JP2021170047A - 光走査装置及び画像形成装置 - Google Patents

光走査装置及び画像形成装置 Download PDF

Info

Publication number
JP2021170047A
JP2021170047A JP2020072194A JP2020072194A JP2021170047A JP 2021170047 A JP2021170047 A JP 2021170047A JP 2020072194 A JP2020072194 A JP 2020072194A JP 2020072194 A JP2020072194 A JP 2020072194A JP 2021170047 A JP2021170047 A JP 2021170047A
Authority
JP
Japan
Prior art keywords
optical
optical scanning
scanning apparatus
collimator lens
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020072194A
Other languages
English (en)
Inventor
寿文 千田
Hisafumi Senda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020072194A priority Critical patent/JP2021170047A/ja
Publication of JP2021170047A publication Critical patent/JP2021170047A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

【課題】製造が容易でありながら、入射光学系の焦点距離を変更した際の温度変化に伴う被走査面上における結像位置の変位を抑制することができる光走査装置を提供する。【解決手段】本発明に係る光走査装置は、光源からの光束の収束度を変換する第1及び第2の光学素子を有する入射光学系と、入射光学系からの光束を偏向して被走査面を主走査方向に走査する偏向器と、樹脂材料で形成される結像光学素子を有し、偏向器によって偏向された光束を被走査面に導光する結像光学系と、少なくとも三つの保持部材とを備え、第1及び第2の光学素子は、少なくとも三つの保持部材の何れかにより保持されており、第1の光学素子の主走査断面内におけるパワーは入射光学系において最も大きく、第2の光学素子の温度変化に対する主走査断面内におけるパワーの変化量は、第1の光学素子よりも大きいことを特徴とする。【選択図】 図2

Description

本発明は、光走査装置に関し、特にレーザープリンター、ファクシミリや複写機等の画像形成装置に好適なものである。
従来、入射する光束の光量を解像度の変更に伴って増減させるために、互いに焦点距離が異なる複数のコリメーターレンズを保持するための複数の保持部が設けられた光走査装置が知られている。
一方、このような光走査装置においてコリメーターレンズを焦点距離が異なるものに変更すると、光走査装置の内部温度の変化に伴う焦点位置のずれを補償することができなくなることによって、被走査面上の結像位置が大きく変位する虞があることも知られている。
特許文献1は、光源を接着固定する位置をコリメーターレンズの焦点距離に応じて変更することで、光走査装置の内部温度の変化に伴うそのような被走査面上における結像位置の変位を抑制する光走査装置を開示している。
特開2013−257515号公報
しかしながら、一般的に用いられる光走査装置において光源を接着固定する位置を特許文献1に従って変更しようとすると、数〜数百マイクロメートルの位置精度が求められる。
そのため、光源を接着固定する際の工程が複雑化することで組立作業性が悪化してしまう。
そこで本発明は、製造が容易でありながら、入射光学系の焦点距離を変更した際の温度変化に伴う被走査面上における結像位置の変位を抑制することができる光走査装置を提供することを目的とする。
本発明に係る光走査装置は、光源からの光束の収束度を変換する第1及び第2の光学素子を有する入射光学系と、入射光学系からの光束を偏向して被走査面を主走査方向に走査する偏向器と、樹脂材料で形成される結像光学素子を有し、偏向器によって偏向された光束を被走査面に導光する結像光学系と、少なくとも三つの保持部材とを備え、第1及び第2の光学素子は、少なくとも三つの保持部材の何れかにより保持されており、第1の光学素子の主走査断面内におけるパワーは入射光学系において最も大きく、第2の光学素子の温度変化に対する主走査断面内におけるパワーの変化量は、第1の光学素子よりも大きいことを特徴とする。
本発明によれば、製造が容易でありながら、入射光学系の焦点距離を変更した際の温度変化に伴う被走査面上における結像位置の変位を抑制することができる光走査装置を提供することができる。
第一実施形態に係る光走査装置の主走査断面図及び副走査断面図。 第一実施形態に係る光走査装置の一部拡大主走査断面図及び一部拡大副走査断面図。 第一実施形態に係る光走査装置における昇温に伴う結像位置の変位を抑制するための条件の説明図。 第一実施形態に係る光走査装置におけるパワーの比の値の変化に対する合成焦点距離の依存性を示した図。 本実施形態に係る光走査装置におけるパワーの比の値、筐体の線膨張係数及び結像位置の変位量の関係を示した図。 比較例及び第六実施形態それぞれの光走査装置における、結像位置の変位の補正残差と第2のコリメーターレンズの焦点距離との関係を示した図。 実施形態に係るカラー画像形成装置の要部副走査断面図。
以下、本実施形態に係る光走査装置について図面に基づいて説明する。なお、以下に示す図面は、本実施形態を容易に理解できるようにするために、実際とは異なる縮尺で描かれている場合がある。
なお以下の説明において、主走査方向とは、偏向器(回転多面鏡)の回転軸及び結像光学系の光軸に垂直な方向(偏向器により被走査面が光走査される方向)であり、副走査方向とは、偏向器の回転軸に平行な方向である。
また主走査断面とは、副走査方向に垂直な断面(主走査方向及び結像光学系の光軸に平行な断面)であり、副走査断面とは、主走査方向に垂直な断面(副走査方向及び結像光学系の光軸に平行な断面)である。
[第一実施形態]
図1(a)及び(b)はそれぞれ、第一実施形態に係る光走査装置101の主走査断面図及び副走査断面図を示している。
本実施形態に係る光走査装置101は、光源1Y、1M、1C及び1K(第1、第2、第3及び第4の光源)、第1のコリメーターレンズ2Y、2M、2C及び2K、第2のコリメーターレンズ3Y、3M、3C及び3Kを備えている。
また本実施形態に係る光走査装置101は、開口4Y、4M、4C及び4K、反射ミラー5Y、5M、5C及び6、シリンドリカルレンズ7、反射ミラー8、偏向器9を備えている。
また本実施形態に係る光走査装置101は、第1の走査レンズ11(結像光学素子)、第2の走査レンズ12Y、12M、12C及び12K、反射ミラー13Y、13M、13C、13K、14Y、14M及び14Cを備えている。
そして、第1のコリメーターレンズ2Y、第2のコリメーターレンズ3Y、開口4Y、反射ミラー5Y、反射ミラー6、シリンドリカルレンズ7及び反射ミラー8によって、入射光学系75Y(第1の入射光学系)が構成される。
また、第1のコリメーターレンズ2M、第2のコリメーターレンズ3M、開口4M、反射ミラー5M、反射ミラー6、シリンドリカルレンズ7及び反射ミラー8によって、入射光学系75M(第2の入射光学系)が構成される。
また、第1のコリメーターレンズ2C、第2のコリメーターレンズ3C、開口4C、反射ミラー5C、反射ミラー6、シリンドリカルレンズ7及び反射ミラー8によって、入射光学系75C(第3の入射光学系)が構成される。
また、第1のコリメーターレンズ2K、第2のコリメーターレンズ3K、開口4K、シリンドリカルレンズ7及び反射ミラー8によって、入射光学系75K(第4の入射光学系)が構成される。
そして、第1の走査レンズ11、第2の走査レンズ12Y、反射ミラー13Y及び14Yによって、走査光学系85Yが構成される。
また、第1の走査レンズ11、第2の走査レンズ12M、反射ミラー13M及び14Mによって、走査光学系85Mが構成される。
また、第1の走査レンズ11、第2の走査レンズ12C、反射ミラー13C及び14Cによって、走査光学系85Cが構成される。
また、第1の走査レンズ11、第2の走査レンズ12K、反射ミラー13Kによって、走査光学系85Kが構成される。
そして、第1の走査レンズ11及び第2の走査レンズ12Yによって走査レンズ群40Y(第1の結像光学系)が構成される。
また、第1の走査レンズ11及び第2の走査レンズ12Mによって走査レンズ群40M(第2の結像光学系)が構成される。
また、第1の走査レンズ11及び第2の走査レンズ12Cによって走査レンズ群40C(第3の結像光学系)が構成される。
また、第1の走査レンズ11及び第2の走査レンズ12Kによって走査レンズ群40K(第4の結像光学系)が構成される。
図1(a)及び(b)に示されているように、本実施形態に係る光走査装置101は、四つの光源1Y、1M、1C及び1K、各光源に対応した四つの入射光学系75Y、75M、75C及び75K、共通の偏向器9、及び各光源に対応した四つの走査光学系85Y、85M、85C及び85Kによって構成されている。
そして、光源1Y、1M、1C及び1Kそれぞれから出射した光束LY、LM、LC及びLK(第1、第2、第3及び第4の光束)が、入射光学系75Y、75M、75C及び75Kを介して、偏向器9に入射する。
そして、偏向器9によって偏向された光束LY、LM、LC及びLKは、走査光学系85Y、85M、85C及び85Kを介して、感光体ドラムである第1乃至第4の被走査面21乃至24へ導光される。
また、図1(a)及び(b)に示されているように、本実施形態に係る光走査装置101が備える各光学素子は、筐体400に取り付けられている。
光源1Y、1M、1C及び1Kはそれぞれ、第1の被走査面21、第2の被走査面22、第3の被走査面23及び第4の被走査面24に対応している。そして、光源1Y、1M、1C及び1Kはそれぞれ、発光点である端面発光型の半導体レーザーを四つ有する光源である。また、光源1Y、1M、1C及び1Kそれぞれの波長は780nmであり、光源1Y、1M、1C及び1Kは、副走査方向において互いに異なる高さで配置されている。
第1及び第2のコリメーターレンズ2Y及び3Y、第1及び第2のコリメーターレンズ2M及び3Mはそれぞれ、光源1Y、1Mから出射した光束LY、LMを主走査断面内において平行光束に変換する(収束度を変換する)。
同様に、第1及び第2のコリメーターレンズ2C及び3C、第1及び第2のコリメーターレンズ2K及び3Kはそれぞれ、光源1C、1Kから出射した光束LC、LKを主走査断面内において平行光束に変換する(収束度を変換する)。
なおここで、平行光束とは、厳密な平行光束だけでなく、弱発散光束や弱収束光束等の略平行光束を含むものとする。
ここで、第1及び第2のコリメーターレンズ2Y及び3Y、第1及び第2のコリメーターレンズ2M及び3Mをそれぞれ、コリメーターレンズ群30Y、30Mと呼ぶこととする。
また、第1及び第2のコリメーターレンズ2C及び3C、第1及び第2のコリメーターレンズ2K及び3Kをそれぞれ、コリメーターレンズ群30C、30Kと呼ぶこととする。
本実施形態に係る光走査装置101では、第1のコリメーターレンズ2Y、2M、2C及び2Kは、硝材((株)オハラ製のs−tih6)を用いて作製している。
また、第2のコリメーターレンズ3Y、3M、3C及び3Kは、樹脂材料(日本ゼオン(株)製のK22R)を用いて作製している。
換言すると、本実施形態に係る光走査装置101では、温度変化に対する第1のコリメーターレンズ2Y、2M、2C及び2Kの屈折率の変化量は、第2のコリメーターレンズ3Y、3M、3C及び3Kよりも小さくなっている。
また、本実施形態に係る光走査装置101では、第1のコリメーターレンズ2Y、2M、2C及び2Kの主走査断面内におけるパワーは、入射光学系75Y、75M、75C及び75Kそれぞれにおいて最も大きくなっている。
また、本実施形態に係る光走査装置101では、温度変化に対する第1のコリメーターレンズ2Y、2M、2C及び2Kそれぞれの主走査断面内におけるパワーの変化量は、第2のコリメーターレンズ3Y、3M、3C及び3Kよりも小さくなっている。
開口4Y、4Mはそれぞれ、主走査方向に5mm、副走査方向に2mmの矩形形状であり、第1及び第2のコリメーターレンズ2Y及び3Y、第1及び第2のコリメーターレンズ2M及び3Mを通過した光束LY、LMの光束径を制限する。
同様に、開口4C、4Kはそれぞれ、主走査方向に5mm、副走査方向に2mmの矩形形状であり、第1及び第2のコリメーターレンズ2C及び3C、第1及び第2のコリメーターレンズ2K及び3Kを通過した光束LC、LKの光束径を制限する。
反射ミラー5Y、5M及び5Cはそれぞれ、開口4Y、4M及び4Cを通過した光束LY、LM及びLCを反射ミラー6へ反射する機能を有しており、本実施形態に係る光走査装置101では、各光束を主走査断面内において+90度だけ折り返す。
反射ミラー6は、反射ミラー5Y、5M及び5Cで反射された光束LY、LM及びLCをシリンドリカルレンズ7へ反射する機能を有しており、本実施形態に係る光走査装置101では、各光束を主走査断面内において−90度だけ折り返す。
なお、光源1Kから出射した光束LKは、副走査方向において反射ミラー6とは異なる高さで進行しているため、反射ミラー6では反射されない。
シリンドリカルレンズ7は、反射ミラー6によって反射された光束LY、LM及びLCと開口4Kを通過した光束LKとを副走査方向においてのみ収束させるパワーを有している。
なお、本実施形態に係る光走査装置101では、シリンドリカルレンズ7は、第1のコリメーターレンズ2Y、2M、2C、2Kと同様の硝材((株)オハラ製のs−tih6)を用いて作製している。
そして、反射ミラー6によって反射された光束LY、LM及びLCと開口4Kを通過した光束LKは、副走査方向において互いに異なる高さでシリンドリカルレンズ7に入射する。
反射ミラー8は、シリンドリカルレンズ7を通過した光束LY、LM、LC及びLKが副走査断面内において主走査断面に対して互いに異なる角度で偏向器9の偏向面9aに斜入射するように反射する。
偏向器9は、回転軸10まわりの矢印A方向に等速度で回転している回転多面鏡である。なお、本実施形態に係る光走査装置101では、偏向器9は六つの偏向面を有しており、各偏向面の副走査方向における高さは2mm、副走査方向に直交する方向における幅は30mmとなっている。
第1の走査レンズ11と第2の走査レンズ12Y、12M、12C及び12Kとは、偏向器9によって偏向された光束LY、LM、LC及びLKを集光して、第1乃至第4の被走査面21乃至24上を等速で走査するための機能を有している。
なお、第1の走査レンズ11、第2の走査レンズ12Y、12M、12C及び12Kは、第2のコリメーターレンズ3Y、3M、3C、3Kと同様の樹脂材料(日本ゼオン(株)製のK22R)を用いて作製している。
また、第1の走査レンズ11の出射面と第2の走査レンズ12Y、12M、12C及び12Kの入射面及び出射面とは、非球面で形成されており、非球面係数は、第1乃至第4の被走査面21乃至24上を等速で走査することができるように適切に設定されている。
また、本実施形態に係る光走査装置101では、走査光学系85Y、85M、85C及び85Kの光軸と反射ミラー8によって反射された光束LY、LM、LC及びLKとがそれぞれ互いになす角度が70度になるように、反射ミラー8の配置角度を設定している。
次に、本実施形態に係る光走査装置101の諸元値を以下の表1に示す。
Figure 2021170047
なお、表1に示されている諸元値は、入射光学系75Y、75M、75C及び75Kと走査光学系85Y、85M、85C及び85Kとのそれぞれにおいて共通である。
また表1では、25℃の常温状態における諸元値と60℃の昇温状態における諸元値とが示されている。
次に、本実施形態に係る光走査装置101が備える第1の走査レンズ11、第2の走査レンズ12Y、12M、12C及び12Kの主走査断面内における非球面形状(母線形状)は、以下の式(1)及び(2)のように表される。
Figure 2021170047
Figure 2021170047
ここで、各レンズ面において光軸との交点を原点とし、光軸に平行な軸をx軸、主走査方向をy軸、副走査方向をz軸としている。
また、Rは主走査断面内における曲率半径、K、B、B、・・・、Bは非球面係数である。
なお、非球面係数B、B、・・・、Bにおけるサフィックスs及びeはそれぞれ、走査開始側及び走査終了側を表している。
すなわち、本実施形態に係る光走査装置101における走査開始側及び走査終了側とはそれぞれ、図1(a)及び(b)における光軸に対して+Y側及び−Y側である。
また、本実施形態に係る光走査装置101が備える第1の走査レンズ11、第2の走査レンズ12Y、12M、12C及び12Kの副走査断面内における非球面形状(子線形状)は、以下の式(3)及び(4)のように表される。
Figure 2021170047
Figure 2021170047
ここで、r’は副走査断面内における曲率半径、rは光軸を含む副走査断面内における曲率半径、E、E、・・・、Eは変化係数である。
なお、変化係数E、E、・・・、Eにおけるサフィックスs及びeはそれぞれ、走査開始側及び走査終了側を表している。
表2は、本実施形態に係る光走査装置101が備える第1の走査レンズ11、第2の走査レンズ12Y、12M、12C及び12Kの非球面形状の各係数を示している。ここで「E−x」は「10−x」を示している。
Figure 2021170047
なお表2に示されているように、本実施形態に係る光走査装置101では、第1の走査レンズ11と第2の走査レンズ12Y、12M、12C及び12Kとのそれぞれにおいて走査開始側及び走査終了側の非球面係数を互いに一致させている。
換言すると、本実施形態に係る光走査装置101では、第1の走査レンズ11、第2の走査レンズ12Y、12M、12C及び12Kの主走査断面内における非球面形状を光軸に対して対称に構成している。
また、本実施形態に係る光走査装置101では、近軸の結像位置を第1乃至第4の被走査面21乃至24それぞれに対して偏向器9とは反対側に約1mmだけ離れた位置に設定している。
これは、波面収差を最も制御することができる位置に第1乃至第4の被走査面21乃至24に対応する感光体ドラムを配置するためである。
また、図1(b)に示されているように、本実施形態に係る光走査装置101では、第1乃至第4の被走査面21乃至24それぞれに光束LY、LM、LC及びLKを到達させるために、第1の走査レンズ11と第2の走査レンズ12Y、12M、12C、12Kそれぞれとの間の光路上に複数の偏向ミラーを設けている。
すなわち、反射ミラー13Y、13M、13C及び13Kは、第1の走査レンズ11を通過した光束LY、LM、LC及びLKをそれぞれ第1乃至第4の被走査面21乃至24に到達させるための光線分離機能を有している。
そして、反射ミラー13Y、13M及び13Cそれぞれによって偏向された光束LY、LM、LCは、反射ミラー14Y、14M及び14Cそれぞれによってさらに偏向される。
このようにして偏向された光束LY、LM、LC及びLKはそれぞれ、第2の走査レンズ12Y、12M、12C及び12Kを通過した後、第1乃至第4の被走査面21乃至24に到達する。
次に、本実施形態に係る光走査装置101における特徴的な構成について説明する。
図2(a)及び(b)はそれぞれ、本実施形態に係る光走査装置101の一部拡大主走査断面図及び一部拡大副走査断面図を示している。
なお以下では、光源1Kから出射する光束LKによる走査についてのみ示すが、もちろん以下の構成は光源1Y、1M及び1Cから出射する光束LY、LM及びLCそれぞれによる走査についても同様に適用することができる。
図2(a)及び(b)に示されているように、光源1Kは発光点406Kを有しており、筐体400に取り付けられて位置決め固定されている。
換言すると、光源1Kは保持部材としての筐体400に取り付けられて位置決め固定されている。
また筐体400には、第1のコリメーターレンズ2K(第1の光学素子)及び第2のコリメーターレンズ3K(第2の光学素子)を保持するための複数の保持部401K、402K、403K、404K及び405K(保持部材、取り付け位置設定部)が形成されている。
ここで、保持部401K乃至405Kはそれぞれ、筐体400に一体形成されているリブまたは溝状の構造を有しており、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kを光軸方向において固定することができる。
すなわち、本実施形態に係る光走査装置101では、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kはそれぞれ、保持部401K乃至405Kのいずれかに配置されて保持される。
換言すると、本実施形態に係る光走査装置101では、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kを保持するための保持部材が少なくとも三つ設けられている。
すなわち、本実施形態に係る光走査装置101では、コリメーターレンズを保持するための保持部材の数は、コリメーターレンズの数より多い。
さらに、本実施形態に係る光走査装置101では、入射光学系75Kにおいて光源1Kからの光束LKの収束度を変換する光学素子は、第1及び第2のコリメーターレンズ2K及び3Kのみである。
本実施形態に係る光走査装置101では、例えば図2(a)及び(b)に示されているように、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kをそれぞれ保持部402K及び403Kによって保持することができる。
そして、例えば所望の解像度に応じて焦点距離が異なる第1のコリメーターレンズ2Kを用いる際には、現在の第1のコリメーターレンズ2Kの代わりに焦点距離が異なる第1のコリメーターレンズ2Kを保持部401K、404K及び405Kに配置して保持することができる。
このように本実施形態に係る光走査装置101では、互いに焦点距離が異なる複数のコリメーターレンズを利用して所望の解像度に応じてコリメーターレンズを変更することができる。
すなわち、本実施形態に係る光走査装置101では、コリメーターレンズを保持している保持部と保持していない保持部とが存在することとなる。
また以下では、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kの焦点距離の大きさについて比較しているが、これはパワーの大きさを比較していることと同義である。
すなわち一般的には、焦点距離が長いほどパワーは小さくなる一方で、焦点距離が短いほどパワーは大きくなる。
また、本実施形態に係る光走査装置101が用いている筐体400は、例えばガラスファイバーを混ぜた樹脂材料によって形成されており、その線膨張係数は、例えば4.5×10−5mm/℃である。
また、光源1Kの発光点406Kから保持部401Kの光源1K側端部までの光軸に沿った距離dは、18mmに設定されている。
そして、保持部401K乃至405Kの隣接する二つの保持部のうち光源1K側の保持部の偏向器9側端部から偏向器9側の保持部の光源1K側端部までの光軸に沿った距離d、d、d及びdはそれぞれ、8mmに設定されている。
また、保持部401K乃至405Kそれぞれの光軸方向の厚さe、e、e、e及びeはそれぞれ、2mmに設定されている。
また本実施形態に係る光走査装置101では、表1に示されているように、第1のコリメーターレンズ2Kの焦点距離は33.41mmであり、第2のコリメーターレンズ3Kの焦点距離は236.013mmである。
そして上記のように、互いに距離d=8mmだけ離間した保持部402K及び403Kそれぞれに第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kが配置されている。
そのため、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kの合成焦点距離は、30.32mmとなる。
なお、詳細については後述するが、本実施形態に係る光走査装置101の特徴として、第2のコリメーターレンズ3Kの焦点距離が第1のコリメーターレンズ2Kより長くなっている。
そして、相対的に焦点距離が短い第1のコリメーターレンズ2Kは硝材を用いて形成されている一方で、相対的に焦点距離が長い第2のコリメーターレンズ3Kは樹脂材料を用いて形成されている。
次に、本実施形態に係る光走査装置101における昇温に伴う光学性能の変化について説明する。
本実施形態に係る光走査装置101では、以下に示すような昇温に伴う光学性能の変化を抑制するために、第1のコリメーターレンズ2Kに加えて第2のコリメーターレンズ3Kを設けている。
ここで、本実施形態に係る光走査装置101では、昇温によって以下のように光学性能が変化するものとする。
1.光源1Kの発光点406Kから第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kそれぞれまでの面間隔が筐体400の膨張によって増大することで、第4の被走査面24上における光束LKの結像位置が光軸方向に変位する。
2.第1の走査レンズ11及び第2の走査レンズ12K、すなわち走査レンズ群40Kの屈折率及び形状が変化することで、第4の被走査面24上における光束LKの結像位置が光軸方向に変位する。
3.第1のコリメーターレンズ2Kの屈折率及び形状が変化することで、第4の被走査面24上における光束LKの結像位置が光軸方向に変位する。
4.第2のコリメーターレンズ3Kの屈折率及び形状が変化することで、第4の被走査面24上における光束LKの結像位置が光軸方向に変位する。
なお、昇温に伴って光源1Kを構成する半導体レーザーの共振器長が膨張し、共振器内の共振周波数が小さくなることで、発振波長が長くなることが一般的に知られている。
本実施形態に係る光走査装置101では、昇温に伴うそのような発振波長の変化も考慮しており、発振波長の変化に伴った屈折率の変動の影響も考慮している。
図3(a)乃至(d)は、本実施形態に係る光走査装置101における昇温に伴う第4の被走査面24上の光束LKの結像位置の変位を抑制するための条件の説明図を示している。
なお、以下では簡略化のために、昇温に伴う第2のコリメーターレンズ3Kの屈折率の変化による光束LKの結像位置の変位量に比べて、第1のコリメーターレンズ2Kの屈折率の変化による光束LKの結像位置の変位量は十分小さいとする。
これは、第1のコリメーターレンズ2Kは硝材を用いて形成されているため、昇温に伴う第1のコリメーターレンズ2Kの屈折率の変化による光束LKの結像位置の変位量は、光学系全体の結像倍率が高くても、高々、数マイクロメートル程度であるからである。
まず図3(a)では、常温において光源1Kから出射した光束LKが、コリメーターレンズ群30K及び走査レンズ群40Kによって第4の被走査面24上に結像されている様子が示されている。
そして、図3(b)に示されているように、昇温に伴って光源1Kの発光点406Kからコリメーターレンズ群30Kまでの距離が増大すると、光束LKの結像位置は変位する。
具体的には、コリメーターレンズ群30Kが、発光点406Kに対するコリメーターレンズ群30Kの焦点位置に対して発光点406Kから遠ざかったことで、コリメーターレンズ群30Kを通過した光束LKは、収束光束となる。
そのため、光束LKは走査レンズ群40Kによって第4の被走査面24より距離ΔDM1だけ偏向器9側の位置に集光する。
このとき、昇温に伴うコリメーターレンズ群30Kの変位による光束LKの結像位置の変位量ΔDM1は、以下の式(5)によって求めることができる。
Figure 2021170047
ここで、αは筐体400を形成する材料の線膨張係数、d’は光源1Kの発光点406Kから第1のコリメーターレンズ2Kまでの距離、Tは昇温前における温度(常温)、Tは昇温後における温度である。
また、φθは走査レンズ群40Kの主走査断面内におけるパワー、φcolはコリメーターレンズ群30Kの主走査断面内におけるパワーであり、T及びTはそれぞれ25℃及び60℃とする。
すなわち、昇温に伴うコリメーターレンズ群30Kの変位による光束LKの結像位置の変位量ΔDM1は、昇温に伴うコリメーターレンズ群30Kの変位量αd(T−T)に、コリメーターレンズ群30Kの焦点距離と走査レンズ群40Kの焦点距離との比、つまり全光学系の横倍率の二乗(φcol/φθを掛けたものとなる。
また、図3(c)に示されているように、昇温に伴って走査レンズ群40Kの屈折率が低下すると、走査レンズ群40Kの焦点距離が増大し、光束LKの結像位置は第4の被走査面24より距離ΔDM2だけ偏向器9とは反対側の位置に変位する。
このとき、昇温に伴う走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位量ΔDM2は、以下の式(6)によって求めることができる。
Figure 2021170047
ここで、fθは昇温前における走査レンズ群40Kの焦点距離であり、fθ’は昇温後における走査レンズ群40Kの焦点距離である。
すなわち、昇温に伴う走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位量ΔDM2は、昇温に伴う走査レンズ群40Kの焦点距離の変化量で表すことができる。
そして、本実施形態に係る光走査装置101では、光束LKの結像位置の変位量ΔDM1及びΔDM2が互いに相殺し合うことで、図3(d)に示されているように、昇温に伴う光束LKの結像位置の変位量を低減することができる。
換言すると、本実施形態に係る光走査装置101では、光束LKの結像位置の変位量ΔDM1及びΔDM2は、互いに異符号となるように設定される。
また、以下に示すように、昇温に伴うコリメーターレンズ群30Kの変位による光束LKの結像位置の変位量の絶対値|ΔDM1|は、昇温に伴う走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位量の絶対値|ΔDM2|より大きくなっている。
具体的には、本実施形態に係る光走査装置101では、表1に示されているように、コリメーターレンズ群30Kの合成焦点距離及び走査レンズ群40Kの焦点距離はそれぞれ、30.32mm及び275.9mmと求めることができる。
そしてΔDM2については、筐体400の線膨張係数に依らず昇温分だけ結像位置が変位すると仮定したとき一意の値を取ることから、ΔDM1=−3.81mm、ΔDM2=+1.87mmと求めることができる。
すなわち、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化によって、光束LKの結像位置は、トータルでΔDM=ΔDM1+ΔDM2=−1.94mmだけ変位することとなる。
本実施形態に係る光走査装置101のような、複数の光源から出射した複数の光束を偏向器の同一の偏向面で偏向する形式では、一般的に走査レンズ群の焦点距離を長く設定する傾向がある。
これは具体的には、第1の走査レンズ11を通過した複数の光束を互いに分離させるように、第1の走査レンズ11から十分離間させて反射ミラー13Y、13M、13C及び13Kを配置するためである。
これにより、複数の光源から出射した複数の光束を偏向器の二つの偏向面で偏向するタンデム型の光走査装置に比べて、本実施形態に係る光走査装置101では、走査レンズ群40Kの焦点距離が長くなっている。
一方、本実施形態に係る光走査装置101において走査レンズ群40Kの焦点距離を短くしようとすると、複数の光束を互いに分離させるために、各光束を大きい角度で走査レンズ群40Kに入射させる必要がある。
そのため、第4の被走査面24上における光学性能が低下する虞がある。
また、光学系全体の縦倍率を小さくするためにコリメーターレンズ群30Kの合成焦点距離を長くしようとすると、光源1Kの発光点406Kからコリメーターレンズ群30Kまでの距離が長くなるため、装置が大型化してしまう虞がある。
加えて、コリメーターレンズ群30Kの合成焦点距離を長くしようとすると、必要とされる光量を満足することができず、画像が劣化する可能性もある。
従って、本実施形態に係る光走査装置101では、大型化及び画像劣化を抑制するために、光学系全体の縦倍率が大きくなるようにしている。
そのため、筐体400を鉄のような線膨張係数が小さい材料を用いて形成しない限り、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化による光束LKの結像位置は、図3(d)に示されているように、トータルで偏向器9側に移動することとなる。
すなわち、本実施形態に係る光走査装置101において、昇温に伴う光束LKの結像位置を偏向器9とは反対側、つまり第4の被走査面24上に戻るようにするためには、昇温に伴って光学系全体の焦点距離が長くなればよい。
そのためには、昇温に伴ってコリメーターレンズ群30Kの合成焦点距離が長くなればよい。
次に、昇温に伴ってコリメーターレンズ群30Kの合成焦点距離を長くする場合における第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kのパワー配置について検討する。
結論としては、昇温に伴ってコリメーターレンズ群30Kの合成焦点距離が長くなるためには、第2のコリメーターレンズ3Kが正のパワーを有していれば、すなわち第2のコリメーターレンズ3Kのパワーの符号が正であればよい。
以下、その理由について具体的に述べる。
第2のコリメーターレンズ3Kに用いられている樹脂材料(日本ゼオン(株)製のK22R)では、35℃だけ温度が上がると、屈折率が0.00357だけ低下する。
そして、本実施形態に係る光走査装置101では、第2のコリメーターレンズ3Kの入射面は平面であることから、第2のコリメーターレンズ3Kの主走査断面内におけるパワーの昇温に伴う変化量Δφは以下の式(7)のように表される。
Figure 2021170047
ここで、Rは第2のコリメーターレンズ3Kの出射面の主走査断面内における曲率半径、Nは昇温前における屈折率、N’は昇温後における屈折率である。
また、φは昇温前における第2のコリメーターレンズ3Kの主走査断面内におけるパワー、φ’は昇温後における第2のコリメーターレンズ3Kの主走査断面内におけるパワーである。
ここで、本実施形態に係る光走査装置101では、R<0、N−N’>0であることから、Δφは負の値を取ることとなり、すなわち昇温に伴って第2のコリメーターレンズ3Kの主走査断面内におけるパワーは小さくなる。
従って、昇温に伴って第2のコリメーターレンズ3Kの焦点距離は長くなり、その結果、昇温に伴って光学系全体の焦点距離も長くなる。
具体的には、本実施形態に係る光走査装置101では、表1に示されているように、第2のコリメーターレンズ3Kの昇温前における焦点距離及び昇温後における焦点距離がそれぞれ、236.013mm及び237.613mmになるように設計している。
そして、コリメーターレンズ群30Kの合成焦点距離は、昇温に伴って30.32mmから30.34mmに増加する。
このように、本実施形態に係る光走査装置101では、昇温に伴ってコリメーターレンズ群30Kの焦点距離が長くなるパワー配置を採っている。
これにより、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位ΔDMを高精度で補正することができる。
具体的には、上記のように筐体400が25℃から60℃まで35℃だけ昇温した場合には、光源1Kから第1のコリメーターレンズ2Kまでの距離d’は0.047mmだけ増大する。
これにより、この増大分が第1の走査レンズ11及び第2の走査レンズ12Kを介して光軸方向に拡大されることで、光束LKの結像位置は、ΔDM1=−3.81mm、すなわち偏向器9側に3.81mmだけ変位することとなる。
一方、昇温に伴って第1の走査レンズ11及び第2の走査レンズ12Kの屈折率が低下し、走査レンズ群40Kの焦点距離が長くなることで、光束LKの結像位置は、ΔDM2=1.87mm、すなわち偏向器9とは反対側に1.87mmだけ変位する。
そして、本実施形態に係る光走査装置101では、ΔDM=ΔDM1+ΔDM2=−1.94mmの光束LKの結像位置の変位を、昇温に伴う第2のコリメーターレンズ3Kの焦点距離の変化を利用して相殺するように補正している。
これにより、光束LKの結像位置を昇温前、すなわち常温時における結像位置に戻している。
また、本実施形態に係る光走査装置101の特徴として、焦点距離が相対的に短い第1のコリメーターレンズ2Kは硝材を用いて作製している一方で、焦点距離が相対的に長い第2のコリメーターレンズ3Kは樹脂材料を用いて作製している。
以下に、その理由について説明する。
図4は、本実施形態に係る光走査装置101での、昇温に伴う第1のコリメーターレンズ2Kと第2のコリメーターレンズ3Kとのパワーの比率(比の値)φ2/φ1の変化に対するコリメーターレンズ群30Kの合成焦点距離の変化f’−fの依存性を示している。
ここで、実線(a)は、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kをそれぞれ硝材及び樹脂材料を用いて作製した場合である。
また、破線(b)は、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kの双方を樹脂材料を用いて作製した場合である。
また、パワーの比率φ2/φ1を変えながらコリメーターレンズ群30Kの合成焦点距離を21mmから33mmまで変えているが、本実施形態に係る光走査装置101では常温時においてコリメーターレンズ群30Kのバックフォーカスが28mmになるように設計している。
図4に示されているように、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kの双方を樹脂材料を用いて作製すると、光束LKの結像位置を第4の被走査面24上に戻せないほど、昇温に伴ってコリメーターレンズ群30Kの合成焦点距離が長くなってしまうことがわかる。
また、第1及び第2のコリメーターレンズ2K及び3Kのパワーの比率φ2/φ1を変更しても、そのようなコリメーターレンズ群30Kの合成焦点距離の昇温に伴う増大は、ほとんど変化しないこともわかる。
本実施形態に係る光走査装置101では、コリメーターレンズ群30Kの合成焦点距離の昇温に伴う変化を、表1に示されているように0.02mmに設定することで、高精度の温度補償を実現している。
一方、第1及び第2のコリメーターレンズ2K及び3Kの双方を樹脂材料で作製すると、コリメーターレンズ群30Kの合成焦点距離の昇温に伴う変化をそのように制御することが困難となる。
したがって、本実施形態に係る光走査装置101において第1及び第2のコリメーターレンズ2K及び3Kを用いて精度良く温度補償を行うためには、昇温に伴って屈折率がほとんど変化しない材料と屈折率が大きく変化する材料とを組み合わせることが必要である。
さらに、本実施形態に係る光走査装置101では、走査レンズ群40Kの副走査断面内におけるパワーの大半を第2の走査レンズ12Kに分担している。
そのため、走査レンズ群40Kの副走査断面内における主平面位置は、第2の走査レンズ12Kの出射面から偏向器9側に5mmだけ離間した位置になっている。
また、本実施形態に係る光走査装置101では、表1に示されているように、コリメーターレンズ群30K及びシリンドリカルレンズ7の焦点距離をそれぞれ30.32mm及び85mmに設定している。
従って、入射光学系75Kの縦倍率は、約9倍となるが、走査レンズ群40Kの副走査断面内における結像倍率は−0.23倍程度であるため、昇温に伴う副走査断面内における結像位置の変位の影響は小さくなる。
以上のように、本実施形態に係る光走査装置101では、光源1Kから出射した光束LKの収束度を変換する光学素子として第1及び第2のコリメーターレンズ2K及び3Kを設け、それぞれ硝材及び樹脂材料を用いて作製している。
そして、複数の保持部401K乃至405Kを設けることで、互いに焦点距離が異なる複数のコリメーターレンズを利用することができる。
これにより、本実施形態に係る光走査装置101では、コリメーターレンズ群30Kを構成する第1及び第2のコリメーターレンズ2K及び3Kをそれぞれ保持部401K乃至405Kのいずれかに取り付けるだけで、昇温に伴う光束LKの結像位置の変位を良好に低減することができる。
また、本実施形態に係る光走査装置101では、第1及び第2のコリメーターレンズ2K及び3Kをそれぞれ保持部401K乃至405Kのいずれかに取り付ける工程のみを行えばよいため、良好な組立作業性を得ることができる。
なお、本実施形態に係る光走査装置101では、第1及び第2のコリメーターレンズ2K及び3K、第1及び第2の走査レンズ11及び12K、並びにシリンドリカルレンズ7を上述の特定の材料を用いて作製している。
しかしながら、上記の条件を逸脱しないことにより上記の効果を得ることができる限り、上記の材料に限られるものではない。
また、入射光学系75Y、75M、75C及び75Kに含まれる反射ミラー5Y、5M、5C、6及び8の構成や配置についても上記に限られるものではない。
また、上記では光源1Kから出射した光束LKによる第4の被走査面24上における結像位置の変位について示したが、もちろん本実施形態は、光源1Y、1M及び1Cから出射した光束LY、LM及びLCによる第1乃至第3の被走査面21乃至23上における結像位置の変位についても同様に適用することができる。
また、本実施形態に係る光走査装置101では、コリメーターレンズ群30Kを第1及び第2のコリメーターレンズ2K及び3Kの二つの光学素子で構成しているが、これに限らず三つ以上の光学素子で構成しても構わない。
[第二実施形態]
第二実施形態に係る光走査装置は、筐体400の材料や第1及び第2のコリメーターレンズ2K及び3Kの諸元値が異なっていること等以外は、第一実施形態に係る光走査装置101と同一の構成であるため、同一の部材には同一の付番を付して説明を省略する。
表3は、本実施形態に係る光走査装置における第一実施形態に係る光走査装置101から変更している主な諸元値を示している。
また、以下では光源1Kから出射した光束LKによる第4の被走査面24上における結像位置の変位について示すが、もちろん光源1Y、1M及び1Cから出射した光束LY、LM及びLCによる第1乃至第3の被走査面21乃至23上における結像位置の変位についても同様に適用することができる。
Figure 2021170047
具体的には、本実施形態に係る光走査装置では、筐体400を形成している材料の線膨張係数は7.0×10−5mm/℃、第1のコリメーターレンズ2Kの焦点距離は37.103mmとなっている。
また、第2のコリメーターレンズ3Kの焦点距離は144.651mm、コリメーターレンズ群30Kの合成焦点距離は31.122mmとなっている。
すなわち、本実施形態に係る光走査装置では、第一実施形態に係る光走査装置101に比べて筐体400を線膨張係数が大きい材料で作製している。
具体的には、モールド部材を使用することで筐体400のコストを低減している。
なお、第1及び第2のコリメーターレンズ2K及び3Kの肉厚や材料は、第一実施形態に係る光走査装置101と同一である。
また、本実施形態に係る光走査装置においても第一実施形態に係る光走査装置101と同様に、第1及び第2のコリメーターレンズ2K及び3Kはそれぞれ、保持部402K及び403Kによって保持されている。
そして、本実施形態に係る光走査装置においても第一実施形態に係る光走査装置101と同一の諸元値を有する第1の走査レンズ11及び第2の走査レンズ12Kを用いている。
そのため、昇温に伴う走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位量ΔDM2は、第一実施形態に係る光走査装置101と同一の+1.87mmである。
本実施形態に係る光走査装置では、上記のように筐体400を線膨張係数が大きい、具体的には1.56倍大きい材料で作製しているため、昇温に伴う筐体400の膨張による光束LKの結像位置の変位もその分大きくなる。
具体的には、第一実施形態に係る光走査装置101ではΔDM1=−3.81mmであったのに対して、本実施形態に係る光走査装置ではΔDM1=−5.55mmとなる。
そのため、本実施形態に係る光走査装置では、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化によって、光束LKの結像位置は、ΔDM=ΔDM1+ΔDM2=−3.68mmだけ変位することとなる。
換言すると、本実施形態に係る光走査装置では、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化によって、光束LKの結像位置は、第一実施形態に係る光走査装置101と比べて、偏向器9側にさらに1.74mmだけ変位している。
そこで本実施形態に係る光走査装置では、そのような更なる変位を補正するために、以下に示すような第1及び第2のコリメーターレンズ2K及び3Kを用いる。
具体的には、本実施形態に係る光走査装置では、第1及び第2のコリメーターレンズ2K及び3Kの焦点距離はそれぞれ、表3に示されているように37.103mm及び144.651mmとなっている。
それにより、本実施形態に係る光走査装置では、コリメーターレンズ群30Kの合成焦点距離は、31.122mmとなる。
すなわち、第一実施形態に係る光走査装置101と比較した特徴として、本実施形態に係る光走査装置では、第2のコリメーターレンズ3Kの焦点距離を短くする、すなわちパワーが強くなるように設計している。
これは、以下に示す理由によるためである。
すなわち、本実施形態に係る光走査装置では、上記のように第一実施形態に係る光走査装置101と比べて筐体400を線膨張係数が1.56倍大きい材料で作製している。
そのため、昇温に伴う筐体400の膨張によって光束LKの結像位置が偏向器9側にさらに1.74mmだけ変位している。
従って、本実施形態に係る光走査装置において昇温に伴う筐体400の膨張及び走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位を補正するためには、昇温に伴うコリメーターレンズ群30Kの合成焦点距離の変化を第一実施形態に係る光走査装置101と比べてさらに大きく設定する必要がある。
具体的には、第一実施形態に係る光走査装置101では、25℃から60℃まで35℃だけ昇温した際のコリメーターレンズ群30Kの合成焦点距離の変化は、0.02mmであったのに対して、本実施形態に係る光走査装置では、0.037mmとしている。
そして、昇温に伴うコリメーターレンズ群30Kの合成焦点距離の変化が0.037mmとなるように、特に第2のコリメーターレンズ3Kのパワーを強くして第1及び第2のコリメーターレンズ2K及び3K双方のパワーを設定している。
なお、第2のコリメーターレンズ3Kのパワーを強くする一方で、第1のコリメーターレンズ2Kについては第一実施形態に係る光走査装置101と同一のものを用いると、コリメーターレンズ群30Kに入射した光束は、平行光束ではなく収束光束に変換されることになる。
そのようなコリメーターレンズ群30Kを用いた場合、昇温前の常温状態において光束LKの結像位置が偏向器9側に大きく変位してしまう。
そのため、第1のコリメーターレンズ2Kのパワーは、第一実施形態に係る光走査装置101で用いたものと比べて、弱く(緩く)設定する必要がある。
本実施形態に係る光走査装置を以上のように設計することで、昇温に伴う筐体400の膨張及び走査レンズ群40Kの屈折率の低下による光束LKの結像位置の変位を、昇温に伴うコリメーターレンズ群30Kの合成焦点距離の変化で相殺するように補正することができる。
これにより、本実施形態に係る光走査装置においても高精度な温度補償を実現することができる。
[第三実施形態]
第三実施形態に係る光走査装置は、筐体400の材料や第1及び第2のコリメーターレンズ2K及び3Kの諸元値が異なっていること等以外は、第一実施形態に係る光走査装置101と同一の構成であるため、同一の部材には同一の付番を付して説明を省略する。
表4は、本実施形態に係る光走査装置における第一実施形態に係る光走査装置101から変更している主な諸元値を示している。
また、以下では光源1Kから出射した光束LKによる第4の被走査面24上における結像位置の変位について示すが、もちろん光源1Y、1M及び1Cから出射した光束LY、LM及びLCによる第1乃至第3の被走査面21乃至23上における結像位置の変位についても同様に適用することができる。
Figure 2021170047
具体的には、本実施形態に係る光走査装置では、筐体400の線膨張係数は2.5×10−5mm/℃、第1のコリメーターレンズ2Kの焦点距離は29.72mmとなっている。
また、第2のコリメーターレンズ3Kの焦点距離は1450.372mm、コリメーターレンズ群30Kの合成焦点距離は29.308mmとなっている。
すなわち、本実施形態に係る光走査装置では、第一実施形態に係る光走査装置101に比べて筐体400を線膨張係数が小さい材料で作製している。
具体的には、アルミダイキャストを使用することで筐体400自体の膨張を抑制している。
なお、第1及び第2のコリメーターレンズ2K及び3Kの肉厚や材料は、第一実施形態に係る光走査装置101と同一である。
また、本実施形態に係る光走査装置においても第一実施形態に係る光走査装置101と同様に、第1及び第2のコリメーターレンズ2K及び3Kはそれぞれ、保持部402K及び403Kによって保持されている。
そして、本実施形態に係る光走査装置においても第一実施形態に係る光走査装置101と同一の諸元値を有する第1の走査レンズ11及び第2の走査レンズ12Kを用いている。
そのため、昇温に伴う走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位量ΔDM2は、第一実施形態に係る光走査装置101と同一の+1.87mmである。
本実施形態に係る光走査装置では、上記のように筐体400を線膨張係数が小さい、具体的には0.56倍だけ小さい材料で作製しているため、昇温に伴う筐体400の膨張による光束LKの結像位置の変位もその分鈍感になり小さくなる。
具体的には、第一実施形態に係る光走査装置101ではΔDM1=−3.81mmであったのに対して、本実施形態に係る光走査装置ではΔDM1=−2.16mmとなる。
そのため、本実施形態に係る光走査装置では、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化によって、光束LKの結像位置は、ΔDM=ΔDM1+ΔDM2=−0.29mmだけ変位することとなる。
換言すると、本実施形態に係る光走査装置では、昇温に伴って光束LKの結像位置は、第一実施形態に係る光走査装置101と比べて、偏向器9とは反対側に1.65mmだけ変位している。
そこで本実施形態に係る光走査装置では、そのような変位を補正するために、以下に示すような第1及び第2のコリメーターレンズ2K及び3Kを用いる。
具体的には、本実施形態に係る光走査装置では、第1及び第2のコリメーターレンズ2K及び3Kの焦点距離はそれぞれ、表4に示されているように29.72mm及び1450.372mmとなっている。
それにより、本実施形態に係る光走査装置では、コリメーターレンズ群30Kの合成焦点距離は、29.308mmとなる。
すなわち、第一実施形態に係る光走査装置101と比較した特徴として、本実施形態に係る光走査装置では、第2のコリメーターレンズ3Kの焦点距離を長くする、すなわちパワーが弱くなるように設計している。
これは、以下に示す理由によるためである。
すなわち、本実施形態に係る光走査装置では、上記のように第一実施形態に係る光走査装置101と比べて筐体400を線膨張係数が0.56倍だけ小さい材料で作製している。
そのため、昇温に伴う筐体400の膨張によって光束LKの結像位置が偏向器9側に2.16mmだけ変位している。
換言すると、本実施形態に係る光走査装置では、昇温に伴う筐体400の膨張による光束LKの結像位置の偏向器9側への変位が、第一実施形態に係る光走査装置101と比べて1.65mmだけ短くなっている。
従って、本実施形態に係る光走査装置において昇温に伴う筐体400の膨張及び走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位を補正するためには、昇温に伴うコリメーターレンズ群30Kの合成焦点距離の変化を第一実施形態に係る光走査装置101と比べて小さく設定する必要がある。
具体的には、第一実施形態に係る光走査装置101では、25℃から60℃まで35℃だけ昇温した際のコリメーターレンズ群30Kの合成焦点距離の変化は、0.02mmであったのに対して、本実施形態に係る光走査装置では、0.002mmとしている。
そして、昇温に伴うコリメーターレンズ群30Kの合成焦点距離の変化が0.002mmとなるように、特に第2のコリメーターレンズ3Kのパワーを弱くして第1及び第2のコリメーターレンズ2K及び3K双方のパワーを設定している。
なお、第2のコリメーターレンズ3Kのパワーを弱くする一方で、第1のコリメーターレンズ2Kについては第一実施形態に係る光走査装置101と同一のものを用いると、コリメーターレンズ群30Kに入射した光束は、平行光束ではなく発散光束に変換されることになる。
そのようなコリメーターレンズ群30Kを用いた場合、昇温前の常温状態において光束LKの結像位置が走査レンズ群40K側に大きく変位してしまう。
そのため、第1のコリメーターレンズ2Kのパワーは、第一実施形態に係る光走査装置101で用いたものと比べて、強く設定する必要がある。
本実施形態に係る光走査装置を以上のように設計することで、昇温に伴う筐体400の膨張及び走査レンズ群40Kの屈折率の低下による光束LKの結像位置の変位を、昇温に伴うコリメーターレンズ群30Kの合成焦点距離の変化で相殺するように補正することができる。
これにより、本実施形態に係る光走査装置においても高精度な温度補償を実現することができる。
ここで、上記に示した第一乃至第三実施形態に係る光走査装置における結果は、以下のようにまとめることができる。
すなわち、コリメーターレンズ群30Kの合成焦点距離を略一定にする条件の下で筐体400をより線膨張係数が大きい材料で形成する場合、第1のコリメーターレンズ2Kのパワーは、より弱く設定する一方で、第2のコリメーターレンズ3Kのパワーは、より強く設定することになる。
一方、コリメーターレンズ群30Kの合成焦点距離を略一定にする条件の下で筐体400をより線膨張係数が小さい材料で形成する場合、第1のコリメーターレンズ2Kのパワーは、より強く設定する一方で、第2のコリメーターレンズ3Kのパワーは、より弱く設定することになる。
このことは、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kの主走査断面内におけるパワーをそれぞれφ1及びφ2としたとき、それらのパワーの比の値であるφ2/φ1を筐体400の線膨張係数の値に応じて変更する必要があることを意味している。
そして、第一乃至第三実施形態に係る光走査装置では、この比の値φ2/φ1を筐体400の線膨張係数の大きさに応じて適切に設定したことによって、昇温に伴う光束LKの結像位置の変位を高精度に抑制することができている。
以上のように、第一乃至第三実施形態に係る光走査装置では、コリメーターレンズ群30Kの合成焦点距離を互いに略一定にする条件の下で、筐体400を形成する材料の線膨張係数の違いに対応するように、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kのパワーの比の値φ2/φ1を調整している。
これは、光学系全体の縦倍率を互いに略一定にする条件の下で、筐体400を形成する材料の線膨張係数の違いに対応するように、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kのパワーφ1及びφ2をそれぞれ調整していることと等価である。
[第四実施形態]
第四実施形態に係る光走査装置は、解像度、光源1Kの発光点数や第1及び第2のコリメーターレンズ2K及び3Kの諸元値が異なっていること等以外は、第一実施形態に係る光走査装置101と同一の構成であるため、同一の部材には同一の付番を付して説明を省略する。
また、以下では光源1Kから出射した光束LKによる第4の被走査面24上における結像位置の変位について示すが、もちろん光源1Y、1M及び1Cから出射した光束LY、LM及びLCによる第1乃至第3の被走査面21乃至23上における結像位置の変位についても同様に適用することができる。
本実施形態に係る光走査装置では、光源1Kの発光点数を低減することで、例えば1200dpiから900dpiに解像度を下げている。
このように解像度を下げた場合、第4の被走査面24である感光体ドラムの感光面の感度及び光源1Kの発光量が一定であるとき、コリメーターレンズ群30Kが取り込む光束LKの光量を増加させる必要がある。
そのため、コリメーターレンズ群30Kの合成焦点距離を短く設定する必要がある。
そこで、本実施形態に係る光走査装置では、第一実施形態に係る光走査装置101と比較して、以下のようにコリメーターレンズ群30Kの合成焦点距離を変更することで、光束LKの結像位置の変位を補正している。
表5は、本実施形態に係る光走査装置における第一実施形態に係る光走査装置101から変更している主な諸元値を示している。
Figure 2021170047
具体的には、本実施形態に係る光走査装置では、筐体400の線膨張係数は4.8×10−5mm/℃、第1のコリメーターレンズ2Kの焦点距離は22.465mmとなっている。
また、第2のコリメーターレンズ3Kの焦点距離は138.966mm、コリメーターレンズ群30Kの合成焦点距離は20.522mmとなっている。
ここで、本実施形態に係る光走査装置では、第一乃至第三実施形態に係る光走査装置に比べて、コリメーターレンズ群30Kの合成焦点距離が約10mm短くなっている。
そのため、本実施形態に係る光走査装置では、第1及び第2のコリメーターレンズ2K及び3Kはそれぞれ、保持部401K及び402Kによって保持されている。
なお、第1及び第2のコリメーターレンズ2K及び3Kの肉厚や材料は、第一実施形態に係る光走査装置101と同一である。
表1及び表5に示されているように、第一実施形態に係る光走査装置101及び本実施形態に係る光走査装置におけるコリメーターレンズ群30Kの合成焦点距離はそれぞれ、30.32mm及び20.522mmである。
そのため、本実施形態に係る光走査装置における光学系全体の横倍率は、第一実施形態に係る光走査装置101に比べて1.48倍だけ増大する。
すなわち、本実施形態に係る光走査装置における光学系全体の縦倍率は、第一実施形態に係る光走査装置101に比べて2.18倍だけ増大することになる。
また、光源1Kから第1のコリメーターレンズ2Kまでの距離が、第一実施形態に係る光走査装置101では28mmであったのに対して、本実施形態に係る光走査装置では18mmとなっている。
そのため、これにコリメーターレンズ群30Kの合成焦点距離及び配置の変化を加味することで、昇温に伴うコリメーターレンズ群30Kの変位による結像位置の変位量ΔDM1は、第一実施形態に係る光走査装置101に比べて約1.4倍増大する。
具体的には、本実施形態に係る光走査装置では、ΔDM1=−5.34mmとなる。
そして、本実施形態に係る光走査装置においても第一実施形態に係る光走査装置101と同一の諸元値を有する第1の走査レンズ11及び第2の走査レンズ12Kを用いている。
そのため、昇温に伴う走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位量ΔDM2は、第一実施形態に係る光走査装置101と同一の+1.87mmである。
従って、本実施形態に係る光走査装置では、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化によって、光束LKの結像位置は、ΔDM=ΔDM1+ΔDM2=−3.47mmだけ変位することとなる。
そこで本実施形態に係る光走査装置では、そのような変位を補正するために、以下に示すような第1及び第2のコリメーターレンズ2K及び3Kを用いる。
具体的には、本実施形態に係る光走査装置では、第1及び第2のコリメーターレンズ2K及び3Kの焦点距離はそれぞれ、表5に示されているように22.465mm及び138.966mmとなっている。
それにより、本実施形態に係る光走査装置では、コリメーターレンズ群30Kの合成焦点距離は、20.522mmとなり、25℃から60℃まで35℃だけ昇温した際に0.013mmだけ長くなる。
また、本実施形態に係る光走査装置における第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kのパワーの比の値φ2/φ1は0.16となり、第一実施形態に係る光走査装置101より大きくなっている。
ここで第二実施形態に係る光走査装置と比較すると、本実施形態に係る光走査装置における昇温に伴うコリメーターレンズ群30Kの変位による光束LKの結像位置の変位量ΔDM1は−5.34mmである。一方で、第二実施形態に係る光走査装置における昇温に伴うコリメーターレンズ群30Kの変位による光束LKの結像位置の変位量ΔDM1は−5.55mmである。
また、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kのパワーの比の値φ2/φ1は、本実施形態に係る光走査装置では0.16である一方で、第二実施形態に係る光走査装置では0.25である。
従って、本実施形態に係る光走査装置と第二実施形態に係る光走査装置とでは、変位量ΔDM1においては互いに微少な差しかないが、比の値φ2/φ1においては互いに有意な差がある。
これは、本実施形態に係る光走査装置では、第二実施形態に係る光走査装置に比べてコリメーターレンズ群30Kの合成焦点距離が約20mmと短くなり、すなわち光学系全体の倍率が大きくなっているためである。
そのため、本実施形態に係る光走査装置では、第二実施形態に係る光走査装置に比べて比の値φ2/φ1を小さく設定しても、適切な温度補償を実現することができる。
以上のように、本実施形態に係る光走査装置では、解像度の低下に応じてコリメーターレンズ群30Kの合成焦点距離を調整することで、適切な温度補償を実現することができる。
具体的には、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kのパワーの比の値を適切に選択することで、昇温に伴う光束LKの結像位置の変位を高精度に抑制することができる。
[第五実施形態]
第五実施形態に係る光走査装置は、解像度、光源1Kの発光点数や第1及び第2のコリメーターレンズ2K及び3Kの諸元値が異なっていること等以外は、第一実施形態に係る光走査装置101と同一の構成であるため、同一の部材には同一の付番を付して説明を省略する。
また、以下では光源1Kから出射した光束LKによる第4の被走査面24上における結像位置の変位について示すが、もちろん光源1Y、1M及び1Cから出射した光束LY、LM及びLCによる第1乃至第3の被走査面21乃至23上における結像位置の変位についても同様に適用することができる。
本実施形態に係る光走査装置では、光源1Kの発光点数を増加させることで、例えば1200dpiから2400dpiに解像度を上げている。
このように解像度を上げた場合、第4の被走査面24である感光体ドラムの感光面の感度及び光源1Kの発光量が一定であるとき、コリメーターレンズ群30Kが取り込む光束LKの光量を減少させる必要がある。
そのため、コリメーターレンズ群30Kの合成焦点距離を長く設定する必要がある。
そこで、本実施形態に係る光走査装置では、第一実施形態に係る光走査装置101と比較して、以下のようにコリメーターレンズ群30Kの合成焦点距離を変更することで、光束LKの結像位置の変位を補正している。
表6は、本実施形態に係る光走査装置における第一実施形態に係る光走査装置101から変更している主な諸元値を示している。
Figure 2021170047
具体的には、本実施形態に係る光走査装置では、筐体400の線膨張係数は4.8×10−5mm/℃、第1のコリメーターレンズ2Kの焦点距離は43.376mmとなっている。
また、第2のコリメーターレンズ3Kの焦点距離は416.641mm、コリメーターレンズ群30Kの合成焦点距離は40.01mmとなっている。
ここで、本実施形態に係る光走査装置では、第一乃至第三実施形態に係る光走査装置に比べて、コリメーターレンズ群30Kの合成焦点距離が約10mm長くなっている。
そのため、本実施形態に係る光走査装置では、第1及び第2のコリメーターレンズ2K及び3Kはそれぞれ、保持部403K及び404Kによって保持されている。
なお、第1及び第2のコリメーターレンズ2K及び3Kの肉厚や材料は、第一実施形態に係る光走査装置101と同一である。
表1及び表6に示されているように、第一実施形態に係る光走査装置101及び本実施形態に係る光走査装置におけるコリメーターレンズ群30Kの合成焦点距離はそれぞれ、30.32mm及び40.01mmである。
そのため、本実施形態に係る光走査装置における光学系全体の横倍率は、第一実施形態に係る光走査装置101に比べて0.76倍だけ減少する。
すなわち、本実施形態に係る光走査装置における光学系全体の縦倍率は、第一実施形態に係る光走査装置101に比べて0.58倍だけ減少することになる。
また、光源1Kから第1のコリメーターレンズ2Kまでの距離が、第一実施形態に係る光走査装置101では28mmであったのに対して、本実施形態に係る光走査装置では38mmとなっている。
そのため、これにコリメーターレンズ群30Kの合成焦点距離及び配置の変化を加味することで、昇温に伴うコリメーターレンズ群30Kの変位による光束LKの結像位置の変位量ΔDM1は、第一実施形態に係る光走査装置101に比べて0.79倍減少する。
具体的には、本実施形態に係る光走査装置では、ΔDM1=−3.0mmとなる。
そして、本実施形態に係る光走査装置においても第一実施形態に係る光走査装置101と同一の諸元値を有する第1の走査レンズ11及び第2の走査レンズ12Kを用いている。
そのため、昇温に伴う走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位量ΔDM2は、第一実施形態に係る光走査装置101と同一の+1.87mmである。
従って、本実施形態に係る光走査装置では、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化によって、光束LKの結像位置は、ΔDM=ΔDM1+ΔDM2=−1.13mmだけ変位することとなる。
そこで本実施形態に係る光走査装置では、そのような変位を補正するために、以下に示すような第1及び第2のコリメーターレンズ2K及び3Kを用いる。
具体的には、本実施形態に係る光走査装置では、第1及び第2のコリメーターレンズ2K及び3Kの焦点距離はそれぞれ、表6に示されているように43.376mm及び416.641mmとなっている。
それにより、本実施形態に係る光走査装置では、コリメーターレンズ群30Kの合成焦点距離は、40.01mmとなり、25℃から60℃まで35℃だけ昇温した際に0.02mmだけ長くなる。
また、本実施形態に係る光走査装置における第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kのパワーの比の値φ2/φ1は0.1となっている。
以上のように、本実施形態に係る光走査装置では、解像度の増加に応じてコリメーターレンズ群30Kの合成焦点距離を調整することで、適切な温度補償を実現することができる。
具体的には、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kのパワーの比の値φ2/φ1を0.1とすることで、昇温に伴うコリメーターレンズ群30Kの変位及び走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位ΔDM=−1.13mmを高精度に補正することができる。
図5(a)は、本実施形態に係る光走査装置における第1及び第2のコリメーターレンズ2K及び3Kのパワーの比の値φ2/φ1と筐体400に用いる材料の線膨張係数αとの関係を示している。
また図5(b)は、比の値φ2/φ1と昇温に伴う筐体400の膨張及び走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位量ΔDMとの関係を示している。
ここで実線(a)は、光学系全体の横倍率φθ/φcolが13.6の場合であり、破線(b)は、光学系全体の横倍率φθ/φcolが9.2の場合である。
また一点鎖線(c)は、光学系全体の横倍率φθ/φcolが6.9の場合である。
図5(a)に示されているように、線膨張係数αを固定した場合、光学系全体の横倍率φθ/φcolが大きくなるほど、第1及び第2のコリメーターレンズ2K及び3Kのパワーの比の値φ2/φ1を大きく設定する必要があることがわかる。
これは、上記の第一乃至第四実施形態に係る光走査装置の結果とコンシステントである。
また図5(b)に示されているように、パワーの比の値φ2/φ1を固定した場合、光学系全体の横倍率φθ/φcolが大きくなるほど、昇温に伴うコリメーターレンズ群30Kの合成焦点距離の変化で補正すべき光束LKの結像位置の変位量ΔDMが大きくなることがわかる。
以上のことから、本実施形態に係る光走査装置において筐体400の作成に用いられる材料の線膨張係数αの範囲と光学系全体の横倍率の範囲(φθ/φcol=6.9〜13.6)とを考慮して、第1及び第2のコリメーターレンズ2K及び3Kのパワーの比の値φ2/φ1は、以下の条件式(8)を満たすことが好ましい。
Figure 2021170047
条件式(8)の上限値を上回ると、筐体400の作成に用いられる材料の線膨張係数αの範囲内において、昇温に伴うコリメーターレンズ群30Kの合成焦点距離の変化で補正すべき光束LKの結像位置の変位量ΔDMが大きくなってしまう。
具体的には、昇温に伴う筐体400の膨張及び走査レンズ群40Kの屈折率の変化によって、光束LKの結像位置が偏向器9から離れるように移動してしまい、適切に光束LKの結像位置を補正することができなくなる。
一方、条件式(8)の下限値を下回ると、第2のコリメーターレンズ3Kを凹レンズで形成することになる。
このとき、第2のコリメーターレンズ3Kのコバを支えるための保持部401K乃至405Kの光軸方向における厚みをレンズの形状に応じて変更する必要があるため、筐体400を解像度の変更に伴って共通化することができなくなる。
加えて、昇温に伴う筐体400の膨張及び走査レンズ群40Kの屈折率の変化によって、光束LKの結像位置が偏向器9に近づくように移動してしまい、適切に光束LKの結像位置を補正することができなくなる。
[第六実施形態]
第六実施形態に係る光走査装置は、第1及び第2のコリメーターレンズ2K及び3Kの諸元値が異なっていること等以外は、第一実施形態に係る光走査装置101と同一の構成であるため、同一の部材には同一の付番を付して説明を省略する。
また、以下では光源1Kから出射した光束LKによる第4の被走査面24上における結像位置の変位について示すが、もちろん光源1Y、1M及び1Cから出射した光束LY、LM及びLCによる第1乃至第3の被走査面21乃至23上における結像位置の変位についても同様に適用することができる。
上記の第一乃至第五実施形態に係る光走査装置では、筐体400を形成する材料の線膨張係数αやコリメーターレンズ群30Kの合成焦点距離に応じて、第1及び第2のコリメーターレンズ2K及び3K双方を交換する必要があった。
そこで本実施形態に係る光走査装置では、解像度の変更に伴うそのような交換の簡素化及び組立作業性をさらに向上させるために、第1のコリメーターレンズ2Kのみを交換し、第2のコリメーターレンズ3Kについては同一のものを用いている。
表7は、本実施形態に係る光走査装置における第一実施形態に係る光走査装置101から変更している主な諸元値を示している。
Figure 2021170047
ここで表7に示されているように、本実施形態に係る光走査装置では、第一乃至第五実施形態に係る光走査装置と比較して、第1のコリメーターレンズ2Kと第2のコリメーターレンズ3Kとの間隔を8mmから10mmに変更している。
また、その変更に合わせて、保持部401Kの偏向器9側端部から保持部402Kの光源1K側端部までの光軸に沿った距離dも8mmから10mmに変更している。
まず、表7に示されているように、コリメーターレンズ群30Kを合成焦点距離20mm用に設定する場合には、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kの焦点距離をそれぞれ、22.974mm及び126.263mmに設定する。
そして、第1のコリメーターレンズ2Kを保持部401Kに配置すると共に、第2のコリメーターレンズ3Kを保持部402Kに配置することで、コリメーターレンズ群30Kの合成焦点距離は、20.698mmとなる。
一方、表7に示されているように、コリメーターレンズ群30Kを合成焦点距離30mm用に設定する場合には、第1のコリメーターレンズ2K及び第2のコリメーターレンズ3Kの焦点距離をそれぞれ、33.952mm及び126.263mmに設定する。
そして、第1のコリメーターレンズ2Kを保持部402Kに配置すると共に、第2のコリメーターレンズ3Kを保持部401Kに配置することで、コリメーターレンズ群30Kの合成焦点距離は、28.75mmとなる。
このように、本実施形態に係る光走査装置では、コリメーターレンズ群30Kの合成焦点距離を約20mmから約30mmに変更する際に、同一の第2のコリメーターレンズ3Kを用いながら第1のコリメーターレンズ2Kを交換すると共に、互いの位置を入れ替えている。
第一乃至第五実施形態に係る光走査装置では、上記のように第2のコリメーターレンズ3Kより焦点距離が短い第1のコリメーターレンズ2Kが光源1Kに近くなるように配置されていた。
一方、本実施形態に係る光走査装置では、第1のコリメーターレンズ2Kより焦点距離が長い第2のコリメーターレンズ3Kが光源1Kに近くなるような配置も用いている。
図6(a)は、比較例の光走査装置における、昇温に伴う光束LKの結像位置の変位の補正残差と第2のコリメーターレンズ3Kの焦点距離との関係を示している。
また図6(b)は、本実施形態に係る光走査装置における、昇温に伴う光束LKの結像位置の変位の補正残差と第2のコリメーターレンズ3Kの焦点距離との関係を示している。
ここで比較例の光走査装置は、第1及び第2のコリメーターレンズ2K及び3Kの互いの位置関係を維持したままコリメーターレンズ群30Kの合成焦点距離を変化させること以外は、本実施形態と同一の構成を有する光走査装置である。
また、実線(a)はコリメーターレンズ群30Kの合成焦点距離が20mmの場合であり、破線(b)はコリメーターレンズ群30Kの合成焦点距離が30mmの場合である。
また点線(c)は、コリメーターレンズ群30Kの合成焦点距離が20mm及び30mmそれぞれの場合における光束LKの結像位置の変位の補正残差の絶対値が互いに略同一となる第2のコリメーターレンズ3Kの焦点距離の大きさを示している。
図6(a)に示されているように、第2のコリメーターレンズ3Kより焦点距離が短い第1のコリメーターレンズ2Kが光源1Kに近くなるように配置したまま、コリメーターレンズ群30Kの合成焦点距離を20mmから30mmに変更しようとすると、それぞれの場合で±1mm以上の補正残差が発生することがわかる。
このとき、コリメーターレンズ群30Kの合成焦点距離が20mmの場合を基準として共通の第2のコリメーターレンズ3Kを用いた上で光束LKの結像位置の変位の補正残差を低減しようとすると、コリメーターレンズ群30Kの合成焦点距離を30mmにする際に第1のコリメーターレンズ2Kの焦点距離を短くする必要がある。
一方、本実施形態に係る光走査装置では、コリメーターレンズ群30Kの合成焦点距離を約20mmから約30mmに変更する際に、上記のように第1のコリメーターレンズ2Kの位置と第2のコリメーターレンズ3Kの位置とを互いに入れ替えている。
これにより、図6(b)に示されているように、コリメーターレンズ群30Kの合成焦点距離を20mmから30mmに変更した際に、それぞれの場合で補正残差を±約0.5mmに低減できていることがわかる。
すなわち、本実施形態に係る光走査装置では、第1のコリメーターレンズ2Kの位置と第2のコリメーターレンズ3Kの位置とを互いに入れ替えることで、光源1Kから第2のコリメーターレンズ3Kまでの距離dが18mmとなる。
これにより、図6(b)に示されているように、第2のコリメーターレンズ3Kの焦点距離を短く設定することができ、実線(a)と破線(b)との横軸方向における間隔を狭めることができる。
また、図6(b)の点線(c)及び表7に示されているように、第2のコリメーターレンズ3Kの焦点距離を126.263mmにすると、コリメーターレンズ群30Kの合成焦点距離を20mmにしたとき、第1及び第2のコリメーターレンズ2K及び3Kのパワーの比の値φ2/φ1は0.18になる。
また、コリメーターレンズ群30Kの合成焦点距離を30mmにしたとき、第1及び第2のコリメーターレンズ2K及び3Kのパワーの比の値φ2/φ1は0.27になる。
以上のように、本実施形態に係る光走査装置では、コリメーターレンズ群30Kの合成焦点距離を変更する際に、第1及び第2のコリメーターレンズ2K及び3Kそれぞれの位置を互いに入れ替えることで、光束LKの結像位置の変位の補正残差を低減することができる。
そして、コリメーターレンズ群30Kの合成焦点距離を変更しても、共通の第2のコリメーターレンズ3Kを用いることができるため、低コスト化及び組立作業性の簡易化を達成することができる。
[第七実施形態]
第七実施形態に係る光走査装置は、第2のコリメーターレンズ3Kの代わりに回折光学素子19Kを用いていること等以外は、第一実施形態に係る光走査装置101と同一の構成であるため、同一の部材には同一の付番を付して説明を省略する。
また、以下では光源1Kから出射した光束LKによる第4の被走査面24上における結像位置の変位について示すが、もちろん光源1Y、1M及び1Cから出射した光束LY、LM及びLCによる第1乃至第3の被走査面21乃至23上における結像位置の変位についても同様に適用することができる。
本実施形態に係る光走査装置では、上記の第一乃至第六実施形態に係る光走査装置において昇温に伴う光束LKの結像位置の変位を補正するために用いていた第2のコリメーターレンズ3Kの代わりに、回折機能を有する回折光学素子19Kを用いている。
ここで、本実施形態に係る光走査装置において用いられる回折光学素子19Kでは、入射面及び出射面双方が平面で構成されている。
そのため、双方が凸レンズである第1及び第2のコリメーターレンズ2K及び3Kを用いていた第一乃至第六実施形態に係る光走査装置に比べて、収差を低減する上で効果がある。
また、本実施形態に係る光走査装置では、回折光学素子19K及び第1のコリメーターレンズ2Kがそれぞれ、保持部401K及び保持部402Kに配置されている。
そして、本実施形態に係る光走査装置では、第一乃至第五実施形態に係る光走査装置と比較して、回折光学素子19Kと第1のコリメーターレンズ2Kとの間隔を8mmから10mmに変更している。
また、その変更に合わせて、保持部401Kの偏向器9側端部から保持部402Kの光源1K側端部までの光軸に沿った距離dも8mmから10mmに変更している。
表8は、本実施形態に係る光走査装置における第一実施形態に係る光走査装置101から変更している主な諸元値を示している。
Figure 2021170047
具体的には、本実施形態に係る光走査装置では、筐体400の線膨張係数は4.8×10−5mm/℃となっている。
また回折光学素子19Kは、以下の式(9)で示されるような二変数y及びzの光路差関数で表される段差構造を有するブレーズ型の回折面で構成される入射面を有している。
Figure 2021170047
ここで、mは回折次数、λは格子ピッチ、E、E、・・・、E10、F、F、・・・、F10はそれぞれ位相係数である。
なお、本実施形態に係る光走査装置では、回折光学素子19Kの回折面の格子ピッチλは780nmである。また、位相係数についてはEが6.17×10−3であり、残りは0である。
これにより、回折光学素子19Kの回折レンズとしての焦点距離は−81.023mmとなる。
また、第1のコリメーターレンズ2Kの焦点距離は27.175mmであることから、コリメーターレンズ群30Kの合成焦点距離は33.22mmとなる。
そして、25℃から60℃まで35℃だけ昇温したとき、回折光学素子19Kの回折レンズとしての焦点距離は−80.308mmとなり、第1のコリメーターレンズ2Kの焦点距離は43.275mmとなる。
それにより、25℃から60℃まで35℃だけ昇温したとき、コリメーターレンズ群30Kの合成焦点距離は33.270mmになる。
ここで、第一実施形態に係る光走査装置101と同様に求めることで、本実施形態に係る光走査装置における昇温に伴う筐体400の膨張及び走査レンズ群40Kの屈折率の変化による光束LKの結像位置の変位ΔDM=ΔDM1+ΔDM2は−2.16mmとなる。
従って、本実施形態に係る光走査装置では、昇温に伴って回折光学素子19Kの負のパワーが強くなるように調整することで、昇温に伴う光束LKの結像位置の変位を良好に補正することができる。
また一般的に、回折光学素子は光源波長が長くなるとパワーが増大する機能を有している。
そのため、本実施形態に係る光走査装置では、回折光学素子19Kを用いてコリメーターレンズ群30Kの昇温状態における合成焦点距離を長くすることで、昇温に伴う光束LKの結像位置の変位を良好に補正することができる。
[画像形成装置]
図7は、第一乃至第七実施形態のいずれかに係る光走査装置101を備えるカラー画像形成装置60の要部副走査断面図を示している。
カラー画像形成装置60は、像担持体である感光体ドラム上に画像情報を記録するタンデムタイプのカラー画像形成装置である。
カラー画像形成装置60は、第一乃至第七実施形態のいずれかに係る光走査装置101、像担持体としての感光ドラム(感光体、感光体ドラム)21、22、23、24、現像器31、32、33、34、及び搬送ベルト51を備えている。
また、カラー画像形成装置60は、プリンタコントローラ53及び定着器54を備えている。
図7に示されているように、カラー画像形成装置60には、パーソナルコンピュータ等の外部機器52からR(レッド)、G(グリーン)、B(ブルー)の各色信号が入力する。
これらの色信号は、装置内のプリンタコントローラ53によって、C(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)の各画像パターン(スクリーンパターン)に変換され、これらの画像データは、それぞれ光走査装置101に入力される。
そして、光走査装置101からは、各画像データに応じて変調された光ビーム41、42、43、44が射出され、これらの光ビームによって感光ドラム21、22、23、24の感光面が主走査方向に走査される。
また、感光ドラム21、22、23、24の表面を一様に帯電せしめる帯電ローラ(不図示)が表面に当接するように設けられている。
そして、帯電ローラによって帯電された感光ドラム21、22、23、24の表面に、光走査装置101によって光ビーム41、42、43、44が照射されるようになっている。
上で述べたように、光ビーム41、42、43、44は各色の画像データに基づいて変調されており、光ビーム41、42、43、44を照射することによって感光ドラム21、22、23、24の表面に静電潜像が形成される。
形成された静電潜像は、感光ドラム21、22、23、24に当接するように配設された現像器31、32、33、34によってトナー像として現像される。
現像器31乃至34によって現像されたトナー像は、感光ドラム21乃至24に対向するように配設された不図示の転写ローラ(転写器)によって、搬送ベルト51上を搬送される不図示の用紙(被転写材)上に多重転写され、1枚のフルカラー画像が形成される。
以上のようにして、未定着トナー像が転写された用紙は、さらに感光ドラム21、22、23、24後方(図7において左側)の定着器54へと搬送される。
定着器54は、内部に定着ヒータ(不図示)を有する定着ローラとこの定着ローラに圧接するように配設された加圧ローラとで構成されている。
転写部から搬送されてきた用紙は、定着ローラと加圧ローラの圧接部にて加圧しながら加熱されることにより、用紙上の未定着トナー像が定着される。
さらに定着ローラの後方には不図示の排紙ローラが配設されており、排紙ローラは定着された用紙をカラー画像形成装置60の外に排出せしめる。
カラー画像形成装置60は、光走査装置101を用いて、C、M、Y、Kの各色に対応して感光ドラム21、22、23、24の感光面上に画像信号(画像情報)を記録し、カラー画像を高速に印字するものである。
外部機器52としては、例えばCCDセンサを備えたカラー画像読取装置が用いられても良い。この場合には、このカラー画像読取装置と、カラー画像形成装置60とで、カラーデジタル複写機が構成される。
以上、好ましい実施形態について説明したが、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
1Y、1M、1C、1K 光源
2Y、2M、2C、2K 第1のコリメーターレンズ(第1の光学素子)
3Y、3M、3C、3K 第2のコリメーターレンズ(第2の光学素子)
9 偏向器
11 第1の走査レンズ(結像光学素子)
21、22、23、24 被走査面
40Y、40M、40C、40K 走査レンズ群(結像光学系)
75Y、75M、75C、75K 入射光学系
101 光走査装置
401、402、403、404、405 保持部(保持部材)
LY、LM、LC、LK 光束

Claims (13)

  1. 光源からの光束の収束度を変換する第1及び第2の光学素子を有する入射光学系と、
    前記入射光学系からの光束を偏向して被走査面を主走査方向に走査する偏向器と、
    樹脂材料で形成される結像光学素子を有し、前記偏向器によって偏向された光束を前記被走査面に導光する結像光学系と、
    少なくとも三つの保持部材とを備え、
    前記第1及び第2の光学素子は、前記少なくとも三つの保持部材の何れかにより保持されており、
    前記第1の光学素子の主走査断面内におけるパワーは前記入射光学系において最も大きく、
    前記第2の光学素子の温度変化に対する主走査断面内におけるパワーの変化量は、前記第1の光学素子よりも大きいことを特徴とする光走査装置。
  2. 前記第1及び第2の光学素子の主走査断面内におけるパワーをそれぞれφ1及びφ2としたとき、
    0.02<φ2/φ1<0.3
    なる条件を満たすことを特徴とする請求項1に記載の光走査装置。
  3. 前記第2の光学素子の主走査断面内におけるパワーの符号は正であることを特徴とする請求項1または2に記載の光走査装置。
  4. 前記保持部材が一体的に設けられた筐体を備え、
    該筐体を形成する材料の線膨張係数をα、前記光源から前記第1の光学素子までの光軸に沿った距離をd’、温度T及びTのときの前記結像光学系の焦点距離をfθ及びfθ’、前記入射光学系及び前記結像光学系の主走査断面内におけるパワーをφcol及びφθとし、
    ΔDM1=αd’(T−T)×(φcol/φθ
    ΔDM2=fθ’−fθ
    と表したとき、
    ΔDM1及びΔDM2は、互いに異符号であることを特徴とする請求項1乃至3の何れか一項に記載の光走査装置。
  5. |ΔDM1|>|ΔDM2|
    なる条件を満たすことを特徴とする請求項4に記載の光走査装置。
  6. 前記第2の光学素子は、回折面を有することを特徴とする請求項1乃至5の何れか一項に記載の光走査装置。
  7. 前記少なくとも三つの保持部材の数は、前記入射光学系が有する前記収束度を変換する光学素子の数よりも多いことを特徴とする請求項1乃至6の何れか一項に記載の光走査装置。
  8. 前記入射光学系は、前記第1及び第2の光学素子のみによって前記収束度を変換することを特徴とする請求項7に記載の光走査装置。
  9. 前記光源を保持する保持部材を備えることを特徴とする請求項1乃至8の何れか一項に記載の光走査装置。
  10. 前記光源は、複数の発光点を有することを特徴とする請求項1乃至9の何れか一項に記載の光走査装置。
  11. 前記第1の光学素子は硝材で構成され、前記第2の光学素子は樹脂材料で構成されていることを特徴とする請求項1乃至10の何れか一項に記載の光走査装置。
  12. 請求項1乃至11の何れか一項に記載の光走査装置と、該光走査装置により前記被走査面に形成される静電潜像をトナー像として現像する現像器と、現像された前記トナー像を被転写材に転写する転写器と、転写された前記トナー像を前記被転写材に定着させる定着器とを備えることを特徴とする画像形成装置。
  13. 請求項1乃至11の何れか一項に記載の光走査装置と、外部機器から出力された信号を画像データに変換して前記光走査装置に入力するプリンタコントローラとを備えることを特徴とする画像形成装置。
JP2020072194A 2020-04-14 2020-04-14 光走査装置及び画像形成装置 Pending JP2021170047A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072194A JP2021170047A (ja) 2020-04-14 2020-04-14 光走査装置及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072194A JP2021170047A (ja) 2020-04-14 2020-04-14 光走査装置及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2021170047A true JP2021170047A (ja) 2021-10-28

Family

ID=78119416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072194A Pending JP2021170047A (ja) 2020-04-14 2020-04-14 光走査装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2021170047A (ja)

Similar Documents

Publication Publication Date Title
JP5024928B2 (ja) 光走査装置及び画像形成装置
JP4976092B2 (ja) 光走査装置、およびそれを用いた画像形成装置
JP5103673B2 (ja) 光走査装置、および画像形成装置
JP2008033251A (ja) 光走査装置および画像形成装置
JP5670691B2 (ja) 光走査装置及びそれを採用した電子写真方式の画像形成装置
JP2008070797A (ja) 回折光学素子および走査光学系および光走査装置および画像形成装置
JP2009265614A (ja) 光走査装置及び画像形成装置
JP4617004B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP5354047B2 (ja) 光走査装置、およびそれを用いた画像形成装置
JP7030576B2 (ja) 光走査装置及び画像形成装置
JP2010276860A (ja) 画像形成装置における走査光学系
JP2021170047A (ja) 光走査装置及び画像形成装置
JP5151118B2 (ja) 回折光学素子、光走査装置及び画像形成装置。
JP2006171419A (ja) 光走査装置及びそれを用いた画像形成装置
US9500981B2 (en) Optical scanning apparatus and image forming apparatus including the same
US8355037B2 (en) Optical element used in optical scanning apparatus and optical scanning apparatus using same
JP2012128085A (ja) 光走査装置及びそれを有する画像形成装置
JP2018151423A (ja) 光走査装置及びそれを備える画像形成装置
JP2022055826A (ja) 光走査装置
JP6758854B2 (ja) 走査光学装置及び画像形成装置
JP2024040649A (ja) 光走査装置
JP5452519B2 (ja) 光走査装置,画像形成装置
JP6234085B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP5112263B2 (ja) 光走査装置及び画像形成装置
JP4208750B2 (ja) 光走査装置及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220630