JP2021154574A - Joint structure and joint method of metal member and resin member - Google Patents

Joint structure and joint method of metal member and resin member Download PDF

Info

Publication number
JP2021154574A
JP2021154574A JP2020056334A JP2020056334A JP2021154574A JP 2021154574 A JP2021154574 A JP 2021154574A JP 2020056334 A JP2020056334 A JP 2020056334A JP 2020056334 A JP2020056334 A JP 2020056334A JP 2021154574 A JP2021154574 A JP 2021154574A
Authority
JP
Japan
Prior art keywords
metal member
resin
resin member
joining
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020056334A
Other languages
Japanese (ja)
Other versions
JP7376044B2 (en
Inventor
耕二郎 田中
Kojiro Tanaka
耕二郎 田中
泰博 森田
Yasuhiro Morita
泰博 森田
郁 大石
Ikumi Oishi
郁 大石
幸介 小川
Kosuke Ogawa
幸介 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Hirotec Corp
Original Assignee
Mazda Motor Corp
Hirotec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Hirotec Corp filed Critical Mazda Motor Corp
Priority to JP2020056334A priority Critical patent/JP7376044B2/en
Publication of JP2021154574A publication Critical patent/JP2021154574A/en
Application granted granted Critical
Publication of JP7376044B2 publication Critical patent/JP7376044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a joint structure of a metal member and a resin member which achieves a joint between the resin member and the metal member with a sufficient strength.SOLUTION: There is provided a joint structure of a metal member and a resin member, in which the resin member is joined to a metal member in a melting/solidification region on a surface on the metal member side, and the melting/solidification region has a degree of crystallization (maximum crystallization ratio) of 80% or less.SELECTED DRAWING: None

Description

本発明は、金属部材と樹脂部材との接合構造および接合方法に関する。 The present invention relates to a joining structure and a joining method of a metal member and a resin member.

従来、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、またスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、図10に示すように、金属部材211と樹脂部材212とを重ね合わせ、回転ツール216を回転させつつ、金属部材211に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材212を溶融させた後、固化させて金属部材211と樹脂部材212とを接合する方法である(例えば、特許文献1〜3)。 Conventionally, weight reduction has been required in the fields of automobiles, railroad vehicles, aircraft, and the like. For example, in the field of automobiles, thin steel sheets are being used by using high-tensile steel, aluminum alloy materials are being used as substitutes for steel materials, and resin materials are also being used. In such fields, the development of joining technology between metal members and resin members is important not only from the viewpoint of reducing the weight of the vehicle body, but also from the viewpoint of increasing the strength, rigidity, and productivity of the joining members. be. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. In the friction stir welding method, as shown in FIG. 10, a metal member 211 and a resin member 212 are overlapped with each other, and while rotating the rotation tool 216, the metal member 211 is pressed to generate frictional heat, and the frictional heat is generated. In this method, the resin member 212 is melted and then solidified to join the metal member 211 and the resin member 212 (for example, Patent Documents 1 to 3).

金属部材と樹脂部材との接合方法として、摩擦撹拌接合方法のほか、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等のような、加圧しながら加熱を行う熱圧式接合方法も知られている。 As a joining method between a metal member and a resin member, heating is performed while pressurizing, such as a friction stir welding method, a resistance heating joining method (electric heating joining method), an induction heating joining method, an ultrasonic heating joining method, etc. A thermal pressure joining method is also known.

摩擦撹拌接合方法を含む熱圧式接合方法において、固化は、製造コストの観点から、自然冷却により行われることもあれば、製造工程の短縮化等の観点から、強制冷却により行われることもある。 In the thermal pressure welding method including the friction stir welding method, solidification may be performed by natural cooling from the viewpoint of manufacturing cost, or by forced cooling from the viewpoint of shortening the manufacturing process.

特開2016−68465号公報Japanese Unexamined Patent Publication No. 2016-68465 特開2016−68467号公報Japanese Unexamined Patent Publication No. 2016-68467 特開2016−68471号公報Japanese Unexamined Patent Publication No. 2016-68471

しかしながら、本発明の発明者等は、従来の摩擦撹拌接合方法において、溶融した樹脂の固化を常温放置による自然冷却を含む従来の冷却方法により行った場合では、接合強度が十分に得られず、それが接合界面に位置し金属部材に面する樹脂(接合中の入熱による溶融後に固化した領域)の結晶化度に起因することを見い出した。 However, the inventors of the present invention cannot sufficiently obtain the bonding strength when the molten resin is solidified by the conventional cooling method including natural cooling by leaving it at room temperature in the conventional friction stirring bonding method. It was found that this is due to the crystallinity of the resin (the region solidified after melting due to heat input during bonding) located at the bonding interface and facing the metal member.

摩擦撹拌接合方法以外の他の熱圧式接合方法においても、溶融した樹脂の固化を常温放置による自然冷却を含む従来の冷却方法により行った場合では、接合強度が十分に得られなかった。 Even in other thermal pressure welding methods other than the friction stir welding method, sufficient bonding strength could not be obtained when the molten resin was solidified by a conventional cooling method including natural cooling by leaving at room temperature.

本発明は、樹脂部材と金属部材との接合を十分な強度で達成する、金属部材と樹脂部材との接合構造および接合方法を提供することを目的とする。 An object of the present invention is to provide a joining structure and joining method between a metal member and a resin member, which achieves joining of the resin member and the metal member with sufficient strength.

本発明は、
金属部材と樹脂部材との接合構造であって、
前記樹脂部材は、金属部材側表面における溶融固化域で金属部材と接合されており、
前記溶融固化域は80%以下の結晶化度(最大結晶化度比)を有する、金属部材と樹脂部材との接合構造に関する。
The present invention
It is a joint structure of a metal member and a resin member.
The resin member is joined to the metal member in the melt-solidified region on the surface on the metal member side.
The melt-solidified region relates to a bonding structure of a metal member and a resin member having a crystallinity of 80% or less (maximum crystallinity ratio).

本発明はまた、金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により熱および圧力を付与し、前記樹脂部材を軟化および溶融させた後、固化させる熱圧式接合方法による、上記の金属部材と樹脂部材との接合構造に関する。 The present invention is also based on a thermal pressure joining method in which a metal member and a resin member are superposed, heat and pressure are applied by pressing from the metal member side by the pressing member, and the resin member is softened and melted and then solidified. The present invention relates to a joint structure between the above metal member and a resin member.

本発明はさらに、上記の金属部材と樹脂部材との接合構造を実現する手法として、以下の金属部材と樹脂部材との接合方法に関する:
金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により熱および圧力を付与し、前記樹脂部材を軟化および溶融させた後、固化させる熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記固化工程において、前記樹脂部材の溶融固化域が80%以下の結晶化度(最大結晶化度比)を有するように強制冷却を行う、金属部材と樹脂部材との接合方法。
The present invention further relates to the following method of joining the metal member and the resin member as a method for realizing the joining structure between the metal member and the resin member:
The metal member and the resin member are superposed on each other, heat and pressure are applied by pressing from the metal member side by the pressing member, and the resin member is softened and melted and then solidified. It is a method of joining with
A method for joining a metal member and a resin member, wherein in the solidification step, forced cooling is performed so that the melt-solidified region of the resin member has a crystallization degree (maximum crystallinity ratio) of 80% or less.

本発明の接合構造および接合方法によれば、樹脂部材と金属部材との接合を十分な強度で達成することができる。 According to the joining structure and joining method of the present invention, joining of a resin member and a metal member can be achieved with sufficient strength.

本発明に係る金属部材と樹脂部材との接合構造の一例を示す模式図である。It is a schematic diagram which shows an example of the joint structure of a metal member and a resin member which concerns on this invention. 本発明に係る金属部材と樹脂部材との接合構造の一例から金属部材を強制的に剥離させ、樹脂部材の金属部材側表面を観察したときの樹脂部材の表面状態を示す概略模式図である。It is a schematic schematic diagram which shows the surface state of a resin member at the time of forcibly peeling off a metal member from an example of the joint structure of a metal member and a resin member which concerns on this invention, and observing the surface of the resin member on the metal member side. 本発明に係る金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows a part example of the friction stir welding apparatus suitable for the method of joining a metal member and a resin member which concerns on this invention. 本発明の接合方法に使用される押圧部材としての回転ツールの一例の先端部の拡大図である。It is an enlarged view of the tip part of an example of the rotation tool as a pressing member used in the joining method of this invention. 本発明の予熱工程の一例を説明するための概略断面図である。It is the schematic sectional drawing for demonstrating an example of the preheating process of this invention. 本発明の押込み撹拌工程および撹拌維持工程の一例を説明するための概略断面図である。It is schematic cross-sectional view for demonstrating an example of the indentation stirring process and the stirring maintenance process of this invention. 本発明の固化工程の一例を説明するための概略断面図である。It is the schematic sectional drawing for demonstrating an example of the solidification process of this invention. 本発明の方法により接合された金属部材と樹脂部材との接合構造の一例の概略断面図である。It is schematic cross-sectional view of an example of the joining structure of a metal member and a resin member joined by the method of this invention. 実施例における接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joint strength in an Example. 従来技術における金属部材と樹脂部材との接合方法を説明するための該略見取り図である。It is a schematic diagram for demonstrating the method of joining a metal member and a resin member in the prior art.

[接合構造]
本発明に係る接合構造は、例えば図1に示すように、金属部材11と樹脂部材12とが相互に接合された構造体50である。図1において、接合構造50は摩擦撹拌接合方法により得られた構造体であるために、押圧部材による押圧痕Wを有するが、接合方法に応じて、押圧痕Wを有さなくてもよい。図1は、本発明に係る金属部材と樹脂部材との接合構造の一例を示す模式図である。
[Joined structure]
The joining structure according to the present invention is, for example, as shown in FIG. 1, a structure 50 in which a metal member 11 and a resin member 12 are joined to each other. In FIG. 1, since the joining structure 50 is a structure obtained by a friction stir welding method, it has a pressing mark W by a pressing member, but it may not have a pressing mark W depending on the joining method. FIG. 1 is a schematic view showing an example of a joint structure of a metal member and a resin member according to the present invention.

本発明に係る接合構造50において接合は、金属部材11と樹脂部材12との接合境界面における少なくとも押圧部材直下領域(例えば回転ツール直下領域)およびその外周領域において、樹脂部材が溶融および固化した領域(すなわち、溶融固化域)により達成されている。詳しくは、接合構造50から金属部材11を強制的に剥離させると、例えば、図2に示すような、樹脂部材12の金属部材側表面120が観察できる。樹脂部材12の金属部材側表面120において、溶融固化域が回転ツール直下領域60(斜線領域)およびその外周領域61(格子領域)に形成されており、このような溶融固化域により接合が達成されている。 In the joining structure 50 according to the present invention, the joining is a region where the resin member is melted and solidified at least in the region directly under the pressing member (for example, the region directly under the rotating tool) and the outer peripheral region thereof at the joining boundary surface between the metal member 11 and the resin member 12. (That is, the melt solidification region) is achieved. Specifically, when the metal member 11 is forcibly peeled from the joint structure 50, for example, the metal member side surface 120 of the resin member 12 can be observed as shown in FIG. On the metal member side surface 120 of the resin member 12, a melt-solidified region is formed in a region 60 (diagonal line region) directly under the rotary tool and an outer peripheral region 61 (lattice region) thereof, and the bonding is achieved by such a melt-solidified region. ing.

溶融固化域60(斜線領域),61(格子領域)は、図2に示すように、接合時において、樹脂部材12の溶融および固化により形成された領域であって、樹脂部材12の金属部材側表面120における溶融が生じていない領域122に対し、溶融固化域の外周で目視により区別可能な段差(数ミクロンの段差)が存在する領域である。溶融固化域60,61には通常、金属部材における対応領域の表面が転写される。もしくは、溶融固化域の樹脂材料の一部が金属材料表面に付着することによる凝集破壊面が露出する。 As shown in FIG. 2, the melt-solidified regions 60 (hatched regions) and 61 (lattice regions) are regions formed by melting and solidifying the resin member 12 at the time of joining, and are on the metal member side of the resin member 12. This is a region in which a visually distinguishable step (step of several microns) exists on the outer periphery of the melt-solidified region with respect to the region 122 on the surface 120 where melting has not occurred. The surface of the corresponding region of the metal member is usually transferred to the melt-solidified regions 60 and 61. Alternatively, a coagulation fracture surface is exposed due to a part of the resin material in the melt-solidified region adhering to the surface of the metal material.

溶融固化域60,61は、接合部材の断面観察等により接合中に溶融しない元々の樹脂母材と目視により区別できるため、「樹脂溶融固化層」と称することもできる。樹脂溶融固化層の厚みは特に限定されず、樹脂部材本体の物性への影響を抑える観点から、好ましくは0.50mm以下、より好ましくは0.10mm以下である。樹脂溶融固化層の厚みの下限は特に限定されず、樹脂溶融固化層の厚みは通常、0.01mm以上である。樹脂溶融固化層の厚みは、溶融固化域の外周(主に溶融固化域60と61の間)(例えば押圧部材直下領域60(直径D1(mm))と同心の直径1.5×D1の円形線62(破線))における任意の5点での測定値の平均値を用いている。 The melt-solidified areas 60 and 61 can also be referred to as a "resin melt-solidified layer" because they can be visually distinguished from the original resin base material that does not melt during joining by observing the cross section of the joining member or the like. The thickness of the resin melt-solidified layer is not particularly limited, and is preferably 0.50 mm or less, more preferably 0.10 mm or less, from the viewpoint of suppressing the influence on the physical properties of the resin member main body. The lower limit of the thickness of the resin melt-solidified layer is not particularly limited, and the thickness of the resin melt-solidified layer is usually 0.01 mm or more. The thickness of the resin melt-solidified layer is a circle having a diameter of 1.5 × D1 concentric with the outer circumference of the melt-solidified region (mainly between the melt-solidified regions 60 and 61) (for example, the region directly below the pressing member 60 (diameter D1 (mm))). The average value of the measured values at any five points on the line 62 (broken line) is used.

本発明において、溶融固化域は80%以下の結晶化度(最大結晶化度比)を有する。溶融固化域の結晶化度(最大結晶化度比)が80%超であると、接合強度が低下する。結晶化度(最大結晶化度比)は「DSC(示差走査熱量測定)により分析、算出される実際の結晶化度」の「最大結晶化度」に対する割合である。樹脂の種類により最大結晶化度は異なるため、本発明では本指標を用いる。従って、本発明において溶融固化域は比較的低い結晶化度(最大結晶化度比)を有することを特徴とする。このように溶融固化域が比較的低い結晶化度(最大結晶化度比)を有することにより、接合強度が十分に向上する。そのような現象の詳細は明らかではないが、以下のメカニズムに基づくものと考えられる。例えば、低い結晶化度(最大結晶化度比)を有することに起因する金属部材に接する溶融固化樹脂の物性低下、それに伴う密着力の向上、アンカー効果による接合力の向上、接合部材間の残留応力の低下、等である。 In the present invention, the melt-solidified region has a crystallinity of 80% or less (maximum crystallinity ratio). If the crystallinity (maximum crystallinity ratio) in the melt-solidified region exceeds 80%, the bonding strength decreases. The crystallinity (maximum crystallinity ratio) is the ratio of the "actual crystallinity analyzed and calculated by DSC (differential scanning calorimetry)" to the "maximum crystallinity". Since the maximum crystallinity differs depending on the type of resin, this index is used in the present invention. Therefore, in the present invention, the melt-solidified region is characterized by having a relatively low crystallinity (maximum crystallinity ratio). By having a relatively low crystallinity (maximum crystallinity ratio) in the melt-solidification region in this way, the bonding strength is sufficiently improved. The details of such a phenomenon are not clear, but it is considered to be based on the following mechanism. For example, the physical properties of the melt-solidified resin in contact with the metal member are lowered due to having a low crystallinity (maximum crystallinity ratio), the adhesion is improved accordingly, the bonding force is improved by the anchor effect, and the residue between the bonding members is improved. Reduced stress, etc.

溶融固化域の結晶化度(最大結晶化度比)は通常、40%以上(特に40〜80%)であり、接合強度のさらなる向上の観点から、好ましくは40〜76%、より好ましくは40〜72%である。結晶化度(最大結晶化度比)は例えば、50%以上であってもよい。 The crystallinity (maximum crystallinity ratio) in the melt-solidified region is usually 40% or more (particularly 40 to 80%), and is preferably 40 to 76%, more preferably 40, from the viewpoint of further improving the bonding strength. ~ 72%. The crystallinity (maximum crystallinity ratio) may be, for example, 50% or more.

溶融固化域の結晶化度(最大結晶化度比)は、図2に示すように、押圧部材直下領域60(直径D1(mm))と同心の直径1.5×D1の円形線62(破線)上の任意の5箇所で測定された値の平均値を用いている。詳しくは、樹脂側破面の規定位置より採取した1点当たり6g(樹脂母材重量、繊維等は含まない)の樹脂部材を使用し、DSC(示差走査熱量測定)装置により以下の方法により分析、算出して行う。
使用装置:DSC(示差走査熱量測定)装置
温度サイクル:23℃→凝固点+70℃→23℃
昇温速度:10℃/min 降温速度:10℃/min
分析方法:サンプルに温度をかけた際の吸熱ピーク熱量、発熱ピーク熱量を調査
算出方法:各種ピーク熱量により以下の方法および式を用いて算出。
結晶生成に伴う発熱ピーク熱量(昇温時)をxとする。
結晶融解に伴う吸熱ピーク熱量をyとする。
100%結晶融解ピーク熱量(樹脂固有値)をzとする。
zの例;PPS:146.2J/g、PP:209.0J/g、PA6:229.7J/g。
xが観測できる樹脂種(例えばPPS等)の場合
・「実際の結晶化度」=(y−x)/z×100
・「最大結晶化度」=y/z×100
xが観測できない樹脂種(例えばPP、PA等)の場合
・「実際の結晶化度」=y(1サイクル目)/z×100
・「最大結晶化度」=y(2サイクル目)/z×100
上記式を用いて算出した「実際の結晶化度」と「最大結晶化度」を使用し、本発明で用いる結晶化度(最大結晶化度比)は以下の式により算出される。
「結晶化度(最大結晶化度比)」=「実際の結晶化度」/「最大結晶化度」×100
As shown in FIG. 2, the crystallinity (maximum crystallinity ratio) of the melt-solidified region is a circular line 62 (broken line) having a diameter of 1.5 × D1 concentric with the region 60 (diameter D1 (mm)) directly below the pressing member. ) The average value of the values measured at any of the above 5 points is used. Specifically, a resin member of 6 g (excluding the weight of the resin base material, fibers, etc.) collected from the specified position on the resin side fracture surface is used, and analysis is performed by the following method using a DSC (differential scanning calorimetry) device. , Calculate and do.
Equipment used: DSC (Differential scanning calorimetry) Equipment temperature cycle: 23 ° C → freezing point + 70 ° C → 23 ° C
Temperature rise rate: 10 ° C / min Temperature decrease rate: 10 ° C / min
Analytical method: Investigate and calculate the endothermic peak heat and heat generation peak heat when the sample is heated. Calculation method: Calculated using the following methods and formulas based on various peak heats.
Let x be the amount of heat generated by the peak heat generated by crystal formation (at the time of temperature rise).
Let y be the amount of endothermic peak heat associated with crystal melting.
Let z be the 100% crystal melting peak calorific value (resin eigenvalue).
Example of z; PPS: 146.2J / g, PP: 209.0J / g, PA6: 229.7J / g.
In the case of a resin type in which x can be observed (for example, PPS, etc.)-"Actual crystallinity" = (y-x) / z x 100
-"Maximum crystallinity" = y / z x 100
In the case of a resin type in which x cannot be observed (for example, PP, PA, etc.)-"Actual crystallinity" = y (1st cycle) / z x 100
-"Maximum crystallinity" = y (second cycle) / z x 100
Using the "actual crystallinity" and "maximum crystallinity" calculated using the above formula, the crystallinity (maximum crystallinity ratio) used in the present invention is calculated by the following formula.
"Crystallinity (maximum crystallinity ratio)" = "actual crystallinity" / "maximum crystallinity" x 100

溶融固化域(60,61)の寸法(例えば直径)R(mm)は通常、押圧部材の寸法(例えば回転ツールの直径)をD1(mm)としたとき、以下の関係を満たしている:
1.2≦R/D1≦5;
好ましくは2≦R/D1≦5;
より好ましくは3≦R/D1≦5。
R/D1が小さすぎると、接合強度が十分ではない。
The dimensions (for example, diameter) R (mm) of the melt-solidified region (60,61) usually satisfy the following relationship when the dimension of the pressing member (for example, the diameter of the rotating tool) is D1 (mm):
1.2 ≤ R / D 1 ≤ 5;
Preferably 2 ≦ R / D1 ≦ 5;
More preferably, 3 ≦ R / D1 ≦ 5.
If R / D1 is too small, the bonding strength is not sufficient.

溶融固化域(60,61)の寸法(例えば直径)R(mm)は、樹脂部材12の金属部材側表面120における溶融固化域の外周の段差に基づいて、容易に測定することができる。なお、当該寸法Rは、溶融固化域(60,61)の最大寸法である。 The dimension (for example, diameter) R (mm) of the melt-solidified region (60, 61) can be easily measured based on the step on the outer periphery of the melt-solidified region on the metal member side surface 120 of the resin member 12. The dimension R is the maximum dimension of the melt-solidification region (60, 61).

金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために樹脂部材12と重ね合わせる部分のみが少なくとも略平板形状を有する限り、いかなる形状を有していてもよい。 Although the metal member 11 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, the metal member 11 is not limited to this, and only the portion to be overlapped with the resin member 12 for joining has at least a substantially flat plate shape. As long as it has, it may have any shape.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みT(接合処理前の厚み;図5参照)は通常、0.5〜4mmであるが、これに限定されるものではない。 The thickness T (thickness before joining treatment; see FIG. 5) of the substantially flat plate-shaped portion of the metal member 11 to be overlapped with the resin member 12 is usually 0.5 to 4 mm, but is not limited thereto.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーの融点よりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウム;
5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than the melting point of the thermoplastic polymer constituting the resin member 12 can be used. Among them, the following metals and alloys used in the field of automobiles are preferably used:
aluminum;
Aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

金属部材11を構成する金属としては、接合強度のさらなる向上の観点から、アルミニウムまたはアルミニウム合金が好ましく使用される。 As the metal constituting the metal member 11, aluminum or an aluminum alloy is preferably used from the viewpoint of further improving the joint strength.

樹脂部材12は熱可塑性ポリマーを含むものであり、さらに強化繊維を含んでもよい。 The resin member 12 contains a thermoplastic polymer, and may further contain reinforcing fibers.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレン(PP)などのポリオレフィン系樹脂およびその酸変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
アクリロニトリル−ブタジエン−スチレンコポリマー系樹脂(ABS);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene (PP) and their acid-modified products;
Polyester-based resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), and polylactic acid (PLA);
Polyacrylate-based resins such as polymethyl methacrylate resin (PMMA);
Polyether-based resins such as polyetheretherketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Acrylonitrile-butadiene-styrene copolymer resin (ABS);
Polyphenylene sulfide (PPS);
Polyamide-based resins (PA) such as PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6;
Polycarbonate resin (PC);
Polyurethane resin;
Fluorine-based polymer resins; and liquid crystal polymers (LCP).

樹脂部材12を構成する熱可塑性ポリマーとしては、安価で機械特性に優れるポリマーの観点から、ポリフェニレンサルファイド系樹脂、ポリアミド系樹脂およびポリオレフィン系樹脂(特にポリプロピレン)からなる群から選択される1種以上のポリマーが好ましく使用される。 As the thermoplastic polymer constituting the resin member 12, one or more kinds selected from the group consisting of polyphenylene sulfide resin, polyamide resin and polyolefin resin (particularly polypropylene) from the viewpoint of an inexpensive polymer having excellent mechanical properties. Polymers are preferably used.

樹脂部材12は、図1〜図2等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。 In FIGS. 1 and 2, the resin member 12 has a substantially flat plate shape as an overall shape, but the resin member 12 is not limited to this, and when it is superposed on the metal member 11 for joining, the resin member 12 is made of metal. As long as the portion directly below the member 11 has a substantially flat plate shape, it may have any shape.

樹脂部材12における金属部材11直下の部分の厚みt(接合処理前の厚み;図5参照)は通常、2〜10mm、特に2〜5mmであるが、これに限定されるものではない。 The thickness t (thickness before joining treatment; see FIG. 5) of the portion of the resin member 12 immediately below the metal member 11 is usually 2 to 10 mm, particularly 2 to 5 mm, but is not limited thereto.

樹脂部材12に含有される強化繊維は、ポリマー含有複合材料の分野で、強度向上のために、ポリマー中に含有される繊維であり、一般に、連続繊維と不連続繊維とに大別されるが、本発明において強化繊維は、連続繊維であってもよいし、または不連続繊維であってもよい。 The reinforcing fiber contained in the resin member 12 is a fiber contained in the polymer in order to improve the strength in the field of the polymer-containing composite material, and is generally roughly classified into a continuous fiber and a discontinuous fiber. , In the present invention, the reinforcing fiber may be a continuous fiber or a discontinuous fiber.

強化繊維は通常、樹脂部材中、ランダム配向形態で含有され、平均繊維長が通常、50mm以下、特に0.1〜50mm、好ましくは1〜50mmである。強化繊維の平均繊維径は特に制限されるものではなく、例えば、2〜20μmであり、好ましくは6〜15μmである。 The reinforcing fibers are usually contained in the resin member in a randomly oriented form, and the average fiber length is usually 50 mm or less, particularly 0.1 to 50 mm, preferably 1 to 50 mm. The average fiber diameter of the reinforcing fibers is not particularly limited, and is, for example, 2 to 20 μm, preferably 6 to 15 μm.

強化繊維の種類としては、特に制限されず、例えば、炭素繊維、ガラス繊維等が挙げられる。 The type of the reinforcing fiber is not particularly limited, and examples thereof include carbon fiber and glass fiber.

強化繊維の含有量は通常、樹脂部材全量に対して1重量%以上、特に10〜50重量%であり、好ましくは20〜50重量%、より好ましくは30〜50重量%である。 The content of the reinforcing fiber is usually 1% by weight or more, particularly 10 to 50% by weight, preferably 20 to 50% by weight, and more preferably 30 to 50% by weight with respect to the total amount of the resin member.

強化繊維の含有量は、樹脂部材の製造時における各材料の使用量に基づく値を使用することができるし、以下の方法により測定される値を使用することもできる。まず、樹脂部材を、電気炉等により、熱可塑性ポリマーの分解温度以上、強化繊維の分解温度以下で加熱することによって、熱可塑性ポリマーを取り除き、強化繊維のみを取り出す。加熱前後の重量測定により、強化繊維の含有量を加熱前の重量に対する割合として算出することができる。または、比重を測定することによっても、含有量の測定ができる。 As the content of the reinforcing fiber, a value based on the amount of each material used at the time of manufacturing the resin member can be used, or a value measured by the following method can be used. First, the resin member is heated in an electric furnace or the like at a temperature equal to or higher than the decomposition temperature of the thermoplastic polymer and lower than the decomposition temperature of the reinforcing fibers to remove the thermoplastic polymer and take out only the reinforcing fibers. By measuring the weight before and after heating, the content of the reinforcing fibers can be calculated as a ratio to the weight before heating. Alternatively, the content can also be measured by measuring the specific gravity.

樹脂部材12には、強化繊維以外の添加剤、例えば安定剤、難燃剤、着色材、発泡剤などがさらに含有されてもよい。 The resin member 12 may further contain additives other than reinforcing fibers, such as stabilizers, flame retardants, colorants, and foaming agents.

樹脂部材12は、熱可塑性ポリマーならびに所望により含有される強化繊維および添加剤を含む混合物を、射出成形法、プレス成形法などの成形法に供することにより、製造することができる。 The resin member 12 can be produced by subjecting a mixture containing a thermoplastic polymer and optionally contained reinforcing fibers and additives to a molding method such as an injection molding method or a press molding method.

樹脂部材12の凝固点Tsは樹脂部材12の種類によって異なり、通常、100〜300℃である。
樹脂部材12の凝固点Tsは、JIS7121により測定された値を用いている。
The freezing point Ts of the resin member 12 varies depending on the type of the resin member 12, and is usually 100 to 300 ° C.
As the freezing point Ts of the resin member 12, the value measured by JIS7121 is used.

[接合方法]
本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側または樹脂部材側(特に金属部材側)からの押圧により、熱および圧力を付与し、樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。熱および圧力は好ましくは局所的に付与される。本発明の接合方法において採用される接合方式は、押圧部材により熱および圧力を付与する方法であれば特に限定されるものではなく、例えば、例えば、摩擦撹拌接合方法、超音波加熱接合方法、レーザー加熱接合方法、抵抗加熱接合方法、誘導加熱接合方法等であってもよい。好ましくは押圧部材により熱および圧力を金属部材側から局所的に付与する方法であり、より好ましくは摩擦撹拌接合方法が採用される。
[Joining method]
In the joining method of the present invention, the metal member and the resin member are superposed, and heat and pressure are applied by pressing from the metal member side or the resin member side (particularly the metal member side) by the pressing member to soften the resin member and soften the resin member. This is a thermal pressure joining method in which a metal member and a resin member are joined after being melted and then solidified. Heat and pressure are preferably applied topically. The joining method adopted in the joining method of the present invention is not particularly limited as long as it is a method of applying heat and pressure by a pressing member. A heat bonding method, a resistance heat bonding method, an induction heat bonding method, or the like may be used. A method of locally applying heat and pressure from the metal member side by a pressing member is preferable, and a friction stir welding method is more preferably adopted.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材としての回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。 As will be described in detail later, the friction stir welding method is to superimpose a metal member and a resin member, rotate a rotating tool as a pressing member, and press the metal member to generate frictional heat, and this friction This is a method in which a resin member is softened and melted by heat and then solidified to join the metal member and the resin member.

超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により樹脂部材を加圧しながら、押圧部材及び樹脂部材に超音波振動を起こさせ、該振動により生じる樹脂部材/金属部材の摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。 In the ultrasonic heat bonding method, a metal member and a resin member are superposed, and while the resin member is pressed by the pressing member, the pressing member and the resin member are caused to ultrasonically vibrate, and the resin member / metal member generated by the vibration is generated. This is a method in which a resin member is softened and melted by the frictional heat of the above, and then solidified to join the metal member and the resin member.

レーザー加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で、レーザーを金属部材に照射することにより熱を発生させ、この熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。 In the laser heat bonding method, heat is generated by irradiating the metal member with a laser in a state where the metal member and the resin member are overlapped and restrained, and the resin member is softened and melted by this heat and then solidified. This is a method of joining a metal member and a resin member. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.

抵抗加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で、金属部材に直接電流を流すことにより生じる熱を利用して接合する方法である。 The resistance heat joining method is a method of joining by utilizing the heat generated by directly passing an electric current through the metal member in a state where the metal member and the resin member are superposed and restrained.

誘導加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用して接合する方法である。 The induction heating joining method is a method in which an induced current is generated in a metal member by an electromagnetic induction action in a state where a metal member and a resin member are overlapped and restrained, and the heat generated by the current is used for joining.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて詳しく説明するが、金属部材に接する溶融固化樹脂が規定の結晶化度(最大結晶化度比)を有する限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。これらの図において、共通する符号は同じ部材、部位、寸法または領域を示すものとする。 Hereinafter, the joining method of the present invention adopting the friction stirring joining method will be described in detail with reference to the drawings, as long as the molten solidified resin in contact with the metal member has a specified crystallinity (maximum crystallinity ratio). It is clear that the effect of the present invention can be obtained by using the other bonding method described above. In these figures, common reference numerals shall indicate the same member, site, dimension or region.

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
本発明の接合方法(摩擦撹拌接合方法)について図3〜図8を用いて具体的に説明する。
[Joining method of metal member and resin member by friction stir welding method]
The joining method (friction stir welding method) of the present invention will be specifically described with reference to FIGS. 3 to 8.

(1)接合装置
まず図3は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図3に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、押圧部材としての円柱状の回転ツール16を具備している。
(1) Joining device First, FIG. 3 is a diagram schematically showing a part of a friction stir welding device suitable for carrying out the joining method of the present invention. The friction stir welding device 1 shown in FIG. 3 is configured as a device for friction stir welding of a metal member 11 and a resin member 12, and includes a columnar rotary tool 16 as a pressing member.

回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図4参照)回りに回転しつつ、矢印A2のように下方に向けて移動する。このとき、回転ツール16は金属部材11表面における押圧領域P(押圧予定領域)において圧力を付与する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化および溶融し、その後、溶融樹脂が固化する。その結果、金属部材11と樹脂部材12とが接合される。 As shown in the drawing, the rotation tool 16 is a work 10 in which the metal member 11 is on the top and the resin member 12 is on the bottom. While rotating around the central axis X (see FIG. 4), it moves downward as shown by arrow A2. At this time, the rotation tool 16 applies pressure in the pressing region P (scheduled pressing region) on the surface of the metal member 11. Friction heat is generated by the pressing of the rotating tool 16, and the frictional heat is conducted to the resin member 12 to soften and melt the resin member 12, and then the molten resin solidifies. As a result, the metal member 11 and the resin member 12 are joined.

図4は、回転ツール16の先端部の拡大図である。図4において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図4に示すように、円柱状の回転ツール16は、先端部(図4では下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図4では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。すなわち、回転ツール16は、先端部に、当該回転ツールの円形の先端面を含むショルダ部、および当該回転ツールの円形の先端面から外方に突設された、ショルダ部よりも小径の円柱状のピン部を有している。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。 FIG. 4 is an enlarged view of the tip end portion of the rotation tool 16. In FIG. 4, the right half shows the appearance of the rotation tool 16, and the left half shows the cross section. As shown in FIG. 4, the columnar rotary tool 16 has a pin portion 16a and a shoulder portion 16b at a tip portion (lower end portion in FIG. 4). The shoulder portion 16b is a portion of the tip of the rotation tool 16 including the circular tip surface of the rotation tool 16. The pin portion 16a is a columnar portion having a diameter smaller than that of the shoulder portion 16b, which is projected outward (downward in FIG. 4) from the circular tip surface of the rotation tool 16 on the central axis X of the rotation tool 16. be. That is, the rotation tool 16 has a shoulder portion including the circular tip surface of the rotation tool at the tip portion, and a columnar portion having a diameter smaller than that of the shoulder portion, which is projected outward from the circular tip surface of the rotation tool. It has a pin part of. The pin portion 16a is for positioning the rotating tool 16 when the rotating rotating tool 16 is first brought into contact with the work 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.3〜0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.3〜0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、ショルダ部16bの直径D1は通常、5〜30mm、好ましくは5〜15mmであるがこれに限定されるものではない。 The material of the rotation tool 16 and the dimensions of each part are mainly set according to the type of metal of the metal member 11 pressed by the rotation tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotating tool 16 is made of tool steel (for example, SKD61, etc.), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.3 to 0.5 mm. Further, for example, when the metal member 11 is made of steel, the rotating tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), or the like, the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.3 to 0.5 mm. However, it goes without saying that these are merely examples and are not limited to these. For example, the diameter D1 of the shoulder portion 16b is usually 5 to 30 mm, preferably 5 to 15 mm, but is not limited thereto.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。 Below the rotation tool 16, a columnar receiver 17 having the same diameter as the rotation tool 16 or a larger diameter than the rotation tool 16 is arranged coaxially with the rotation tool 16. The receiver 17 is moved upward with respect to the work 10 by a drive source (not shown) as shown by an arrow A3. The upper end surface of the receiver 17 comes into contact with the lower surface of the work 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the work 10 at the latest. Then, the receiver 17 sandwiches the work 10 with the rotating tool 16 and supports the work 10 from below against the pressing force during the pressing period by the rotating tool 16, that is, during friction stir welding. The receiver 17 does not necessarily have to be moved in the direction of arrow A3, and a method of moving the rotation tool 16 in the direction of arrow A2 after mounting the work 10 on the receiver 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、移動速度(mm/分)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図3には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。 The friction stir welding device 1 is attached to a drive control device (not shown) including an articulated robot or the like. Then, the coordinate positions of the rotation tool 16 and the receiver 17, the rotation speed (rpm) of the rotation tool 16, the moving speed (mm / min), the pressing force (N), the pressurizing time (seconds), and the like are determined by the drive control device. It is controlled as appropriate. Although not shown in FIG. 3, the friction stir welding device 1 has spacers, clamps, and the like for fixing the work 10 in advance and preventing the metal member 11 from rising when the rotary tool 16 is pressed. Equipped with a jig.

(2)接合方法
本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法は少なくとも以下のステップ:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ:
を含むものである。
(2) Joining method The joining method of the metal member and the resin member by the friction stir welding method according to the present invention is at least the following steps:
The first step of superimposing the metal member 11 and the resin member 12; and while rotating the rotating tool 16, the metal member 11 was pressed to generate frictional heat, and the frictional heat softened and melted the resin member 12. After that, the second step of solidifying and joining the metal member 11 and the resin member 12:
Is included.

第1ステップ:
第1ステップにおいては、図3に示すように、金属部材11と樹脂部材12とを所望の接合部位で重ね合わせる。
First step:
In the first step, as shown in FIG. 3, the metal member 11 and the resin member 12 are superposed at a desired joining portion.

第2ステップ:
本発明においては、第2ステップにおいて、回転ツール16を回転させつつ、金属部材11表面への押圧により、樹脂部材12を軟化および溶融させた後、所定の固化工程を行う。
Second step:
In the present invention, in the second step, the resin member 12 is softened and melted by pressing against the surface of the metal member 11 while rotating the rotation tool 16, and then a predetermined solidification step is performed.

(固化工程)
固化工程においては、樹脂部材の溶融固化域が所定の結晶化度(最大結晶化度比)を有するように、強制冷却を行う。例えば、固化工程においては、回転ツール16を金属部材11から離間させ、回転ツール16が押圧していた金属部材11の押圧領域111または該押圧領域とその周辺領域を、樹脂部材の溶融固化域が所定の結晶化度(最大結晶化度比)を有するように、強制冷却する。強制冷却とは、回転ツール16を金属部材11から離間させた後、少なくとも押圧領域111を室温(例えば25℃)でそのまま放置して冷却するときよりも、極めて高速の冷却速度で強制的に冷却することを意味する。第2ステップにおいて、極めて高速の冷却速度で強制的に冷却することにより、溶融樹脂成分が急冷され、所定の結晶化度(最大結晶化度比)を有する溶融固化域を生成させることができる。従って、本発明において固化工程は「強制冷却工程」または「結晶化度(最大結晶化度比)制御工程」と称することができる。
(Solidification process)
In the solidification step, forced cooling is performed so that the melt-solidified region of the resin member has a predetermined crystallinity (maximum crystallinity ratio). For example, in the solidification step, the rotating tool 16 is separated from the metal member 11, and the pressing region 111 of the metal member 11 pressed by the rotating tool 16 or the pressing region and its peripheral region is formed by the melt solidification region of the resin member. It is forcibly cooled so as to have a predetermined crystallinity (maximum crystallinity ratio). The forced cooling means that after the rotating tool 16 is separated from the metal member 11, at least the pressing region 111 is forcibly cooled at an extremely high cooling rate as compared with the case where the pressing region 111 is left as it is at room temperature (for example, 25 ° C.) for cooling. Means to do. In the second step, by forcibly cooling at an extremely high cooling rate, the molten resin component is rapidly cooled, and a melt-solidified region having a predetermined crystallinity (maximum crystallinity ratio) can be generated. Therefore, in the present invention, the solidification step can be referred to as a "forced cooling step" or a "crystallinity (maximum crystallinity ratio) control step".

強制冷却は、樹脂部材12の凝固点をTs(℃)としたとき、押圧領域(押込面)111の直下における金属部材11と樹脂部材12との界面の樹脂温度(≒樹脂部材12の溶融領域の温度)がTs+50℃の時点からTs−50℃になるまで行う。溶融固化域の結晶化度は、樹脂温度の降下時における凝固点およびその近傍での冷却速度に大きく依存するためである。樹脂温度の降下時における凝固点およびその近傍での冷却速度が大きいほど、溶融固化域の結晶化度が低減される。上記のような温度範囲内において極めて高速の冷却速度を達成するような強度冷却を行うことにより、所定の結晶化度(最大結晶化度比)を持つ溶融固化域を得ることができる。強制冷却は少なくとも上記温度範囲において行われればよい。 In the forced cooling, when the freezing point of the resin member 12 is Ts (° C.), the resin temperature at the interface between the metal member 11 and the resin member 12 immediately below the pressing region (pushing surface) 111 (≈ the melting region of the resin member 12). Temperature) is performed from the time of Ts + 50 ° C. to Ts-50 ° C. This is because the crystallinity of the melt-solidified region largely depends on the cooling rate at and near the freezing point when the resin temperature drops. The higher the cooling rate at or near the freezing point when the resin temperature drops, the lower the crystallinity of the melt-solidified region. By performing intensity cooling that achieves an extremely high cooling rate within the above temperature range, a melt-solidification region having a predetermined crystallinity (maximum crystallinity ratio) can be obtained. Forced cooling may be performed at least in the above temperature range.

強制冷却時の冷却速度は通常、50℃/秒以上(特に50〜500℃/秒)であり、結晶化度(最大結晶化度比)の低減に基づく接合強度のさらなる向上の観点から、好ましくは150℃/秒以上(特に150〜500℃/秒)、より好ましくは300℃/秒超(特に300℃/秒超500℃/秒以下)である。冷却速度が高速であるほど、溶融固化域の結晶化度(最大結晶化度比)は低減される。 The cooling rate during forced cooling is usually 50 ° C./sec or more (particularly 50 to 500 ° C./sec), which is preferable from the viewpoint of further improving the bonding strength based on the reduction of crystallinity (maximum crystallinity ratio). Is 150 ° C./sec or more (particularly 150 to 500 ° C./sec), more preferably more than 300 ° C./sec (particularly more than 300 ° C./sec and 500 ° C./sec or less). The higher the cooling rate, the lower the crystallinity (maximum crystallinity ratio) in the melt-solidified region.

溶融固化域の結晶化度(最大結晶化度比)制御方法としては、上記冷却速度が達成される限り特に限定されるものではなく、例えば、金属部材の押圧領域または該押圧領域とその周辺領域にガス流を吹き付ける方法、金属部材11の浮き上がりを防止するための接合部周囲のクランプ等の固定治具による吸熱を活用して冷却速度を制御する方法等が挙げられる。より簡便に極めて高速の冷却速度を得る観点から、金属部材の押圧領域または該押圧領域とその周辺領域にガス流を吹き付ける方法を採用することがより好ましい。 The method for controlling the crystallinity (maximum crystallinity ratio) of the melt-solidified region is not particularly limited as long as the cooling rate is achieved, and for example, a pressing region of a metal member or the pressing region and its peripheral region. Examples include a method of blowing a gas flow into the metal member 11 and a method of controlling the cooling rate by utilizing heat absorption by a fixing jig such as a clamp around the joint to prevent the metal member 11 from floating. From the viewpoint of more easily obtaining an extremely high cooling rate, it is more preferable to adopt a method of spraying a gas flow on the pressing region of the metal member or the pressing region and its peripheral region.

ガス流を吹き付ける方法において、詳しくは、図7に示すように、ノズル115より、押圧領域または該押圧領域とその周辺領域にガス流を吹き付ける。これにより、押圧領域111または該押圧領域とその周辺領域からの放熱が促進され、それにより金属部材11と樹脂部材12の界面の強制冷却が達成される。ガス流としては、空気流、窒素ガス流、二酸化炭素ガス流、アルゴンガス流等、種類は問わないが、安全性、コストの観点から空気流が好ましい。 In the method of blowing the gas flow, as shown in FIG. 7, the gas flow is blown from the nozzle 115 to the pressing region or the pressing region and its peripheral region. As a result, heat dissipation from the pressing region 111 or the pressing region and its peripheral region is promoted, whereby forced cooling of the interface between the metal member 11 and the resin member 12 is achieved. The gas flow may be any type such as an air flow, a nitrogen gas flow, a carbon dioxide gas flow, and an argon gas flow, but an air flow is preferable from the viewpoint of safety and cost.

ガス流の温度は、上記冷却速度が達成される限り特に限定されるものではなく、例えば、0〜60℃であってよい。冷却速度の高速化とコストとの両立の観点から、ガス流の温度は0〜30℃、特に10〜20℃が好ましい。 The temperature of the gas stream is not particularly limited as long as the cooling rate is achieved, and may be, for example, 0 to 60 ° C. From the viewpoint of achieving both high cooling rate and cost, the temperature of the gas flow is preferably 0 to 30 ° C, particularly preferably 10 to 20 ° C.

ガス流の流量は、上記冷却速度が達成される限り特に限定されるものではなく、またガス流を吹き付ける冷却範囲の大きさに依存するものであるが、例えば、冷却範囲の面積が100〜2500mmのとき、通常は100〜1000L/分である。 The flow rate of the gas flow is not particularly limited as long as the above cooling rate is achieved, and depends on the size of the cooling range in which the gas flow is blown. For example, the area of the cooling range is 100 to 2500 mm. When it is 2 , it is usually 100 to 1000 L / min.

冷却速度はガス流を供給するノズルの内径および位置にも依存する。
例えば、ガス流が同じ流量および温度のとき、ノズル内径が小さいほど単位面積当たりに吹き付けられるガス流量は多くなり、ガス流の吹き付け範囲中心部の冷却速度は高くなる。ノズル内径は例えば、1〜10mmであってもよく、上記冷却速度の達成の観点から、好ましくは1〜5mmである。
また例えば、ガス流が同じ流量および温度のとき、ノズルの位置が冷却対象としての押圧領域(特にその中心)に近いほど、冷却速度は高くなる。ノズル先端と冷却対象としての押圧領域(特にその中心)との距離は、水平方向の距離および高さ方向の距離ともに、それぞれ独立して、例えば、0.1〜100mmであってもよく、上記冷却速度の達成や接合中におけるノズルのセッティングの容易性の観点から、好ましくは10〜50mmである。
The cooling rate also depends on the inner diameter and position of the nozzle that supplies the gas flow.
For example, when the gas flow rate and temperature are the same, the smaller the nozzle inner diameter, the larger the gas flow rate blown per unit area, and the higher the cooling rate at the center of the gas flow blowing range. The inner diameter of the nozzle may be, for example, 1 to 10 mm, and is preferably 1 to 5 mm from the viewpoint of achieving the above cooling rate.
Further, for example, when the gas flow rate and temperature are the same, the closer the nozzle position is to the pressing region (particularly the center thereof) as the cooling target, the higher the cooling rate. The distance between the tip of the nozzle and the pressing region (particularly the center thereof) as a cooling target may be, for example, 0.1 to 100 mm independently of each other in both the horizontal direction and the height direction. From the viewpoint of achieving a cooling rate and facilitating nozzle setting during joining, the thickness is preferably 10 to 50 mm.

ガス流の吹き付けの開始および終了のタイミングは、上記したような温度範囲内において上記した極めて高速の冷却速度が達成される限り、特に限定されない。例えば、ガス流の吹きつけは、回転ツール16を金属部材11から離間させると同時に開始してもよいし、または当該離間の後、しばらくしてから開始してもよい。所望の強制冷却を行うための吹き付け時間を短縮する観点、また、生産工程における制御の容易性の観点から、ガス流の吹き付けは、回転ツール16を金属部材11から離間させた後、接合界面の溶融樹脂が凝固点Ts+50℃に達するまでの間、例えば1〜5秒経過してから開始することが好ましい。 The timing of starting and ending the blowing of the gas stream is not particularly limited as long as the above-mentioned extremely high cooling rate is achieved within the above-mentioned temperature range. For example, the blowing of the gas flow may be started at the same time as the rotary tool 16 is separated from the metal member 11, or may be started some time after the separation. From the viewpoint of shortening the spraying time for performing the desired forced cooling and from the viewpoint of ease of control in the production process, the spraying of the gas flow is performed after separating the rotary tool 16 from the metal member 11 and then at the bonding interface. It is preferable to start after, for example, 1 to 5 seconds have passed until the molten resin reaches the freezing point Ts + 50 ° C.

ガス流の吹き付け時間(制御時間)は、これまで述べたガス流温度、ガス流量、ノズル径、ノズル位置等の要件と併せて、上記したような温度範囲内において上記した極めて高速の冷却速度が達成される限り、特に限定されない。ガス流の吹き付け時間は通常、0.1秒間以上(特に0.1〜10秒間)である。 The gas flow blowing time (control time) is the extremely high cooling rate described above within the temperature range described above, in addition to the requirements such as the gas flow temperature, gas flow rate, nozzle diameter, and nozzle position described above. As long as it is achieved, it is not particularly limited. The blowing time of the gas stream is usually 0.1 seconds or more (particularly 0.1 to 10 seconds).

固化工程を行った後、通常は室温まで冷却を行う。冷却方法は特に限定されず、例えば、放置冷却法、空気流冷却法等が挙げられる。 After performing the solidification step, it is usually cooled to room temperature. The cooling method is not particularly limited, and examples thereof include a neglected cooling method and an air flow cooling method.

第2ステップにおいては、前記固化工程の前に、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行うことが好ましい。 In the second step, prior to the solidification step, at least a push-in stirring step C2 in which the rotary tool 16 is pushed into the metal member 11 to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12 is performed. It is preferable to do so.

第2ステップにおいては、前記押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。
前記押込み撹拌工程の後であって、前記固化工程の前に、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。
In the second step, it is preferable to perform the preheating step C1 for rotating the rotary tool 16 in a state where only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 before the push-in stirring step. , You don't have to do it.
After the indentation stirring step and before the solidification step, a stirring maintenance step C3 for continuing the rotational operation of the rotary tool 16 is performed at a position where the rotary tool 16 is inserted to a depth that does not reach the joining boundary surface. However, the step does not necessarily have to be performed.

本実施態様における各工程は、回転ツールの押圧力(加圧力)及び押圧時間を制御する圧力制御方式によって成されても良いし、回転ツールの押圧方向の挿入量(金属部材に接触してからの金属部材への挿入量)と挿入速度、及びその2つによって決まる移動時間(接合時間)を制御する位置制御方式によって成されても良いし、または、それらの組み合わせによって成されても良い。 Each step in the present embodiment may be performed by a pressure control method for controlling the pressing force (pressurizing force) and pressing time of the rotating tool, or after the insertion amount of the rotating tool in the pressing direction (after contacting the metal member). It may be formed by a position control method that controls the movement time (joining time) determined by the insertion amount) and the insertion speed of the metal member, or a combination thereof.

以下、これらの工程について詳しく説明する。 Hereinafter, these steps will be described in detail.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図5に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。詳しくは、回転ツールの先端部におけるピン部のみ、またはピン部およびショルダ部表面のみを金属部材の表面部に接触させた状態で回転ツールを回転させる。
(Preheating step C1)
In the preheating step C1, by bringing the rotary tool 16 and the receiver 17 close to each other, as shown in FIG. 5, only the tip portion of the rotary tool 16 is placed on the surface portion (upper surface portion in the figure) of the metal member 11. This is a step of rotating the rotation tool 16 in contact with the rotation tool 16. Specifically, the rotation tool is rotated with only the pin portion at the tip of the rotation tool or only the surface of the pin portion and the shoulder portion in contact with the surface portion of the metal member.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の押圧領域111(回転ツール16による押圧領域)の範囲及び押圧領域111の近傍の範囲が予熱される。併せて、回転ツールの軸中心の位置決めが行われる。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。 Specifically, in the preheating step C1, frictional heat is generated on the surface portion (upper surface portion in the figure) of the metal member 11 by pressing the rotating tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region 111 (pressing region by the rotating tool 16) of the metal member 11 and the region near the pressing region 111 are preheated. At the same time, the axis center of the rotation tool is positioned. This makes it easier to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

本工程が位置制御方式によって行われる場合において、予熱工程C1でのツール挿入量及び挿入速度、もしくは挿入時間は、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させ得る限り特に限定されない。 When this step is performed by the position control method, the tool insertion amount and insertion speed or insertion time in the preheating step C1 are rotated with only the tip portion of the rotation tool 16 in contact with the surface portion of the metal member 11. The tool 16 is not particularly limited as long as it can be rotated.

本工程が圧力制御方式によって行われる場合において、予熱工程C1の加圧力(すなわち第1の加圧力)及び加圧時間(すなわち第1の加圧時間)は、上記のような回転ツール16の押込み易さの観点、生産性の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、予熱工程C1における第1の加圧力は、500N以上1000N未満の値が好ましい。第1の加圧時間は、0.1秒以上3.0秒未満の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。 When this step is performed by the pressure control method, the pressurization (that is, the first pressurization) and the pressurization time (that is, the first pressurization time) of the preheating step C1 are the pressing of the rotary tool 16 as described above. It is set from the viewpoint of ease and productivity, and its value changes depending on, for example, the number of rotations of the rotation tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first pressing force in the preheating step C1 is preferably a value of 500 N or more and less than 1000 N. The first pressurization time is preferably a value of 0.1 seconds or more and less than 3.0 seconds. The rotation speed of the rotation tool is preferably a value of 2000 rpm or more and 4000 rpm or less.

(押込み撹拌工程C2)
押込み撹拌工程C2では、回転ツール16と受け具17とを相互に近接させることにより、図6に示すように、回転ツール16を金属部材11に押し込む。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図6に示すように、回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる。このとき、金属部材11の回転ツール直下部110を、図6に示すように、樹脂部材12側に突出変形させることが好ましい。これにより、回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂121について、その溶融と該直下領域から外周領域への流動(図6の矢印方向)を促進させることができる。その結果、溶融樹脂と金属部材11との接触面積が拡大され、得られる接合構造において、冷却により溶融樹脂が固化してなる溶融固化域(接合領域)もまた拡大されるため、樹脂部材と金属部材との接合を十分な強度で達成することができる。
(Pushing stirring step C2)
In the push-in stirring step C2, the rotary tool 16 and the receiver 17 are brought close to each other to push the rotary tool 16 into the metal member 11 as shown in FIG. When the pressing and stirring step C2 is performed after the preheating step C1, the rotating tool 16 and the receiver 17 are brought closer to each other to push the rotating tool 16 into the metal member 11 as shown in FIG. As a result, the rotary tool 16 is advanced to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12. At this time, it is preferable that the rotation tool direct lower portion 110 of the metal member 11 is projected and deformed toward the resin member 12 as shown in FIG. As a result, it is possible to promote the melting of the molten resin 121 on the surface of the resin member that is melted in the region directly below the rotary tool and the flow from the region directly below the molten resin 121 to the outer peripheral region (in the direction of the arrow in FIG. 6). As a result, the contact area between the molten resin and the metal member 11 is expanded, and in the obtained bonding structure, the molten solidification region (bonding region) in which the molten resin is solidified by cooling is also expanded, so that the resin member and the metal Bonding with the member can be achieved with sufficient strength.

回転ツール16の挿入量は、金属部材11の厚みをT(mm)としたとき、Tの近傍であればよく、接合強度のさらなる向上の観点から、好ましくはT−0.5(mm)以上〜T(mm)未満)である。本明細書中、回転ツール16の挿入量は、回転ツール16のピン部16aにおける外周部の金属部材表面から厚み方向への挿入量のことである。回転ツール16の挿入量は、回転ツールの位置(挿入量)制御装置を用いると、より精密に制御することができる。 The insertion amount of the rotation tool 16 may be in the vicinity of T when the thickness of the metal member 11 is T (mm), and is preferably T-0.5 (mm) or more from the viewpoint of further improving the joint strength. ~ T (mm) or less). In the present specification, the insertion amount of the rotation tool 16 is the insertion amount in the thickness direction from the surface of the metal member on the outer peripheral portion of the pin portion 16a of the rotation tool 16. The insertion amount of the rotation tool 16 can be controlled more precisely by using the position (insertion amount) control device of the rotation tool.

本工程が位置制御方式によって行われる場合において、押込み撹拌工程C2でのツール挿入量及び挿入速度、もしくは挿入時間は、上記挿入量が達成されるように、制御されればよい。 When this step is performed by the position control method, the tool insertion amount and the insertion speed, or the insertion time in the indentation stirring step C2 may be controlled so as to achieve the above insertion amount.

本工程が圧力制御方式によって行われる場合において、押込み撹拌工程C2では、回転ツール16を、第2の加圧力で、第2の加圧時間だけ、所定回転数で回転させる。押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、本方式においても上記挿入量が達成されるように制御されればよい。第2の加圧力及び第2の加圧時間は、例えば、回転ツール16を金属部材11と樹脂部材12との界面13まで進入させる観点から設定され、押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程C2における第2の加圧力は、1200N以上1800N未満の値が好ましい。第2の加圧時間は、0.1秒以上3秒未満の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。 When this step is performed by the pressure control method, in the indentation stirring step C2, the rotation tool 16 is rotated at a predetermined rotation speed by the second pressurizing time for the second pressurizing time. The second pressing force and the second pressurizing time in the indentation stirring step C2 may be controlled so that the above-mentioned insertion amount is achieved also in this method. The second pressurizing pressure and the second pressurizing time are set, for example, from the viewpoint of allowing the rotating tool 16 to enter the interface 13 between the metal member 11 and the resin member 12, and in the indentation stirring step C2, the rotating tool 16 is set. A second pressurization (for example, 1500 N) that is larger than the first pressurization and a predetermined number of revolutions (for example, 3000 rpm) for a second pressurization time (for example, 0.25 seconds) that is shorter than the first pressurization time. ) To rotate. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second pressing force in the indentation stirring step C2 is preferably a value of 1200 N or more and less than 1800 N. The second pressurization time is preferably a value of 0.1 seconds or more and less than 3 seconds. The rotation speed of the rotation tool is preferably a value of 2000 rpm or more and 4000 rpm or less.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図6に示すように、上記接合境界面13に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。本工程では摩擦熱がさらに発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12における少なくとも回転ツール直下領域の溶融樹脂121が、該直下領域を超えて、その外周領域まで、より一層、流動する(図6の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。
(Stirring maintenance step C3)
In the stirring maintenance step C3, by stopping the mutual proximity of the rotating tool 16 and the receiver 17, as shown in FIG. This is a step of continuing the rotation operation of the rotation tool 16 at (referred to as "position"). Further frictional heat is generated in this step, and most of the generated frictional heat is transferred to the resin member 12. Therefore, at least the molten resin 121 in the region directly under the rotary tool in the resin member 12 flows further beyond the region directly under the resin member 12 to the outer peripheral region thereof (in the direction of the arrow in FIG. 6). The molten resin spreads in a substantially circular shape centered on the region directly below the rotating tool.

本工程が位置制御方式によって行われる場合において、撹拌維持工程C3でのツール挿入量及び挿入速度、もしくは挿入時間は、上記位置で回転動作が継続される限り特に限定されない。 When this step is performed by the position control method, the tool insertion amount, the insertion speed, or the insertion time in the stirring maintenance step C3 is not particularly limited as long as the rotation operation is continued at the above position.

本工程が圧力制御方式によって行われる場合において、撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、6.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。第3の加圧力及び第3の加圧時間は、樹脂部材12の広い範囲での十分な軟化・溶融および生産性の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程C3における第3の加圧力は、100N以上700N未満の値が好ましい。第3の加圧時間は、3.0秒以上10秒以下の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。 When this step is performed by the pressure control method, in the stirring maintenance step C3, the rotation tool 16 is subjected to a third pressing force (for example, 500N) smaller than the first pressing force, which is longer than the first pressurizing time. It is rotated at a predetermined rotation speed (for example, 3000 rpm) for a third pressurizing time (for example, 6.75 seconds). The third pressurizing pressure and the third pressurizing time are set from the viewpoint of sufficient softening / melting and productivity in a wide range of the resin member 12, and the values thereof are, for example, the rotation speed of the rotating tool 16 and the metal member. It varies depending on the thickness of 11 and the type of material. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the third pressing force in the stirring maintenance step C3 is preferably a value of 100 N or more and less than 700 N. The third pressurization time is preferably a value of 3.0 seconds or more and 10 seconds or less. The rotation speed of the rotation tool is preferably a value of 2000 rpm or more and 4000 rpm or less.

以上、回転ツールを金属部材の接触面上、面方向で移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明したが、上記面方向において回転ツールを移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合、もしくは連続接合)においても、接合界面の溶融固化樹脂が規定の結晶化度(最大結晶化度比)を有する限り、本発明の効果が得られることは明らかである。 The case where the metal member and the resin member are joined in a dot shape (point joining) without moving the rotation tool on the contact surface of the metal member in the surface direction has been described above. Even when the metal member and the resin member are linearly bonded while being moved (linear bonding or continuous bonding), the melt-solidified resin at the bonding interface has a specified crystallinity (maximum crystallinity ratio). As long as it is clear, the effect of the present invention can be obtained.

[実施例1]
(樹脂部材)
炭素繊維を40重量%含むポリフェニレンサルファイドペレット(PPS−CF40%;ダイセルポリマー社製)を用いて射出成形法により、縦100mm×横30mm×厚み3mm寸法の樹脂部材12を製造した。樹脂部材におけるポリフェニレンサルファイドの凝固点Tsは約250℃であった。
[Example 1]
(Resin member)
A resin member 12 having a size of 100 mm in length × 30 mm in width × 3 mm in thickness was produced by an injection molding method using polyphenylene sulfide pellets (PPS-CF 40%; manufactured by Daicel Polymer Co., Ltd.) containing 40% by weight of carbon fibers. The freezing point Ts of polyphenylene sulfide in the resin member was about 250 ° C.

(金属部材)
金属部材としては、5000系のアルミニウム合金製の平板状部材(厚さ1.2mm)を用いた。
(回転ツール)
回転ツールとしては、図4の各部の寸法がD1=10mm、D2=2mm、h=0.35mmの工具鋼製のものを用いた。
(Metal member)
As the metal member, a flat plate-shaped member (thickness 1.2 mm) made of a 5000 series aluminum alloy was used.
(Rotation tool)
As the rotating tool, a tool made of tool steel having dimensions of D1 = 10 mm, D2 = 2 mm, and h = 0.35 mm was used.

(接合方法)
位置制御方式を用いた以下の方法により、金属部材11と樹脂部材12との接合構造体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図3に示すように重ね合わせた。
(Joining method)
A joint structure of the metal member 11 and the resin member 12 was manufactured by the following method using the position control method.
First step:
The end portion of the metal member 11 and the end portion of the resin member 12 were overlapped as shown in FIG.

第2ステップ:
予熱工程C1を行うことなく、図6に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させた。このとき、回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂121が、押圧部材直下領域からその外側に向けて(図6の矢印方向へ)、流動した。押込み撹拌工程C2:挿入量1.0mm、挿入速度6mm/分、ツール回転数3000rpm。
Second step:
As shown in FIG. 6, the rotary tool 16 was pushed into the metal member 11 without performing the preheating step C1 to enter the metal member 11 and the resin member 12 to a depth not reaching the joint boundary surface 13. At this time, the molten resin 121 on the surface of the resin member melted in the region directly below the rotating tool flowed from the region directly below the pressing member toward the outside (in the direction of the arrow in FIG. 6). Push-in stirring step C2: Insertion amount 1.0 mm, insertion speed 6 mm / min, tool rotation speed 3000 rpm.

次いで、図7に示すように、回転ツール16を金属部材11から離間させ、回転ツール16が押圧していた金属部材11の押圧領域111押圧領域とその周辺領域の強制冷却を行った(固化工程)。詳しくは、回転ツール16を金属部材11から離間させた時刻をゼロ(秒)としたとき、所定の冷却開始時刻から冷却終了時刻まで、ノズル115から押圧領域111に所定の流量400L/分で15℃の空気流を吹き付けて、押圧領域111の強制冷却を行い、図8に示す接合構造体を得た。ノズル(内径3mm)は、図7に示すように、接合中心(すなわち押圧領域の中心)からの水平距離xが15mmであって、接合中心からの高さyが15mmである位置にノズル先端が配置されるとともに、ノズル向きが接合中心方向に向くように、ノズルを配置させた。 Next, as shown in FIG. 7, the rotary tool 16 was separated from the metal member 11, and the pressing region 111 of the metal member 11 pressed by the rotating tool 16 and the peripheral region thereof were forcibly cooled (solidification step). ). Specifically, when the time when the rotating tool 16 is separated from the metal member 11 is set to zero (seconds), 15 from the nozzle 115 to the pressing region 111 at a predetermined flow rate of 400 L / min from the predetermined cooling start time to the cooling end time. The pressing region 111 was forcibly cooled by blowing an air flow at ° C. to obtain the bonded structure shown in FIG. As shown in FIG. 7, the nozzle (inner diameter of 3 mm) has the tip of the nozzle at a position where the horizontal distance x from the joint center (that is, the center of the pressing region) is 15 mm and the height y from the joint center is 15 mm. The nozzles were arranged so that the nozzles were oriented toward the center of the joint.

(接合強度)
図9に示すように、金属部材11と樹脂部材12との接合構造体を治具100内に配置した。治具100は、該治具100を下方へ引っ張ることにより樹脂部材12の上端部に下方への力が働くように構成されたものである。治具100を固定し、かつ金属部材11を上方へ引っ張ることにより、樹脂部材12の上端部に下方への力が働き、樹脂部材12の母材強度に影響を受けることなく接合部の剪断強度Sを測定した。
◎◎;6.50≦S(最良);
◎;6.00≦S<6.50(優良);
○;5.00≦S<6.00(良好);
×;S<5.00(不良)。
(Joint strength)
As shown in FIG. 9, the joint structure of the metal member 11 and the resin member 12 is arranged in the jig 100. The jig 100 is configured so that a downward force acts on the upper end portion of the resin member 12 by pulling the jig 100 downward. By fixing the jig 100 and pulling the metal member 11 upward, a downward force acts on the upper end portion of the resin member 12, and the shear strength of the joint portion is not affected by the strength of the base material of the resin member 12. S was measured.
◎ ◎; 6.50 ≦ S (best);
⊚; 6.00 ≦ S <6.50 (excellent);
◯; 5.00 ≦ S <6.00 (good);
X; S <5.00 (defective).

(温度測定)
冷却開始時刻および冷却終了時刻において押圧領域111における金属部材11と樹脂部材12の界面温度(接合部中心より7.5mm位置)を、K式熱電対により測定した。
(Temperature measurement)
At the cooling start time and the cooling end time, the interface temperature between the metal member 11 and the resin member 12 (7.5 mm from the center of the joint) in the pressing region 111 was measured by a K-type thermocouple.

(冷却速度)
上記温度測定において、冷却開始時刻および冷却終了時刻だけでなく、それらの間の時刻においても、押圧領域111における金属部材11と樹脂部材12の界面温度を測定した。Ts+50℃となる時刻TTs+50およびTs−50℃となる時刻TTs−50から、平均冷却速度を求めた。
(Cooling rate)
In the above temperature measurement, the interface temperature between the metal member 11 and the resin member 12 in the pressing region 111 was measured not only at the cooling start time and the cooling end time but also at the time between them. From the time T ts + 50 and Ts-50 ° C. and the time T ts-50 consisting of the ts + 50 ° C., to obtain an average cooling rate.

(樹脂結晶化度(最大結晶化度比))
得られた接合構造体から金属部材11を強制的に剥離した。樹脂部材12における金属部材側表面120を観察し、図2に示すように、回転ツール直下領域60(直径D1(mm))と同心の直径1.5×D1の円形線62(破線)上の任意の5箇所で試料を削り取り、DSC(示差走査熱量測定)装置により、前記した方法に従って、結晶化度(最大結晶化度比)を測定および算出した。
(Resin crystallinity (maximum crystallinity ratio))
The metal member 11 was forcibly peeled off from the obtained joint structure. The surface 120 on the metal member side of the resin member 12 is observed, and as shown in FIG. 2, on a circular line 62 (broken line) having a diameter of 1.5 × D1 concentric with the region 60 (diameter D1 (mm)) directly under the rotation tool. The sample was scraped off at any five points, and the crystallinity (maximum crystallinity ratio) was measured and calculated by a DSC (differential scanning calorimetry) device according to the above method.

[比較例1]
押込み撹拌工程の後、固化工程を行うことなく、室温(20℃)下で放置冷却したこと以外、実施例1と同様の方法により、樹脂部材と金属部材との接合構造体の製造およびその評価を行った。
[Comparative Example 1]
After the indentation stirring step, the joint structure of the resin member and the metal member is manufactured and evaluated by the same method as in Example 1 except that the resin member and the metal member are left to cool at room temperature (20 ° C.) without performing the solidification step. Was done.

[実施例2〜5および比較例2]
固化工程条件を表に記載のように変更したこと以外、実施例1と同様の方法により、樹脂部材と金属部材との接合構造体の製造およびその評価を行った。
[Examples 2 to 5 and Comparative Example 2]
A joint structure of a resin member and a metal member was manufactured and evaluated by the same method as in Example 1 except that the solidification process conditions were changed as described in the table.

Figure 2021154574
Figure 2021154574

本発明に係る接合構造体および接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。 The joining structure and joining method according to the present invention are useful for joining a metal member and a resin member in the fields of automobiles, railroad vehicles, aircraft, home appliances and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
13:金属部材と樹脂部材との接合境界面
16:回転ツール
17:受け具
50:接合構造
100:接合強度を測定するための治具
110:金属部材の回転ツール直下部
P:押圧領域(押圧予定領域)
111:押圧領域(押圧後)
121:回転ツールの直下領域で溶融している溶融樹脂
1: Friction stir welding device 10: Work 11: Metal member 12: Resin member 13: Joint interface between metal member and resin member 16: Rotating tool 17: Jig 50: Joint structure 100: For measuring joint strength Jig 110: Immediately below the rotation tool for metal members P: Pressing area (planned pressing area)
111: Pressing area (after pressing)
121: Molten resin melted in the area directly below the rotating tool

Claims (21)

金属部材と樹脂部材との接合構造であって、
前記樹脂部材は、金属部材側表面における溶融固化域で金属部材と接合されており、
前記溶融固化域は80%以下の結晶化度(最大結晶化度比)を有する、金属部材と樹脂部材との接合構造。
It is a joint structure of a metal member and a resin member.
The resin member is joined to the metal member in the melt-solidified region on the surface on the metal member side.
The melt-solidified region has a crystallinity of 80% or less (maximum crystallinity ratio), and is a bonded structure of a metal member and a resin member.
前記樹脂部材は、ポリフェニレンサルファイド系樹脂、ポリアミド系樹脂およびポリオレフィン系樹脂からなる群から選択される1種以上のポリマーを含む、請求項1に記載の金属部材と樹脂部材との接合構造。 The bonded structure between the metal member and the resin member according to claim 1, wherein the resin member contains one or more polymers selected from the group consisting of polyphenylene sulfide-based resin, polyamide-based resin, and polyolefin-based resin. 前記金属部材はアルミニウムまたはアルミニウム合金から構成されている、請求項1または2のいずれかに記載の金属部材と樹脂部材との接合構造。 The joint structure between a metal member and a resin member according to claim 1 or 2, wherein the metal member is made of aluminum or an aluminum alloy. 前記溶融固化域の結晶化度(最大結晶化度比)は40〜80%である、請求項1〜3のいずれかに記載の金属部材と樹脂部材との接合構造。 The joint structure between a metal member and a resin member according to any one of claims 1 to 3, wherein the crystallinity (maximum crystallinity ratio) of the melt-solidified region is 40 to 80%. 前記溶融固化域の結晶化度(最大結晶化度比)は40〜76%である、請求項1〜3のいずれかに記載の金属部材と樹脂部材との接合構造。 The joint structure between a metal member and a resin member according to any one of claims 1 to 3, wherein the crystallinity (maximum crystallinity ratio) of the melt-solidified region is 40 to 76%. 前記溶融固化域の結晶化度(最大結晶化度比)は40〜72%である、請求項1〜3のいずれかに記載の金属部材と樹脂部材との接合構造。 The joint structure between a metal member and a resin member according to any one of claims 1 to 3, wherein the crystallinity (maximum crystallinity ratio) of the melt-solidified region is 40 to 72%. 前記溶融固化域は、前記樹脂部材の前記金属部材側表面に0.50mm以下の厚みを有する、請求項1〜6のいずれかに記載の金属部材と樹脂部材との接合構造。 The joint structure between the metal member and the resin member according to any one of claims 1 to 6, wherein the melt-solidified region has a thickness of 0.50 mm or less on the surface of the resin member on the metal member side. 前記金属部材と前記樹脂部材とを重ね合わせ、押圧部材による前記金属部材側からの押圧により熱および圧力を付与し、前記樹脂部材を軟化および溶融させた後、固化させる熱圧式接合方法による、請求項1〜7のいずれかに記載の金属部材と樹脂部材との接合構造。 Claimed by a thermal pressure joining method in which the metal member and the resin member are superposed, heat and pressure are applied by pressing from the metal member side by the pressing member, and the resin member is softened and melted and then solidified. Item 5. The joint structure between the metal member and the resin member according to any one of Items 1 to 7. 金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により熱および圧力を付与し、前記樹脂部材を軟化および溶融させた後、固化させる熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記固化工程において、前記樹脂部材の溶融固化域が80%以下の結晶化度(最大結晶化度比)を有するように強制冷却を行う、金属部材と樹脂部材との接合方法。
The metal member and the resin member are superposed on each other, heat and pressure are applied by pressing from the metal member side by the pressing member, and the resin member is softened and melted and then solidified. It is a method of joining with
A method for joining a metal member and a resin member, wherein in the solidification step, forced cooling is performed so that the melt-solidified region of the resin member has a crystallization degree (maximum crystallinity ratio) of 80% or less.
前記強制冷却を溶融固化域の温度において50℃/秒以上の冷却速度で行う、請求項9に記載の金属部材と樹脂部材との接合方法。 The method for joining a metal member and a resin member according to claim 9, wherein the forced cooling is performed at a cooling rate of 50 ° C./sec or more at a temperature in the melt-solidification region. 前記固化工程において、前記樹脂部材の溶融固化域が40〜76%の結晶化度(最大結晶化度比)を有するように前記強制冷却を行う、請求項9に記載の金属部材と樹脂部材との接合方法。 The metal member and the resin member according to claim 9, wherein in the solidification step, the forced cooling is performed so that the melt-solidified region of the resin member has a crystallinity of 40 to 76% (maximum crystallinity ratio). How to join. 前記強制冷却を溶融固化域の温度において150℃/秒以上の冷却速度で行う、請求項11に記載の金属部材と樹脂部材との接合方法。 The method for joining a metal member and a resin member according to claim 11, wherein the forced cooling is performed at a cooling rate of 150 ° C./sec or more at a temperature in the melt-solidification region. 前記固化工程において、前記樹脂部材の溶融固化域が40〜72%の結晶化度(最大結晶化度比)を有するように前記強制冷却を行う、請求項9に記載の金属部材と樹脂部材との接合方法。 The metal member and the resin member according to claim 9, wherein in the solidification step, the forced cooling is performed so that the melt-solidified region of the resin member has a crystallinity of 40 to 72% (maximum crystallinity ratio). How to join. 前記強制冷却を溶融固化域の温度において300℃/秒超の冷却速度で行う、請求項13に記載の金属部材と樹脂部材との接合方法。 The method for joining a metal member and a resin member according to claim 13, wherein the forced cooling is performed at a cooling rate of more than 300 ° C./sec at a temperature in the melt-solidification region. 前記押圧部材を前記金属部材から離間させた後、前記押圧部材が押圧していた金属部材の押圧領域または該押圧領域とその周辺領域にガス流を吹き付けることにより、前記強制冷却を行う、請求項9〜14のいずれかに記載の金属部材と樹脂部材との接合方法。 A claim that the forced cooling is performed by separating the pressing member from the metal member and then blowing a gas flow onto the pressing region of the metal member pressed by the pressing member or the pressing region and its peripheral region. The method for joining a metal member and a resin member according to any one of 9 to 14. 前記樹脂部材の凝固点をTs(℃)としたとき、前記強制冷却を、少なくとも前記押圧領域の金属部材と前記樹脂部材との界面の樹脂温度がTs+50(℃)からTs−50(℃)になるまで行う、請求項9〜15のいずれかに記載の金属部材と樹脂部材との接合方法。 When the freezing point of the resin member is Ts (° C.), the resin temperature at the interface between the metal member in the pressing region and the resin member is changed from Ts + 50 (° C.) to Ts-50 (° C.) by the forced cooling. The method for joining a metal member and a resin member according to any one of claims 9 to 15. 前記熱圧式接合方法が、
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法である、請求項9〜16のいずれかに記載の金属部材と樹脂部材との接合方法。
The thermal bonding method
The first step of superimposing the metal member and the resin member; and while rotating the rotating tool as the pressing member, the metal member is pressed to generate frictional heat, and the frictional heat softens and melts the resin member, and then the resin member is softened and melted. The method for joining a metal member and a resin member according to any one of claims 9 to 16, which is a friction stir welding method including a second step of solidifying and joining the metal member and the resin member.
前記第2ステップが、前記固化工程の前に、前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程を備えている、請求項17に記載の金属部材と樹脂部材との接合方法。 The second step comprises a push-in stirring step of pushing the rotating tool into the metal member to a depth that does not reach the joint interface between the metal member and the resin member before the solidification step. 17. The method for joining a metal member and a resin member according to 17. 前記第2ステップが、前記押込み撹拌工程の前に、前記回転ツールの先端部のみを金属部材の表面部に接触させた状態で回転ツールを回転させる予熱工程をさらに備えている、請求項18に記載の金属部材と樹脂部材との接合方法。 18. The second step further comprises a preheating step of rotating the rotary tool with only the tip of the rotary tool in contact with the surface of the metal member prior to the push-in stirring step. The method for joining a metal member and a resin member according to the description. 前記第2ステップが、前記押込み撹拌工程の後であって、前記固化工程の前に、前記回転ツールを接合境界面に達しない深さまで進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程をさらに備えている、請求項18または19に記載の金属部材と樹脂部材との接合方法。 The second step is after the indentation stirring step, and before the solidification step, at a position where the rotating tool is inserted to a depth that does not reach the joining interface, stirring that continues the rotating operation of the rotating tool. The method for joining a metal member and a resin member according to claim 18 or 19, further comprising a maintenance step. 請求項1〜8のいずれかに記載の金属部材と樹脂部材との接合構造を得る、請求項9〜20のいずれかに記載の金属部材と樹脂部材との接合方法。 The method for joining a metal member and a resin member according to any one of claims 9 to 20, wherein a joining structure between the metal member and the resin member according to any one of claims 1 to 8 is obtained.
JP2020056334A 2020-03-26 2020-03-26 Bonding structure and bonding method between metal and resin components Active JP7376044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020056334A JP7376044B2 (en) 2020-03-26 2020-03-26 Bonding structure and bonding method between metal and resin components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056334A JP7376044B2 (en) 2020-03-26 2020-03-26 Bonding structure and bonding method between metal and resin components

Publications (2)

Publication Number Publication Date
JP2021154574A true JP2021154574A (en) 2021-10-07
JP7376044B2 JP7376044B2 (en) 2023-11-08

Family

ID=77918982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056334A Active JP7376044B2 (en) 2020-03-26 2020-03-26 Bonding structure and bonding method between metal and resin components

Country Status (1)

Country Link
JP (1) JP7376044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114872326A (en) * 2022-05-13 2022-08-09 南京航空航天大学 Hot-press welding equipment and method for lap joint structure of thermoplastic composite material and light alloy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671777A (en) * 1992-07-09 1994-03-15 Nippon Steel Corp Method for production of metal plate covered with thermoplastic resin
JP2000043191A (en) * 1998-08-03 2000-02-15 Toyobo Co Ltd Resin coated metal plate and production thereof
JP2002120324A (en) * 2000-08-07 2002-04-23 Nkk Corp Film-laminated metal plate for container and its production method
JP2004237549A (en) * 2003-02-05 2004-08-26 Daiwa Can Co Ltd Method for producing thermoplastic resin-coated metal plate
JP2016068467A (en) * 2014-09-30 2016-05-09 マツダ株式会社 Method for bonding metallic member and resin member
JP2016068471A (en) * 2014-09-30 2016-05-09 マツダ株式会社 Method for bonding metallic member and resin member
JP2017039300A (en) * 2015-08-21 2017-02-23 マツダ株式会社 Method for joining metal member and resin member, and resin member used in the same
JP2018171933A (en) * 2018-07-02 2018-11-08 株式会社神戸製鋼所 Aluminum composite material, composite structure and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671777A (en) * 1992-07-09 1994-03-15 Nippon Steel Corp Method for production of metal plate covered with thermoplastic resin
JP2000043191A (en) * 1998-08-03 2000-02-15 Toyobo Co Ltd Resin coated metal plate and production thereof
JP2002120324A (en) * 2000-08-07 2002-04-23 Nkk Corp Film-laminated metal plate for container and its production method
JP2004237549A (en) * 2003-02-05 2004-08-26 Daiwa Can Co Ltd Method for producing thermoplastic resin-coated metal plate
JP2016068467A (en) * 2014-09-30 2016-05-09 マツダ株式会社 Method for bonding metallic member and resin member
JP2016068471A (en) * 2014-09-30 2016-05-09 マツダ株式会社 Method for bonding metallic member and resin member
JP2017039300A (en) * 2015-08-21 2017-02-23 マツダ株式会社 Method for joining metal member and resin member, and resin member used in the same
JP2018171933A (en) * 2018-07-02 2018-11-08 株式会社神戸製鋼所 Aluminum composite material, composite structure and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114872326A (en) * 2022-05-13 2022-08-09 南京航空航天大学 Hot-press welding equipment and method for lap joint structure of thermoplastic composite material and light alloy

Also Published As

Publication number Publication date
JP7376044B2 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6102813B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP2021154574A (en) Joint structure and joint method of metal member and resin member
JP6098605B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6098562B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP2016068130A (en) Method of joining metal member with resin member
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6098551B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6384408B2 (en) Friction stir welding method and joining apparatus therefor
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6137104B2 (en) Method of joining metal member and resin member
JP2020138455A (en) Joining method and apparatus for joining metal members and resin members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7376044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150