JP2021163237A - レコメンドシステム、及びレコメンド方法 - Google Patents

レコメンドシステム、及びレコメンド方法 Download PDF

Info

Publication number
JP2021163237A
JP2021163237A JP2020064599A JP2020064599A JP2021163237A JP 2021163237 A JP2021163237 A JP 2021163237A JP 2020064599 A JP2020064599 A JP 2020064599A JP 2020064599 A JP2020064599 A JP 2020064599A JP 2021163237 A JP2021163237 A JP 2021163237A
Authority
JP
Japan
Prior art keywords
user
activity
unit
mood
input operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020064599A
Other languages
English (en)
Other versions
JP7555720B2 (ja
Inventor
浩之 坂口
Hiroyuki Sakaguchi
基嗣 久保田
Mototsugu Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020064599A priority Critical patent/JP7555720B2/ja
Priority to CN202110275170.0A priority patent/CN113468409A/zh
Priority to US17/210,676 priority patent/US11494389B2/en
Publication of JP2021163237A publication Critical patent/JP2021163237A/ja
Application granted granted Critical
Publication of JP7555720B2 publication Critical patent/JP7555720B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24575Query processing with adaptation to user needs using context
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/248Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9532Query formulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9536Search customisation based on social or collaborative filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9537Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04817Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/14Travel agencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Human Computer Interaction (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Computational Linguistics (AREA)
  • Geometry (AREA)
  • Primary Health Care (AREA)
  • Mathematical Analysis (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

【課題】アクティビティを検討するユーザーが積極的に活用することができるレコメンドシステム、及びレコメンド方法を提供する。【解決手段】レコメンドシステム1は、入力装置50に対するユーザーの入力操作の態様を認識する入力操作態様認識部13と、入力操作の態様に基づいてユーザーの気分を推定するユーザー気分推定部14と、アクティビティデータベースにアクセスして、ユーザーの気分に適合する提案アクティビティを抽出し、提案アクティビティの情報を取得する提案アクティビティ情報取得部17と、提案アクティビティの情報を、ユーザーにより使用される出力装置に出力させる出力制御部18と、を備える。【選択図】図6

Description

本発明は、レコメンドシステム、及びレコメンド方法に関する。
従来、情報端末から入力された出発日を含む予約申込情報に応じて、観光地及び日程が予め決定された旅行商品の中から該当する旅行商品を選択し、選択した旅行商品に基づく仮旅程に、予約申込情報で指定された観光オプションを組み込んだ旅程を表示するようにした、旅行商品予約支援装置が提案されている。
特開2016−18519号公報
上記旅行商品予約支援装置は、ユーザー自身が旅行日程と観光オプションを決めるという点において、旅行パンフレットを見て旅程を決める場合の手順と変わらない。そのため、ユーザーにとっては新鮮味や面白みがなく、旅行等のアクティビティを検討するために積極的に活用しようという意識が、ユーザーに生じにくいと想定される。
本発明は上記背景に鑑みてなされたものであり、アクティビティを検討するユーザーが積極的に活用することができるレコメンドシステム、及びレコメンド方法を提供することを目的とする。
上記目的を達成するための第1態様として、入力装置に対するユーザーの入力操作の態様を認識する入力操作態様認識部と、前記入力操作態様認識部により認識された前記入力操作の態様に基づいて、前記ユーザーの気分を推定するユーザー気分推定部と、アクティビティの情報が保存されたアクティビティデータベースにアクセスして、前記ユーザー気分推定部により推定された前記ユーザーの気分に適合する提案アクティビティを抽出し、前記提案アクティビティの情報を取得する提案アクティビティ情報取得部と、前記提案アクティビティ情報取得部により取得された前記提案アクティビティの情報を、前記ユーザーにより使用される出力装置に出力させる出力制御部と、を備えるレコメンドシステムが挙げられる。
上記レコメンドシステムにおいて、前記入力装置は前記ユーザーにより把持されて使用され、前記入力操作は前記ユーザーによる前記入力装置の変位操作であり、前記入力操作態様認識部は、前記入力装置に備えられたモーションセンサの検出信号に基づいて、前記変位操作による前記入力装置の変位量、変位方向、変位速度、変位加速度のうちの少なくともいずれか一つを、前記入力操作の態様として認識する構成としてもよい。
上記レコメンドシステムにおいて、前記変位操作は、前記ユーザーが前記入力装置を把持した手をスイングさせる操作である構成としてもよい。
上記レコメンドシステムにおいて、前記入力装置はタッチパネルを有し、前記入力操作は前記ユーザーによる前記タッチパネルの操作であり、前記入力操作態様認識部は、前記タッチパネルに対するタッチ操作の継続時間、スワイプ操作の方向、スワイプ操作の速さ、又はスワイプ操作の向きのうちの、少なくともいずれか一つを、前記入力操作の態様として認識する構成としてもよい。
上記レコメンドシステムにおいて、前記入力装置はタッチパネルを有し、前記入力操作は前記ユーザーによる前記タッチパネルの操作であり、前記入力操作態様認識部は、前記タッチパネルに表示される濃淡又は色が異なる複数の選択エリアのうち、前記ユーザーがどの選択エリアをタッチしたかを、前記入力操作の態様として認識する構成としてもよい。
上記レコメンドシステムにおいて、前記ユーザー又は前記入力装置が向いている方位を認識する方位認識部を備え、前記提案アクティビティ情報取得部は、前記方位認識部により認識される前記ユーザー又は前記入力装置が向いている方位のエリアで、体験可能なアクティビティの中から、前記提案アクティビティを抽出する構成としてもよい。
上記レコメンドシステムにおいて、前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティと適合する嗜好性の情報が含まれ、前記ユーザーの嗜好性情報が保存されたユーザーデータベースにアクセスして、前記ユーザーの前記嗜好性情報を取得するユーザー嗜好性情報取得部を備え、前記ユーザー気分推定部は、前記ユーザーの気分として前記ユーザーの積極性の高さを推定し、前記提案アクティビティ情報取得部は、前記ユーザー嗜好性情報取得部により取得される前記ユーザーの前記嗜好性情報から認識した前記ユーザーの嗜好性との適合度が、所定の適合度判定レベル以上であるアクティビティを、前記提案アクティビティとして抽出し、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど、前記適合度判定レベルを低く設定する構成としてもよい。
上記レコメンドシステムにおいて、前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティ体験者の想定活動量が含まれ、前記ユーザー気分推定部は、前記ユーザーの気分として前記ユーザーの積極性の高さを推定し、前記提案アクティビティ情報取得部は、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど体験者の想定活動量が多くなるように、前記提案アクティビティを抽出する構成としてもよい。
上記レコメンドシステムにおいて、前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティが体験できる場所の情報が含まれ、前記ユーザー又は前記入力装置の現在位置を認識する現在位置認識部を備え、前記提案アクティビティ情報取得部は、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど、前記現在位置認識部により認識される前記ユーザー又は前記入力装置の現在位置からアクティビティの体験場所までの距離が長くなるように、前記提案アクティビティを抽出する構成としてもよい。
上記目的を達成するための第2態様として、コンピュータにより実行されるレコメンド方法であって、入力装置に対するユーザーの入力操作の態様を認識する入力操作態様認識ステップと、前記入力操作態様認識ステップにより認識された前記入力操作の態様に基づいて、前記ユーザーの気分を推定するユーザー気分推定ステップと、アクティビティの情報が保存されたアクティビティデータベースにアクセスして、前記ユーザー気分推定ステップにより推定された前記ユーザーの気分に適合する提案アクティビティを抽出し、前記提案アクティビティの情報を取得する提案アクティビティ情報取得ステップと、前記提案アクティビティ情報取得ステップにより取得された前記提案アクティビティの情報を、前記ユーザーにより使用される出力装置に出力させる出力制御ステップと、を含むレコメンド方法が挙げられる。
上記レコメンドシステムによれば、ユーザーは、自身の気分に従って入力操作の態様を変更するというシンプルなアクションをすることによって、現在の気分に適合すると期待される提案アクティビティの情報を容易に得ることができる。そのため、アクティビティを検討するユーザーが、レコメンドシステムを積極的に活用することが期待できる。
図1は、レコメンドシステムによるアクティビティの提案と、ユーザーによるレコメンドシステムの活用の説明図である。 図2は、ランク距離画面の説明図である。 図3は、ユーザーアイコンのスローイング画面の説明図である。 図4は、アクティビティ提案画面の説明図である。 図5は、アクティビティ一覧画面の説明図である。 図6は、レコメンドシステムの構成図である。 図7は、ランク距離画面の表示処理のフローチャートである。 図8は、アクティビティに対して設定される評価要素の説明図である。 図9は、提案アクティビティの抽出処理のフローチャートである。 図10は、嗜好性に基づく提案アクティビティの抽出処理の第1フローチャートである。 図11は、嗜好性に基づく提案アクティビティの抽出処理の第2フローチャートである。 ユーザーに対して設定される複数種類の嗜好カテゴリーの説明図である。 アクティビティに対して設定される事前確率及び条件付き確率の説明図である。
[1−0.レコメンドシステムによるアクティビティの提案]
図1を参照して、本実施形態のレコメンドシステム1により実行される、ユーザーUに対するアクティビティの提案と、ユーザーUによるレコメンドシステム1の活用の態様について説明する。図1は、ユーザーUが、レコメンドシステム1から提案されるアクティビティの情報を活用して、アクティビティを体験するまでの過程を、第1ステージ〜第5ステージの5段階の時系列のステージで示している。
レコメンドシステム1は、詳細は後述するが、図6に示したように、CPU(Central Processing Unit)10、メモリ30、通信ユニット40等により構成されたコンピュータシステムである。レコメンドシステム1は、通信ネットワーク900を介して、ユーザーにより使用されるユーザー端末50、アクティビティ情報サーバー200、ユーザー情報サーバー210、スケジュールサーバー300、交通情報サーバー310、及び天候情報サーバー320との間で通信を行う。
ユーザー端末50は、ユーザーUにより把持して使用される携帯型の通信端末であり、通信ネットワーク900を介して、レコメンドシステム1との間で通信を行う。ユーザー端末50は、例えば、スマートフォン、携帯電話、タブレット端末である。図6に示したように、ユーザー端末50は、タッチパネル51、モーションセンサ52、方位センサ53、GPS(Global Positioning System)センサ54、スピーカー55、マイク56、通信部57、及び端末制御部58を備えている。
モーションセンサ52は、ユーザー端末50に生じる前後、左右、上下の3方向の加速度を検出する。方位センサ53は、ユーザー端末50が向いている方位を検出する。GPSセンサ54は、ユーザー端末50の現在位置を検出する。通信部57は、通信ネットワーク900を介してレコメンドシステム1との間で通信を行う。端末制御部58は、図示しないCPU、メモリ等により構成され、メモリに保存された各種アプリ(アプリケーションプログラム)を実行する。
ユーザーUは、レコメンドシステム1から提供されるアクティビティ提案サービスのアプリ(アプリケーションプログラム)を、ユーザー端末50にダウンロードする。そして、ユーザーUは、ユーザー端末50でアクティビティ提案サービスのアプリを実行することにより、レコメンドシステム1によるアクティビティ提案サービスを利用する。ユーザーUは、アクティビティ提案サービスの利用を開始する際に、レコメンドシステム1に個人情報を申請して会員登録を行う。個人情報には、ユーザーUの性別、年齢、居住地、職業、嗜好性等が含まれる。
アクティビティ情報サーバー200は、各種のアクティビティの情報が保存されたアクティビティDB(Data base、データベース)201を備えている。アクティビティの情報には、アクティビティのジャンル、アクティビティの内容、アクティビティが体験できる施設の住所、施設までの距離、施設までのアクセス方法、アクティビティ体験の所要時間、アクティビティの体験に必要なスキル、アクティビティの想定活動量、アクティビティの費用等が含まれる。さらに、アクティビティの情報には、図8に示したように、異なる評価要素によるランクが設定されている。図8の例では、アクティビティの所要時間、アクティビティが体験できる施設までの移動距離、アクティビティの活動量、アクティビティの難易度、アクティビティに適した時期、アクティビティに適した嗜好性が、評価要素となっている。
ユーザー情報サーバー210は、会員登録を行った各ユーザーの情報が保存されたユーザーDB211を備えている。ユーザーの情報には、パーソナルプロファイル、ウィッシュ(Wish)リスト、及びダーン(Done)リスト等が含まれる。
パーソナルファイルには、ユーザーID、性別、年齢、居住地、職業、嗜好性、アクティビティの体験に関連するスキル、等のユーザーの個人的な情報が記録されている。ウィッシュリストには、これまでに、レコメンドシステム1からユーザーに提案されたアクティビティのうち、ユーザーに選択された(ユーザーの評価が所定レベル以上であった)アクティビティである選択アクティビティが登録されている。
また、ウッシュリストにおいて、選択アクティビティに対するユーザーの評価が記録されている。さらに、ウッシュリストにおいて、選択アクティビティは、ユーザーによる選別操作によって、ユーザーが体験することを決定したドゥー(Do)と、検討中のウィッシュ(Wish)とに区分されている。
ダーンリストには、ユーザーがこれまでに体験したアクティビティが、体験日時、ユーザーの評価等の情報を付加して登録されている。
[1−1. 第1ステージ]
第1ステージにおいて、ユーザーUが、ユーザー端末50でアクティビティ提案サービスのアプリを起動すると、レコメンドシステム1からユーザー端末50に対して、ランク距離画面のデータLdsが送信される。そして、ユーザー端末50において、図2に示したように、ランク距離画面100がタッチパネル51に表示される。
ランク距離画面100においては、ユーザーUを示すユーザーアイコン110が画面のほぼ中央に配置される。そして、ユーザーUにより選択されるいずれかの評価要素(図8参照)に基づいて、ウィッシュリストに記録された選択アクティビティの中から抽出されたアクティビティを示すアクティビティアイコン111〜117が、評価要素のランクが高いほど、ユーザーアイコン110に近づけて配置される。
例えば、選択されている評価要素が「所要時間」である場合、所要時間が短いほどアクティビティのランクが高くなり、対応するアクティビティアイコンとユーザーアイコン110との距離が短くなる。図2の例では、ユーザーUは、例えば、アクティビティアイコン115に対応したアクティビティの所要時間が、アクティビティアイコン111に対応したアクティビティアよりも短いことを、直感的に認識することができる。そのため、ユーザーUは、短時間で体験できるアクティビティを、容易に認識することができる。
各アクティビティアイコン111〜117の表示対応は、対応するアクティビティのジャンル、体験可能なエリア、アクティビティの提供者、アクティビティへの参加予定者等に応じて変更してもよい。図2にいて、アクティビティアイコン116と112は、同じ顔のキャラクターとなっており、同じ提供者或いは参加予定者に対応したアクティビティアイコンであることを示している。また、アクティビティアイコン117は、強調表示(フラッシング等)がなされており、他のユーザーが体験することが決定している、或いは他のユーザーが体験中であることを示している。
また、アクティビティアイコン114は、ユーザーアイコン110に向かって次第に接近しており、対応するアクティビティのおすすめ度が急上昇していることを示している。例えば、ウッシュリストに最近追加されたアクティビティ、ユーザーの現状の変化に適合したアクティビティが、おすすめ度が急上昇しているアクティビティとして抽出される。
ユーザーアイコン110からアクティビティアイコン116に対してアーム102が伸びており、これは、ユーザーUがアクティビティアイコン116に対応したアクティビティの参加予定者に対して、一緒にアクティビティに参加することを提案していることを示している(お誘い状態)。また、アクティビティアイコン112からユーザーアイコン110に対してアーム101が伸びており、これは、アクティビティアイコン112に対応した参加予定者が、ユーザーUに対して、一緒にアクティビティに参加することを提案していることを示している(誘われ状態)。
ユーザーUは、アクティビティアイコン112をタッチして、所定の同行許諾操作を行うことで、他の参加者予定者と一緒にアクティビティを体験することをアレンジすることができる。また、アクティビティアイコン116に対応した参加予定者が、ユーザーUからの誘いを許諾すると、アーム102の形状が両端とも手となる形状に変化する。これにより、ユーザーUは、自身が行ったお誘いが受け入れられたことを認識して、他の参加予定者と一緒にアクティビティを体験することをアレンジすることができる。
ユーザーUは、ユーザーアイコン110にタッチすることにより、評価要素を順次切り替えて、異なる評価要素によるランク距離画面を見ることができる。これにより、ユーザーUは、体験時間、所要時間、必要なスキル等の異なる観点について、ランク距離画面上の距離の違いにより、アクティビティ間の相違の程度を直感的に認識して、体験するアクティビティを検討することができる。
次に、ユーザーUは、レコメンドシステム1に対して新たなアクティビティの提案を要求する場合は、ユーザー端末50を把持した手をスイングさせる。これにより、モーションセンサ52によるモーション検出データMsdが、ユーザー端末50からレコメンドシステム1に送信される。
また、ユーザーUは、ユーザー端末50を変位させる動作の他に、図3に示したように、ユーザーアイコン110をスワイプさせる動作によっても、新たなアクティビティの提案をレコメンドシステム1に要求することができる。図3に示したように、ユーザーUは、指Fでユーザーアイコン110にタッチして、ユーザーアイコン110を画面の下方に移動させた後、ユーザーアイコン110にタッチした指Fを画面上方に向けてスライドさせるスワイプ操作を行って、指Fを画面から離す。これにより、ユーザーアイコン110の移動距離、移動の速さ等を示すモーション検出データMsdが、ユーザー端末50からレコメンドシステム1に送信される。
[1−2.第2ステージ]
第2ステージにおいて、レコメンドシステム1は、モーション検出データMsdに基づいて、ユーザーUによるスイングの大きさ、速さ等を認識して、ユーザーUの気分を推定する。そして、レコメンドシステム1は、アクティビティDB201にアクセスして、ユーザーUの気分に適合した提案アクティビティを抽出し、提案アクティビティの情報を表示するアクティビティ提案画面のデータArsを、ユーザー端末50に送信する。
ユーザー端末50において、図4に示したように、アクティビティ提案画面130がタッチパネル51に表示される。アクティビティ提案画面130には、レコメンドシステム1により抽出された提案アクティビティの画像を表示する提案アクティビティ画像表示部131と、提案アクティビティのアイコン132と、提案アクティビティに対するユーザーUの評価を入力するための評価スライダー140とが表示される。
図4は、提案アクティビティとして陶芸体験が抽出された場合を示している。ユーザーUは、提案アクティビティ画像表示部131の詳細ボタン133をタッチ操作することにより、さらに詳細な提案アクティビティの情報をタッチパネル51に表示させることができる。評価スライダー140は、色、濃淡等が異なる5つのサブエリア141〜145と、ポインター135を備えており、ポインター135の付近に提案アクティビティのアイコン132が表示されている。
ユーザーUは、指Fでポインター135にタッチして、ポインター135を上下にスライドさせて、サブエリア141〜145のうちのいずれかまで移動させることによって、提案アクティビティを5段階で評価する。サブエリア141の範囲が最低ランク(ランク1)であり、サブエリア145の範囲が最高ランク(ランク5)である。ポインター135がユーザー端末50は、ユーザーUによる評価のランクを示す評価データEvdを、レコメンドシステム1に送信する。
レコメンドシステム1は、提案アクティビティを選択アクティビティとしてウィッシュリストに追加する。ユーザー端末50から受信した評価データEvdが、所定レベル以上(例えば、ランク4以上)であるときに、提案アクティビティを選択アクティビティとしてウィッシュリストに追加しても良い。ポインター135の位置が所定レベル以上に対応した位置であるときは、アイコン132の角に選択中であることを示すマーク136が表示される。
[1−3.第3ステージ]
次に、第3ステージにおいて、ユーザー端末50は、レコメンドシステム1から送信されるアクティビティ一覧画面のデータLisを受信して、アクティビティ一覧画面をタッチパネル50に表示する。図5に示したように、アクティビティ一覧画面150は、タッチパネル51の上側のエリア160に、ウッシュリストに登録されたアクティビティのうち、ドゥーに区分けされた(ユーザーUの実行意思が示された)アクティビティのアクティビティアイコンを、所定条件に従った配置態様で一覧表示する。
また、アクティビティ一覧画面150は、タッチパネル51の下側のエリア170に、ウィッシュに区分けされた(ユーザーの実行意思が示されていない)アクティビティのアクティビティアイコンを表示する。ユーザーUが新たに選択したアクティビティに対応したアクティビティアイコン174は、最下段の右端に配置され、他のアクティビティアイコンは、右から左、下から上に、順次繰り上げっていく。ユーザーUは、各アクティビティアイコンを指Fでタッチして、対応するアクティビティの詳細な情報を表示させることができる。
ユーザーUは、体験をするアクティビティを決定した場合は、決定したアクティビティに対応したアクティビティアイコンをウィッシュエリア170から、ドゥーエリア160にスライドさせる。図5では、アクティビティアイコン172を、ウィッシュエリア170からドゥーエリア160にスライドさせる例を示している。この場合、アクティビティの体験場所が、アクティビティアイコン172に対応するアクティビティと近いアクティビティを、ドゥーエリアにアクティビティアイコンが表示されているアクティビティの中か抽出し、抽出したアクティビティのアクティビティアイコンを、アクティビティアイコン172の周囲に移動させてもよい。
ユーザーUは、ドゥーエリア160に表示されている複数のアクティビティアイコンを連続的にタッチすることにより、対応する複数のアクティビティを一つのグループにまとめることができる。図5では、アクティビティアイコン161〜164を連続的にタッチして一つのグループ165にまとめる例を示している。
[1−4.第4ステージ]
第4ステージにおいて、ユーザーUは、ユーザー端末50を操作して、アクティビティ一覧画面で一つのグループにまとめたアクティビティのプランニングを依頼するプランニング依頼情報PLrを、レコメンドシステム1に送信する。プランニング依頼情報PLrを受信したレコメンドシステム1は、グループに求められた複数のアクティビティを効率よく回るための体験プランを作成する。そして、レコメンドシステム1は、作成した体験プランを案内するプランニング画面のデータPLsを、ユーザー端末50に送信する。
プランニング画面のデータPLsを受信したユーザー端末50は、プランニング画面をタッチパネル51に表示し、ユーザーUは、プランニング画面を参考にして、複数のアクティビティを効率良く体験するための旅程を作成することができる。
[1−5.第5ステージ]
第5ステージにおいて、ユーザーUは、第4ステージで作成した旅程に従って、アクティビティの体験場所を順次訪れて、アクティビティを体験する。アクティビティを体験したユーザーUは、アクティビティの評価(満足度、体験時間、移動時間、等を含む)を示すダーン(Done)情報Dniを、レコメンドシステム1に送信する。
ダーン情報Dniを受信したレコメンドシステム1は、ユーザーUが体験したアクティビティを、ユーザーDB211のユーザーUのダーンリストに登録し、ユーザーUの評価に基づいて、ユーザーUのパーソナルファイルの嗜好性を更新する。さらに、レコメンドシステム1は、ユーザーUの評価に基づいて、体験したアクティビティに関するアクティビティDB201の情報を更新する。
以上説明した第1ステージ〜第5ステージにおけるレコメンドシステム1の処理により、ユーザーUに対するアクティビティの提案から実行までがトータル的にサポートされ、これにより、ユーザーUによるレコメンドシステム1の活用を促すことができる。
[2.レコメンドシステムの構成]
図6を参照して、レコメンドシステム1の構成について説明する。レコメンドシステム1は、CPU10(コンピュータに相当する)、メモリ30、通信ユニット40等により構成され、通信ユニット40により、通信ネットワーク900を経由して、ユーザー端末50等との間で通信を行う。
CPU10は、メモリ30に保存されたレコメンドシステム1の制御用プログラムを読み込んで実行することにより、ユーザー特性情報取得部11、ユーザー特性認識部12、入力操作態様認識部13、ユーザー気分推定部14、推定精度算出部15、方位認識部16、提案アクティビティ情報取得部17、出力制御部18、ユーザー評価受付部19、ランク付与部20、評価要素選択受付部21、取得時点状況情報保存部22、個人嗜好カテゴリー設定部23、クラスタリング部24、現在状況認識部25、重み付け設定部26、アクティビティ計画部27、及びアクティビティ需要推定部28として機能する。
入力操作態様認識部13により実行される処理は、本発明のレコメンド方法における入力操作態様認識ステップに相当し、提案アクティビティ情報取得部17により実行される処理は、本発明のレコメンド方法における提案アクティビティ情報取得ステップに相当する。また、出力制御部18により実行される処理は、本発明のレコメンド方法における出力制御ステップに相当する。
ユーザー特性情報取得部11は、ユーザーDB211(図1参照)にアクセスして、パーソナルファイルに記録されているユーザーUの特性情報(性別、年齢、居住所、嗜好性等の情報)を取得する。ユーザー特性情報取得部11は、ユーザーUの嗜好性の情報を取得するユーザー嗜好情報取得部の機能を含んでいる。ユーザー特性認識部12は、ユーザーUの特性情報に基づいて、ユーザーUの特性を認識する。
入力操作態様認識部13は、ユーザーUによるユーザー端末50の入力操作の態様として、上述したユーザー端末50のスイング操作、又はユーザーアイコンのスライド操作の態様を認識する。入力操作態様認識部13は、スイングによるユーザー端末50の変位を認識する変位認識部の機能を含んでいる。
ユーザー気分推定部14は、入力操作態様認識部13により認識される入力操作の態様に基づいて、ユーザーUの気分を推定する。例えば、ユーザー気分推定部14は、入力操作態様認識部13により認識される入力態様に応じて、ユーザーUの気分を以下のように推定する。ユーザー気分推定部14は、ユーザーUの積極性を5段階で推定する。
ユーザー端末50のスイングの変位量が多いほど、ユーザーUの積極性が高い。
ユーザー端末50のスイング速さが速いほど、ユーザーUの積極性が高い。
ユーザー端末50のスイング加速度が高いほど、ユーザーUの積極性が高い。
ユーザーアイコン110のスワイプ量が多いほど、ユーザーUの積極性が高い。
ユーザーアイコン110のスワイプ速度が速いほど、ユーザーUの積極性が高い。
ユーザーアイコン110のスワイプ加速度が高いほど、ユーザーの積極性が高い。
推定精度算出部15は、ユーザー気分推定部14によるユーザーUの気分の推定精度を算出する。推定精度算出部15は、ユーザーUの気分に応じて抽出された提案アクティビティのうち、ユーザーUが選択した(ウッシュからドゥーに移動させた)アクティビティの割合を、推定精度として算出する。
方位認識部16は、ユーザー端末50の方位センサ53により検出されて、ユーザー端末50からレコメンドシステム1に送信される方位検出データに基づいて、ユーザー端末50が向いている方位を認識する。なお、ユーザーUが所持しているユーザー端末50以外のデバイス(腕時計等)により検出された方位のデータに基づいて、ユーザーUが向いている方位を認識してもよい。
提案アクティビティ情報取得部17は、アクティビティDB201にアクセスして、ユーザーUに適合するアクティビティを提案アクティビティとして抽出し、提案アクティビティの情報を取得する。出力制御部18は、提案アクティビティの情報をユーザー端末50に送信して、タッチパネル51に表示させる。出力制御部18は、ユーザー端末50の表示を制御する表示制御部の機能を含んでいる。
ユーザー評価受付部19は、提案アクティビティに対するユーザーUの選択操作を受け付ける。ユーザー評価受付部19は、ユーザーUによるアクティビティの選択を受け付けるアクティビティ選択受付部の機能を備えている。ランク付与部20は、提案アクティビティについて、図8に示した各評価要素のランク付けを行う。評価要素選択受付部21は、上述したランク距離画面を表示する際の評価要素のユーザーによる選択操作を受け付ける。取得時点状況情報保存部22は、提案アクティビティ情報取得部17が、提案アクティビティの情報を取得した時点における状況の情報を、アクティビティDB201に保存する。
個人嗜好カテゴリー設定部23は、ユーザーUがレコメンドシステム1への登録時に申告した嗜好性の情報、及びこれまでの提案アクティビティに対するユーザーUの選択実績等に基づいて、ユーザーUが有していると想定される嗜好性を設定する。個人嗜好カテゴリー設定部23は、図12に示したようにユーザーUに対して、嗜好カテゴリーA〜Eの5種類の嗜好カテゴリーのうち、ユーザーUに該当すると想定される嗜好カテゴリーを設定する。図12の例では、例えば、ユーザーIDがU01のユーザーUに該当する嗜好カテゴリーとして、嗜好カテゴリーAと嗜好カテゴリーBが設定されている。
クラスタリング部24は、重複する嗜好カテゴリーが設定されているユーザーを、同一のクラスに所属させるクラスタリングを行う。図12の例では、嗜好カテゴリーAが共通して設定されているユーザーIDがU01〜U04のユーザーUが、嗜好カテゴリーAによりクラスタリングされる。
現在状況認識部25は、現在状況として、ユーザーUに関連するユーザー固有状況と、ユーザー固有状況以外の一般状況とを認識する。ユーザー固有状況には、ユーザーUの現在位置、ユーザーUが興味をもっている地点、ユーザーの勤務時間帯、ユーザーの休日の状況が含まれる。現在状況認識部25は、ユーザーUの現在位置を、ユーザー端末50のGPSセンサ54により検出されて、ユーザー端末50からレコメンドシステム1に送信される位置検出データを受信することによって認識する。また、現在状況認識部25は、スケジュールサーバー300にアクセスして、ユーザーUのスケジュールを認識することにより、ユーザーUが興味をもっている地点、ユーザーの勤務時間帯、ユーザーの休日等を認識する。
また、現在状況認識部25は、一般状況として、季節、天候、現在時刻、交通状況を認識する。現在状況認識部25は、天候情報サーバー320にアクセスすることによって、天候の現在状況を認識し、交通情報サーバー310にアクセスすることによって、交通状況を認識する。重み付け設定部26は、提案アクティビティ情報取得部17が、提案アクティビティを抽出する際に使用する提案アクティビティの候補に対する重み付けを設定する。
アクティビティ計画部27は、図1の第4ステージで説明したように、アクティビティを体験するための計画を作成する。具体的には、アクティビティ計画部27は、ユーザー端末50の現在位置から、アクティビティを体験するエリア或いは施設までのアクセス方法、距離、所要時間等を、交通情報サーバー310にアクセスして認識して、計画を作成する。そして、アクティビティ計画部27は、計画内容を表示するプランニング画面のデータPLsを、ユーザー端末50に送信する。
アクティビティ需要推定部28は、ユーザー評価受付部19により受付けられた、ユーザーUによる提案アクティビティの評価のランクに基づいて、提案アクティビティの需要を推定する。提案アクティビティの需要の推定結果は、今後の提案アクティビティの抽出等に活用される。
[3.ランク距離画面の表示処理]
図7に示したフローチャートに従って、ランク距離画面の表示処理について説明する。図7のステップS1で、出力制御部18は、図8に示した6個の評価要素のうちの「所要時間」を、初期設定の選択評価要素とする。
続くステップS2で、出力制御部18は、ウッシュリストに登録された提案アクティビティについて、選択評価要素のランクが高い方から、所定数の提案アクティビティを抽出する。選択評価要素が「所要時間」であるときは、所要時間が短いほどランクが高くなるため、所要時間が短い提案アクティビティから順に抽出される。
次のステップS3で、出力制御部18は、図2に示したように、抽出した各提案アクティビティのアクティビティアイコン111〜117を、ユーザーアイコン110からの距離を、選択評価要素のランクが高いほど短くして配置したランク距離画面100のデータを、ユーザー端末50に送信する。これにより、ユーザー端末50のタッチパネル51に、ランク距離画面100が表示される。
続くステップS4で、出力制御部18は、ユーザー端末50から、評価要素の切り替えを指示する情報を受信したときに、ステップS5に処理を進めて、次の評価要素を選択評価要素に設定し、ステップS2に処理を進める。これにより、ユーザー端末50のタッチパネル51に表示されるランク距離画面100が、異なる評価基準別のランクに応じた画面に切り替わる。このように、ユーザーUは、評価基準を、所要時間→移動距離→活動量→難易度→時期→嗜好性→所要時間→…、と切り替えて、各評価基準に応じたランク距離画面100を確認し、体験するアクティビティを検討することができる。
[4.アクティビティ提案画面の表示処理]
図9に示したフローチャートに従って、アクティビティ提案画面の表示処理について説明する。図9のステップS10で、入力操作態様認識部13は、ユーザー端末50からモーション検出データMsd(図1参照)を受信したときに、ステップS11に処理を進める。ステップS11で、入力操作態様認識部13は、モーション検出データMsdに基づいて、ユーザーUによる入力操作の態様を認識する。
続くステップS12で、推定精度算出部15は、これまでのユーザーUの気分の推定精度が精度判定レベル以上であるか否かを判断する。ここで、推定精度算出部15は、これまでにユーザーUに対して提案されたアクティビティの総数に対する、ユーザーUに選択されたアクティビティの数の割合を、気分の推定精度として算出する。推定精度算出部15は、ユーザーUの気分の推定精度が精度判定レベルであるときはステップS13に処理を進め、ユーザーUの気分の推定精度が精度判定レベル以下であるときには、ステップS20に処理を進める。ステップS20では、後述するユーザーの嗜好性に基づく提案アクティビティの抽出処理が実行される。
ステップS13で、ユーザー気分推定部14は、入力操作態様認識部13により認識されたユーザーUの入力操作の態様に基づいて、ユーザーUの気分を推定する。ここでは、ユーザーUの気分を、上述したように5段階の積極性で推定する。続くステップS14で、方位認識部16は、ユーザー端末50から送信される方位データに基づいて、ユーザー端末50が向いている方位を認識する。次のステップS15で、提案アクティビティ情報取得部17は、アクティビティDB201を参照して、ユーザー気分推定部14により推定されたユーザーUの気分(積極性の高低)と、方位に基づいて、ユーザーUの気分に適合し、且つ、ユーザー端末50が向いている方位のエリアで体験可能なアクティビティを、提案アクティビティとして抽出する。
続くステップS16で、出力制御部18は、図4に示したように、提案アクティビティの画像を表示する提案アクティビティ画像表示部131と、評価スライダー140とを表示するアクティビティ提案画面130のデータをユーザー端末50に送信する。これにより、ユーザー端末50のタッチパネル51に、アクティビティ提案画面130が表示される。ユーザーUは、提案アクティビティの内容を検討して、評価スライダー140により提案アクティビティを評価する。
次のステップS17で、ユーザー評価受付部19は、ユーザー端末50から送信される提案アクティビティの評価データを受信したときに、ステップS17に処理を進める。ステップS17で、ユーザー評価受付部19は、評価データから認識したユーザーUによる提案アクティビティの評価レベルがウィッシュ閾値以上であるときは、ステップS21に処理を進めて、提案アクティビティをウッシュリストに登録する。この場合は、ユーザーUが、提案アクティビティを、体験するアクティビティの候補として選択したことになる。
一方、提案アクティビティの評価レベルがウィッシュ閾値よりも低いときには、ユーザー評価受付部19はステップS19に処理を進める。この場合は、ユーザーUが、提案アクティビティを選択しなかったことになり、提案アクティビティはウッシュリストに登録されない。
[5.ユーザーの嗜好性に基づく提案アクティビティの抽出処理]
図10〜図11に示したフローチャートに従って、ユーザーの嗜好に基づく提案アクティビティの抽出処理について説明する。ここでは、図12に示したように、5種類の嗜好カテゴリーA〜Eの適否が設定された4人のユーザーについて、図13に示したように、事前確率及び条件付き確率が設定された4件のアクティビティB1〜B4の中から、提案アクティビティを抽出する場合について説明する。図12では、「Like]が付されている嗜好カテゴリーが、各ユーザーに設定されていることを示している。
以下では、図12のユーザーIDがU03であるユーザーを第1ユーザーとし、嗜好カテゴリーBが設定されたユーザーIDがU01、U04であるユーザーを第2ユーザーとして、説明する。
図10のステップS50で、ユーザー特性情報取得部11は、ユーザーDB211を参照して、第1ユーザーの嗜好カテゴリーである嗜好カテゴリーAと嗜好カテゴリーCを認識する。続くステップS51で、現在状況認識部25は、上述したように、第1ユーザーのユーザー固有状況と一般状況とを、現在状況として認識する。続くステップS52で、クラスタリング部24は、ユーザーDB211を参照して、第1ユーザーを含む、嗜好カテゴリーAが設定された図12の4人のユーザーを第1クラスに所属させる。
続くステップS53で、提案アクティビティ情報取得部17は、第1ユーザーが属する第1クラスの他のユーザー(第2ユーザー)の嗜好カテゴリーを認識する。次のステップS54で、提案アクティビティ情報取得部17は、第2ユーザーに設定された嗜好カテゴリーのなかから、図12に示したように、協調フィルタリングを行って、第2ユーザーが好む割合が多い嗜好カテゴリーBを、使用する嗜好カテゴリーとして選定する。
続くステップS55で、アクティビティDB201にアクセスして、嗜好カテゴリーBに適合するアクティビティを第1ユーザーに対する提案アクティビティの候補として抽出する。ここでは、図13のCに示したように、4件のアクティビティB1〜B4が抽出されたものとする。アクティビティB1〜B4の事前確率はそれぞれ0.25に設定されている。
次のステップS56で、重み付け設定部26は、図3のWに示したように、アクティビティB1〜B4に対する重み付けを、現在状況認識部25により認識された一般状況である天候(晴れ、曇り、雨、その他)の違いによって設定する。続くステップS57で、提案アクティビティ情報取得部17は、アクティビティB1〜B4の事前確率に、現在の天候に応じた条件付き確率を乗じて、アクティビティB1〜B4の参照値を算出し、参照値が最大となるアクティビティを提案アクティビティとして抽出して、図11のステップS58に処理を進める。
図11のステップS58〜S61及びステップS70の処理は、上述した図9のステップS15〜S18及びステップS21の処理と同様であり、ユーザー端末50のタッチパネル51に、アクティビティ提案画面が表示され、第1ユーザーによる評価に応じて、提案アクティビティがユーザーDB211のウィッシュリストに登録される。
[6.他の実施形態]
上記実施形態において、ユーザー気分推定部14は、ユーザーの気分として積極性の高さを推定したが、積極性以外の気分を推定してもよい。例えば、ユーザーの移動に対する気分を推定してもよい。この場合、ユーザー気分推定部14は、例えば、入力操作態様認識部13により認識されるユーザー端末50の変位量が大きいときは、ユーザーが遠くまで出かけたい気分であると推定し、ユーザー端末50の変位量が小さいときには、ユーザーが遠くに出かけたい気分ではないと推定する。そして、提案アクティビティ情報取得部17は、ユーザが遠いまで出かけたい気分であると推定された場合は、ユーザーの現在位置からの距離が長いエリアでのアクティビティを提案し、ユーザーが遠くに出かけたい気分ではないと推定された場合は、ユーザーの現在位置に近いエリアでのアクティビティを提案する。
上記実施形態では、入力操作態様認識部13は、ユーザーの入力操作の態様として、モーションセンサ52により検出されるユーザー端末50の変位操作の態様、又はユーザー端末50のタッチパネル51の操作の態様を用いたが、いずれか一方の操作態様のみを用いてもよい。
上記実施形態では、ユーザーによる入力装置に対する入力操作の態様として、ユーザー端末50の変位態様、又はユーザーアイコンのスワイプ操作を認識したが、図4の評価スライダー140のように、色又は濃淡が異なる複数のエリアをタッチパネル51に表示して、ユーザーUがどのエリアをタッチするかを、入力操作の態様として認識してもよい。この場合、ユーザー気分推定部14は、例えば、ユーザーUが明るい色のエリアをタッチしたときは積極性が高いと推定し、ユーザーUが暗い色のエリアをタッチしたときには積極性が低いと推定する。
上記実施形態では、提案アクティビティ情報取得部17は、ユーザー端末50が向いている方位を用いて、提案アクティビティを抽出したが、方位の情報を使用せずに情報アクティビティを抽出してもよい。
上記実施形態において、本発明のレコメンドシステムをコンピュータシステムであるレコメンドシステム1により構成したが、レコメンドシステムの構成の一部または全部を、ユーザー端末50に備えるようにしてもよい。
上記実施形態において、重み付け設定部26は、図13に示したように、提案アクティビティの候補に対して天候に応じた重み付けを行った。他の現在状況についても、重み付け設定部26により、適宜重み付けを行ってもよい。例えば、ユーザーのスケジュールから、ユーザーがアクティビティにかけられる時間が限られると想定される場合には、所要時間が短いほど、提案アクティビティの候補に対する重み付けを大きく設定してもよい。また、複数の現在状況(天候と距離等)の組み合わせについて、重畳的に重み付けを設定してもよい。
上記実施形態において、重み付け設定部26により、図10のステップS56〜S57で抽出した提案アクティビティと、抽出する際に用いた現在状況及び重み付けと、提案アクティビティに対する第1ユーザーの評価(選択状況)とに基づいて、重み付けの設定を評価し、評価結果に基づいて、次回以降の提案アクティビティ情報取得部17による前記第1提案アクティビティの抽出における重み付けを設定するようにしてもよい。
なお、図6は、本願発明の理解を容易にするために、レコメンドシステム1の機能構成を、主な処理内容により区分して示した概略図であり、レコメンドシステム1の構成を、他の区分によって構成してもよい。また、各構成要素の処理は、1つのハードウェアユニットにより実行されてもよいし、複数のハードウェアユニットにより実行されてもよい。また、図7、図9〜図11に示した各構成要素の処理は、1つのプログラムにより実行されてもよいし、複数のプログラムにより実行されてもよい。
[7.上記実施形態によりサポートされる構成]
上記実施形態は、以下の構成の具体例である。
(第1項)入力装置に対するユーザーの入力操作の態様を認識する入力操作態様認識部と、前記入力操作態様認識部により認識された前記入力操作の態様に基づいて、前記ユーザーの気分を推定するユーザー気分推定部と、アクティビティの情報が保存されたアクティビティデータベースにアクセスして、前記ユーザー気分推定部により推定された前記ユーザーの気分に適合する提案アクティビティを抽出し、前記提案アクティビティの情報を取得する提案アクティビティ情報取得部と、前記提案アクティビティ情報取得部により取得された前記提案アクティビティの情報を、前記ユーザーにより使用される出力装置に出力させる出力制御部と、を備えるレコメンドシステム。
上記レコメンドシステムによれば、ユーザーは、自身の気分に従って入力操作の態様を変更するというシンプルなアクションをすることによって、現在の気分に適合すると期待される提案アクティビティの情報を容易に得ることができる。そのため、アクティビティを検討するユーザーが、レコメンドシステムを積極的に活用することが期待できる。
(第2項)前記入力装置は前記ユーザーにより把持されて使用され、前記入力操作は前記ユーザーによる前記入力装置の変位操作であり、前記入力操作態様認識部は、前記入力装置に備えられたモーションセンサの検出信号に基づいて、前記変位操作による前記入力装置の変位量、変位方向、変位速度、変位加速度のうちの少なくともいずれか一つを、前記入力操作の態様として認識する第1項に記載のレコメンドシステム。
第2項のレコメンドシステムによれば、ユーザーは、自身の気分に合わせて、把持した入力装置の変位のさせ方を変えるより、気分に応じたアクティビティの情報を得ることができる。
(第3項)前記変位操作は、前記ユーザーが前記入力装置を把持した手をスイングさせる操作である第2項に記載のレコメンドシステム。
第3項に記載のレコメンドシステムによれば、ユーザーは、自身の気分に合わせて、入力装置を把持した手のスイングの仕方を変えることにより、気分に応じたアクティビティの情報を得ることができる。また、ユーザの動作の大きさはユーザの明示的な意識の有無に関わらずユーザの気分を反映することが期待される。
(第4項)前記入力装置はタッチパネルを有し、前記入力操作は前記ユーザーによる前記タッチパネルの操作であり、前記入力操作態様認識部は、前記タッチパネルに対するタッチ操作の継続時間、スワイプ操作の方向、スワイプ操作の速さ、又はスワイプ操作の向きのうちの、少なくともいずれか一つを、前記入力操作の態様として認識する第1項から第3項のうちいずれか1項に記載のレコメンドシステム。
第4項のレコメンドシステムによれば、ユーザーは、自身の気分に合わせて、タッチパネルに対する操作の仕方を変えることにより、気分に応じたアクティビティの情報を得ることができる。
(第5項)前記入力装置はタッチパネルを有し、前記入力操作は前記ユーザーによる前記タッチパネルの操作であり、前記入力操作態様認識部は、前記タッチパネルに表示される濃淡又は色が異なる複数の選択エリアのうち、前記ユーザーがどの選択エリアをタッチしたかを、前記入力操作の態様として認識する第1項から第4項のうちいずれか1項に記載のレコメンドシステム。
第5項のレコメンドシステムによれば、ユーザーは、自身の気分に合わせて、タッチする選択エリアを変えることにより、気分に応じたアクティビティの情報を得ることができる。
(第6項)前記ユーザー又は前記入力装置が向いている方位を認識する方位認識部を備え、前記提案アクティビティ情報取得部は、前記方位認識部により認識される前記ユーザー又は前記入力装置が向いている方位のエリアで、体験可能なアクティビティの中から、前記提案アクティビティを抽出する第1項から第5項のうちいずれか1項に記載のレコメンドシステム。
第6項のレコメンドシステムによれば、ユーザーは、関心があるエリアが存在する方位を向いて、或いは関心があるエリアが存在する方位に入力装置を向けて、入力装置に対する入力操作を行うことにより、関心があるエリア或いは関心があるエリアまでの経路において体験可能なアクティビティの情報を得ることができる。
(第7項)前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティと適合する嗜好性の情報が含まれ、前記ユーザーの嗜好性情報が保存されたユーザーデータベースにアクセスして、前記ユーザーの前記嗜好性情報を取得するユーザー嗜好性情報取得部を備え、前記ユーザー気分推定部は、前記ユーザーの気分として前記ユーザーの積極性の高さを推定し、前記提案アクティビティ情報取得部は、前記ユーザー嗜好性情報取得部により取得される前記ユーザーの前記嗜好性情報から認識した前記ユーザーの嗜好性との適合度が、所定の適合度判定レベル以上であるアクティビティを、前記提案アクティビティとして抽出し、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど、前記適合度判定レベルを低く設定する第1項から第6項のうちいずれか1項に記載のレコメンドシステム。
第7項のレコメンドシステムによれば、ユーザーの積極性が高いと推定される場合に、ユーザーの嗜好性との適合度が低いアクティビティの情報をあえて提供することにより、意外性や新鮮味のあるアクティビティへのチャレンジを、ユーザーに対して提案することができる。
(第8項)前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティ体験者の想定活動量が含まれ、前記ユーザー気分推定部は、前記ユーザーの気分として前記ユーザーの積極性の高さを推定し、前記提案アクティビティ情報取得部は、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど体験者の想定活動量が多くなるように、前記提案アクティビティを抽出する第1項から第7項のうちいずれか1項に記載のレコメンドシステム。
第8項のレコメンドシステムによれば、ユーザーの積極性が高いと推定される場合に、想定活動力が多く体験に対するハードルが高いアクティビティへのチャレンジを、ユーザーに対して提案することができる。
(第9項)前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティが体験できる場所の情報が含まれ、前記ユーザー又は前記入力装置の現在位置を認識する現在位置認識部を備え、前記提案アクティビティ情報取得部は、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど、前記現在位置認識部により認識される前記ユーザー又は前記入力装置の現在位置からアクティビティの体験場所までの距離が長くなるように、前記提案アクティビティを抽出する第1項から第8項のうちいずれか1項に記載のレコメンドシステム。
第9項のレコメンドシステムによれば、ユーザーの積極性が高いと推定される場合に、現在位置からの距離が長く、体験するための移動の負荷が高いアクティビティへのチャレンジを、ユーザーに対して提案することができる。
(第10項)コンピュータにより実行されるレコメンド方法であって、入力装置に対するユーザーの入力操作の態様を認識する入力操作態様認識ステップと、前記入力操作態様認識ステップにより認識された前記入力操作の態様に基づいて、前記ユーザーの気分を推定するユーザー気分推定ステップと、アクティビティの情報が保存されたアクティビティデータベースにアクセスして、前記ユーザー気分推定ステップにより推定された前記ユーザーの気分に適合する提案アクティビティを抽出し、前記提案アクティビティの情報を取得する提案アクティビティ情報取得ステップと、前記提案アクティビティ情報取得ステップにより取得された前記提案アクティビティの情報を、前記ユーザーにより使用される出力装置に出力させる出力制御ステップと、を含むレコメンド方法。
第10項のレコメンド方法をコンピュータにより実行させることによって、第1項のレコメンドシステムと同様の作用効果を得ることができる。
1…レコメンドシステム、10…CPU、11…ユーザー特性情報取得部、12…ユーザー特性認識部、13…入力操作態様認識部、14…ユーザー気分推定部、15…推定精度算出部、16…方位認識部、17…提案アクティビティ情報取得部、18…出力制御部、19…ユーザー評価受付部、20…ランク付与部、21…評価要素選択受付部、22…取得時点状況情報保存部、23…個人嗜好カテゴリー設定部、24…クラスタリング部、25…現在状況認識部、26…重み付け設定部、27…アクティビティ計画部、28…アクティビティ需要推定部、30…メモリ、50…ユーザー端末、51…タッチパネル、52…モーションセンサ、53…方位センサ、100…ランク距離画面、110…ユーザーアイコン、130…アクティビティ提案画面、150…アクティビティ一覧画面、200…アクティビティ情報サーバー、201…アクティビティDB、210…ユーザー情報サーバー、211…ユーザーDB、U…ユーザー。

Claims (10)

  1. 入力装置に対するユーザーの入力操作の態様を認識する入力操作態様認識部と、
    前記入力操作態様認識部により認識された前記入力操作の態様に基づいて、前記ユーザーの気分を推定するユーザー気分推定部と、
    アクティビティの情報が保存されたアクティビティデータベースにアクセスして、前記ユーザー気分推定部により推定された前記ユーザーの気分に適合する提案アクティビティを抽出し、前記提案アクティビティの情報を取得する提案アクティビティ情報取得部と、
    前記提案アクティビティ情報取得部により取得された前記提案アクティビティの情報を、前記ユーザーにより使用される出力装置に出力させる出力制御部と、
    を備えるレコメンドシステム。
  2. 前記入力装置は前記ユーザーにより把持されて使用され、前記入力操作は前記ユーザーによる前記入力装置の変位操作であり、
    前記入力操作態様認識部は、前記入力装置に備えられたモーションセンサの検出信号に基づいて、前記変位操作による前記入力装置の変位量、変位方向、変位速度、変位加速度のうちの少なくともいずれか一つを、前記入力操作の態様として認識する
    請求項1に記載のレコメンドシステム。
  3. 前記変位操作は、前記ユーザーが前記入力装置を把持した手をスイングさせる操作である
    請求項2に記載のレコメンドシステム。
  4. 前記入力装置はタッチパネルを有し、前記入力操作は前記ユーザーによる前記タッチパネルの操作であり、
    前記入力操作態様認識部は、前記タッチパネルに対するタッチ操作の継続時間、スワイプ操作の方向、スワイプ操作の速さ、又はスワイプ操作の向きのうちの、少なくともいずれか一つを、前記入力操作の態様として認識する
    請求項1から請求項3のうちいずれか1項に記載のレコメンドシステム。
  5. 前記入力装置はタッチパネルを有し、前記入力操作は前記ユーザーによる前記タッチパネルの操作であり、
    前記入力操作態様認識部は、前記タッチパネルに表示される濃淡又は色が異なる複数の選択エリアのうち、前記ユーザーがどの選択エリアをタッチしたかを、前記入力操作の態様として認識する
    請求項1から請求項4のうちいずれか1項に記載のレコメンドシステム。
  6. 前記ユーザー又は前記入力装置が向いている方位を認識する方位認識部を備え、
    前記提案アクティビティ情報取得部は、前記方位認識部により認識される前記ユーザー又は前記入力装置が向いている方位のエリアで、体験可能なアクティビティの中から、前記提案アクティビティを抽出する
    請求項1から請求項5のうちいずれか1項に記載のレコメンドシステム。
  7. 前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティと適合する嗜好性の情報が含まれ、
    前記ユーザーの嗜好性情報が保存されたユーザーデータベースにアクセスして、前記ユーザーの前記嗜好性情報を取得するユーザー嗜好性情報取得部を備え、
    前記ユーザー気分推定部は、前記ユーザーの気分として前記ユーザーの積極性の高さを推定し、
    前記提案アクティビティ情報取得部は、前記ユーザー嗜好性情報取得部により取得される前記ユーザーの前記嗜好性情報から認識した前記ユーザーの嗜好性との適合度が、所定の適合度判定レベル以上であるアクティビティを、前記提案アクティビティとして抽出し、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど、前記適合度判定レベルを低く設定する
    請求項1から請求項6のうちいずれか1項に記載のレコメンドシステム。
  8. 前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティ体験者の想定活動量が含まれ、
    前記ユーザー気分推定部は、前記ユーザーの気分として前記ユーザーの積極性の高さを推定し、
    前記提案アクティビティ情報取得部は、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど体験者の想定活動量が多くなるように、前記提案アクティビティを抽出する
    請求項1から請求項7のうちいずれか1項に記載のレコメンドシステム。
  9. 前記アクティビティデータベースに保存されるアクティビティの情報には、アクティビティが体験できる場所の情報が含まれ、
    前記ユーザー又は前記入力装置の現在位置を認識する現在位置認識部を備え、
    前記提案アクティビティ情報取得部は、前記ユーザー気分推定部により推定される前記ユーザーの積極性が高いほど、前記現在位置認識部により認識される前記ユーザー又は前記入力装置の現在位置からアクティビティの体験場所までの距離が長くなるように、前記提案アクティビティを抽出する
    請求項1から請求項8のうちいずれか1項に記載のレコメンドシステム。
  10. コンピュータにより実行されるレコメンド方法であって、
    入力装置に対するユーザーの入力操作の態様を認識する入力操作態様認識ステップと、
    前記入力操作態様認識ステップにより認識された前記入力操作の態様に基づいて、前記ユーザーの気分を推定するユーザー気分推定ステップと、
    アクティビティの情報が保存されたアクティビティデータベースにアクセスして、前記ユーザー気分推定ステップにより推定された前記ユーザーの気分に適合する提案アクティビティを抽出し、前記提案アクティビティの情報を取得する提案アクティビティ情報取得ステップと、
    前記提案アクティビティ情報取得ステップにより取得された前記提案アクティビティの情報を、前記ユーザーにより使用される出力装置に出力させる出力制御ステップと、
    を含むレコメンド方法。
JP2020064599A 2020-03-31 2020-03-31 レコメンドシステム、及びレコメンド方法 Active JP7555720B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020064599A JP7555720B2 (ja) 2020-03-31 2020-03-31 レコメンドシステム、及びレコメンド方法
CN202110275170.0A CN113468409A (zh) 2020-03-31 2021-03-15 推荐系统及推荐方法
US17/210,676 US11494389B2 (en) 2020-03-31 2021-03-24 Recommendation system and recommendation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064599A JP7555720B2 (ja) 2020-03-31 2020-03-31 レコメンドシステム、及びレコメンド方法

Publications (2)

Publication Number Publication Date
JP2021163237A true JP2021163237A (ja) 2021-10-11
JP7555720B2 JP7555720B2 (ja) 2024-09-25

Family

ID=77856072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064599A Active JP7555720B2 (ja) 2020-03-31 2020-03-31 レコメンドシステム、及びレコメンド方法

Country Status (3)

Country Link
US (1) US11494389B2 (ja)
JP (1) JP7555720B2 (ja)
CN (1) CN113468409A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207357A (ja) * 2012-03-27 2013-10-07 Sony Corp サーバ、クライアント端末、システムおよびプログラム
JP2014098623A (ja) * 2012-11-14 2014-05-29 Denso Corp 行動提案装置
JP2017167752A (ja) * 2016-03-15 2017-09-21 ヤフー株式会社 決定装置、決定方法及び決定プログラム
JP2017188031A (ja) * 2016-04-08 2017-10-12 ソフトバンク・テクノロジー株式会社 行動データ及び感情データに基づくリマーケティングシステム及びその運用方法
US20190295728A1 (en) * 2016-12-01 2019-09-26 Lg Household & Health Care Ltd. Customized cosmetics provision system and operating method thereof
JP2019215679A (ja) * 2018-06-12 2019-12-19 株式会社野村総合研究所 サーバおよびコンピュータプログラム
JP2020064537A (ja) * 2018-10-19 2020-04-23 Kddi株式会社 レコメンドシステム及びレコメンド方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493130B2 (en) * 2011-04-22 2016-11-15 Angel A. Penilla Methods and systems for communicating content to connected vehicle users based detected tone/mood in voice input
KR101203695B1 (ko) * 2011-05-30 2012-11-22 경희대학교 산학협력단 사용자 심리지수에 기초한 조언 추천 시스템
US8965828B2 (en) 2012-07-23 2015-02-24 Apple Inc. Inferring user mood based on user and group characteristic data
CN103077490A (zh) * 2013-01-29 2013-05-01 阿坝师范高等专科学校 旅游消费信息的数据处理方法
JP5818377B2 (ja) * 2013-08-07 2015-11-18 本田技研工業株式会社 情報配信システム及びクライアント端末
US9177410B2 (en) * 2013-08-09 2015-11-03 Ayla Mandel System and method for creating avatars or animated sequences using human body features extracted from a still image
US20150118663A1 (en) * 2013-10-28 2015-04-30 Revnc, Inc. System and Method for Predicting and Communicating Data Relating to a Partner's Mood and Sensitivity
US20180160943A1 (en) 2013-12-10 2018-06-14 4Iiii Innovations Inc. Signature based monitoring systems and methods
US9509789B2 (en) * 2014-06-04 2016-11-29 Grandios Technologies, Llc Managing mood data on a user device
JP2016018519A (ja) 2014-07-11 2016-02-01 株式会社Jtbワールドバケーションズ 旅行商品予約支援装置、旅行商品予約支援方法及び旅行商品販売用印刷物
US10284537B2 (en) * 2015-02-11 2019-05-07 Google Llc Methods, systems, and media for presenting information related to an event based on metadata
US11392580B2 (en) * 2015-02-11 2022-07-19 Google Llc Methods, systems, and media for recommending computerized services based on an animate object in the user's environment
US20160232131A1 (en) * 2015-02-11 2016-08-11 Google Inc. Methods, systems, and media for producing sensory outputs correlated with relevant information
US11048855B2 (en) * 2015-02-11 2021-06-29 Google Llc Methods, systems, and media for modifying the presentation of contextually relevant documents in browser windows of a browsing application
WO2017094327A1 (ja) * 2015-11-30 2017-06-08 ソニー株式会社 情報処理装置、情報処理システム、情報処理方法及びプログラム
US10157224B2 (en) * 2016-02-03 2018-12-18 Facebook, Inc. Quotations-modules on online social networks
US10242074B2 (en) * 2016-02-03 2019-03-26 Facebook, Inc. Search-results interfaces for content-item-specific modules on online social networks
CN105975536A (zh) * 2016-04-29 2016-09-28 合网络技术(北京)有限公司 网络资源的推荐方法和装置
CN105956174B (zh) * 2016-05-24 2019-10-29 甘肃百合物联科技信息有限公司 一种构建记忆链条及将其用于加强记忆的方法
JP2018112888A (ja) * 2017-01-11 2018-07-19 パナソニックIpマネジメント株式会社 旅行提案システム、情報生成装置、旅行提案方法、情報生成方法及びプログラム
CN106956271B (zh) * 2017-02-27 2019-11-05 华为技术有限公司 预测情感状态的方法和机器人
CN108733666B (zh) * 2017-04-13 2022-03-08 腾讯科技(深圳)有限公司 服务器信息推送方法、终端信息发送方法及装置、系统
JP6552548B2 (ja) * 2017-05-25 2019-07-31 本田技研工業株式会社 地点提案装置及び地点提案方法
CN107911491B (zh) * 2017-12-27 2019-09-27 Oppo广东移动通信有限公司 信息推荐方法、装置及存储介质、服务器和移动终端
CN110110203B (zh) * 2018-01-11 2023-04-28 腾讯科技(深圳)有限公司 资源信息推送方法及服务器、资源信息展示方法及终端
US10719713B2 (en) * 2018-05-29 2020-07-21 International Business Machines Corporation Suggested comment determination for a communication session based on image feature extraction
CN108876053A (zh) * 2018-07-02 2018-11-23 清远网博信息技术有限公司 旅游线路智能规划方法和系统
CN109684564A (zh) * 2019-01-03 2019-04-26 东喜和仪(珠海市)数据科技有限公司 旅游服务推荐方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207357A (ja) * 2012-03-27 2013-10-07 Sony Corp サーバ、クライアント端末、システムおよびプログラム
JP2014098623A (ja) * 2012-11-14 2014-05-29 Denso Corp 行動提案装置
JP2017167752A (ja) * 2016-03-15 2017-09-21 ヤフー株式会社 決定装置、決定方法及び決定プログラム
JP2017188031A (ja) * 2016-04-08 2017-10-12 ソフトバンク・テクノロジー株式会社 行動データ及び感情データに基づくリマーケティングシステム及びその運用方法
US20190295728A1 (en) * 2016-12-01 2019-09-26 Lg Household & Health Care Ltd. Customized cosmetics provision system and operating method thereof
JP2019215679A (ja) * 2018-06-12 2019-12-19 株式会社野村総合研究所 サーバおよびコンピュータプログラム
JP2020064537A (ja) * 2018-10-19 2020-04-23 Kddi株式会社 レコメンドシステム及びレコメンド方法

Also Published As

Publication number Publication date
US20210303581A1 (en) 2021-09-30
US11494389B2 (en) 2022-11-08
JP7555720B2 (ja) 2024-09-25
CN113468409A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
US10951602B2 (en) Server based methods and systems for conducting personalized, interactive and intelligent searches
US10528572B2 (en) Recommending a content curator
US20170351767A1 (en) Information processing system, information processing device, control method, and program
CN103853606B (zh) 切换应用程序的方法及设备
US10016165B2 (en) Information processing apparatus, information processing method, and program
CN110780707B (zh) 信息处理设备、信息处理方法与计算机可读介质
CN105404629B (zh) 确定地图界面的方法和装置
US20220237486A1 (en) Suggesting activities
US20150304252A1 (en) Information processing device, information processing method, and program
WO2019143445A2 (en) Optimization of an automation setting through selective feedback
US10460291B2 (en) Information processing apparatus, information processing method, and computer program for scheduling activities modelled from activities of third parties
US20170061024A1 (en) Information processing device, control method, and program
US11537677B2 (en) Recommendation system and recommendation method
JP2021163239A (ja) レコメンドシステム、及びレコメンド方法
US20170053034A1 (en) Display control device, display control method, and program
CN116547640B (zh) 应用推荐方法及电子设备
US20190005055A1 (en) Offline geographic searches
JP2021163237A (ja) レコメンドシステム、及びレコメンド方法
WO2015178066A1 (ja) 情報処理装置および情報処理方法
CN110287422A (zh) 信息提供装置及其控制方法
CN110285824A (zh) 信息提供装置及其控制方法
CN118779057A (zh) 一种用于触屏电子设备软件功能的推荐系统和方法
JP2020166621A (ja) 情報管理装置および情報管理方法
KR20240127234A (ko) 여행 플랜 생성 방법 및 이를 수행하는 서버
JP2023164352A (ja) 適応型トピックディスカッションシステム、及びその実行方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240911

R150 Certificate of patent or registration of utility model

Ref document number: 7555720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150