて設定することができ、例えば、10%〜90%の任意の数値で設定することができる。SOCが閾値以上である場合(S22:YES)、制御装置60は、燃料電池20の発電を省略し、二次電池40の電力を用いて各補機部品を駆動させて掃気処理を行う(ステップS64)。SOCが閾値未満である場合(S22:NO)、制御装置60は、燃料電池20の発電を開始し、燃料電池20の通常運転を開始する(ステップS52)。制御装置60は、燃料電池20の発電電力を用いて各補機部品を駆動させて掃気処理を実行する(ステップS64)。例えば、掃気が予め定められた期間だけ継続される等の掃気処理の完了条件が満たされると、制御装置60は、掃気処理を終了して燃料電池システム100を停止させて(ステップS70)、処理を完了する。
本実施形態の燃料電池システム100によれば、制御装置60は、二次電池40のSOCを取得し、SOCが充分である場合には、燃料電池20の発電を省略し、二次電池40の電力を用いて各補機部品を駆動させて掃気処理を行う。停止期間中であっても二次電池40の電力を用いて掃気処理を充分な期間行うことができる場合には、燃料電池20による発電を省略することにより、掃気処理による燃料ガスの消費を抑制することができる。
D.他の実施形態:
(D1)上記各実施形態では、制御装置60による掃気処理の開始条件の判定に、第一温度T1や第二温度T2が用いられる。これに対して、制御装置60は、第一温度T1や第二温度T2を用いることなく掃気処理の開始条件を満たすか否かを判定してよい。掃気処理の開始条件を満たす例としては、例えば、燃料電池20の水分量が予め定められた閾値を超えたとき、生成水によるガス流路の閉塞が検出されたとき、ユーザ等のスイッチ操作による掃気処理を指令する指令信号を検出したときなどが挙げられる。
(D2)上記第2実施形態において、制御装置60は、第一温度T1が第一閾温度TA2以上であると判定すると、燃料電池20の暖機運転を開始する(ステップS50)。これに対して、例えば、低温環境での補機部品の始動性能が充分に高い場合には、ステップS50は省略されてもよく、ステップS50に代えて燃料電池20の通常運転を実行してもよい。
(D3)上記各実施形態において、ソフトウェアによって実現された機能及び処理の一部又は全部は、ハードウェアによって実現されてもよい。また、ハードウェアによって実現された機能及び処理の一部又は全部は、ソフトウェアによって実現されてもよい。ハードウェアとしては、例えば、集積回路、ディスクリート回路、または、それらの回路を組み合わせた回路モジュールなど、各種回路を用いることができる。
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
20…燃料電池、30…酸化ガス給排系、30A…酸化ガス供給系、30B…酸化ガス排出系、31…エアクリーナ、33…エアコンプレッサ、35…インタークーラ、36…入口弁、37…出口弁、38…IC温度センサ、39…バイパス弁、40…二次電池、42…インピーダンス計測部、50…燃料ガス給排系、50A…燃料ガス供給系、50B…燃料ガス循環系、50C…燃料ガス排出系、51…燃料ガスタンク、52…開閉弁、53…レギュレータ、54…インジェクタ、55…循環ポンプ、57…気液分離器、58…排気排水弁、59…分離器温度センサ、60…制御装置、70…冷媒循環系、71…ラジエータ、72…ラジエータファン、73…燃料電池温度センサ、74…冷媒循環ポンプ、79…冷媒循環路、79A…冷媒供給路、79B…冷媒排出路、100…燃料電池システム、302…カソード供給配管、306…排ガス配管、308…バイパス配管、501…アノード供給配管、502…アノード循環配管、504…アノード排出配管、LD…負荷

Claims (7)

  1. 燃料電池システムであって、
    反応ガスの供給を受けて発電する燃料電池と、
    前記燃料電池の発電に用いられる複数の補機部品と、
    前記燃料電池システムから負荷に電力を供給していない停止期間において、予め定められた掃気開始条件が成立したときに前記燃料電池を発電させ、前記燃料電池の発電電力を用いて前記複数の補機部品を制御して、前記反応ガスを用いて前記反応ガスの流路に存在する水分を除去する掃気処理を行う制御装置と、を備える、
    燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    さらに、前記複数の補機部品のうち少なくとも一つの補機部品の温度である第一温度を取得する第一温度センサ、を備え、
    前記制御装置は、
    前記停止期間において、前記第一温度を取得し、取得した前記第一温度が予め定められた第一閾温度未満である場合に、前記燃料電池を発電させて前記掃気処理を行う、
    燃料電池システム。
  3. 請求項2に記載の燃料電池システムであって、
    前記制御装置は、
    前記掃気処理の前に、前記燃料電池の発電による前記燃料電池の暖機運転を行う、
    燃料電池システム。
  4. 請求項2に記載の燃料電池システムであって、
    さらに、前記燃料電池の温度である第二温度を取得する第二温度センサ、を備え、
    前記制御装置は、
    前記第一温度が前記第一閾温度未満である場合において、
    前記第二温度が予め定められた第二閾温度未満である場合に、前記掃気処理の前に、前記燃料電池の発電による前記燃料電池の暖機運転を行い、
    前記第二温度が前記第二閾温度以上である場合に、前記燃料電池を発電させて、前記暖機運転を行うことなく前記掃気処理を行う、
    燃料電池システム。
  5. 前記第二閾温度は、前記第一閾温度よりも低い温度に設定されている、請求項4に記載の燃料電池システム。
  6. 請求項2から請求項5までいずれか一項に記載の燃料電池システムであって、
    前記第一温度は、前記複数の補機部品のうち、前記停止期間において、前記燃料電池より低い温度を示す補機部品の温度である、
    燃料電池システム。
  7. 請求項2から請求項6までいずれか一項に記載の燃料電池システムであって、
    前記複数の補機部品は、前記燃料電池で消費された前記反応ガスに含まれる液水を分離するための気液分離器、または前記燃料電池に前記反応ガスを循環させる循環ポンプの少なくともいずれかを含み、
    前記第一温度は、前記気液分離器または前記循環ポンプのいずれかの温度である、
    燃料電池システム。
JP2020092982A 2020-05-28 2020-05-28 燃料電池システム Active JP7298547B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020092982A JP7298547B2 (ja) 2020-05-28 2020-05-28 燃料電池システム
US17/189,623 US11437635B2 (en) 2020-05-28 2021-03-02 Fuel cell system
CN202110346835.2A CN113745584B (zh) 2020-05-28 2021-03-31 燃料电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092982A JP7298547B2 (ja) 2020-05-28 2020-05-28 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2021190248A true JP2021190248A (ja) 2021-12-13
JP7298547B2 JP7298547B2 (ja) 2023-06-27

Family

ID=78704946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092982A Active JP7298547B2 (ja) 2020-05-28 2020-05-28 燃料電池システム

Country Status (3)

Country Link
US (1) US11437635B2 (ja)
JP (1) JP7298547B2 (ja)
CN (1) CN113745584B (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135066A (ja) * 2007-11-08 2009-06-18 Toyota Motor Corp 燃料電池システム
WO2013099097A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 直接酸化型燃料電池システム
JP2016091885A (ja) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 燃料電池システムにおける残水掃気処理方法および燃料電池システム
JP2017010908A (ja) * 2015-06-26 2017-01-12 トヨタ自動車株式会社 燃料電池システム
JP2017220400A (ja) * 2016-06-09 2017-12-14 トヨタ自動車株式会社 電力供給システム
JP2021128908A (ja) * 2020-02-17 2021-09-02 株式会社Soken 燃料電池システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056239B2 (ja) 2007-07-30 2012-10-24 トヨタ自動車株式会社 燃料電池システム
JP4381443B2 (ja) 2007-11-08 2009-12-09 トヨタ自動車株式会社 燃料電池システム
JP5382627B2 (ja) * 2009-07-21 2014-01-08 トヨタ自動車株式会社 燃料電池システム
JP6183775B2 (ja) * 2013-03-25 2017-08-23 Toto株式会社 固体酸化物型燃料電池システム
JP6424492B2 (ja) * 2014-06-30 2018-11-21 アイシン精機株式会社 燃料電池システム
JP6237585B2 (ja) * 2014-11-14 2017-11-29 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
CN105161741B (zh) * 2015-07-08 2018-09-18 中国东方电气集团有限公司 燃料电池的吹扫系统及其吹扫方法
JP6819474B2 (ja) * 2017-06-14 2021-01-27 トヨタ自動車株式会社 燃料電池システムおよび噴射制御方法
JP7119705B2 (ja) * 2018-07-26 2022-08-17 トヨタ自動車株式会社 燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135066A (ja) * 2007-11-08 2009-06-18 Toyota Motor Corp 燃料電池システム
WO2013099097A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 直接酸化型燃料電池システム
JP2016091885A (ja) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 燃料電池システムにおける残水掃気処理方法および燃料電池システム
JP2017010908A (ja) * 2015-06-26 2017-01-12 トヨタ自動車株式会社 燃料電池システム
JP2017220400A (ja) * 2016-06-09 2017-12-14 トヨタ自動車株式会社 電力供給システム
JP2021128908A (ja) * 2020-02-17 2021-09-02 株式会社Soken 燃料電池システム

Also Published As

Publication number Publication date
US20210376341A1 (en) 2021-12-02
US11437635B2 (en) 2022-09-06
JP7298547B2 (ja) 2023-06-27
CN113745584B (zh) 2024-01-30
CN113745584A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
US10483572B2 (en) Flow control method of cooling medium in a fuel cell system, and fuel cell system
JP7119705B2 (ja) 燃料電池システム
US11508976B2 (en) Fuel cell system
JP7347315B2 (ja) 燃料電池システム
CN110783605B (zh) 燃料电池系统
JP6972920B2 (ja) 燃料電池システム
JP2020024785A (ja) 燃料電池システム
JP7298547B2 (ja) 燃料電池システム
US11508978B2 (en) Fuel cell system
JP7298503B2 (ja) 燃料電池システムおよびその制御方法
JP7322815B2 (ja) 燃料電池システム
JP7294182B2 (ja) 燃料電池システムおよびその制御方法
US11387475B2 (en) Fuel cell system
JP7196830B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2021106102A (ja) 燃料電池システム
JP2021180076A (ja) 燃料電池システム
JP2022025201A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2021190243A (ja) 燃料電池システム
JP2022059302A (ja) 燃料電池システムおよび燃料電池システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R151 Written notification of patent or utility model registration

Ref document number: 7298547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151